JP2013035809A - OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME - Google Patents

OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME Download PDF

Info

Publication number
JP2013035809A
JP2013035809A JP2011175236A JP2011175236A JP2013035809A JP 2013035809 A JP2013035809 A JP 2013035809A JP 2011175236 A JP2011175236 A JP 2011175236A JP 2011175236 A JP2011175236 A JP 2011175236A JP 2013035809 A JP2013035809 A JP 2013035809A
Authority
JP
Japan
Prior art keywords
group
optically active
formula
hydroxyketone
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011175236A
Other languages
Japanese (ja)
Inventor
Yujiro Hayashi
雄二郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2011175236A priority Critical patent/JP2013035809A/en
Publication of JP2013035809A publication Critical patent/JP2013035809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide optically active α-hydroxyketones useful as intermediates for medicine, agricultural chemicals, perfumes, etc.SOLUTION: Optically active α-hydroxyketones are produced with a high yield and a high enantio-selectivity by an asymmetric catalytic aldol reaction of an α-ketoaldehyde with another aldehyde. The asymmetric catalyst is preferably a proline derivative. The production method has high versatility for substrates and enables easy synthesis of optically active α-hydroxyalkylketones which have so far been difficult to synthesize. Utilization of the reactivity of optically active α-hydroxyketones produced enables increasing the number of C-C bonds and converting them into polyols.

Description

本発明は、光学活性α−ヒドロキシケトン及びその製造方法に関する。より詳細には、β位にホルミル基を有する光学活性α−ヒドロキシケトン、及び該光学活性α−ヒドロキシケトンをα−ケトアルデヒドと他のアルデヒドとの不斉触媒アルドール反応により製造する方法に関する。   The present invention relates to an optically active α-hydroxyketone and a method for producing the same. More specifically, the present invention relates to an optically active α-hydroxyketone having a formyl group at the β-position, and a method for producing the optically active α-hydroxyketone by an asymmetric catalytic aldol reaction between α-ketoaldehyde and another aldehyde.

光学活性α−ヒドロキシケトンは各種医農薬、香料等の中間体として重要である。光学活性α−ヒドロキシケトンの合成法として、エノールエーテルを光学活性なシッフベースマンガン錯体触媒の存在下酸化剤と反応させる方法(特許文献1を参照)、ジアミン誘導体を配位子に持つルテニウム触媒を用いて1,2−ジケトンを不斉還元する方法(特許文献2を参照)、微生物を用いてピルビン酸とアルデヒドとを反応させる反応(特許文献3を参照)等が知られている。   The optically active α-hydroxyketone is important as an intermediate for various medical pesticides and fragrances. As a synthesis method of optically active α-hydroxyketone, a method of reacting an enol ether with an oxidizing agent in the presence of an optically active Schiff base manganese complex catalyst (see Patent Document 1), and a ruthenium catalyst having a diamine derivative as a ligand. A method of asymmetric reduction of a 1,2-diketone by use (see Patent Document 2), a reaction of reacting pyruvic acid and an aldehyde using a microorganism (see Patent Document 3), and the like are known.

特開平07−247238号公報Japanese Patent Application Laid-Open No. 07-247238 特開2001−199928号公報JP 2001-199928 A 特開2004−000176号公報JP 2004-000176 A

これらの方法のうち、触媒を用いる反応は、α−ヒドロキシアリールケトンの合成に限定されており、医農薬、香料等へ展開する化合物に制限があった。また、微生物を用いる反応では、収率や収量が十分でなかった。このため、従来合成されなかったα−ヒドロキシアルキルケトン等の光学活性α−ヒドロキシケトン、及び基質汎用性が高く、高収率、高エナンチオ選択率で光学活性α−ヒドロキシケトンを合成する方法が望まれていた。   Among these methods, the reaction using a catalyst is limited to the synthesis of α-hydroxyaryl ketone, and there is a limit to the compounds that can be developed into medical pesticides, perfumes and the like. Moreover, in the reaction using microorganisms, the yield and the yield were not sufficient. For this reason, optically active α-hydroxy ketones such as α-hydroxyalkyl ketones that have not been synthesized in the past, and methods for synthesizing optically active α-hydroxy ketones with high substrate versatility, high yield, and high enantioselectivity are desired. It was rare.

本発明は、このような課題に鑑みてなされたものであり、新規な光学活性α−ヒドロキシケトン、及び光学活性α−ヒドロキシケトンを基質汎用性高く、高収率、高エナンチオ選択率で製造する方法を提供することを目的とする。   The present invention has been made in view of such problems, and produces a novel optically active α-hydroxyketone and optically active α-hydroxyketone with high substrate versatility, high yield, and high enantioselectivity. It aims to provide a method.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、α−ケトアルデヒドと他のアルデヒドとの不斉触媒アルドール反応が広い範囲のα−ヒドロキシケトンの製造に優れていることを見出し、本発明を完成するに至った。より具体的には、本発明は以下の通りである。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that the asymmetric catalytic aldol reaction between α-ketoaldehyde and other aldehydes is excellent in the production of a wide range of α-hydroxy ketones, and the present invention has been completed. More specifically, the present invention is as follows.

(1) 下記式(a)で表される光学活性α−ヒドロキシケトンの製造方法であって、下記式(b)で表されるα−ケトアルデヒドと下記式(c)で表されるアルデヒドとの不斉触媒アルドール反応を行うことを特徴とする光学活性α−ヒドロキシケトンの製造方法。

Figure 2013035809
(式(a)中、R、Rはそれぞれ独立に群G1より選ばれる置換基を有していてもよいC−C20炭化水素基又は水素原子を表す。)
Figure 2013035809
(式(b)中、Rは式(a)のRと同一のものである。)
Figure 2013035809
(式(c)中、Rは式(a)のRと同一のものである。)
<群G1>:群G2より選ばれる置換基を有していてもよいC−C20アリール基、群G2より選ばれる置換基を有していてもよい芳香族複素環基、C−C12アルコキシ基、群G2より選ばれる置換基を有していてもよいC−C20アリール基を有するC−C12アルコキシ基、ハロゲン原子、オキソ基及びトリC−C12アルキルシリル基からなる群
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群 (1) A method for producing an optically active α-hydroxyketone represented by the following formula (a), an α-ketoaldehyde represented by the following formula (b) and an aldehyde represented by the following formula (c): A process for producing an optically active α-hydroxyketone, which comprises carrying out an asymmetric catalytic aldol reaction.
Figure 2013035809
(In formula (a), R 1 and R 2 each independently represents a C 1 -C 20 hydrocarbon group or a hydrogen atom which may have a substituent selected from group G1.)
Figure 2013035809
(In the formula (b), R 1 is the same as R 1 of formula (a).)
Figure 2013035809
(In the formula (c), R 2 is the same as R 2 of formula (a).)
<Group G1>: C 6 -C 20 aryl group which may have a substituent selected from Group G2, an aromatic heterocyclic group which may have a substituent selected from Group G2, C 1 — C 12 alkoxy group, C 1 -C 12 alkoxy group having optionally C 6 -C 20 aryl group optionally having substituent (s) selected from group G2, a halogen atom, an oxo group and tri C 1 -C 12 alkylsilyl the group consisting of group <group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl Group consisting of a group, a nitro group, a cyano group, a protected amino group and a halogen atom

(2) 前記不斉触媒アルドール反応で用いられる不斉触媒が下記式(d)又は(e)で表される化合物であることを特徴とする(1)記載の光学活性α−ヒドロキシケトンの製造方法。

Figure 2013035809
(式(d)中、R及びRはそれぞれ独立に、以下の群G2より選ばれる置換基を有していてもよいフェニル基、C−C12鎖式炭化水素基、C−C12脂環式炭化水素基又は水素原子を表し、Rは水素原子、フッ素原子、水酸基、C−C12アルコキシ基、C−C12フッ化アルキルオキシ基又は−OSiRを表し、R,R及びRはそれぞれ独立に、C−Cアルキル基又はC−C20アリール基を表し、*は不斉炭素原子を表す。)
Figure 2013035809
(式(e)中、R,R10及びR11はそれぞれ独立に、C−Cアルキル基又はC−C20アリール基を表し、*は不斉炭素原子を表す。)
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群 (2) Production of optically active α-hydroxyketone according to (1), wherein the asymmetric catalyst used in the asymmetric catalyst aldol reaction is a compound represented by the following formula (d) or (e): Method.
Figure 2013035809
(In formula (d), R 3 and R 4 are each independently a phenyl group optionally having a substituent selected from the following group G2, a C 1 -C 12 chain hydrocarbon group, C 3- C 12 represents an alicyclic hydrocarbon group or a hydrogen atom, and R 5 represents a hydrogen atom, a fluorine atom, a hydroxyl group, a C 1 -C 12 alkoxy group, a C 1 -C 12 fluorinated alkyloxy group, or —OSiR 6 R 7 R. And R 6 , R 7 and R 8 each independently represents a C 1 -C 8 alkyl group or a C 6 -C 20 aryl group, and * represents an asymmetric carbon atom.)
Figure 2013035809
(In formula (e), R 9 , R 10 and R 11 each independently represents a C 1 -C 8 alkyl group or a C 6 -C 20 aryl group, and * represents an asymmetric carbon atom.)
<Group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl group, a nitro group , A cyano group, a protected amino group and a halogen atom

(3) Rが水酸基であることを特徴とする(2)記載の光学活性α−ヒドロキシケトンの製造方法。 (3) The method for producing an optically active α-hydroxyketone according to (2), wherein R 5 is a hydroxyl group.

(4) R及びRがそれぞれ独立に、C−C12フッ化アルキル基を有していてもよいフェニル基であることを特徴とする(2)又は(3)記載の光学活性α−ヒドロキシケトンの製造方法。 (4) The optically active α according to (2) or (3), wherein R 3 and R 4 are each independently a phenyl group optionally having a C 1 -C 12 fluorinated alkyl group. -Method for producing hydroxyketone.

(5) R及びRが共に、3,5−ビス(トリフルオロメチル)フェニル基であることを特徴とする(2)から(4)のいずれか記載の光学活性α−ヒドロキシケトンの製造方法。 (5) Production of the optically active α-hydroxyketone according to any one of (2) to (4), wherein R 3 and R 4 are both 3,5-bis (trifluoromethyl) phenyl groups Method.

(6) 前記不斉触媒アルドール反応が、水の存在下で行われることを特徴とする(1)から(5)のいずれか記載の光学活性α−ヒドロキシケトンの製造方法。   (6) The method for producing an optically active α-hydroxyketone according to any one of (1) to (5), wherein the asymmetric catalytic aldol reaction is carried out in the presence of water.

(7) 下記式(a)で表される光学活性α−ヒドロキシケトン。

Figure 2013035809
(式(a)中、R、Rはそれぞれ独立に群G1より選ばれる置換基を有していてもよいC−C20炭化水素基又は水素原子を表す。)
<群G1>:群G2より選ばれる置換基を有していてもよいC−C20アリール基、群G2より選ばれる置換基を有していてもよい芳香族複素環基、C−C12アルコキシ基、群G2より選ばれる置換基を有していてもよいC−C20アリール基を有するC−C12アルコキシ基、ハロゲン原子、オキソ基及びトリC−C12アルキルシリル基からなる群
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群 (7) An optically active α-hydroxyketone represented by the following formula (a).
Figure 2013035809
(In formula (a), R 1 and R 2 each independently represents a C 1 -C 20 hydrocarbon group or a hydrogen atom which may have a substituent selected from group G1.)
<Group G1>: C 6 -C 20 aryl group which may have a substituent selected from Group G2, an aromatic heterocyclic group which may have a substituent selected from Group G2, C 1 — C 12 alkoxy group, C 1 -C 12 alkoxy group having optionally C 6 -C 20 aryl group optionally having substituent (s) selected from group G2, a halogen atom, an oxo group and tri C 1 -C 12 alkylsilyl the group consisting of group <group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl Group consisting of a group, a nitro group, a cyano group, a protected amino group and a halogen atom

本発明によれば、α−ケトアルデヒドと他のアルデヒドとの幅広い組み合わせにより、対応する光学活性α−ヒドロキシケトンを製造することができる。製造したα−ヒドロキシケトンは、β位にホルミル基を含むため、さらにホルミル基の反応性を利用してC−C結合を増加させることができる。あるいは、還元等でポリオールに導くことができるため、生理活性物質や医薬品等の合成中間体として有用な化合物を製造することができる。   According to the present invention, corresponding optically active α-hydroxy ketones can be produced by a wide range of combinations of α-ketoaldehyde and other aldehydes. Since the produced α-hydroxyketone contains a formyl group at the β-position, the C—C bond can be further increased by utilizing the reactivity of the formyl group. Alternatively, since it can be converted into a polyol by reduction or the like, a compound useful as a synthetic intermediate for a physiologically active substance or a pharmaceutical can be produced.

本発明に係る光学活性α−ヒドロキシケトンの製造方法は、α−ケトアルデヒドと他のアルデヒドとの不斉触媒アルドール反応を行うことを特徴とするものである。以下、本発明について詳細に説明する。   The method for producing an optically active α-hydroxyketone according to the present invention is characterized in that an asymmetric catalytic aldol reaction between α-ketoaldehyde and another aldehyde is carried out. Hereinafter, the present invention will be described in detail.

本明細書中、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。   In the present specification, the “halogen atom” means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.

本明細書中、「C−C」とは、炭素原子数がm〜nであることを意味する。 In the present specification, “C m -C n ” means that the number of carbon atoms is m to n .

本明細書中、「C−C20炭化水素基」とは、C−C20脂肪族炭化水素基又はC−C20アリール基を意味する。 In the present specification, the “C 1 -C 20 hydrocarbon group” means a C 1 -C 20 aliphatic hydrocarbon group or a C 6 -C 20 aryl group.

本明細書中、「C−C20脂肪族炭化水素基」とは、C−C20鎖式炭化水素基又はC−C20脂環式炭化水素基を意味する。 In the present specification, the “C 1 -C 20 aliphatic hydrocarbon group” means a C 1 -C 20 chain hydrocarbon group or a C 3 -C 20 alicyclic hydrocarbon group.

本明細書中、「C−C20鎖式炭化水素基」とは、C−C20アルキル基、C−C20アルケニル基又はC−C20アルキニル基を意味する。 In the present specification, the “C 1 -C 20 chain hydrocarbon group” means a C 1 -C 20 alkyl group, a C 2 -C 20 alkenyl group, or a C 2 -C 20 alkynyl group.

本明細書中、「C−C20アルキル基」とは、直鎖又は分岐鎖の炭素原子数1〜20のアルキル基を意味し、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、イソペンチル、ネオペンチル、1−エチルプロピル、ヘキシル、イソヘキシル、1,1−ジメチルブチル、2,2−ジメチルブチル、3,3−ジメチルブチル、2−エチルブチル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、エイコシル等が挙げられる。 In the present specification, the “C 1 -C 20 alkyl group” means a linear or branched alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl, hexyl, isohexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, Examples include octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, eicosyl and the like.

本明細書中、「C−C20アルケニル基」とは、直鎖又は分岐鎖の炭素原子数2〜20のアルケニル基を意味し、例えば、エテニル、1−プロペニル、2−プロペニル、2−メチル−1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、3−メチル−2−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、4−メチル−3−ペンテニル、1−ヘキセニル、3−ヘキセニル、5−ヘキセニル、1−ヘプテニル、1−オクテニル、1−ノネニル、1−デセニル、1−ウンデセニル、1−ドデセニル、1−トリデセニル、1−エイコセニル等が挙げられる。 In the present specification, the “C 2 -C 20 alkenyl group” means a linear or branched alkenyl group having 2 to 20 carbon atoms, such as ethenyl, 1-propenyl, 2-propenyl, 2- Methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 3-methyl-2-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, Examples thereof include 1-hexenyl, 3-hexenyl, 5-hexenyl, 1-heptenyl, 1-octenyl, 1-nonenyl, 1-decenyl, 1-undecenyl, 1-dodecenyl, 1-tridecenyl, 1-eicosenyl and the like.

本明細書中、「C−C20アルキニル基」とは、直鎖又は分岐鎖の炭素原子数2〜20のアルキニル基を意味し、例えば、エチニル、1−プロピニル、2−プロピニル、1−ブチニル、2−ブチニル、3−ブチニル、1−ペンチニル、2−ペンチニル、3−ペンチニル、4−ペンチニル、1−ヘキシニル、2−ヘキシニル、3−ヘキシニル、4−ヘキシニル、5−ヘキシニル、1−ペプチニル、1−オクチニル、1−ノニニル、1−デシニル、1−ウンデシニル、1−ドデシニル、1−トリデシニル、1−エイコシニル等が挙げられる。 In the present specification, the “C 2 -C 20 alkynyl group” means a linear or branched alkynyl group having 2 to 20 carbon atoms, such as ethynyl, 1-propynyl, 2-propynyl, 1- Butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-peptynyl, Examples include 1-octynyl, 1-noninyl, 1-decynyl, 1-undecynyl, 1-dodecynyl, 1-tridecynyl, 1-eicosinyl and the like.

本明細書中、「C−C20脂環式炭化水素基」とはC−C20シクロアルキル基又はC−C20シクロアルケニル基を意味する。 In the present specification, the “C 3 -C 20 alicyclic hydrocarbon group” means a C 3 -C 20 cycloalkyl group or a C 4 -C 20 cycloalkenyl group.

本明細書中「C−C20シクロアルキル基」としては、炭素原子数3〜20の環状アルキル基を意味し、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、シクロウンデシル、シクロドデシル、シクトトリデシル、シクロエイコシル等が挙げられる。 In the present specification, the “C 3 -C 20 cycloalkyl group” means a cyclic alkyl group having 3 to 20 carbon atoms. For example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, Examples include cyclodecyl, cycloundecyl, cyclododecyl, octodetridecyl, cycloeicosyl and the like.

本明細書中「C−C20シクロアルケニル基」としては、炭素原子数4〜20の環状アルケニル基を意味し、例えば、2−シクロペンテン−1−イル、3−シクロペンテン−1−イル、2−シクロヘキセン−1−イル、3−シクロヘキセン−1−イル、2−シクロヘプテン−1−イル、2−シクロオクテン−1−イル、2−シクロノネン−1−イル、2−シクロデセン−1−イル、2−シクロドデセン−1−イル、2−シクロエイコセン−1−イル、2,4−シクロペンタジエン−1−イル、2,4−シクロヘキサジエン−1−イル、2,5−シクロヘキサジエン−1−イル等が挙げられる。 In the present specification, the “C 4 -C 20 cycloalkenyl group” means a cyclic alkenyl group having 4 to 20 carbon atoms, such as 2-cyclopenten-1-yl, 3-cyclopenten-1-yl, 2 -Cyclohexen-1-yl, 3-cyclohexen-1-yl, 2-cyclohepten-1-yl, 2-cycloocten-1-yl, 2-cyclononen-1-yl, 2-cyclodecen-1-yl, 2- Cyclododecen-1-yl, 2-cycloeicosen-1-yl, 2,4-cyclopentadien-1-yl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, etc. Can be mentioned.

本明細書中、「C−C20シクロアルキル基」及び「C−C20シクロアルケニル基」は、ベンゼン環と縮合してもよい。このような基としては、1,2−ジヒドロナフタレン−1−イル、1,2−ジヒドロナフタレン−2−イル、1,2,3,4−テトラヒドロナフタレン−1−イル、1,2,3,4−テトラヒドロナフタレン−2−イル、フルオレン−9−イル、インデン−1−イル等が挙げられる。 In the present specification, the “C 3 -C 20 cycloalkyl group” and the “C 4 -C 20 cycloalkenyl group” may be condensed with a benzene ring. Such groups include 1,2-dihydronaphthalen-1-yl, 1,2-dihydronaphthalen-2-yl, 1,2,3,4-tetrahydronaphthalen-1-yl, 1,2,3, 4-tetrahydronaphthalen-2-yl, fluoren-9-yl, inden-1-yl and the like can be mentioned.

本明細書中「C−C20アリール基」とは、芳香族性を示す単環式あるいは多環式の炭素数6〜20の炭化水素基を意味し、例えば、フェニル、1−ナフチル、2−ナフチル、フェナントリル、アントリル、アセナフチル、ナフタセニル、ビフェニリル等が挙げられる。 In the present specification, the “C 6 -C 20 aryl group” means an aromatic monocyclic or polycyclic hydrocarbon group having 6 to 20 carbon atoms, such as phenyl, 1-naphthyl, 2-naphthyl, phenanthryl, anthryl, acenaphthyl, naphthacenyl, biphenylyl and the like can be mentioned.

本明細書中「C−C12アルコキシ基」とは、直鎖又は分岐鎖の炭素原子数1〜12のアルコキシ基を意味し、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ等が挙げられる。 In the present specification, the “C 1 -C 12 alkoxy group” means a linear or branched alkoxy group having 1 to 12 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, Examples include sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy and the like.

本明細書中、「芳香族複素環基」とは、環構成原子として炭素原子に加えて、酸素原子、硫黄原子及び窒素原子から選ばれるヘテロ原子を1乃至4個含有する、芳香族性を示す単環式又は多環式複素環基を意味する。   In the present specification, the “aromatic heterocyclic group” means an aromaticity containing 1 to 4 heteroatoms selected from an oxygen atom, a sulfur atom and a nitrogen atom in addition to a carbon atom as a ring constituent atom. Means a monocyclic or polycyclic heterocyclic group shown.

本明細書中、「単環式芳香族複素環基」としては,例えば、フリル、チエニル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、トリアジニル等が挙げられる。中でも、5又は6員の単環式芳香族複素環基が好ましい。   In the present specification, examples of the “monocyclic aromatic heterocyclic group” include furyl, thienyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, Triazolyl, tetrazolyl, triazinyl and the like can be mentioned. Of these, a 5- or 6-membered monocyclic aromatic heterocyclic group is preferable.

本明細書中、「多環式芳香族複素環基」としては、例えば、キノリル、イソキノリル、キナゾリル、キノキサリル、ベンゾフラニル、ベンゾチエリル、ベンズオキサゾリル、ベンズイソオキサゾリル、ベンゾチアゾリル、ベンゾイソチアゾリル、ベンズイミダゾリル、ベンゾトリアゾリル、インドリル、インダゾリル、ピロロピリジル、ピラゾロピリジル、イミダゾピリジル、チエノピリジル、ピロロピラジニル、ピラゾロピラジニル、イミダゾピラジニル、チエノピラジニル、ピロロピリミジニル、ピラゾロピリミジニル、イミダゾピリミジニル、チエノピリミジニル、ピラゾロチエニル等が挙げられる。   In the present specification, examples of the “polycyclic aromatic heterocyclic group” include quinolyl, isoquinolyl, quinazolyl, quinoxalyl, benzofuranyl, benzothiyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl, benzoisothiazolyl, Benzimidazolyl, benzotriazolyl, indolyl, indazolyl, pyrrolopyridyl, pyrazolopyridyl, imidazopyridyl, thienopyridyl, pyrrolopyrazinyl, pyrazolopyrazinyl, imidazopyrazinyl, thienopyrazinyl, pyrrolopyrimidinyl, pyrazolopyrimidinyl, imidazopyrimidinyl, imidazopyrimidinyl And pyrazolothienyl.

本明細書中、「C−C12フッ化アルキル基」とは、フッ素原子で置換されたC−C12アルキル基を意味する。フッ素原子の数は特に限定されず、ペルフルオロ置換であってもよい。具体的には、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、2−フルオロエチル、2,2−ジフルオロエチル、2,2,2−トリフルオロエチル、3−フルオロプロピル、4−フルオロブチル、5−フルオロペンチル、6−フルオロヘキシル、7−フルオロヘプチル、8−フルオロオクチル、9−フルオロノニル、10−フルオロデシル、11−フルオロウンデシル、12−フルオロドデシル等が挙げられる。 In the present specification, the “C 1 -C 12 fluorinated alkyl group” means a C 1 -C 12 alkyl group substituted with a fluorine atom. The number of fluorine atoms is not particularly limited, and may be perfluoro substituted. Specifically, for example, fluoromethyl, difluoromethyl, trifluoromethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5 -Fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl, 8-fluorooctyl, 9-fluorononyl, 10-fluorodecyl, 11-fluoroundecyl, 12-fluorododecyl and the like.

本明細書中、「C−C13アルコキシカルボニル基」とは、−C=O−にC−C12アルコキシ基が結合した基を意味し、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec−ブトキシカルボニル、tert−ブトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、ネオペンチルオキシカルボニル、ヘキシルオキシカルボニル、ヘプチルオキシカルボニル、オクチルオキシカルボニル、ノニルオキシカルボニル、デシルオキシカルボニル、ウンデシルオキシカルボニル、ドデシルオキシカルボニル等が挙げられる。 In the present specification, the “C 2 -C 13 alkoxycarbonyl group” means a group in which a C 1 -C 12 alkoxy group is bonded to —C═O—, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, Isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, pentyloxycarbonyl, isopentyloxycarbonyl, neopentyloxycarbonyl, hexyloxycarbonyl, heptyloxycarbonyl, octyloxycarbonyl, nonyloxycarbonyl Decyloxycarbonyl, undecyloxycarbonyl, dodecyloxycarbonyl and the like.

本明細書中、「C−C13アシル基」とは、C−C13カルボン酸から水酸基を除いた原子団であり、C−C13脂肪族アシル基又はC−C13芳香族アシル基を意味する。 In the present specification, the “C 2 -C 13 acyl group” is an atomic group obtained by removing a hydroxyl group from a C 2 -C 13 carboxylic acid, and is a C 2 -C 13 aliphatic acyl group or a C 7 -C 13 aromatic group. Means an acyl group.

本明細書中、「C−C13脂肪族アシル基」とは、−C=O−にC−C12脂肪族炭化水素基が結合した基を意味し、例えば、アセチル、プロパノイル、ブタノイル、2−メチルプロパノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、オクタノイル、ノナノイル、デカノイル、ウンデカノイル、ドデカノイル、アクリロイル、メタアクリロイル、クロトノイル、イソクロトノイル、プロピオノイル、シクロペンチルカルボニル、シクロヘキシルカルボニル等が挙げられる。 In the present specification, the “C 2 -C 13 aliphatic acyl group” means a group in which a C 1 -C 12 aliphatic hydrocarbon group is bonded to —C═O—, for example, acetyl, propanoyl, butanoyl. 2-methylpropanoyl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, acryloyl, methacryloyl, crotonoyl, isocrotonoyl, propionoyl, cyclopentylcarbonyl, cyclohexylcarbonyl and the like.

本明細書中、「C−C13芳香族アシル基」とは、−C=O−にC−C12芳香族炭化水素基が結合した基を意味し、例えば、ベンゾイル、1−ナフトイル、2−ナフトイル等が挙げられる。 In the present specification, the “C 7 -C 13 aromatic acyl group” means a group in which a C 6 -C 12 aromatic hydrocarbon group is bonded to —C═O—, and examples thereof include benzoyl and 1-naphthoyl. , 2-naphthoyl and the like.

本明細書中、「保護されたアミノ基」とは、保護基で保護されたアミノ基を意味する。当該保護基としては、C−Cアルキル基、C−Cアルケニル基、C−C10アリール基、C−C14アラルキル基、C−Cアルキルカルボニル基、C−Cアルコキシカルボニル基、C−Cアルケニルオキシカルボニル基、C−C10アリールカルボニル基、C−C14アラルキルカルボニル基、C−C10アリールオキシカルボニル基、C−C14アラルキルオキシカルボニル基、C−C10アリールスルホニル基、ベンズヒドリル基、トリチル基、トリC−Cアルキルシリル基、9−フルオレニルメチルオキシカルボニル基、フタロイル基等が挙げられる。上記の置換基は、ハロゲン原子、C−Cアルキル基、C−Cアルコキシ基又はニトロ基でそれぞれ置換されていてもよい。当該保護基の具体例としては、アセチル、トリフルオロアセチル、ピバロイル、tert−ブトキシカルボニル、2,2,2−トリクロロエトキシカルボニル、ベンジルオキシカルボニル、9−フルオレニルメチルオキシカルボニル、ベンズヒドリル、トリチル、フタロイル、アリルオキシカルボニル、p−トルエンスルホニル、o−ニトロベンゼンスルホニル等が挙げられる。 In the present specification, the “protected amino group” means an amino group protected with a protecting group. As the protecting group, C 1 -C 6 alkyl, C 2 -C 6 alkenyl group, C 6 -C 10 aryl group, C 7 -C 14 aralkyl group, C 1 -C 6 alkylcarbonyl group, C 1 - C 6 alkoxycarbonyl group, C 2 -C 6 alkenyloxycarbonyl group, C 6 -C 10 arylcarbonyl group, C 7 -C 14 aralkylcarbonyl group, C 6 -C 10 aryloxycarbonyl group, C 7 -C 14 aralkyl Examples thereof include an oxycarbonyl group, a C 6 -C 10 arylsulfonyl group, a benzhydryl group, a trityl group, a tri C 1 -C 6 alkylsilyl group, a 9-fluorenylmethyloxycarbonyl group, and a phthaloyl group. The above substituents are halogen atom, C 1 -C 6 alkyl groups, C 1 -C 6 alkoxy group or a nitro group may be substituted, respectively. Specific examples of the protecting group include acetyl, trifluoroacetyl, pivaloyl, tert-butoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, benzhydryl, trityl, phthaloyl. , Allyloxycarbonyl, p-toluenesulfonyl, o-nitrobenzenesulfonyl and the like.

[光学活性α−ヒドロキシケトン]
本発明の光学活性α−ヒドロキシケトンは、下記式(a)のようにα位にヒドロキシル基、β位にホルミル基をもつものである。ホルミル基の反応性を利用して医農薬、香料等に有用な骨格へ変換することができる。

Figure 2013035809
[Optically active α-hydroxyketone]
The optically active α-hydroxyketone of the present invention has a hydroxyl group at the α-position and a formyl group at the β-position as shown in the following formula (a). Utilizing the reactivity of the formyl group, it can be converted into a skeleton useful for medical pesticides, perfumes and the like.
Figure 2013035809

上記式(a)中、R、Rはそれぞれ独立に群G1より選ばれる置換基を有していてもよいC−C20炭化水素基又は水素原子を表す。
<群G1>:群G2より選ばれる置換基を有していてもよいC−C20アリール基、群G2より選ばれる置換基を有していてもよい芳香族複素環基、C−C12アルコキシ基、群G2より選ばれる置換基を有していてもよいC−C20アリール基を有するC−C12アルコキシ基、ハロゲン原子、オキソ基及びトリC−C12アルキルシリル基からなる群
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群
,Rは特に限定されないが、Rが鎖式炭化水素の場合は、R側にもさらにC−C結合を増加させることができるため、医農薬、香料等に有用な骨格への変換の幅が広がる。
The formula (a), represent the R 1, R 2 each independently optionally C 1 -C have a substituent selected from the group G1 is 20 hydrocarbon group or a hydrogen atom.
<Group G1>: C 6 -C 20 aryl group which may have a substituent selected from Group G2, an aromatic heterocyclic group which may have a substituent selected from Group G2, C 1 — C 12 alkoxy group, C 1 -C 12 alkoxy group having optionally C 6 -C 20 aryl group optionally having substituent (s) selected from group G2, a halogen atom, an oxo group and tri C 1 -C 12 alkylsilyl the group consisting of group <group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl The group R 1 and R 2 consisting of a group, a nitro group, a cyano group, a protected amino group, and a halogen atom are not particularly limited, but when R 1 is a chain hydrocarbon, the C 1 -C Increase binding Since it is, medicines, agricultural chemicals, the width of the conversion to useful skeleton perfumes spread.

[α−ケトアルデヒド]
本発明で用いられるα−ケトアルデヒドは、下記式(b)で表される。

Figure 2013035809
[Α-ketoaldehyde]
The α-ketoaldehyde used in the present invention is represented by the following formula (b).
Figure 2013035809

上記式(b)中、Rは上記式(a)のRと同一のものである。 In the above formula (b), R 1 is the same as R 1 in the formula (a).

[アルデヒド]
本発明で用いられるアルデヒドは、下記式(c)で表される。

Figure 2013035809
[aldehyde]
The aldehyde used in the present invention is represented by the following formula (c).
Figure 2013035809

上記式(c)中、Rは上記式(a)のRと同一のものである。 In the formula (c), R 2 is the same as R 2 in the formula (a).

[不斉触媒]
本発明で用いられる不斉触媒は、特に限定されるものではないが、例えば下記式(d)〜(j)で表されるもの等が挙げられる。

Figure 2013035809
[Asymmetric catalyst]
The asymmetric catalyst used in the present invention is not particularly limited, and examples thereof include those represented by the following formulas (d) to (j).
Figure 2013035809

上記式(d)中、R及びRはそれぞれ独立に、以下の群G2より選ばれる置換基を有していてもよいフェニル基、C−C12鎖式炭化水素基、C−C12脂環式炭化水素基又は水素原子を表し、Rは水素原子、フッ素原子、水酸基、C−C12アルコキシ基、C−C12フッ化アルキルオキシ基又は−OSiRを表し、R,R及びRはそれぞれ独立に、C−Cアルキル基又はC−C20アリール基を表し、*は不斉炭素原子を表す。
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群
In the above formula (d), R 3 and R 4 are each independently a phenyl group optionally having a substituent selected from the following group G2, a C 1 -C 12 chain hydrocarbon group, C 3- C 12 represents an alicyclic hydrocarbon group or a hydrogen atom, and R 5 represents a hydrogen atom, a fluorine atom, a hydroxyl group, a C 1 -C 12 alkoxy group, a C 1 -C 12 fluorinated alkyloxy group, or —OSiR 6 R 7 R. 8 , R 6 , R 7 and R 8 each independently represent a C 1 -C 8 alkyl group or a C 6 -C 20 aryl group, and * represents an asymmetric carbon atom.
<Group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl group, a nitro group , A cyano group, a protected amino group and a halogen atom

及びRは、好ましくは、共に置換基を有してもよいフェニル基である。さらに好ましくは、共に3,5−ビス(トリフルオロメチル)フェニル基であり、エナンチオ選択性高く光学活性α−ヒドロキシケトンを製造できる。 R 3 and R 4 are preferably both a phenyl group which may have a substituent. More preferably, both are 3,5-bis (trifluoromethyl) phenyl groups, and an optically active α-hydroxyketone can be produced with high enantioselectivity.

は、好ましくは水酸基又はシリルオキシ基であり、エナンチオ選択性高く光学活性α−ヒドロキシケトンを製造できる。 R 5 is preferably a hydroxyl group or a silyloxy group, and can produce an optically active α-hydroxyketone with high enantioselectivity.

上記式(e)中、R,R10及びR11はそれぞれ独立に、C−Cアルキル基又はC−C20アリール基を表し、*は不斉炭素原子を表す。 In the formula (e), R 9 , R 10 and R 11 each independently represent a C 1 -C 8 alkyl group or a C 6 -C 20 aryl group, and * represents an asymmetric carbon atom.

1011SiO−は、好ましくはtert−ブチルジフェニルシリルオキシ、tert−ブチルジメチルシリルオキシ、トリジイソプロピルシリルオキシ基であり、エナンチオ選択性高く光学活性α−ヒドロキシケトンを製造できる。 R 9 R 10 R 11 SiO— is preferably a tert-butyldiphenylsilyloxy, tert-butyldimethylsilyloxy, or tridiisopropylsilyloxy group, and can produce an optically active α-hydroxyketone with high enantioselectivity.

上記式(f)中、R12は、C−C12アルキル基、C−C20アリール基、アシル基、トリアルキルシリル基、ジアルキルアリールシリル基、又はアルキルジアリールシリル基を表し、*は不斉炭素原子を表す。 In the above formula (f), R 12 represents a C 1 -C 12 alkyl group, a C 6 -C 20 aryl group, an acyl group, a trialkylsilyl group, a dialkylarylsilyl group, or an alkyldiarylsilyl group, * Represents an asymmetric carbon atom.

12は、好ましくはtert−ブチルジフェニルシリル、tert−ブチルジメチルシリル、トリジイソプロピルシリル基である。 R 12 is preferably a tert-butyldiphenylsilyl, tert-butyldimethylsilyl, or tridiisopropylsilyl group.

上記式(g)中、R13は、C−C12アルキル基、C−C20アリール基、アシル基、トリアルキルシリル基、ジアルキルアリールシリル基、又はアルキルジアリールシリル基を表し、*は不斉炭素原子を表す。 In the above formula (g), R 13 represents a C 1 -C 12 alkyl group, a C 6 -C 20 aryl group, an acyl group, a trialkylsilyl group, a dialkylarylsilyl group, or an alkyldiarylsilyl group, * Represents an asymmetric carbon atom.

13は、好ましくはtert−ブチルジフェニルシリル、tert−ブチルジメチルシリル、トリジイソプロピルシリル基である。 R 13 is preferably a tert-butyldiphenylsilyl, tert-butyldimethylsilyl, or tridiisopropylsilyl group.

上記式(h)中、R14は、C−C12アルキル基、C−C20アリール基、アシル基、トリアルキルシリル基、ジアルキルアリールシリル基、又はアルキルジアリールシリル基を表し、*は不斉炭素原子を表す。 In the above formula (h), R 14 represents a C 1 -C 12 alkyl group, a C 6 -C 20 aryl group, an acyl group, a trialkylsilyl group, a dialkylarylsilyl group, or an alkyldiarylsilyl group, * Represents an asymmetric carbon atom.

14は、好ましくはtert−ブチルジフェニルシリル、tert−ブチルジメチルシリル、トリジイソプロピルシリル基である。 R 14 is preferably a tert-butyldiphenylsilyl, tert-butyldimethylsilyl, or tridiisopropylsilyl group.

上記式(i)中、R15は、水素原子、置換基を有していてもよいC−C12アルキル基、C−C20アリール基、アルキルスルホニル基、アリールスルホニル基を表し、*は不斉炭素原子を表す。 In the above formula (i), R 15 represents a hydrogen atom, an optionally substituted C 1 -C 12 alkyl group, a C 6 -C 20 aryl group, an alkylsulfonyl group, an arylsulfonyl group, * Represents an asymmetric carbon atom.

15は、好ましくはオクチルスルホニル基、ドデシルスルホニル基、2−ジフェニルヒドロキシ−1−フェニルエチル基である。 R 15 is preferably an octylsulfonyl group, a dodecylsulfonyl group, or a 2-diphenylhydroxy-1-phenylethyl group.

上記式(j)中、nは1〜20を表し、*は不斉炭素原子を表す。   In said formula (j), n represents 1-20 and * represents an asymmetric carbon atom.

上記式(d)で表されるものとして、具体的には後述する不斉触媒(1a)〜(4)を挙げることができる。上記式(e)で表されるものとして、具体的には後述する不斉触媒(5)を挙げることができる。また、上記式(f)〜(j)で表されるものとして、具体的には以下の不斉触媒を挙げることができる。

Figure 2013035809
Specific examples of the compound represented by the above formula (d) include asymmetric catalysts (1a) to (4) described later. Specific examples of the compound represented by the above formula (e) include an asymmetric catalyst (5) described later. Specific examples of the compounds represented by the above formulas (f) to (j) include the following asymmetric catalysts.
Figure 2013035809

[反応条件等]
光学活性α−ヒドロキシケトンの製造は、溶媒中に、α−ケトアルデヒド、アルデヒド及び不斉触媒を添加することによって行われる。それぞれの添加量は、特に限定されるものではないが、アルデヒドに対しα−ケトアルデヒド0.5〜2.0当量用いることが好ましい。不斉触媒は、エナンチオ選択的にアルドール反応を進行させるために必要であり、アルデヒドに対し、0.1〜10モル%用いることが好ましい。溶媒は特に限定されないが、ジクロロメタン、メタノール、ジエチルエーテル、1,4−ジオキサン、ジメチルホルムアミド、テトラヒドロフラン、水等が挙げられる。反応温度は−23〜30℃が好ましく、反応時間は10分間〜72時間が好ましい。
[Reaction conditions, etc.]
The optically active α-hydroxyketone is produced by adding α-ketoaldehyde, an aldehyde and an asymmetric catalyst in a solvent. Each addition amount is not particularly limited, but it is preferable to use 0.5 to 2.0 equivalents of α-ketoaldehyde with respect to the aldehyde. The asymmetric catalyst is necessary for enantioselectively proceeding the aldol reaction, and it is preferably used in an amount of 0.1 to 10 mol% based on the aldehyde. The solvent is not particularly limited, and examples thereof include dichloromethane, methanol, diethyl ether, 1,4-dioxane, dimethylformamide, tetrahydrofuran, and water. The reaction temperature is preferably −23 to 30 ° C., and the reaction time is preferably 10 minutes to 72 hours.

反応終了後、抽出、洗浄、乾燥、濃縮、カラムクロマトグラフィー等の処理を行い、光学活性α−ヒドロキシケトンが得られる。   After completion of the reaction, treatments such as extraction, washing, drying, concentration, column chromatography, etc. are performed to obtain optically active α-hydroxyketone.

光学活性α−ヒドロキシケトンは単離してからさらに別の反応を行って、有用物質へ導くことができるが、単離することなくワンポット反応により、同様の有用物質へ導くこともできる。光学活性α−ヒドロキシケトン(a)をPhP=C(R16)CO17(式中、R16は水素原子又はC−Cアルキル基を示し、R17はC−Cアルキル基を示す。)で表されるウイティッヒ試薬と反応させると、光学活性不飽和エステル(k)へ変換することができる。

Figure 2013035809
The optically active α-hydroxyketone can be isolated and then subjected to another reaction to lead to a useful substance, but can also be led to a similar useful substance by a one-pot reaction without isolation. The optically active α-hydroxyketone (a) is changed to Ph 3 P═C (R 16 ) CO 2 R 17 (wherein R 16 represents a hydrogen atom or a C 1 -C 8 alkyl group, and R 17 represents C 1 -C 8 is reacted with a Wittig reagent represented by an alkyl group.) can be converted into optically active unsaturated ester (k).
Figure 2013035809

また、ケトン部位を還元すれば光学活性ジオールへと変換できる。還元反応に際しては適宜ヒドロキシル基を保護して行うことが好ましい。還元剤の種類によって立体を制御することができ、例えば光学活性不飽和エステル(k)から、亜鉛ボロハイドライドを用いればanti−ジオール(l)が得られ、ヒドロキシル基を保護した後にナトリウム水素化ビス(2−メトキシエトキシ)アルミニウムを用いればsyn−ジオール(m)が得られる。

Figure 2013035809
Further, if the ketone moiety is reduced, it can be converted into an optically active diol. It is preferable to carry out the reduction reaction while appropriately protecting the hydroxyl group. Stericity can be controlled by the type of reducing agent. For example, from an optically active unsaturated ester (k), anti-diol (l) can be obtained by using zinc borohydride. After protecting the hydroxyl group, sodium bishydride If (2-methoxyethoxy) aluminum is used, syn-diol (m) is obtained.
Figure 2013035809

あるいは、さらにケトン部位にアルドール反応を行うと、炭素鎖を延長することができる。例えば光学活性不飽和エステル(n)からR側に炭素鎖を延長した光学活性化合物(o)を得ることができる。このように、種々の反応を組み合わせて行うことにより、様々な生理活性物質や医薬品等の中間体へ導くことができる。

Figure 2013035809
Alternatively, the carbon chain can be extended by further performing an aldol reaction on the ketone moiety. For example, an optically active compound (o) having a carbon chain extended to the R 1 side from the optically active unsaturated ester (n) can be obtained. Thus, by performing various reactions in combination, it is possible to lead to various physiologically active substances and intermediates such as pharmaceuticals.
Figure 2013035809

以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the scope of the present invention is not limited to these examples.

以下の実施例では、次の不斉触媒及びプロリンを用いた。

Figure 2013035809
In the following examples, the following asymmetric catalyst and proline were used.
Figure 2013035809

[試験例1 反応溶媒の効果]

Figure 2013035809
[Test Example 1 Effect of reaction solvent]
Figure 2013035809

上記反応式に示すように、2−オキソプロパナール(6)を基質とし、3−フェニルプロパナールとの不斉触媒アルドール反応において溶媒の効果を検討した。   As shown in the above reaction formula, the effect of the solvent in the asymmetric catalytic aldol reaction with 3-phenylpropanal was examined using 2-oxopropanal (6) as a substrate.

表1に示す各溶媒0.5ml中に、2−オキソプロパナール40%水溶液112μl(0.75mmol)、3−フェニルプロパナール67.0mg(0.5mmol)、不斉触媒(1a)26.3mg(0.05mmol)を加え、化学式に従って室温で数時間反応させた。薄層クロマトグラフィーでヒドロキシケトン(7)の生成を確認した後、反応液にウイティッヒ試薬として(エトキシカルボニルメチリデン)トリフェニルホスホラン435mg(1.25mmol)を加え、さらに室温で2時間反応させた。反応液を、シリカゲル床に通し、濾液を真空濃縮して、粗α,β−不飽和エステル(8)を得た。粗α,β−不飽和エステル(8)のH−NMRから生成物のジアステレオマー比(anti:syn)を算出した。次に濃縮物を薄層クロマトグラフィー(展開溶媒は酢酸エチル:ヘキサン=1:6)によって精製し、α,β−不飽和エステル(8)を単離し、単離物の収量から収率を算出した。anti異性体のエナンチオ選択率(ee%)は、キラルカラム(0.46cm×25cm)によるHPLC分析法により決定した。 In 0.5 ml of each solvent shown in Table 1, 112 μl (0.75 mmol) of 2-oxopropanal 40% aqueous solution, 67.0 mg (0.5 mmol) of 3-phenylpropanal, 26.3 mg of asymmetric catalyst (1a) (0.05 mmol) was added and allowed to react for several hours at room temperature according to the chemical formula. After confirming the formation of hydroxyketone (7) by thin layer chromatography, 435 mg (1.25 mmol) of (ethoxycarbonylmethylidene) triphenylphosphorane was added to the reaction solution as a Wittig reagent, and further reacted at room temperature for 2 hours. . The reaction was passed through a silica gel bed and the filtrate was concentrated in vacuo to give the crude α, β-unsaturated ester (8). The diastereomeric ratio (anti: syn) of the product was calculated from 1 H-NMR of the crude α, β-unsaturated ester (8). Next, the concentrate is purified by thin layer chromatography (developing solvent is ethyl acetate: hexane = 1: 6), α, β-unsaturated ester (8) is isolated, and the yield is calculated from the yield of the isolate. did. The enantioselectivity (ee%) of the anti isomer was determined by HPLC analysis with a chiral column (0.46 cm × 25 cm).

Figure 2013035809
Figure 2013035809

表1からわかるように、種々の溶媒中で、立体選択性高くアルドール反応が進行した。特に、ジメチルホルムアミド、テトラヒドロフランを用いた場合、収率、ジアステレオ選択率、エナンチオ選択率が高かった。得られた光学活性α,β−不飽和エステル(8)の物性値は以下の通りである。   As can be seen from Table 1, the aldol reaction proceeded with high stereoselectivity in various solvents. In particular, when dimethylformamide and tetrahydrofuran were used, the yield, diastereoselectivity, and enantioselectivity were high. The physical property values of the obtained optically active α, β-unsaturated ester (8) are as follows.

Figure 2013035809
(Entry6)
(4R,5R,E)−ethyl 4−benzyl−5−hydroxy−6−oxohept−2−enoate
H−NMR(CDCl,400MHz):δ1.27(3H,t,J=7.2Hz),
2.09(3H,s),2.84−2.92(2H,m),3.04(1H,dt,J=4.0,11.0Hz),4.09(1H,s),4.16(2H,q,J=7.2Hz),5.78(1H,d,J=15.8Hz),6.79(1H,dd,J=9.0,15.8Hz),7.22−7.34(5H,m);
13C−NMR(CDCl,100MHz):δ14.1,25.4,37.8,47.4,60.3,77.0,123.7,126.7,128.7,129.4,138.0,145.2,165.3,208.0,;
IR(neat):νmax3448,1717,1653,1496,1455,1369,1313,1281,1239,1177,1108,1033,989,872,740,702,683,418cm−1
HRMS(ESI):[M+Na] calcd for[C1620Na]:299.1254,found:299.1279;
[α] 22 −97.1(c=0.52,CHCl);
anti異性体のエナンチオ選択率>99%ee:
HPLC(CHIRALPAK AD−H,PrOH:hexane=1:30),1mL/min),t=16.1min(>99.5%),t=23.2min(<0.5%).
Figure 2013035809
(Entry 6)
(4R, 5R, E) -ethyl 4-benzyl-5-hydroxy-6-oxohept-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.27 (3H, t, J = 7.2 Hz),
2.09 (3H, s), 2.84-2.92 (2H, m), 3.04 (1H, dt, J = 4.0, 11.0 Hz), 4.09 (1H, s), 4.16 (2H, q, J = 7.2 Hz), 5.78 (1H, d, J = 15.8 Hz), 6.79 (1H, dd, J = 9.0, 15.8 Hz), 7 .22-7.34 (5H, m);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.1, 25.4, 37.8, 47.4, 60.3, 77.0, 123.7, 126.7, 128.7, 129.4 , 138.0, 145.2, 165.3, 208.0,;
IR (neat): νmax 3448, 1717, 1653, 1496, 1455, 1369, 1313, 1281, 1239, 1177, 1108, 1033, 989, 872, 740, 702, 683, 418 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 16 H 20 O 4 Na] + : 299.1254, found: 299.1279;
[Α] D 22 -97.1 o ( c = 0.52, CHCl 3);
Enantioselectivity of anti isomers> 99% ee:
HPLC (CHIRALPAK AD-H, i PrOH: hexane = 1: 30), 1 mL / min), t R = 16.1 min (> 99.5%), t R = 23.2 min (<0.5%).

[試験例2 不斉触媒の効果]

Figure 2013035809
[Test Example 2 Effect of Asymmetric Catalyst]
Figure 2013035809

上記反応式に示すように、2−オキソプロパナール(6)を基質とし、3−フェニルプロパナールとの不斉触媒アルドール反応において不斉触媒の効果を検討した。   As shown in the above reaction formula, the effect of the asymmetric catalyst was studied in the asymmetric catalytic aldol reaction with 3-phenylpropanal using 2-oxopropanal (6) as a substrate.

不斉触媒の種類を変える他は試験例1と同様に反応、処理を行った。   The reaction and treatment were performed in the same manner as in Test Example 1 except that the type of asymmetric catalyst was changed.

Figure 2013035809
Figure 2013035809

表2からわかるように、プロリン(Entry11)はアルドール反応を促進しないが、本発明で用いる触媒によれば、反応が促進される。シリルエーテルを含む触媒(Entry7、9)では、逆のエナンチオマー(9)が生成しやすくなった。

Figure 2013035809
As can be seen from Table 2, proline (Entry 11) does not promote the aldol reaction, but the catalyst is used in the present invention to promote the reaction. In the catalyst containing silyl ether (Entry 7, 9), the reverse enantiomer (9) was easily generated.
Figure 2013035809

[試験例3 基質汎用性の検討]

Figure 2013035809
[Test Example 3 Substrate versatility study]
Figure 2013035809

上記反応式に示すように、α−ケトアルデヒド(10)とアルデヒド(11)の不斉触媒アルドール反応において基質汎用性を検討した。   As shown in the above reaction formula, substrate versatility was examined in the asymmetric catalytic aldol reaction of α-ketoaldehyde (10) and aldehyde (11).

テトラヒドロフラン0.5mL中に、α−ケトアルデヒド(10)X当量を溶解させ、不斉触媒(1a)0.05mmolを添加し、次いで、アルデヒド(11)Y当量を加え、化学式に従って室温で数時間反応させた。X又はYで1当量とした方が0.5mmolとなるように添加した。α−ケトアルデヒド(10)が2−オキソプロパナールの場合(Entry12〜22)は、40wt%水溶液を、2−オキソ−ブタナールの場合(Entry23〜24)は17wt%水溶液を用いた。また、α−ケトアルデヒド(10)が2−シクロヘキシル−2−オキソアセトアルデヒドの場合はEntry25では水を12.2当量、Entry26では6.1当量添加した。α−ケトアルデヒド(10)が2−オキソ−オクタナールの場合はEntry27では水を12.2当量、Entry28では6.1当量添加した。反応後、ウイティッヒ試薬として(エトキシカルボニルメチリデン)トリフェニルホスホラン435mg(1.25mmol)を加え、室温で2時間攪拌し、α,β−不飽和エステルに変換した。反応液の処理、精製は試験例1と同様に行った。   Dissolve α-ketoaldehyde (10) X equivalent in 0.5 mL of tetrahydrofuran, add 0.05 mmol of asymmetric catalyst (1a), then add aldehyde (11) Y equivalent, and at room temperature for several hours according to chemical formula Reacted. X or Y was added so that the equivalent of 1 mmol was 0.5 mmol. When α-ketoaldehyde (10) was 2-oxopropanal (Entry 12-22), a 40 wt% aqueous solution was used, and when 2-oxo-butanal (Entry 23-24), a 17 wt% aqueous solution was used. When α-ketoaldehyde (10) was 2-cyclohexyl-2-oxoacetaldehyde, 12.2 equivalents of water were added for Entry 25, and 6.1 equivalents were added for Entry 26. When α-ketoaldehyde (10) was 2-oxo-octanal, 12.2 equivalents of water were added for Entry 27, and 6.1 equivalents of Entry 28 were added. After the reaction, 435 mg (1.25 mmol) of (ethoxycarbonylmethylidene) triphenylphosphorane was added as a Wittig reagent, stirred at room temperature for 2 hours, and converted to an α, β-unsaturated ester. The reaction solution was treated and purified in the same manner as in Test Example 1.

Figure 2013035809
Figure 2013035809

表3からわかるように、3−フェニルプロパナール以外にも種々のアルデヒドが求核試薬として働き、高いジアステレオ選択性、高いエナンチオ選択性で対応するα−ヒドロキシケトンの不飽和エステルが得られた。また、2−オキソプロパナール以外にも種々のα−ケトアルデヒドが求電子試薬として働き、高いジアステレオ選択性、高いエナンチオ選択性で対応するα−ヒドロキシケトンの不飽和エステルが得られた。このように、本発明の不斉アルドール反応による光学活性α−ヒドロキシケトンの製造方法は幅広い基質に適用できた。得られた不飽和エステルの物性値は以下の通りである。   As can be seen from Table 3, various aldehydes other than 3-phenylpropanal acted as nucleophiles, and corresponding α-hydroxyketone unsaturated esters were obtained with high diastereoselectivity and high enantioselectivity. . In addition to 2-oxopropanal, various α-ketoaldehydes acted as electrophiles, and corresponding unsaturated esters of α-hydroxy ketones were obtained with high diastereoselectivity and high enantioselectivity. Thus, the method for producing optically active α-hydroxyketone by the asymmetric aldol reaction of the present invention was applicable to a wide range of substrates. The physical property values of the obtained unsaturated ester are as follows.

Figure 2013035809
(Entry12)
(R,E)−ethyl 5−hydroxy−6−oxohept−2−enoate
H−NMR(CDCl,400MHz):δ1.28(3H,t,J=7.2Hz),2.23(3H,s),2.46−2.54(1H,m),2.77(1H,ddq,J=1.4,7.6,14.8Hz),4.18(2H,q,J=7.2Hz),4.32(1H,dt,J=4.8,7.2Hz),5.94(1H,dt,J=1.4,15.6Hz),6.90(1H,dt,J=7.6,15.6Hz);
13C−NMR(CDCl,100MHz):δ14.1,25.4,36.4,60.6,75.6,124.9,142.5,166.3,208.3;
IR(neat):νmax3446,2924,1717,1655,1369,1269,1165,1096,1041,981,668,701cm−1
HRMS(ESI):[M+Na] calcd for[C14NaO:209.0784,found:209.0792;
[α] 17 −19.5(c=0.81,CHCl);
anti異性体のエナンチオ選択率93%ee:3,5−ジニトロベンゾイル化後のHPLC(CHIRALCEL OD−H,PrOH:hexane=1:40),1mL/min,t=37.5min(96.5%),t=56.4min(3.5%).
Figure 2013035809
(Entry12)
(R, E) -ethyl 5-hydroxy-6-oxo-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.28 (3H, t, J = 7.2 Hz), 2.23 (3H, s), 2.46-2.54 (1H, m), 2. 77 (1H, ddq, J = 1.4, 7.6, 14.8 Hz), 4.18 (2H, q, J = 7.2 Hz), 4.32 (1H, dt, J = 4.8, 7.2 Hz), 5.94 (1H, dt, J = 1.4, 15.6 Hz), 6.90 (1H, dt, J = 7.6, 15.6 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.1, 25.4, 36.4, 60.6, 75.6, 124.9, 142.5, 166.3, 208.3;
IR (neat): νmax 3446, 2924, 1717, 1655, 1369, 1269, 1165, 1096, 1041, 981, 668, 701 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 9 H 14 NaO 4 ] + : 209.0784, found: 209.0792;
[Α] D 17 -19.5 o (c = 0.81, CHCl 3 );
Enantioselectivity of anti isomers 93% ee: HPLC after 3,5-dinitrobenzoylation (CHIRALCEL OD-H, i PrOH: hexane = 1: 40), 1 mL / min, t R = 37.5 min (96. 5%), t R = 56.4 min (3.5%).

Figure 2013035809
(Entry13)
(4R,5R,E)−ethyl 5−hydroxy−4−methyl−6−oxohept−2−enoate
H−NMR(CDCl,400MHz):δ1.27(3H,d,J=6.8Hz),1.28(3H,t,J=7.2Hz),2.19(3H,s),2.84−2.91(1H,m),4.17(2H,q,J=7.2Hz),4.20(1H,d,J=6.8Hz),5.84(1H,d,J=15.6Hz),6.79(1H,dd,J=8.0,15.6Hz);
13C−NMR(CDCl,100MHz):δ14.6,16.8,25.8,40.1,60.7,80.2,122.9,146.9,166.1,208.2;
IR(neat):νmax3467,2979,1716,1654,1459,1369,1276,1181,1035,981cm−1
HRMS(ESI):[M+Na] calcd for[C1016NaO:223.0941,found:223.0933;
[α] 17 −26.2(c=0.57,CHCl);
anti異性体のエナンチオ選択率99%ee:HPLC(CHIRALPAK IC,PrOH:hexane=1:30),1mL/min,t=33.9min(0.5%),t=46.0min(99.5%).
Figure 2013035809
(Entry 13)
(4R, 5R, E) -ethyl 5-hydroxy-4-methyl-6-oxo-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.27 (3H, d, J = 6.8 Hz), 1.28 (3H, t, J = 7.2 Hz), 2.19 (3H, s), 2.84-2.91 (1H, m), 4.17 (2H, q, J = 7.2 Hz), 4.20 (1H, d, J = 6.8 Hz), 5.84 (1H, d , J = 15.6 Hz), 6.79 (1H, dd, J = 8.0, 15.6 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.6, 16.8, 25.8, 40.1, 60.7, 80.2, 122.9, 146.9, 166.1, 208.2 ;
IR (neat): νmax 3467, 2979, 1716, 1654, 1459, 1369, 1276, 1181, 1035, 981 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 10 H 16 NaO 4 ] + : 223.0941, found: 223.0933;
[Α] D 17 -26.2 o ( c = 0.57, CHCl 3);
enantioselectivity of anti isomer 99% ee: HPLC (CHIRALPAK IC, i PrOH: hexane = 1: 30), 1 mL / min, t R = 33.9 min (0.5%), t R = 46.0 min ( 99.5%).

Figure 2013035809
(Entry15)
(4R,5R,E)−ethyl 4−ethyl−5−hydroxy−6−oxohept−2−enoate
H−NMR(CDCl,400MHz):δ0.98(3H,t,J=7.2Hz),1.28(3H,t,J=7.2Hz),1.61−1.82(2H,m),2.18(3H,s),2.49−2.56(1H,m),4.16(2H,q,J=7.2Hz),4.28(1H,d,J=1.6Hz),5.80(1H,d,J=15.6Hz),6.69(1H,dd,J=9.6,15.6Hz);
13C−NMR(CDCl,100MHz):δ11.9,14.2,24.6,25.4,47.2,60.5,78.7,123.8,145.5,165.7,208.1;
IR(neat):νmax3461,2965,1716,1653,1459,1370,1237,1176,1137,1038,990cm−1
HRMS(ESI):[M+Na] calcd for[C1118NaO:237.1097,found:237.1089;
[α] 17 −38.6(c=1.15,CHCl);
anti異性体のエナンチオ選択率99%ee:HPLC(CHIRALPAK AD−H,PrOH:hexane=1:30),1mL/min,t=26.1min(99.5%),t=32.7min(0.5%).
Figure 2013035809
(Entry 15)
(4R, 5R, E) -ethyl 4-ethyl-5-hydroxy-6-oxohept-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 0.98 (3H, t, J = 7.2 Hz), 1.28 (3H, t, J = 7.2 Hz), 1.61-1.82 (2H , M), 2.18 (3H, s), 2.49-2.56 (1H, m), 4.16 (2H, q, J = 7.2 Hz), 4.28 (1H, d, J = 1.6 Hz), 5.80 (1H, d, J = 15.6 Hz), 6.69 (1H, dd, J = 9.6, 15.6 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 11.9, 14.2, 24.6, 25.4, 47.2, 60.5, 78.7, 123.8, 145.5, 165.7 , 208.1;
IR (neat): νmax 3461, 2965, 1716, 1653, 1459, 1370, 1237, 1176, 1137, 1038, 990 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 11 H 18 NaO 4 ] + : 237.01097, found: 237.089;
[Α] D 17 -38.6 o ( c = 1.15, CHCl 3);
enantioselectivity of anti isomer 99% ee: HPLC (CHIRALPAK AD-H, i PrOH: hexane = 1: 30), 1 mL / min, t R = 26.1 min (99.5%), t R = 32. 7 min (0.5%).

Figure 2013035809
(Entry16)
(4R,5R,E)−ethyl 5−hydroxy−6−oxo−4−propylhept−2−enoate
H−NMR(CDCl,400MHz):δ0.94(3H,t,J=7.2Hz),1.27(3H,t,J=7.2Hz),1.33−1.39(2H,m),1.61−1.68(2H,m),2.18(3H,s),2.61−2.67(1H,m),4.17(2H,q,J=7.2Hz),4.25(1H,dd,J=2.4,4.4Hz),5.79(1H,d,J=16.0Hz),6.70(1H,dd,J=9.6,16.0Hz);
13C−NMR(CDCl,100MHz):δ13.7,14.0,20.3,25.3,33.4,45.1.60.3,78.9,123.4,145.5,165.6,207.9;
IR(neat):νmax3457,2959,1717,1654,1370,1279,1176,1138,1039,990cm−1
HRMS(ESI):[M+Na] calcd for[C1220Na]:251.1254,found:251.1257;
[α] 17 −81.1(c=1.02,CHCl);
anti異性体のエナンチオ選択率99%ee:3,5−ジニトロベンゾイル化後のHPLC(CHIRALPAK IA,PrOH:hexane=1:50),1mL/min,t=41.4min(99.5%),t=74.8min(0.5%).
Figure 2013035809
(Entry 16)
(4R, 5R, E) -ethyl 5-hydroxy-6-oxo-4-propylhept-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 0.94 (3H, t, J = 7.2 Hz), 1.27 (3H, t, J = 7.2 Hz), 1.33-1.39 (2H , M), 1.61-1.68 (2H, m), 2.18 (3H, s), 2.61-2.67 (1H, m), 4.17 (2H, q, J = 7) .2 Hz), 4.25 (1 H, dd, J = 2.4, 4.4 Hz), 5.79 (1 H, d, J = 16.0 Hz), 6.70 (1 H, dd, J = 9. 6,16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 13.7, 14.0, 20.3, 25.3, 33.4, 45.1.60.3, 78.9, 123.4, 145.5 , 165.6, 207.9;
IR (neat): νmax 3457, 2959, 1717, 1654, 1370, 1279, 1176, 1138, 1039, 990 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 12 H 20 O 4 Na] +: 251.1254, found: 251.1257;
[Α] D 17 -81.1 o ( c = 1.02, CHCl 3);
Enantioselectivity of anti isomer 99% ee: HPLC after 3,5-dinitrobenzoylation (CHIRALPAK IA, i PrOH: hexane = 1: 50), 1 mL / min, t R = 41.4 min (99.5% ), T R = 74.8 min (0.5%).

Figure 2013035809
(Entry17)
(4R,5R,E)−ethyl 5−hydroxy−4−isopropyl−6−oxohept−2−enoate
H−NMR(CDCl,400MHz):δ0.91(3H,d,J=6.8Hz),1.11(3H,d,J=6.8Hz),1.27(3H,t,J=7.2Hz),1.97−2.07(1H,m),2.07−2.21(1H,m),2.15(3H,s),4.15(2H,q,J=7.2Hz),4.42(1H,dd,J=2.0,4.4Hz),5.75(1H,d,J=16.0Hz),6.71(1H,dd,J=10.4,16.0Hz);
13C−NMR(CDCl,100MHz):δ14.1,20.5,21.2,25.1,28.6,52.6,60.4,77.4,123.9,145.4,165.5,208.4;
IR(neat):νmax3457,2961,1716,1369,1278,1177,1140,1086,1037,994,750cm−1
HRMS(ESI):[M+Na] calcd for[C1220Na]:251.1254,found:251.1259;
[α] 17 −89.9(c=0.79,CHCl);
anti異性体のエナンチオ選択率98%ee:HPLC(CHIRALPAK IC,PrOH:hexane=1:30),1mL/min,t=23.0min(1.0%),t=45.0min(99.0%).
Figure 2013035809
(Entry 17)
(4R, 5R, E) -ethyl 5-hydroxy-4-isopropyl-6-oxohept-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 0.91 (3H, d, J = 6.8 Hz), 1.11 (3H, d, J = 6.8 Hz), 1.27 (3H, t, J = 7.2 Hz), 1.97-2.07 (1H, m), 2.07-2.21 (1H, m), 2.15 (3H, s), 4.15 (2H, q, J = 7.2 Hz), 4.42 (1H, dd, J = 2.0, 4.4 Hz), 5.75 (1H, d, J = 16.0 Hz), 6.71 (1H, dd, J = 10.4, 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.1, 20.5, 21.2, 25.1, 28.6, 52.6, 60.4, 77.4, 123.9, 145.4 , 165.5, 208.4;
IR (neat): νmax 3457, 2961, 1716, 1369, 1278, 1177, 1140, 1086, 1037, 994, 750 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 12 H 20 O 4 Na] + : 251.1254, found: 251.1259;
[Α] D 17 -89.9 o (c = 0.79, CHCl 3 );
Enantioselectivity of anti isomers 98% ee: HPLC (CHIRALPAK IC, i PrOH: hexane = 1: 30), 1 mL / min, t R = 23.0 min (1.0%), t R = 45.0 min ( 99.0%).

Figure 2013035809
(Entry19)
(4R,5R,E)−ethyl 4−benzyloxy−5−hydroxy−6−oxohept−2−enoate
H−NMR(CDCl,400MHz):δ1.31(3H,t,J=7.2Hz),2.23(3H,s),4.19−4.25(3H,m),4.31(1H,d,J=4.8Hz),4.46(1H,d,J=12.0Hz),4.65(1H,d,J=12.0Hz),6.13(1H,d,J=16.0Hz),6.94(1H,dd,J=6.0,16.0Hz),7.28−7.36(5H,m);
13C−NMR(CDCl,100MHz):δ14.2,27.8,60.7,72.1,78.9,79.8,124.5,127.8,128.0,128.5,136.9,143.3,165.5,207.3;
IR(neat):νmax3448,2985,2924,1712,1365,1273,1180,1095,1034,987,741,702cm−1
HRMS(ESI):[M+Na] calcd for[C1620NaO:315.1203,found:315.1199;
anti異性体のエナンチオ選択率99%ee:HPLC(CHIRALCEL OD−H,PrOH:hexane=1:50),1mL/min,t=35.4min(0.5%),t=43.0min(99.5%).
Figure 2013035809
(Entry 19)
(4R, 5R, E) -ethyl 4-benzyloxy-5-hydroxy-6-oxohept-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.31 (3H, t, J = 7.2 Hz), 2.23 (3H, s), 4.19-4.25 (3H, m), 4. 31 (1H, d, J = 4.8 Hz), 4.46 (1H, d, J = 12.0 Hz), 4.65 (1H, d, J = 12.0 Hz), 6.13 (1H, d , J = 16.0 Hz), 6.94 (1H, dd, J = 6.0, 16.0 Hz), 7.28-7.36 (5H, m);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.2, 27.8, 60.7, 72.1, 78.9, 79.8, 124.5, 127.8, 128.0, 128.5 , 136.9, 143.3, 165.5, 207.3;
IR (neat): νmax 3448, 2985, 2924, 1712, 1365, 1273, 1180, 1095, 1034, 987, 741, 702 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 16 H 20 NaO 5 ] + : 315.1203, found: 315.1199;
enantioselectivity of anti isomer 99% ee: HPLC (CHIRALCEL OD-H, i PrOH: hexane = 1: 50), 1 mL / min, t R = 35.4 min (0.5%), t R = 43. 0 min (99.5%).

Figure 2013035809
(Entry20)
(4S,5R,E)−ethyl 5−hydroxy−4−((4−methoxybenzyloxy)methyl)−6−oxohept−2−enoate
H−NMR(CDCl,400MHz):δ1.27(3H,t,J=7.2Hz),2.17(3H,s),2.95−3.01(1H,m),3.56(1H,dd,J=5.6,8.8Hz),3.72(1H,dd,J=8.4Hz),3.81(3H,s),4.16(2H,q,J=7.2Hz),4.48(2H,dd,J=11.6,22.4Hz),5.88(1H,d,J=15.6Hz),6.72(1H,dd,J=9.0,15.6Hz),7.29−7.41(5H,m);
13C−NMR(CDCl,100MHz):δ14.2,25.6,45.6,55.3,60.5,69.2,73.2,76.5,113.8,124.9,129.4,129.8,142.1,159.4,165.6,208.5;
IR(neat):νmax3456,2931,1712,1511,1365,1250,1180,1095,1034,818cm−1
HRMS(ESI):[M+Na] calcd for[C1824NaO:359.1465,found:359.1465;
[α] 17 −41.7(c=0.83,CHCl);
anti異性体のエナンチオ選択率97%ee:HPLC(CHIRALPAK AS−H,PrOH:hexane=1:10),1mL/min,t=12.6min(1.5%),t=18.1min(98.5%).
Figure 2013035809
(Entry 20)
(4S, 5R, E) -ethyl 5-hydroxy-4-((4-methoxybenzoyl) methyl) -6-oxo-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.27 (3H, t, J = 7.2 Hz), 2.17 (3H, s), 2.95-3.01 (1H, m), 3. 56 (1H, dd, J = 5.6, 8.8 Hz), 3.72 (1H, dd, J = 8.4 Hz), 3.81 (3H, s), 4.16 (2H, q, J = 7.2 Hz), 4.48 (2H, dd, J = 11.6, 22.4 Hz), 5.88 (1H, d, J = 15.6 Hz), 6.72 (1H, dd, J = 9.0, 15.6 Hz), 7.29-7.41 (5H, m);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.2, 25.6, 45.6, 55.3, 60.5, 69.2, 73.2, 76.5, 113.8, 124.9 , 129.4, 129.8, 142.1, 159.4, 165.6, 208.5;
IR (neat): νmax 3456, 2931, 1712, 1511, 1365, 1250, 1180, 1095, 1034, 818 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 18 H 24 NaO 6 ] + : 359.1465, found: 359.1465;
[Α] D 17 -41.7 o (c = 0.83, CHCl 3 );
enantioselectivity of anti isomers 97% ee: HPLC (CHIRALPAK AS-H, i PrOH: hexane = 1: 10), 1 mL / min, t R = 12.6 min (1.5%), t R = 18. 1 min (98.5%).

Figure 2013035809
(Entry21)
(R,E)−ethyl 4−((R)−1−hydroxy−2−oxopropyl)−7−phenylhept−2−en−6−ynoate
H−NMR(CDCl,400MHz):δ1.28(3H,t,J=7.2Hz),2.23(3H,s),2.68(1H,dd,J=6.0,16.4Hz),2.88(1H,dd,J=8.8,16.4Hz),2.95−3.02(1H,m),4.18(2H,q,J=7.2Hz),4.58(1H,dd,J=2.4,4.4Hz),5.92(1H,d,J=15.6Hz),6.73(1H,dd,J=9.0,15.6Hz),7.29−7.41(5H,m);
13C−NMR(CDCl,100MHz):δ14.4,22.4,25.5,45.0,60.7,77.7,83.3,86.4,124.6,128.1,128.3,131.7,143.4,165.5,207.8;
IR(neat):νmax3460,2924,1717,1654,1491,1370,1280,1173,1032,981,758,692cm−1
HRMS(ESI):[M+Na] calcd for[C1820NaO:323.1254,found:323.1262;
[α] 18 −63.8(c=0.85,CHCl);
anti異性体のエナンチオ選択率98%ee:HPLC(CHIRALPAK IC,PrOH:hexane=1:30),1mL/min,t=33.7min(1.0%),t=41.8min(99.0%).
Figure 2013035809
(Entry 21)
(R, E) -ethyl 4-((R) -1-hydroxy-2-oxopropyl) -7-phenylhept-2-en-6-ynoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.28 (3H, t, J = 7.2 Hz), 2.23 (3H, s), 2.68 (1H, dd, J = 6.0, 16 .4 Hz), 2.88 (1 H, dd, J = 8.8, 16.4 Hz), 2.95-3.02 (1 H, m), 4.18 (2 H, q, J = 7.2 Hz) 4.58 (1H, dd, J = 2.4, 4.4 Hz), 5.92 (1H, d, J = 15.6 Hz), 6.73 (1H, dd, J = 9.0, 15) .6 Hz), 7.29-7.41 (5H, m);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.4, 22.4, 25.5, 45.0, 60.7, 77.7, 83.3, 86.4, 124.6, 128.1 , 128.3, 131.7, 143.4, 165.5, 207.8;
IR (neat): νmax 3460, 2924, 1717, 1654, 1491, 1370, 1280, 1173, 1032, 981, 758, 692 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 18 H 20 NaO 4 ] + : 323.1254, found: 323.1262;
[Α] D 18 -63.8 o ( c = 0.85, CHCl 3);
Enantioselectivity of anti isomers 98% ee: HPLC (CHIRALPAK IC, i PrOH: hexane = 1: 30), 1 mL / min, t R = 33.7 min (1.0%), t R = 41.8 min ( 99.0%).

Figure 2013035809
(Entry22)
(R,2E,7Z)−ethyl 4−((R)−1−hydroxy−2−oxopropyl)deca−2,7−dienoate
H−NMR(CDCl,400MHz):δ0.96(3H,t,J=7.2Hz),1.27(3H,t,J=7.2Hz),1.67−1.82(2H,m),1.98−2.12(4H,m),2.17(3H,s),2.64−2.69(1H,m),4.16(2H,q,J=7.2Hz),4.24(1H,dd,J=2.0,4.4Hz),5.27−5.46(2H,m),5.79(1H,d,J=16.0Hz),6.70(1H,dd,J=9.6,16.0Hz);
13C−NMR(CDCl,100MHz):δ14.1,14.3,20.6,24.5,25.3,31.3,44.6,60.4,78.8,123.7,127.5,132.9,145.3,165.6,207.9;
IR(neat):νmax3446,2933,1718,1450,1370,1280,1162,1095,1038,668cm−1
HRMS(ESI):[M+Na] calcd for[C1524Na]:291.1567,found:291.1566;
[α] 16 −31.7(c=0.47,CHCl);
anti異性体のエナンチオ選択率99%ee:3,5−ジニトロベンゾイル化後のHPLC(CHIRALPAK AD−H,PrOH:hexane=1:30),1mL/min,t=20.5min(99.5%),t=24.9min(0.5%).
Figure 2013035809
(Entry 22)
(R, 2E, 7Z) -ethyl 4-((R) -1-hydroxy-2-oxopropyl) deca-2,7-dienoate
1 H-NMR (CDCl 3 , 400 MHz): δ 0.96 (3H, t, J = 7.2 Hz), 1.27 (3H, t, J = 7.2 Hz), 1.67-1.82 (2H M), 1.98-2.12 (4H, m), 2.17 (3H, s), 2.64-2.69 (1H, m), 4.16 (2H, q, J = 7). .2 Hz), 4.24 (1 H, dd, J = 2.0, 4.4 Hz), 5.27-5.46 (2 H, m), 5.79 (1 H, d, J = 16.0 Hz) 6.70 (1H, dd, J = 9.6, 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.1, 14.3, 20.6, 24.5, 25.3, 31.3, 44.6, 60.4, 78.8, 123.7 127.5, 132.9, 145.3, 165.6, 207.9;
IR (neat): νmax 3446, 2933, 1718, 1450, 1370, 1280, 1162, 1095, 1038, 668 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 15 H 24 O 4 Na] + : 291.1567, found: 291.1566;
[Α] D 16 -31.7 o ( c = 0.47, CHCl 3);
enantioselectivity of anti isomer 99% ee: HPLC after 3,5-dinitrobenzoylation (CHIRALPAK AD-H, i PrOH: hexane = 1: 30), 1 mL / min, t R = 20.5 min (99. 5%), t R = 24.9 min (0.5%).

Figure 2013035809
(Entry23)
(4R,5R,E)−ethyl 5−hydroxy− 4−methyl −6−oxooct−2−enoate
H−NMR(CDCl,400MHz):δ1.10(3H,t,J=7.2Hz),1.25(3H,d,J=7.2Hz),1.27(3H,t,J=7.2Hz),2.45(2H,q,J=7.2Hz),2.82−2.89(1H,m),4.16(2H,q,J=7.2Hz),4.19(1H,d,J=4.0Hz),5.81(1H,d,J=16.0Hz),6.78(1H,dd,J=8.0,16.0Hz);
13C−NMR(CDCl,100MHz):δ14.1,16.6,31.7,40.0,60.4,79.4,122.6,146.7,165.9,210.8;
IR(neat):νmax3464,2978,2939,2360,1712,1651,1458,1373,1273,1180,1142,1103,1034cm−1
HRMS(ESI):[M+Na] calcd for[C1118NaO:237.1089,found:237.1097;
[α] 23 −69.3(c=0.75,CHCl);
anti異性体のエナンチオ選択率98%ee:
HPLC(CHIRALPAK IC,PrOH:hexane=1:10),1mL/min,t=10.4min(1.0%),t=13.7min(99.0%).
Figure 2013035809
(Entry23)
(4R, 5R, E) -ethyl 5-hydroxy-4-methyl-6-oxo-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.10 (3H, t, J = 7.2 Hz), 1.25 (3H, d, J = 7.2 Hz), 1.27 (3H, t, J = 7.2 Hz), 2.45 (2H, q, J = 7.2 Hz), 2.82-2.89 (1H, m), 4.16 (2H, q, J = 7.2 Hz), 4 .19 (1H, d, J = 4.0 Hz), 5.81 (1H, d, J = 16.0 Hz), 6.78 (1H, dd, J = 8.0, 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.1, 16.6, 31.7, 40.0, 60.4, 79.4, 122.6, 146.7, 165.9, 210.8 ;
IR (neat): νmax 3464, 2978, 2939, 2360, 1712, 1651, 1458, 1373, 1273, 1180, 1142, 1103, 1034 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 11 H 18 NaO 4 ] + : 237.01089, found: 237.097;
[Α] D 23 -69.3 o ( c = 0.75, CHCl 3);
Enantioselectivity of anti isomer 98% ee:
HPLC (CHIRALPAK IC, i PrOH: hexane = 1: 10), 1 mL / min, t R = 10.4 min (1.0%), t R = 13.7 min (99.0%).

Figure 2013035809
(Entry25)
(4R,5R,E)−ethyl 6−cyclohexyl−5−hydroxy−4−methyl−6−oxohex−2−enoate
H−NMR(CDCl,400MHz):δ1.26−1.30(8H,m),1.45−1.84(8H,m),2.49−2.55(1H,m),2.85−2.92(1H,m),4.17(2H,q,J=7.2Hz),4.32(1H,d,J=2.4Hz),5.80(1H,d,J=16.0Hz),6.78(1H,dd,J=8.0,16.0Hz);
13C−NMR(CDCl,100MHz):δ14.2,16.9,25.0,25.6,25.9,26.9,30.1,39.8,46.5,60.4,70.8,122.7,146.9,165.9,213.4;
IR(neat):νmax3456,2931,2854,1712,1651,1450,1373,1304,1273,1180,1034,1003cm−1
HRMS(ESI):[M+Na] calcd for[C1524NaO:291.1567,found:291.1565;
[α] 23 −50.8(c=0.50,CHCl);
anti異性体のエナンチオ選択率99%ee:HPLC(CHIRALPAK IA,PrOH:hexane=1:30),1mL/min,t=11.3min(0.5%),t=13.5min(99.5%).
Figure 2013035809
(Entry25)
(4R, 5R, E) -ethyl 6-cyclohexyl-5-hydroxy-4-methyl-6-oxohex-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.26-1.30 (8H, m), 1.45-1.84 (8H, m), 2.49-2.55 (1H, m), 2.85-2.92 (1H, m), 4.17 (2H, q, J = 7.2 Hz), 4.32 (1H, d, J = 2.4 Hz), 5.80 (1H, d , J = 16.0 Hz), 6.78 (1H, dd, J = 8.0, 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ14.2, 16.9, 25.0, 25.6, 25.9, 26.9, 30.1, 39.8, 46.5, 60.4 70.8, 122.7, 146.9, 165.9, 213.4;
IR (neat): νmax 3456, 2931, 2854, 1712, 1651, 1450, 1373, 1304, 1273, 1180, 1034, 1003 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 15 H 24 NaO 4 ] + : 291.1567, found: 291.1565;
[Α] D 23 -50.8 o (c = 0.50, CHCl 3 );
enantioselectivity of anti isomer 99% ee: HPLC (CHIRALPAK IA, i PrOH: hexane = 1: 30), 1 mL / min, t R = 11.3 min (0.5%), t R = 13.5 min ( 99.5%).

Figure 2013035809
(Entry27)
(4R,5R,E)−ethyl 5−hydroxy−4−methyl−6−oxododec−2−enoate
H−NMR(CDCl,400MHz):δ0.87(3H,t,J=7.2Hz),1.24−1.28(12H,m),1.56−1.61(2H,m),2.41(2H,t,J=7.2Hz),2.81−2.88(1H,m),4.13−4.18(3H,m),5.80(1H,d,J=16.0Hz),6.77(1H,dd,J=8.0,16.0Hz);
13C−NMR(CDCl,100MHz):δ13.9、14.1,16.7、22.3,23.3,28.8,31.4,38.4,39.9,60.3,79.5,122.7,146.7,165.8,210.4;
IR(neat):νmax3448,2931,1712,1651,1458,1373,1273,1180,1034,872,725cm−1
HRMS(ESI):[M+Na] calcd for[C1526NaO:293.1723,found:293.1726;
[α] 22 −31.3(c=0.69,CHCl);
anti異性体のエナンチオ選択率98%ee:HPLC(CHIRALPAK IC,PrOH:hexane=1:30),1mL/min,t=19.4min(1.0%),t=27.6min(99.0%).
Figure 2013035809
(Entry27)
(4R, 5R, E) -ethyl 5-hydroxy-4-methyl-6-oxodec-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 0.87 (3H, t, J = 7.2 Hz), 1.24-1.28 (12H, m), 1.56-1.61 (2H, m ), 2.41 (2H, t, J = 7.2 Hz), 2.81-2.88 (1H, m), 4.13-4.18 (3H, m), 5.80 (1H, d) , J = 16.0 Hz), 6.77 (1H, dd, J = 8.0, 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 13.9, 14.1, 16.7, 22.3, 23.3, 28.8, 31.4, 38.4, 39.9, 60.3 79.5, 122.7, 146.7, 165.8, 210.4;
IR (neat): νmax 3448, 2931, 1712, 1651, 1458, 1373, 1273, 1180, 1034, 872, 725 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 15 H 26 NaO 4 ] + : 293.1723, found: 293.1726;
[Α] D 22 -31.3 o (c = 0.69, CHCl 3 );
Enantioselectivity of anti isomers 98% ee: HPLC (CHIRALPAK IC, i PrOH: hexane = 1: 30), 1 mL / min, t R = 19.4 min (1.0%), t R = 27.6 min ( 99.0%).

[試験例4 有用中間体への応用]

Figure 2013035809
[Test Example 4 Application to useful intermediates]
Figure 2013035809

上記反応式に示すように、表3のEntry14で得られた(4R,5R,E)−エチル−5−ヒドロキシ−4−メチル−6−オキソヘプト−2−エノエート(12b)(anti:syn=10:1混合物)34.6mg(0.17mmol)をテトラヒドロフラン0.7mLに溶解させ、0℃でZn(BHの0.5Mテトラヒドロフラン溶液1.5mLを添加した。0℃で30分攪拌した後、水、次いで10%HClを添加して反応を停止した。クロロホルムで4回抽出し、有機層を飽和NaHCO水、食塩水で洗浄した後、無水MgSOで乾燥した。濾過後、真空濃縮したものをシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2)で精製し、(4R,5R,6S,E)−エチル−5,6−ジヒドロキシ−4−メチルヘプト−2−エノエート(13)を得た(収率80%)。物性値は以下の通りである。 As shown in the above reaction formula, (4R, 5R, E) -ethyl-5-hydroxy-4-methyl-6-oxohept-2-enoate (12b) (anti: syn = 10) obtained with Entry 14 in Table 3 1 mixture) 34.6 mg (0.17 mmol) was dissolved in 0.7 mL of tetrahydrofuran, and 1.5 mL of a 0.5 M solution of Zn (BH 4 ) 2 in tetrahydrofuran was added at 0 ° C. After stirring for 30 minutes at 0 ° C., the reaction was stopped by adding water and then 10% HCl. Extraction was performed 4 times with chloroform, and the organic layer was washed with saturated aqueous NaHCO 3 and brine, and then dried over anhydrous MgSO 4 . After filtration, the concentrate in vacuo was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 2), and (4R, 5R, 6S, E) -ethyl-5,6-dihydroxy-4-methylhept-2- The enoate (13) was obtained (yield 80%). The physical property values are as follows.

Figure 2013035809
(4R,5R,6S,E)−ethyl 5,6−dihydroxy−4−methylhept−2−enoate
dr=10:1混合物として;
H−NMR(CDCl,400MHz):δ1.08(3H,d,J=6.8Hz),1.21(3H,d,J=6.4Hz),1.29(3H,t,J=7.2Hz),2.43−2.54(1H,m),3.48(1H,dd,J=4.8,6.8Hz),3.85(1H,dd,J=4.8,6.0Hz),4.19(2H,q,J=7.2Hz),5.85(1H,d,J=16.0Hz),6.97(1H,dd,J=8.0,16.0Hz);
13C−NMR(CDCl,100MHz):δ14.2,16.0,17.1,38.9,60.4,68.4,77.7,122.0,150.5,166.7;
IR(neat):νmax3417,2970,1705,1651,1458,1373,1281,1188,1041,995,771cm−1
HRMS(ESI):[M+Na] calcd for[C1018NaO:225.1097,found:225.1088;
[α] 24 +10.5(c=0.44,CHCl).
Figure 2013035809
(4R, 5R, 6S, E) -ethyl 5,6-dihydroxy-4-methylhept-2-enoate
as a dr = 10: 1 mixture;
1 H-NMR (CDCl 3 , 400 MHz): δ 1.08 (3H, d, J = 6.8 Hz), 1.21 (3H, d, J = 6.4 Hz), 1.29 (3H, t, J = 7.2 Hz), 2.43-2.54 (1H, m), 3.48 (1H, dd, J = 4.8, 6.8 Hz), 3.85 (1H, dd, J = 4. 8, 6.0 Hz), 4.19 (2H, q, J = 7.2 Hz), 5.85 (1H, d, J = 16.0 Hz), 6.97 (1H, dd, J = 8.0) , 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 14.2, 16.0, 17.1, 38.9, 60.4, 68.4, 77.7, 122.0, 150.5, 166.7 ;
IR (neat): νmax 3417, 2970, 1705, 1651, 1458, 1373, 1281, 1188, 1041, 995, 771 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 10 H 18 NaO 4 ] + : 225.1097, found: 225.108;
[Α] D 24 +10.5 o (c = 0.44, CHCl 3 ).

次に、下記反応式に示すように、2−オキソプロパナールとプロパナールによる不斉触媒アルドール反応、(エトキシカルボニルメチリデン)トリフェニルホスホランによるウイティッヒ反応、Zn(BHによる還元の3段階の反応を、途中で単離することなくワンポットで行ったところ、同じ物性をもつジオール(13)が得られ、ワンポット反応でもキラル部位が構築されたことがわかった。 Next, as shown in the following reaction formula, asymmetric catalytic aldol reaction with 2-oxopropanal and propanal, Wittig reaction with (ethoxycarbonylmethylidene) triphenylphosphorane, reduction with Zn (BH 4 ) 2 3 When the step reaction was carried out in one pot without isolation in the middle, diol (13) having the same physical properties was obtained, and it was found that a chiral site was also constructed in the one pot reaction.

Figure 2013035809
Figure 2013035809

[試験例5 有用中間体への応用]

Figure 2013035809
[Test Example 5 Application to useful intermediates]
Figure 2013035809

上記反応式に示すように、表3のEntry14で得られた(4R,5R,E)−エチル−5−ヒドロキシ−4−メチル−6−オキソヘプト−2−エノエート(12b)(anti:syn=10:1混合物)261mg(1.31mmol)をジクロロメタン2.6mLに溶解させ、0℃でTIPSOTf0.52mL(1.96mmol)、2,6−ルチジン0.38mL(3.26mmol)を添加した。室温で12時間攪拌した後、飽和NHCl水溶液を添加して反応を停止した。有機物をクロロホルムで3回抽出し、食塩水で洗浄した後、無水NaSOで乾燥した。濾過後、真空濃縮したものをシリカゲルカラムクロマトグラフィー(酢酸エチル:クロロホルム=1:40)で精製し、(4R,5R,E)−エチル−4−メチル−6−オキソ−5−(トリイソプロピルシリルオキシ)ヘプト−2−エノエート(15)が得られた(anti:syn=10:1混合物として収率38%)。 As shown in the above reaction formula, (4R, 5R, E) -ethyl-5-hydroxy-4-methyl-6-oxohept-2-enoate (12b) (anti: syn = 10) obtained with Entry 14 in Table 3 1 mixture) 261 mg (1.31 mmol) was dissolved in 2.6 mL of dichloromethane, and TIPSOTf 0.52 mL (1.96 mmol) and 2,6-lutidine 0.38 mL (3.26 mmol) were added at 0 ° C. After stirring at room temperature for 12 hours, the reaction was stopped by adding saturated aqueous NH 4 Cl solution. The organic matter was extracted three times with chloroform, washed with brine, and then dried over anhydrous Na 2 SO 4 . After filtration, the product concentrated in vacuo was purified by silica gel column chromatography (ethyl acetate: chloroform = 1: 40), and (4R, 5R, E) -ethyl-4-methyl-6-oxo-5- (triisopropylsilyl). Oxy) hept-2-enoate (15) was obtained (38% yield as a mixture of anti: syn = 10: 1).

シリカゲルカラムクロマトグラフィーで一部単離されたanti体の(4R,5R,E)−エチル−4−メチル−6−オキソ−5−(トリイソプロピルシリルオキシ)ヘプト−2−エノエート(15)31.5mg(0.088mmol)をトルエン0.9mLに溶解させ、−78℃でナトリウム水素化ビス(2−メトキシエトキシ)アルミニウムの65wt%トルエン溶液0.04mLを添加した。−78℃で30分攪拌した後、酒石酸ナトリウムカリウムの飽和水溶液を添加して反応を停止した。有機物をクロロホルムで3回抽出し、食塩水で洗浄した後、無水NaSOで乾燥した。濾過後、真空濃縮したものをシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)で精製し、(4R,5R,6R,E)−エチル−6−ヒドロキシ−4−メチル−5−(トリイソプロピルシリルオキシ)ヘプト−2−エノエート(16)を得た(収率94%)。
得られた(15)及び(16)の物性値は以下の通りである。
31. Anti-antibody (4R, 5R, E) -ethyl-4-methyl-6-oxo-5- (triisopropylsilyloxy) hept-2-enoate (15), partially isolated by silica gel column chromatography 5 mg (0.088 mmol) was dissolved in 0.9 mL of toluene, and 0.04 mL of a 65 wt% toluene solution of sodium bis (2-methoxyethoxy) aluminum hydride was added at −78 ° C. After stirring at −78 ° C. for 30 minutes, a saturated aqueous solution of sodium potassium tartrate was added to stop the reaction. The organic matter was extracted three times with chloroform, washed with brine, and then dried over anhydrous Na 2 SO 4 . After filtration, the product concentrated in vacuo was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 4) and (4R, 5R, 6R, E) -ethyl-6-hydroxy-4-methyl-5- (tri Isopropylsilyloxy) hept-2-enoate (16) was obtained (yield 94%).
The physical property values of the obtained (15) and (16) are as follows.

Figure 2013035809
(4R,5R,E)−ethyl 4−methyl−6−oxo−5−(triisopropylsilyloxy)hept−2−enoate
H−NMR(CDCl,400MHz):δ1.04−1.10(24H,d,J=6.8Hz),1.27(3H,d,J=7.2Hz),2.16(3H,s),2.58−2.67(1H,m),4.08(1H,d,J=4.8Hz),4.17(2H,q,J=7.2Hz),5.86(1H,d,J=16.0Hz),6.95(1H,dd,J=8.0,16.0Hz);
13C−NMR(CDCl,100MHz):δ12.3,14.2,14.7,18.0,26.1,41.8,60.3,82.5,122.0,148.8,166.2,210.6;
IR(neat):νmax2947,2870,1720,1466,1365,1273,1180,1111,1041,987,879,818,679cm−1
HRMS(ESI):[M+Na] calcd for[C1936NaOSi]:379.2275,found:379.2288;
[α] 22 +15.1(c=0.77,CHCl).
Figure 2013035809
(4R, 5R, E) -ethyl 4-methyl-6-oxo-5- (triisopropylsilyloxy) hept-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.04-1.10 (24H, d, J = 6.8 Hz), 1.27 (3H, d, J = 7.2 Hz), 2.16 (3H , S), 2.58-2.67 (1H, m), 4.08 (1H, d, J = 4.8 Hz), 4.17 (2H, q, J = 7.2 Hz), 5.86 (1H, d, J = 16.0 Hz), 6.95 (1H, dd, J = 8.0, 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 12.3, 14.2, 14.7, 18.0, 26.1, 41.8, 60.3, 82.5, 122.0, 148.8 , 166.2, 210.6;
IR (neat): νmax 2947, 2870, 1720, 1466, 1365, 1273, 1180, 1111, 1041, 987, 879, 818, 679 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 19 H 36 NaO 4 Si] + : 379.2275, found: 379.2288;
[Α] D 22 +15.1 o (c = 0.77, CHCl 3 ).

Figure 2013035809
(4R,5R,6R,E)−ethyl 6−hydroxy−4−methyl−5−(triisopropylsilyloxy)hept−2−enoate
H−NMR(CDCl,400MHz):δ1.10−1.18(27H,m),1.17(3H,t,J=7.2Hz),2.64−2.67(1H,m),3.67−3.71(2H,m),4.19(2H,q,J=7.2Hz),5.83(1H,d,J=16.0Hz),6.99(1H,dd,J=7.2,16.0Hz);
13C−NMR(CDCl,100MHz):δ13.4,14.3,14.4,18.2,18.3,21.0,60.3,67.7,79.3,121.4,150.3,166.6;
IR(neat):νmax3487,2939,2870,1720,1651,1446,1373,1265,1095,1041,879,679cm−1
HRMS(ESI):[M+Na] calcd for[C1938NaOSi]:381.2432,found:381.2435;
[α] 26 +7.0(c=1.31,CHCl).
Figure 2013035809
(4R, 5R, 6R, E) -ethyl 6-hydroxy-4-methyl-5- (triisopropylsilyloxy) hept-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.10-1.18 (27 H, m), 1.17 (3 H, t, J = 7.2 Hz), 2.64-2.67 (1 H, m ), 3.67-3.71 (2H, m), 4.19 (2H, q, J = 7.2 Hz), 5.83 (1H, d, J = 16.0 Hz), 6.99 (1H) , Dd, J = 7.2, 16.0 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 13.4, 14.3, 14.4, 18.2, 18.3, 21.0, 60.3, 67.7, 79.3, 121.4 , 150.3, 166.6;
IR (neat): νmax 3487, 2939, 2870, 1720, 1651, 1446, 1373, 1265, 1095, 1041, 879, 679 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 19 H 38 NaO 4 Si] + : 381.2432, found: 381.2435;
[Α] D 26 +7.0 o (c = 1.31, CHCl 3 ).

[試験例6 有用中間体への応用]

Figure 2013035809
[Test Example 6 Application to useful intermediates]
Figure 2013035809

上記反応式に示すように、(4R,5R,E)−エチル−4−メチル−6−オキソ−5−(トリイソプロピルシリルオキシ)ヘプト−2−エノエート(15)(anti:syn=8.5:1混合物)44.5mg(0.116mmol)をジクロロメタン0.77mLに溶解させ、−78℃でPrNEt37μL(0.216mmol)、BuBOTf0.185mL(0.185mol)を添加した。0℃で3時間攪拌した後、再び−78℃に冷却し、イソブチルアルデヒド28μL(0.308mmol)を滴下した。−78℃から徐々に−20℃へ上昇する間30分間攪拌した。pH=7の緩衝液を添加し、反応を停止させ、有機層を分離した。水層をジクロロメタンで抽出した後、有機層をあわせて真空濃縮し、残渣をメタノール、pH=7の緩衝液、30%過酸化水素水の混合物に溶解させた。2時間攪拌した後、有機層を分離し、水層をジクロロメタンで抽出した。有機層を合わせ、飽和NaHCO水溶液、次いで食塩水で洗浄し、無水MgSOで乾燥した。濾過後、真空濃縮したものを薄層クロマトグラフィー(酢酸エチル:ヘキサン=1:6)で精製し、anti:syn=14.3:1混合物の(4R,5R,8R,E)−エチル−8−ヒドロキシ−4,9−ジメチル−6−オキソ−5−(トリイソプロピルシリルオキシ)デセ−2−エノエート(18)が得られた(収率70%)。得られた(18)の物性値は以下の通りである。 As shown in the above reaction formula, (4R, 5R, E) -ethyl-4-methyl-6-oxo-5- (triisopropylsilyloxy) hept-2-enoate (15) (anti: syn = 8.5) 1 mixture) 44.5 mg (0.116 mmol) was dissolved in 0.77 mL of dichloromethane, and 37 μL (0.216 mmol) of i Pr 2 NEt and 0.185 mL (0.185 mol) of n Bu 2 BOTf were added at −78 ° C. After stirring at 0 ° C. for 3 hours, the mixture was again cooled to −78 ° C., and 28 μL (0.308 mmol) of isobutyraldehyde was added dropwise. The mixture was stirred for 30 minutes while gradually rising from −78 ° C. to −20 ° C. The pH = 7 buffer was added to stop the reaction and the organic layer was separated. After the aqueous layer was extracted with dichloromethane, the organic layers were combined and concentrated in vacuo, and the residue was dissolved in a mixture of methanol, pH = 7 buffer solution, and 30% hydrogen peroxide solution. After stirring for 2 hours, the organic layer was separated and the aqueous layer was extracted with dichloromethane. The organic layers were combined, washed with saturated aqueous NaHCO 3 solution, then brine, and dried over anhydrous MgSO 4 . After filtration, the concentrate concentrated in vacuo was purified by thin layer chromatography (ethyl acetate: hexane = 1: 6), and an anti: syn = 14.3: 1 mixture of (4R, 5R, 8R, E) -ethyl-8. -Hydroxy-4,9-dimethyl-6-oxo-5- (triisopropylsilyloxy) dec-2-enoate (18) was obtained (yield 70%). The physical property values of the obtained (18) are as follows.

Figure 2013035809
(4R,5R,8R,E)−ethyl−8−hydroxy−4,9−dimethyl−6−oxo−5−(triisopropylsilyloxy)dec−2−enoate
H−NMR(CDCl,400MHz):δ0.83(3H,d,J=6.8Hz),0.84(3H,d,J=6.8Hz),0.98−1.05(24H,m),1.22(3H,t,J=7.2Hz),1.60−1.66(1H,m),2.50(1H,dd,J=6.0,18.4Hz),2.57−2.62(1H,m),2.66(1H,dd,J=2.0,18.4Hz),3.65−3.69(1H,m),4.11(2H,q,J=7.2Hz),4.14(1H,d,J=4.8Hz),5.73(1H,d,J=15.6Hz),6.89(1H,dd,J=8.0,15.6Hz);
13C−NMR(CDCl,100MHz):δ12.5,14.2,14.9,17.9,18.0,32.9,42.1,42.3,60.4,71.6,82.3,122.0,148.4,166.1,215.0;
IR(neat):νmax4327,3525,2947,2870,1720,1651,1466,1373,1265,1180,1111,1041,995,879,818,679,579,509cm−1
HRMS(ESI):[M+Na] calcd for[C2344NaOSi]:451.2850,found:451.2856.
Figure 2013035809
(4R, 5R, 8R, E) -ethyl-8-hydroxy-4,9-dimethyl-6-oxo-5- (triisopropylsilyloxy) dec-2-enoate
1 H-NMR (CDCl 3 , 400 MHz): δ 0.83 (3H, d, J = 6.8 Hz), 0.84 (3H, d, J = 6.8 Hz), 0.98-1.05 (24H , M), 1.22 (3H, t, J = 7.2 Hz), 1.60-1.66 (1H, m), 2.50 (1H, dd, J = 6.0, 18.4 Hz) 2.57-2.62 (1H, m), 2.66 (1 H, dd, J = 2.0, 18.4 Hz), 3.65-3.69 (1 H, m), 4.11 ( 2H, q, J = 7.2 Hz), 4.14 (1H, d, J = 4.8 Hz), 5.73 (1H, d, J = 15.6 Hz), 6.89 (1H, dd, J = 8.0, 15.6 Hz);
13 C-NMR (CDCl 3 , 100 MHz): δ 12.5, 14.2, 14.9, 17.9, 18.0, 32.9, 42.1, 42.3, 60.4, 71.6 , 82.3, 122.0, 148.4, 166.1, 215.0;
IR (neat): νmax 4327, 3525, 2947, 2870, 1720, 1651, 1466, 1373, 1265, 1180, 1111, 1041, 995, 879, 818, 679, 579, 509 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 23 H 44 NaO 5 Si] + : 451.2850, found: 451.2856.

[試験例7 絶対配置の決定]

Figure 2013035809
[Test Example 7 Determination of absolute configuration]
Figure 2013035809

上記反応式に従い、不斉触媒(1b)を用いた2−オキソプロパナールとアセトアルデヒドとのアルドール反応、ウイティッヒ反応、ヒドロキシル基の保護、還元、脱保護、アセタール化、オゾン分解、還元、ベンジル化を経て既存物質へ導き、文献(Kochekovl,N.K.;A.I.Tetrahedron,1963,19,973)の旋光度と比較し、絶対配置を決定した。合成した2−((4S,5S)−2,2,5−トリメチル−1,3−ジオキソラン−4−イル)エチルベンゾエートの物性値は以下の通りである。   In accordance with the above reaction formula, aldol reaction, Wittig reaction, hydroxyl group protection, reduction, deprotection, acetalization, ozonolysis, reduction, benzylation of 2-oxopropanal and acetaldehyde using asymmetric catalyst (1b) Then, it led to the existing substance, and compared with the optical rotation of literature (Kochekovl, NK; AI Tetrahedron, 1963, 19, 973), and determined the absolute configuration. The physical properties of the synthesized 2-((4S, 5S) -2,2,5-trimethyl-1,3-dioxolan-4-yl) ethyl benzoate are as follows.

Figure 2013035809
2−((4S,5S)−2,2,5−trimethyl−1,3−dioxolan−4−yl)ethyl benzoate
H−NMR(CDCl,400MHz):δ1.28(3H,d,J=6.0Hz),1.39(3H,s),1.40(3H,s),1.93−2.07(2H,m),3.67−3.83(2H,m),4.39−4.54(2H,m),7.42−8.04(5H,m);
13C−NMR(CDCl,100MHz):δ17.3、27.2,27.3,31.5,62.0;79.3,108.2,128.4,129.6,130,2,133.0,166.5;
IR(neat):νmax2985,2931,1720,1604,1450,1373,1273,1173,1095,1026,1003,856,710,517cm−1
HRMS(ESI):[M+Na] calcd for[C1520NaO4]:287.1254,found:287.1247;
[α] 24−24.5(c=1.00,CHCl),文献値:−25.6(c=4.95,CHCl
Figure 2013035809
2-((4S, 5S) -2,2,5-trimethyl-1,3-dioxolin-4-yl) ethyl benzoate
1 H-NMR (CDCl 3 , 400 MHz): δ 1.28 (3H, d, J = 6.0 Hz), 1.39 (3H, s), 1.40 (3H, s), 1.93-2. 07 (2H, m), 3.67-3.83 (2H, m), 4.39-4.54 (2H, m), 7.42-8.04 (5H, m);
13 C-NMR (CDCl 3 , 100 MHz): δ 17.3, 27.2, 27.3, 31.5, 62.0; 79.3, 108.2, 128.4, 129.6, 130, 2 , 133.0, 166.5;
IR (neat): νmax 2985, 2931, 1720, 1604, 1450, 1373, 1273, 1173, 1095, 1026, 1003, 856, 710, 517 cm −1 ;
HRMS (ESI): [M + Na] + calcd for [C 15 H 20 NaO 4] + : 287.1254, found: 287.1247;
[Α] D 24 −24.5 o (c = 1.00, CHCl 3 ), literature value: −25.6 o (c = 4.95, CHCl 3 )

Claims (7)

下記式(a)で表される光学活性α−ヒドロキシケトンの製造方法であって、下記式(b)で表されるα−ケトアルデヒドと下記式(c)で表されるアルデヒドとの不斉触媒アルドール反応を行うことを特徴とする光学活性α−ヒドロキシケトンの製造方法。
Figure 2013035809
(式(a)中、R、Rはそれぞれ独立に群G1より選ばれる置換基を有していてもよいC−C20炭化水素基又は水素原子を表す。)
Figure 2013035809
(式(b)中、Rは式(a)のRと同一のものである。)
Figure 2013035809
(式(c)中、Rは式(a)のRと同一のものである。)
<群G1>:群G2より選ばれる置換基を有していてもよいC−C20アリール基、群G2より選ばれる置換基を有していてもよい芳香族複素環基、C−C12アルコキシ基、群G2より選ばれる置換基を有していてもよいC−C20アリール基を有するC−C12アルコキシ基、ハロゲン原子、オキソ基及びトリC−C12アルキルシリル基からなる群
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群
A method for producing an optically active α-hydroxyketone represented by the following formula (a), which is an asymmetry between an α-ketoaldehyde represented by the following formula (b) and an aldehyde represented by the following formula (c): A method for producing an optically active α-hydroxyketone, which comprises carrying out a catalytic aldol reaction.
Figure 2013035809
(In formula (a), R 1 and R 2 each independently represents a C 1 -C 20 hydrocarbon group or a hydrogen atom which may have a substituent selected from group G1.)
Figure 2013035809
(In the formula (b), R 1 is the same as R 1 of formula (a).)
Figure 2013035809
(In the formula (c), R 2 is the same as R 2 of formula (a).)
<Group G1>: C 6 -C 20 aryl group which may have a substituent selected from Group G2, an aromatic heterocyclic group which may have a substituent selected from Group G2, C 1 — C 12 alkoxy group, C 1 -C 12 alkoxy group having optionally C 6 -C 20 aryl group optionally having substituent (s) selected from group G2, a halogen atom, an oxo group and tri C 1 -C 12 alkylsilyl the group consisting of group <group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl Group consisting of a group, a nitro group, a cyano group, a protected amino group and a halogen atom
前記不斉触媒アルドール反応で用いられる不斉触媒が下記式(d)又は(e)で表される化合物であることを特徴とする請求項1記載の光学活性α−ヒドロキシケトンの製造方法。
Figure 2013035809
(式(d)中、R及びRはそれぞれ独立に、以下の群G2より選ばれる置換基を有していてもよいフェニル基、C−C12鎖式炭化水素基、C−C12脂環式炭化水素基又は水素原子を表し、Rは水素原子、フッ素原子、水酸基、C−C12アルコキシ基、C−C12フッ化アルキルオキシ基又は−OSiRを表し、R,R及びRはそれぞれ独立に、C−Cアルキル基又はC−C20アリール基を表し、*は不斉炭素原子を表す。)
Figure 2013035809
(式(e)中、R,R10及びR11はそれぞれ独立に、C−Cアルキル基又はC−C20アリール基を表し、*は不斉炭素原子を表す。)
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群
The method for producing an optically active α-hydroxyketone according to claim 1, wherein the asymmetric catalyst used in the asymmetric catalytic aldol reaction is a compound represented by the following formula (d) or (e).
Figure 2013035809
(In formula (d), R 3 and R 4 are each independently a phenyl group optionally having a substituent selected from the following group G2, a C 1 -C 12 chain hydrocarbon group, C 3- C 12 represents an alicyclic hydrocarbon group or a hydrogen atom, and R 5 represents a hydrogen atom, a fluorine atom, a hydroxyl group, a C 1 -C 12 alkoxy group, a C 1 -C 12 fluorinated alkyloxy group, or —OSiR 6 R 7 R. And R 6 , R 7 and R 8 each independently represents a C 1 -C 8 alkyl group or a C 6 -C 20 aryl group, and * represents an asymmetric carbon atom.)
Figure 2013035809
(In formula (e), R 9 , R 10 and R 11 each independently represents a C 1 -C 8 alkyl group or a C 6 -C 20 aryl group, and * represents an asymmetric carbon atom.)
<Group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl group, a nitro group , A cyano group, a protected amino group and a halogen atom
が水酸基であることを特徴とする請求項2記載の光学活性α−ヒドロキシケトンの製造方法。 Claim 2 The process for producing an optically active α- hydroxyketone, wherein the R 5 is a hydroxyl group. 及びRがそれぞれ独立に、C−C12フッ化アルキル基を有していてもよいフェニル基であることを特徴とする請求項2又は3記載の光学活性α−ヒドロキシケトンの製造方法。 4. The optically active α-hydroxyketone according to claim 2, wherein R 3 and R 4 are each independently a phenyl group optionally having a C 1 -C 12 fluorinated alkyl group. Method. 及びRが共に、3,5−ビス(トリフルオロメチル)フェニル基であることを特徴とする請求項2から4のいずれか記載の光学活性α−ヒドロキシケトンの製造方法。 The method for producing an optically active α-hydroxyketone according to any one of claims 2 to 4, wherein R 3 and R 4 are both 3,5-bis (trifluoromethyl) phenyl groups. 前記不斉触媒アルドール反応が、水の存在下で行われることを特徴とする請求項1から5のいずれか記載の光学活性α−ヒドロキシケトンの製造方法。   The method for producing an optically active α-hydroxyketone according to any one of claims 1 to 5, wherein the asymmetric catalytic aldol reaction is carried out in the presence of water. 下記式(a)で表される光学活性α−ヒドロキシケトン。
Figure 2013035809
(式(a)中、R、Rはそれぞれ独立に群G1より選ばれる置換基を有していてもよいC−C20炭化水素基又は水素原子を表す。)
<群G1>:群G2より選ばれる置換基を有していてもよいC−C20アリール基、群G2より選ばれる置換基を有していてもよい芳香族複素環基、C−C12アルコキシ基、群G2より選ばれる置換基を有していてもよいC−C20アリール基を有するC−C12アルコキシ基、ハロゲン原子、オキソ基及びトリC−C12アルキルシリル基からなる群
<群G2>:C−C12アルキル基、C−C12アルコキシ基、C−C13アルコキシカルボニル基、C−C12フッ化アルキル基、C−C13アシル基、ニトロ基、シアノ基、保護されたアミノ基及びハロゲン原子からなる群
An optically active α-hydroxyketone represented by the following formula (a).
Figure 2013035809
(In formula (a), R 1 and R 2 each independently represents a C 1 -C 20 hydrocarbon group or a hydrogen atom which may have a substituent selected from group G1.)
<Group G1>: C 6 -C 20 aryl group which may have a substituent selected from Group G2, an aromatic heterocyclic group which may have a substituent selected from Group G2, C 1 — C 12 alkoxy group, C 1 -C 12 alkoxy group having optionally C 6 -C 20 aryl group optionally having substituent (s) selected from group G2, a halogen atom, an oxo group and tri C 1 -C 12 alkylsilyl the group consisting of group <group G2>: C 1 -C 12 alkyl group, C 1 -C 12 alkoxy group, C 2 -C 13 alkoxycarbonyl group, C 1 -C 12 fluorinated alkyl group, C 2 -C 13 acyl Group consisting of a group, a nitro group, a cyano group, a protected amino group and a halogen atom
JP2011175236A 2011-08-10 2011-08-10 OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME Pending JP2013035809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175236A JP2013035809A (en) 2011-08-10 2011-08-10 OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175236A JP2013035809A (en) 2011-08-10 2011-08-10 OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2013035809A true JP2013035809A (en) 2013-02-21

Family

ID=47885767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175236A Pending JP2013035809A (en) 2011-08-10 2011-08-10 OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2013035809A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182419A (en) * 2005-12-07 2007-07-19 Tokyo Univ Of Science Proline derivative and optically active anti-selection promoting catalyst
JP2008007457A (en) * 2006-06-29 2008-01-17 Tokyo Univ Of Science POST-TREATMENT METHOD OF beta-HYDROXYCARBONYL COMPOUND
JP2009114135A (en) * 2007-11-07 2009-05-28 Tokyo Univ Of Science Method for producing asymmetric catalyzed aldol reaction product
WO2010043029A1 (en) * 2008-10-15 2010-04-22 Xingnong Wang Use of tetrose to inhibit cancer and to increase cell viability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182419A (en) * 2005-12-07 2007-07-19 Tokyo Univ Of Science Proline derivative and optically active anti-selection promoting catalyst
JP2008007457A (en) * 2006-06-29 2008-01-17 Tokyo Univ Of Science POST-TREATMENT METHOD OF beta-HYDROXYCARBONYL COMPOUND
JP2009114135A (en) * 2007-11-07 2009-05-28 Tokyo Univ Of Science Method for producing asymmetric catalyzed aldol reaction product
WO2010043029A1 (en) * 2008-10-15 2010-04-22 Xingnong Wang Use of tetrose to inhibit cancer and to increase cell viability

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6011032197; 日本化学会講演予稿集 Vol.91, No.4, 20110311, p.1239 *
JPN6015007875; Taichi Kano: 'A Designer Axially Chiral Amino Sulfonamide as an Efficient Organocatalyst for Direct Asymmetric ant' CHEMISTRY - A EUROPEAN JOURNAL 15 (27), 2009, P6678-6687 *
JPN6015007878; Xiong, Yan: 'Asymmetric bisprolinamide-catalyzed cross-aldol reaction of aldehydes' SYNLETT (1), 2008, 73-76 *
JPN6015007879; Nursten, Harry E.: 'The mechanism of formation of 3-methylcyclopent-2-en-2-olone' SPECIAL PUBLICATION - ROYAL SOCIETY OF CHEMISTRY(MAILLARD REACTION IN FOODS AND MEDICINE) 223, 1998, P65-68 *
JPN6015007882; Miral Dizdaroglu: 'Strand breaks and sugar release by .gamma.-irradiation of DNA in aqueous solution' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 97 (8), 1975, P2277-2278 *

Similar Documents

Publication Publication Date Title
EP2883858B1 (en) Method for producing hexahydrofurofuranol derivative
JP6487568B2 (en) Kinetic resolution by catalytic asymmetric hydrogenation of racemic δ-hydroxy ester and its application
JP3504960B2 (en) Preparation of tertiary butyl (3R, 5S) -6-hydroxy-3,5-O-isopropylidene-3,5-dihydroxyhexanoate
CN112142660B (en) Method for simply, conveniently and efficiently synthesizing 4-aryl butyric acid derivative
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
JP5559608B2 (en) Process for producing optically active 3-substituted-3-formyl-2-hydroxypropanoic acid compound
JP5872840B2 (en) Process for producing optically active 4-chloro-3-hydroxybutanal compound
JP2013035809A (en) OPTICALLY ACTIVE α-HYDROXYKETONE AND METHOD OF PRODUCING THE SAME
JP2006519786A (en) Chemical methods for making intermediates to obtain N-formylhydroxylamine compounds
Hayakawa et al. Synthetic studies towards optically active 13-oxyingenol via asymmetric cyclopropanation
JP6067700B2 (en) Alcohol oxidation catalyst and alcohol oxidation method using the same
CN103547558B (en) Preparation is containing the method for 5-membered ring compounds
JP2010229097A (en) New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst
EP2280007B1 (en) The preparation method of (3s,4s)-3-hexyl-4-((r)-2-hydroxytridecyl)-oxetan-2-one and the product of that method
JP6364245B2 (en) Process for producing optically active 4-acyloxyimino-3-hydroxyaldehyde compound
EP1775300A1 (en) Process for production of polysubstituted cyclobutanes and polysubstituted cyclobutenes
JP2012148983A (en) Asymmetric hydrolysis method of ester
KR100365526B1 (en) Synthesis of the bicyclo[3.3.1]nonane structure
JP2012106998A (en) PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINO ALDEHYDE COMPOUND
JP4523761B2 (en) NOVEL COMPOUND HAVING ANTI-TUMOR ACTIVITY AND PROCESS FOR PRODUCING THE SAME
FR2619564A1 (en) IMPROVEMENT TO THE CATALYTIC DIMERIZATION PROCESS OF ALKYL ACRYLATE
JPS6233136A (en) Optically active gamma-alkyl-alpha-acyloxycarboxylic ester and production thereof
JP2012236818A (en) Method for producing amine compound
Peng Total synthesis of the phytopathogen (+)-fomannosin
JPH04316538A (en) Production of optically active 3,5-anti-dihydroxycarboxylic acid ester derivative

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006