JP2010229097A - New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst - Google Patents

New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst Download PDF

Info

Publication number
JP2010229097A
JP2010229097A JP2009079482A JP2009079482A JP2010229097A JP 2010229097 A JP2010229097 A JP 2010229097A JP 2009079482 A JP2009079482 A JP 2009079482A JP 2009079482 A JP2009079482 A JP 2009079482A JP 2010229097 A JP2010229097 A JP 2010229097A
Authority
JP
Japan
Prior art keywords
oxazolidine derivative
group
salt
formula
asymmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009079482A
Other languages
Japanese (ja)
Inventor
Eunsang Kwon
垠相 權
Hiroto Nakano
博人 中野
Mitsuhiro Takeshita
光弘 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2009079482A priority Critical patent/JP2010229097A/en
Publication of JP2010229097A publication Critical patent/JP2010229097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new oxazolidine derivative and its salt and a method for producing an optically active compound using the oxazolidine derivative salt useful as an asymmetric organic molecular catalyst. <P>SOLUTION: The oxazolidine derivative salt is represented by general formula (2) (wherein R<SP>1</SP>and R<SP>2</SP>are each aryl which may be substituted; R<SP>3</SP>is alkyl or aryl; R<SP>4</SP>is a hydrogen atom or alkyl; R<SP>5</SP>is alkyl, aryl or silyl; X is an organic acid to form a salt with an oxazolidine derivative skeleton). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規オキサゾリジン誘導体及び新規オキサゾリジン誘導体塩、並びに該オキサゾリジン誘導体塩を不斉有機分子触媒とした光学活性化合物の製造方法に関する。   The present invention relates to a novel oxazolidine derivative, a novel oxazolidine derivative salt, and a method for producing an optically active compound using the oxazolidine derivative salt as an asymmetric organic molecular catalyst.

医薬品などの生体関連化合物は、不斉中心を含むものが少なくなく、可能な2つの鏡像異性体がそれぞれ生体に対して異なる作用を示すことが多い。従って、一方の鏡像異性体のみを選択的に得るための不斉合成反応の開発は重要である。   Many biologically relevant compounds such as pharmaceuticals contain asymmetric centers, and the two possible enantiomers often exhibit different actions on the living body. Therefore, it is important to develop an asymmetric synthesis reaction to selectively obtain only one enantiomer.

ごく少量の触媒により、原理的には無限の光学活性化合物を供給することが可能な高度プロセスである触媒的不斉合成反応は、その省エネルギー・環境調和の観点からも現代の有機合成化学の重要な研究課題の1つである。不斉触媒としては、従来より多くの有機金属触媒が開発されているものの、高価であったり、残存する金属の除去が困難であったりする課題もあった。このため、近年、安価・安全・環境負荷が少ないなどの理由で、金属を含有しない有機分子を触媒として用いる、有機分子触媒反応の研究が盛んに行われている。   Catalytic asymmetric synthesis, which is an advanced process capable of supplying infinite optically active compounds in principle with a very small amount of catalyst, is important for modern organic synthetic chemistry from the viewpoint of energy saving and environmental harmony. This is one of the major research topics. As an asymmetric catalyst, many organometallic catalysts have been developed, but there are also problems that it is expensive and it is difficult to remove the remaining metal. For this reason, in recent years, researches on organic molecular catalysis using an organic molecule containing no metal as a catalyst have been actively conducted for reasons such as low cost, safety, and low environmental burden.

例えば、特許文献1及び非特許文献1には、タミフルなどの様々な生理活性化合物群の鍵合成中間体であるイソキヌクリジン誘導体を、有機分子触媒であるマクミラン触媒を使用した不斉Diels−Alder反応によって合成することが開示されている。   For example, in Patent Document 1 and Non-Patent Document 1, isoquinuclidine derivatives, which are key synthesis intermediates of various physiologically active compounds such as Tamiflu, are synthesized by an asymmetric Diels-Alder reaction using a Macmillan catalyst, which is an organic molecular catalyst. It is disclosed to synthesize.

特開2008−50336号公報JP 2008-50336 A

Angew.Chem.Int.Ed.46巻、5734〜5736頁、2007年Angew. Chem. Int. Ed. 46, 5734-5736, 2007

しかしながら、特許文献1や非特許文献1で得られるイソキヌクリジン誘導体の化学収率は低く、後の工程で再結晶化することにより光学純度は向上するが、化学収率は更に低下する。また、ポリマーの生成も伴うことから、生成物の分離精製も容易ではない。そのため、高い化学収率及び高い光学収率で目的物を得ることのできる不斉有機分子触媒が求められている。   However, the chemical yield of the isoquinuclidine derivative obtained in Patent Document 1 or Non-Patent Document 1 is low, and optical purity is improved by recrystallization in a later step, but the chemical yield is further reduced. In addition, since the polymer is also produced, it is not easy to separate and purify the product. Therefore, an asymmetric organic molecular catalyst capable of obtaining a target product with high chemical yield and high optical yield is demanded.

そこで本発明は、新規オキサゾリジン誘導体及びその塩、並びに不斉有機分子触媒として有用な該オキサゾリジン誘導体塩を用いた光学活性化合物の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the optically active compound using this oxazolidine derivative salt useful as a novel oxazolidine derivative and its salt, and an asymmetric organic molecular catalyst.

本発明者らは鋭意検討した結果、特定の構造を有するオキサゾリジン誘導体を塩として用いると不斉有機分子触媒として有用であることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the use of an oxazolidine derivative having a specific structure as a salt is useful as an asymmetric organic molecular catalyst, leading to the completion of the present invention.

かくして本発明の第一の態様は、下記式(1)で表わされるオキサゾリジン誘導体を提供して前記課題を解決するものである。   Thus, the first aspect of the present invention provides an oxazolidine derivative represented by the following formula (1) to solve the above problems.

Figure 2010229097
(式(1)中、R、Rはそれぞれ置換されていてもよいアリール基であり、Rはアルキル基又はアリール基であり、Rは水素原子又はアルキル基であり、Rはアルキル基(イソプロピル基は除く)、アリール基、シリル基のいずれかである。)
Figure 2010229097
(In Formula (1), R 1 and R 2 are each an optionally substituted aryl group, R 3 is an alkyl group or an aryl group, R 4 is a hydrogen atom or an alkyl group, and R 5 is (It is either an alkyl group (excluding isopropyl group), an aryl group, or a silyl group.)

また、本発明の第二の態様は、下記式(2)で表わされるオキサゾリジン誘導体塩を提供して前記課題を解決するものである。   Moreover, the 2nd aspect of this invention provides the oxazolidine derivative salt represented by following formula (2), and solves the said subject.

Figure 2010229097
(式(2)中、R、Rはそれぞれ置換されていてもよいアリール基であり、Rはアルキル基又はアリール基であり、Rは水素原子又はアルキル基であり、Rはアルキル基、アリール基、シリル基のいずれかであり、Xはオキサゾリジン誘導体骨格と塩を形成する有機酸を表わす。)
Figure 2010229097
(In Formula (2), R 1 and R 2 are each an optionally substituted aryl group, R 3 is an alkyl group or an aryl group, R 4 is a hydrogen atom or an alkyl group, and R 5 is X is an organic acid that forms a salt with the oxazolidine derivative skeleton.

本発明の第三の態様は、下記式(2)で表わされる不斉有機分子触媒を提供して前記課題を解決するものである。   The third aspect of the present invention provides an asymmetric organic molecular catalyst represented by the following formula (2) to solve the above problems.

Figure 2010229097
(式(2)中、R、Rはそれぞれ置換されていてもよいアリール基であり、Rはアルキル基又はアリール基であり、Rは水素原子又はアルキル基であり、Rはアルキル基、アリール基、シリル基のいずれかであり、Xはオキサゾリジン誘導体骨格と塩を形成する有機酸を表わす。)
Figure 2010229097
(In Formula (2), R 1 and R 2 are each an optionally substituted aryl group, R 3 is an alkyl group or an aryl group, R 4 is a hydrogen atom or an alkyl group, and R 5 is X is an organic acid that forms a salt with the oxazolidine derivative skeleton.

本発明の第四の態様は、前記第三の態様の不斉有機分子触媒を用いて不斉反応を行うことを特徴とする、光学活性化合物の製造方法を提供して前記課題を解決するものである。   According to a fourth aspect of the present invention, there is provided an optically active compound production method characterized in that an asymmetric reaction is carried out using the asymmetric organic molecular catalyst of the third aspect to solve the above problems. It is.

この態様において、不斉反応は不斉Diels−Alder反応であることが好ましく、また、該不斉Diels−Alder反応において、製造される光学活性化合物がイソキヌクリジン誘導体であり、下記式(3)で表わされる1,2−ジヒドロピリジン誘導体を共役ジエンとし、下記式(4)で表わされるアクロレイン誘導体をジエノフィルとするものであることが好ましい。   In this embodiment, the asymmetric reaction is preferably an asymmetric Diels-Alder reaction, and the optically active compound produced in the asymmetric Diels-Alder reaction is an isoquinuclidine derivative, which is represented by the following formula (3). The 1,2-dihydropyridine derivative is preferably a conjugated diene and the acrolein derivative represented by the following formula (4) is a dienophile.

Figure 2010229097
(式(3)及び式(4)において、R〜R10、R12〜R14は水素原子又は一価の置換基を表わし、R11はアルキル基又はアリール基を表わす。)
Figure 2010229097
(In Formula (3) and Formula (4), R 6 to R 10 and R 12 to R 14 represent a hydrogen atom or a monovalent substituent, and R 11 represents an alkyl group or an aryl group.)

本発明のオキサゾリジン誘導体塩は、不斉有機分子触媒として有用であり、本発明のオキサゾリジン誘導体は、この前駆体化合物として有用である。本発明のオキサゾリジン誘導体塩である不斉有機分子触媒は、従来の有機金属触媒と比べて安価かつ容易に合成することが可能であるのみならず、これを不斉反応に用いることで、高い化学収率及び高い光学収率で光学活性化合物を得ることができる。   The oxazolidine derivative salt of the present invention is useful as an asymmetric organic molecular catalyst, and the oxazolidine derivative of the present invention is useful as this precursor compound. The asymmetric organic molecular catalyst, which is an oxazolidine derivative salt of the present invention, can be synthesized not only inexpensively and easily compared to conventional organometallic catalysts, but also by using this for an asymmetric reaction. An optically active compound can be obtained with a high yield and a high optical yield.

また、本発明のオキサゾリジン誘導体塩は、特に、不斉Diels−Alder反応による光学活性イソキヌクリジン誘導体合成のための不斉有機分子触媒として好適であり、高い化学収率及び高い光学収率で選択的に目的物を得ることができる。光学活性イソキヌクリジン誘導体や、その開環生成物である光学活性多置換ピペリジン誘導体は、オセルタミビル、ビンブラスチン、レセルピン、アルカルイド類などの医薬品や生理活性物質の重要な合成中間体であることから、本発明は、ひいては低コストかつ高効率に、様々な医薬品や生理活性物質を得るために非常に有用である。   Further, the oxazolidine derivative salt of the present invention is particularly suitable as an asymmetric organic molecular catalyst for synthesizing optically active isoquinuclidine derivatives by asymmetric Diels-Alder reaction, and selectively with high chemical yield and high optical yield. The object can be obtained. Since the optically active isoquinuclidine derivative and the ring-opening product of the optically active polysubstituted piperidine derivative are important synthetic intermediates for pharmaceuticals and physiologically active substances such as oseltamivir, vinblastine, reserpine and alcarides, the present invention Therefore, it is very useful for obtaining various pharmaceuticals and physiologically active substances at low cost and high efficiency.

本発明のオキサゾリジン誘導体は、下記式(1)で表わされる化合物であり、本発明のオキサゾリジン誘導体塩は、下記式(2)で表わされる化合物である。   The oxazolidine derivative of the present invention is a compound represented by the following formula (1), and the oxazolidine derivative salt of the present invention is a compound represented by the following formula (2).

Figure 2010229097
Figure 2010229097

式(1)及び式(2)中、R、Rはアリール基であり、互いに同じでも異なっていてもよい。アリール基としては、フェニル基、ナフチル基、トリル基、キシリル基、エチルフェニル基等が挙げられる。アリール基上の炭素原子は更に任意の置換基を有していてもよい。また、式(1)及び式(2)中、Rはアルキル基又はアリール基であり、アリール基としてはR、Rと同じものを例示できる。アルキル基としては、炭素数1〜13のものが好ましく、直鎖でも分岐でもよく、また環状のものでもよい。また、アルキル基上の炭素原子が、更にアリール基などの他の置換基によって置換されていてもよい。直鎖アルキル基としては、例えば、メチル基、エチル基、プロピル基等を挙げることができる。分岐アルキル基としては、例えば、イソプロピル基、tert−ブチル基、sec−ブチル基等を挙げることができる。シクロアルキル基としては、分岐構造を有していてもよい炭素数3〜8のものが好ましく、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、2−メチルシクロプロピル基、アダマンチル基等を挙げることができる。また、アリール基によって置換されているアルキル基としては、ベンジル基等が挙げられる。また、式(1)及び式(2)中、Rは水素原子又はアルキル基であり、アルキル基としてはRと同じものを例示できる。また、式(1)及び式(2)中、Rはアルキル基、アリール基、シリル基のいずれかであり、アルキル基やアリール基としてはRと同じものを例示できる。シリル基としては、シリル基の水素原子の1〜3個がアルキル基、アリール基、アラルキル基等に置換されたものが挙げられ、例えばトリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルヘキシルシリル基、tert−ブチルジメチルシリル基、メチルジイソプロピルシリル基、イソプロピルジメチルシリル基、tert−ブチルメトキシフェニルシリル基、tert−ブトキシジフェニルシリル基、トリフェニルシリル基、tert−ブチルジフェニルシリル基、ジメチルクメニルシリル基、トリベンジルシリル基が挙げられる。 In formula (1) and formula (2), R 1 and R 2 are aryl groups, which may be the same as or different from each other. Examples of the aryl group include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, and an ethylphenyl group. The carbon atom on the aryl group may further have an arbitrary substituent. Further, the formula (1) and in formula (2), R 3 is an alkyl group or an aryl group, the aryl group can be exemplified the same as the R 1, R 2. As an alkyl group, a C1-C13 thing is preferable, a linear or branched thing may be sufficient and a cyclic thing may be sufficient. Moreover, the carbon atom on the alkyl group may be further substituted with another substituent such as an aryl group. Examples of the linear alkyl group include a methyl group, an ethyl group, and a propyl group. Examples of the branched alkyl group include isopropyl group, tert-butyl group, sec-butyl group and the like. As the cycloalkyl group, those having 3 to 8 carbon atoms which may have a branched structure are preferable, and examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 2-methylcyclopropyl group, an adamantyl group and the like. Can do. Examples of the alkyl group substituted with an aryl group include a benzyl group. In the formula (1) and (2), R 4 is a hydrogen atom or an alkyl group, the alkyl group can be exemplified the same ones as R 3. In the formula (1) and (2), R 5 is is a an alkyl group, an aryl group, or a silyl group, the alkyl group or aryl group can be exemplified the same ones as R 3. Examples of the silyl group include those in which 1 to 3 hydrogen atoms of the silyl group are substituted with an alkyl group, an aryl group, an aralkyl group, etc., for example, a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a dimethylhexylsilyl group. Group, tert-butyldimethylsilyl group, methyldiisopropylsilyl group, isopropyldimethylsilyl group, tert-butylmethoxyphenylsilyl group, tert-butoxydiphenylsilyl group, triphenylsilyl group, tert-butyldiphenylsilyl group, dimethylcumenylsilyl group Group and tribenzylsilyl group.

式(2)において、R、Rはアルキル基で置換されていてもよいフェニル基であることが好ましく、特にはフェニル基であることが好ましい。また、Rとしては、アルキル基で置換されていてもよいフェニル基であることが好ましく、特にはフェニル基であることが好ましい。また、Rとしては水素原子が好ましく、Rとしては、アルキル基で置換されていてもよいフェニル基、又は炭素数1〜5の直鎖又は分岐アルキル基であることが好ましく、イソプロピル基、tert−ブチル基であることが特に好ましい。 In the formula (2), R 1 and R 2 are preferably a phenyl group which may be substituted with an alkyl group, and particularly preferably a phenyl group. R 3 is preferably a phenyl group which may be substituted with an alkyl group, and particularly preferably a phenyl group. R 4 is preferably a hydrogen atom, and R 5 is preferably a phenyl group which may be substituted with an alkyl group, or a linear or branched alkyl group having 1 to 5 carbon atoms, an isopropyl group, A tert-butyl group is particularly preferred.

式(2)中、Xは、オキサゾリジン誘導体骨格と塩を形成する酸であり、そのような酸としては、有機酸が好ましく、有機酸としては、ピクリン酸、脂肪族及び芳香族スルホン酸、脂肪族及び芳香族カルボン酸等が挙げられる。中でも脂肪族モノカルボン酸及びそのハロゲン置換体が好ましく、具体的には、酢酸、酪酸、モノフルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸等が挙げられる。中でも脂肪族モノカルボン酸のハロゲン置換体が好ましく、特にトリフルオロ酢酸が好ましい。   In formula (2), X is an acid that forms a salt with the oxazolidine derivative skeleton, and as such an acid, an organic acid is preferable, and examples of the organic acid include picric acid, aliphatic and aromatic sulfonic acids, fatty acids And aromatic carboxylic acids. Of these, aliphatic monocarboxylic acids and halogen-substituted products thereof are preferable, and specific examples include acetic acid, butyric acid, monofluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid. Of these, a halogen-substituted product of an aliphatic monocarboxylic acid is preferable, and trifluoroacetic acid is particularly preferable.

式(1)及び式(2)で表わされる化合物は、公知の方法で合成することができる。例えば、下記スキームに示すように、式(d)で表わされる光学活性アミノアルコール類と式(e)で表わされるケトン類(又はアルデヒド類)とを適当な溶媒中、脱水縮合することにより、式(1)で表わされるオキサゾリジン誘導体を選択的に合成することができ、更にこれを有機酸と反応させることにより、式(2)で表わされるオキサゾリジン誘導体塩をほぼ定量的に得ることができる。   The compounds represented by formula (1) and formula (2) can be synthesized by known methods. For example, as shown in the following scheme, an optically active amino alcohol represented by the formula (d) and a ketone (or aldehyde) represented by the formula (e) are subjected to dehydration condensation in a suitable solvent, thereby forming the formula The oxazolidine derivative represented by (1) can be selectively synthesized, and further reacted with an organic acid, whereby the oxazolidine derivative salt represented by the formula (2) can be obtained almost quantitatively.

Figure 2010229097
Figure 2010229097

式(1)で表わされるオキサゾリジン誘導体を合成する際の反応溶媒としては、ジクロロメタン、クロロホルム、テトラヒドロフランなどが挙げられる。式(d)で表わされる化合物の使用量は、式(e)で表わされる化合物1モルに対し通常等モル程度であり、塩を形成させる際の有機酸の使用量は、式(1)で表わされるオキサゾリジン誘導体1モルに対し通常等モル程度である。生成した式(2)で表わされるオキサゾリジン誘導体塩は、抽出、クロマトグラフィー、再結晶などにより単離、精製することができる。   Examples of the reaction solvent for synthesizing the oxazolidine derivative represented by the formula (1) include dichloromethane, chloroform, and tetrahydrofuran. The amount of the compound represented by formula (d) is usually about equimolar to 1 mole of the compound represented by formula (e), and the amount of organic acid used to form the salt is represented by formula (1). Usually, it is about equimolar to 1 mol of the oxazolidine derivative represented. The produced oxazolidine derivative salt represented by the formula (2) can be isolated and purified by extraction, chromatography, recrystallization and the like.

上記得られた式(2)で表わされるオキサゾリジン誘導体塩は、不斉合成反応のための触媒、すなわち不斉有機分子触媒として有用である。該オキサゾリジン誘導体塩を触媒とすることで、高い光学収率で光学活性化合物を得ることができる。オキサゾリジン誘導体塩を不斉有機分子触媒として用いることのできる不斉合成反応としては、例えば、Diels−Alder反応、アルドール反応、マイケル付加反応等が挙げられる。本発明のオキサゾリジン誘導体塩は、中でも、光学収率の観点から、不斉Diels−Alder反応における不斉有機分子触媒として有用である。   The obtained oxazolidine derivative salt represented by the formula (2) is useful as a catalyst for an asymmetric synthesis reaction, that is, an asymmetric organic molecular catalyst. By using the oxazolidine derivative salt as a catalyst, an optically active compound can be obtained with a high optical yield. Examples of the asymmetric synthesis reaction in which the oxazolidine derivative salt can be used as an asymmetric organic molecular catalyst include Diels-Alder reaction, aldol reaction, Michael addition reaction and the like. The oxazolidine derivative salt of the present invention is particularly useful as an asymmetric organic molecular catalyst in an asymmetric Diels-Alder reaction from the viewpoint of optical yield.

不斉Diels−Alder反応の原料となるジエンとしては、特に限定するものではないが、オキサゾリジン誘導体塩を不斉有機分子触媒とすることによる効果、すなわち高いエンド/エキソ選択性やエナンチオ選択性を最大限に生かすことができるため、シクロペンタジエン、シクロヘキサジエン、ジヒドロピリジンなどの環状ジエンを原料とすることが好ましい。また、ジエノフィルも特に限定するものではなく、アクロレイン、メタクロレイン、桂皮アルデヒドなど通常のDiels−Alder反応に用いることのできるジエノフィルを用いることができる。   The diene used as the raw material for the asymmetric Diels-Alder reaction is not particularly limited, but the effect obtained by using an oxazolidine derivative salt as an asymmetric organic molecular catalyst, that is, high endo / exo selectivity and enantioselectivity is maximized. It is preferable to use a cyclic diene such as cyclopentadiene, cyclohexadiene, dihydropyridine, etc. as a raw material because it can be utilized to the limit. Also, the dienophile is not particularly limited, and dienophiles that can be used for ordinary Diels-Alder reactions such as acrolein, methacrolein, and cinnamic aldehyde can be used.

不斉Diels−Alder反応におけるオキサゾリジン誘導体塩の使用量は特に限定されるものではないが、通常原料のジエノフィルに対して5〜20mol%が好ましく、5〜10mol%がより好ましい。ジエノフィルに対して5mol%未満ではDiels−Alder反応の化学収率やエナンチオ選択性が低下するおそれがあるため好ましくなく、一方、20mol%を超えても効果に差が生じず、経済的な観点から好ましくない。   Although the usage-amount of the oxazolidine derivative salt in an asymmetric Diels-Alder reaction is not specifically limited, Usually, 5-20 mol% is preferable with respect to the raw material dienophile, and 5-10 mol% is more preferable. If it is less than 5 mol% with respect to dienophile, the chemical yield and enantioselectivity of the Diels-Alder reaction may be reduced. On the other hand, if it exceeds 20 mol%, there is no difference in effect, and from an economical viewpoint. It is not preferable.

不斉Diels−Alder反応における反応溶媒としては、ニトリル系溶媒を使用することが好ましい。ニトリル系溶媒としては、アセトニトリル、プロピオニトリルなどが挙げられる。また、溶媒には、上記溶媒に対して5体積%程度の水を存在させることも好ましい。また、反応温度は特に限定されるものではなく、通常、0〜25℃程度の範囲で行われる。エナンチオ選択性の観点からは、0〜10℃が好ましい。   As a reaction solvent in the asymmetric Diels-Alder reaction, a nitrile solvent is preferably used. Examples of the nitrile solvent include acetonitrile and propionitrile. Moreover, it is also preferable that about 5% by volume of water is present in the solvent with respect to the solvent. Moreover, reaction temperature is not specifically limited, Usually, it is performed in the range of about 0-25 degreeC. From the viewpoint of enantioselectivity, 0 to 10 ° C is preferable.

本発明のオキサゾリジン誘導体塩を不斉有機分子触媒とする不斉Diels−Alder反応は、特に下記式(3)で表わされる1,2−ジヒドロピリジン誘導体(ジエン)と下記式(4)で表わされるアクロレイン誘導体(ジエノフィル)とを原料とする、下記式(5)で表わされるイソキヌクリジン誘導体の合成に有用であり、目的とする光学異性体を非常に高い化学収率かつ光学収率で目的物を合成することができる。また、式(5)で表わされるイソキヌクリジン誘導体は、開環することで下記式(6)で表わされる多置換ピペリジン誘導体に容易に変換することができる。   The asymmetric Diels-Alder reaction using the oxazolidine derivative salt of the present invention as an asymmetric organic molecular catalyst is particularly a 1,2-dihydropyridine derivative (diene) represented by the following formula (3) and an acrolein represented by the following formula (4). It is useful for the synthesis of isoquinuclidine derivatives represented by the following formula (5) using a derivative (dienophile) as a raw material, and the desired optical isomer is synthesized with a very high chemical yield and optical yield. be able to. Moreover, the isoquinuclidine derivative represented by the formula (5) can be easily converted into a polysubstituted piperidine derivative represented by the following formula (6) by ring opening.

Figure 2010229097
Figure 2010229097

式(3)、式(4)、式(5)、式(6)において、R〜R10、R12〜R14はそれぞれ水素原子又は一価の置換基であり、R11はアルキル基又はアリール基ある。R〜R10、R12〜R14で表わされる一価の置換基としては、直鎖又は分岐のアルキル基、アリール基、ハロゲン原子、ヒドロキシル基、カルボキシル基、アルコキシカルボニル基、アシル基、アシロキシ基、アルコキシ基、アリールオキシ基などが挙げられ、それぞれの置換基は更に他の置換基で置換されていてもよい。R11のアルキル基又はアリール基としては、上述の式(1)及び式(2)におけるRと同様の置換基を例示できる。 In Formula (3), Formula (4), Formula (5), and Formula (6), R 6 to R 10 and R 12 to R 14 are each a hydrogen atom or a monovalent substituent, and R 11 is an alkyl group. Or there is an aryl group. Examples of monovalent substituents represented by R 6 to R 10 and R 12 to R 14 include linear or branched alkyl groups, aryl groups, halogen atoms, hydroxyl groups, carboxyl groups, alkoxycarbonyl groups, acyl groups, and acyloxy groups. Group, an alkoxy group, an aryloxy group, and the like, and each substituent may be further substituted with another substituent. Examples of the alkyl group or aryl group of R 11 include the same substituents as R 3 in the above formulas (1) and (2).

式(3)、式(4)、式(5)、式(6)において、R〜R10としては水素原子が好ましく、R11としてはベンジル基が好ましい。また、R12〜R14としてはアルキル基、アリール基、ハロゲン原子、アシル基、アシロキシ基、アルコキシ基、アリールオキシ基などが好ましい。 In Formula (3), Formula (4), Formula (5), and Formula (6), R 6 to R 10 are preferably a hydrogen atom, and R 11 is preferably a benzyl group. Moreover, as R < 12 > -R < 14 >, an alkyl group, an aryl group, a halogen atom, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group etc. are preferable.

上記不斉Diels−Alder反応によって合成される光学活性イソキヌクリジン誘導体(5)は、オセルタミビル、カサランチン、レセルビン、ビンブラスチンなどの前駆体となる物質である。また、光学活性イソキヌクリジン誘導体を開環して得られる、上記式(6)で表わされる多置換ピペリジン誘導体は、アザ糖、ピペリジンアルカロイド、キノリジンアルカロイド糖の前駆体となる。これらの化合物を高い化学収率かつ高い光学収率で合成することのできる本発明は、ひいては低コストかつ高効率に、様々な医薬品や生理活性物質を得るために非常に有用である。   The optically active isoquinuclidine derivative (5) synthesized by the asymmetric Diels-Alder reaction is a substance that becomes a precursor of oseltamivir, casarantine, reservin, vinblastine and the like. In addition, the polysubstituted piperidine derivative represented by the above formula (6) obtained by ring-opening an optically active isoquinuclidine derivative is a precursor of an aza sugar, piperidine alkaloid, or quinolidine alkaloid sugar. The present invention capable of synthesizing these compounds with a high chemical yield and a high optical yield is very useful for obtaining various pharmaceuticals and physiologically active substances at low cost and high efficiency.

以下に示すスキームで、オキサゾリジン誘導体塩(g1)〜(g3)を合成した。   Oxazolidine derivative salts (g1) to (g3) were synthesized by the scheme shown below.

Figure 2010229097
Figure 2010229097

(オキサゾリジン誘導体塩(g1)の合成)
100mLナス型フラスコにアミノ酸メチルエステル塩酸(a1)(500mg,2.8mmol)を入れ、HO(5mL)に溶解した。更に、炭酸水素ナトリウム(504mg,6.0mmol)を加え溶解させた。氷冷下、クロロギ酸ベンジルのトルエン溶液(1.8mL,3.2mmol)を滴下し、除々に室温に戻しながら24時間撹拌した。撹拌終了後、反応溶液をエーテルで抽出し、有機層を硫酸ナトリウムで乾燥して溶媒を減圧留去することによって、淡黄色液状のアミノ基が保護されたアミノ酸メチルエステル(b1)が定量的に得られた。
(Synthesis of oxazolidine derivative salt (g1))
Amino acid methyl ester hydrochloric acid (a1) (500 mg, 2.8 mmol) was placed in a 100 mL eggplant-shaped flask and dissolved in H 2 O (5 mL). Further, sodium hydrogen carbonate (504 mg, 6.0 mmol) was added and dissolved. Under ice cooling, a toluene solution of benzyl chloroformate (1.8 mL, 3.2 mmol) was added dropwise, and the mixture was stirred for 24 hours while gradually returning to room temperature. After completion of the stirring, the reaction solution is extracted with ether, the organic layer is dried over sodium sulfate, and the solvent is distilled off under reduced pressure to quantitatively determine the amino acid methyl ester (b1) in which the light yellow liquid amino group is protected. Obtained.

アミノ酸メチルエステル(b1)(765mg,2.7mmol)を200mLのナス型フラスコに入れ、エーテル(30mL)に溶解させ、氷冷下フェニルマグネシウムブロミド(10.8mL,10.8mmol)を滴下し、徐々に室温に戻しながら12時間撹拌した。反応終了後、氷冷下で塩酸を滴下して反応を停止させ、反応溶液は酢酸エチルで抽出し、有機層を飽和NaCl水溶液と水で洗い、硫酸ナトリウムで乾燥して溶媒を減圧留去し、得られた粗生成物を再結晶(n−ヘキサン:EtO=10:1)することによって白色結晶のジフェニルエタノールアミノアルコール(c1)を60%の収率で得た。 Amino acid methyl ester (b1) (765 mg, 2.7 mmol) was placed in a 200 mL eggplant-shaped flask, dissolved in ether (30 mL), and phenylmagnesium bromide (10.8 mL, 10.8 mmol) was added dropwise under ice cooling. The mixture was stirred for 12 hours while returning to room temperature. After completion of the reaction, hydrochloric acid was added dropwise under ice cooling to stop the reaction, the reaction solution was extracted with ethyl acetate, the organic layer was washed with saturated aqueous NaCl solution and water, dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained crude product was recrystallized (n-hexane: Et 2 O = 10: 1) to obtain white crystalline diphenylethanolamino alcohol (c1) in a yield of 60%.

100mLのナス型フラスコに(c1)(646mg,1.6mmol)をとり、メタノールに溶解させ、更に10%パラジウム炭素(650mg)を加えてH(バルーン)存在下で12時間撹拌した。反応終了後、反応溶液をろ過し、溶媒を減圧留去することによって、白色結晶のアミノアルコール(d1)を定量的に得た。 (C1) (646 mg, 1.6 mmol) was placed in a 100 mL eggplant-shaped flask, dissolved in methanol, 10% palladium carbon (650 mg) was further added, and the mixture was stirred for 12 hours in the presence of H 2 (balloon). After completion of the reaction, the reaction solution was filtered, and the solvent was distilled off under reduced pressure to quantitatively obtain white crystalline amino alcohol (d1).

50mLのナス型フラスコに(d1)(300mg,0.84mmol)をとり、蒸留したジクロロメタン(5mL)に溶解させ、ベンズアルデヒド(e)(0.09mL,0.84mmol)を加えて室温で2時間撹拌した。反応溶液を減圧留去し、得られた粗生成物をプレパラティブTLC(SiO2,n−ヘキサン:酢酸エチル=9:1)で分離精製することによって、白色結晶のオキサゾリジン誘導体(f1)を得た(収率80%)。   Take (d1) (300 mg, 0.84 mmol) in a 50 mL eggplant-shaped flask, dissolve in distilled dichloromethane (5 mL), add benzaldehyde (e) (0.09 mL, 0.84 mmol), and stir at room temperature for 2 hours. did. The reaction solution was distilled off under reduced pressure, and the resulting crude product was separated and purified by preparative TLC (SiO2, n-hexane: ethyl acetate = 9: 1) to obtain an oxazolidine derivative (f1) as white crystals. (Yield 80%).

50mLのナス型フラスコにオキサゾリジン誘導体(f1)(0.54mmol)を蒸留したジクロロメタン(5mL)に溶解し、氷冷下トリフルオロ酢酸(0.54mmol)を加え、5分間撹拌した。反応溶液を減圧留去することによって、粉末状のオキサゾリジン誘導体トリフルオロ酢酸塩(g1)を定量的に得た。   The oxazolidine derivative (f1) (0.54 mmol) was dissolved in distilled dichloromethane (5 mL) in a 50 mL eggplant-shaped flask, trifluoroacetic acid (0.54 mmol) was added under ice cooling, and the mixture was stirred for 5 minutes. By distilling off the reaction solution under reduced pressure, a powdery oxazolidine derivative trifluoroacetate salt (g1) was quantitatively obtained.

(オキサゾリジン誘導体塩(g2)の合成)
出発原料をそれぞれ(a2)に代えた以外は(f1)の合成条件と全く同じ反応条件で反応を行い、白色結晶のジフェニルエタノールアミノアルコール(c2)(収率70%)及び白色結晶のオキサゾリジン誘導体(f2)を得た(収率85%)。また、これらを(g1)の合成条件と全く同じ反応条件でトリフルオロ酢酸と反応させ、それぞれ定量的に粉末状のオキサゾリジン誘導体トリフルオロ酢酸塩(g2)を得た。
(Synthesis of oxazolidine derivative salt (g2))
The reaction was carried out under exactly the same reaction conditions as in the synthesis of (f1) except that (a2) was used as the starting material, and white crystalline diphenylethanolaminoalcohol (c2) (yield 70%) and white crystalline oxazolidine derivative (F2) was obtained (yield 85%). Further, these were reacted with trifluoroacetic acid under the same reaction conditions as the synthesis conditions of (g1), and powdery oxazolidine derivative trifluoroacetate (g2) was obtained quantitatively.

(オキサゾリジン誘導体塩(g3)の合成)
30mLのナス型フラスコに(d2)(50mg,0.20mmol)をとり、モレキュラーシーブ4A(MS4A)を50mg加え、脱水アセトン(e’)(3mL)に溶解させ、室温で2時間撹拌した。反応液からMS4Aを除去し、溶媒を減圧留去後、得られた粗生成物をカラムクロマトグラフィー(SiO,n−ヘキサン:酢酸エチル=9:1)で分離精製することによって、無色液体のオキサゾリジン誘導体(f3)を得た(収率85%)。
(Synthesis of oxazolidine derivative salt (g3))
(D2) (50 mg, 0.20 mmol) was placed in a 30 mL eggplant-shaped flask, 50 mg of molecular sieve 4A (MS4A) was added, dissolved in dehydrated acetone (e ′) (3 mL), and stirred at room temperature for 2 hours. The reaction was removed MS4A from solution, the solvent was distilled off under reduced pressure, the resulting crude product was purified by column chromatography (SiO 2, n-hexane: ethyl acetate = 9: 1) by separating purified by a colorless liquid The oxazolidine derivative (f3) was obtained (yield 85%).

30mLのナス型フラスコに(f3)(0.15mmol)をとり、これを(g2)の合成条件と全く同じ反応条件でトリフルオロ酢酸と反応させることによって、定量的に粉末状のオキサゾリジン誘導体トリフルオロ酢酸塩(g3)を得た。   By taking (f3) (0.15 mmol) in a 30 mL eggplant-shaped flask and reacting it with trifluoroacetic acid under the same reaction conditions as the synthesis conditions of (g2), the powdered oxazolidine derivative trifluoro is quantitatively analyzed. Acetic acid salt (g3) was obtained.

得られたオキサゾリジン誘導体トリフルオロ酢酸塩(g1)〜(g3)のH−NMRデータを以下に示す。これらのデータから、オキサゾリジン誘導体トリフルオロ酢酸塩(g1)〜(g3)の立体構造は下記構造式のとおりであることが確認された。 1 H-NMR data of the obtained oxazolidine derivative trifluoroacetates (g1) to (g3) are shown below. From these data, it was confirmed that the steric structures of the oxazolidine derivative trifluoroacetates (g1) to (g3) are as shown in the following structural formula.

Figure 2010229097
Figure 2010229097

オキサゾリジン誘導体トリフルオロ酢酸塩(g1);H−NMR(400MHz,CDCl,δ(ppm)):0.89(s,9H),4.76(s,1H),5.62(s,1H),7.31−7.73(m,15H) Oxazolidine derivative trifluoroacetate (g1); 1 H-NMR (400 MHz, CDCl 3 , δ (ppm)): 0.89 (s, 9H), 4.76 (s, 1H), 5.62 (s, 1H), 7.31-7.73 (m, 15H)

オキサゾリジン誘導体トリフルオロ酢酸塩(g2);H−NMR(400MHz,CDCl,δ(ppm)):0.76(d,3H),0.81(d,3H),1.99(m,1H),4.49(d,1H),5.62(s,1H),7.28−7.65(m,15H) Oxazolidine derivative trifluoroacetate (g2); 1 H-NMR (400 MHz, CDCl 3 , δ (ppm)): 0.76 (d, 3H), 0.81 (d, 3H), 1.99 (m, 1H), 4.49 (d, 1H), 5.62 (s, 1H), 7.28-7.65 (m, 15H)

オキサゾリジン誘導体トリフルオロ酢酸塩(g3);H−NMR(400MHz,C,δ(ppm)):0.51(d,3H),1.07(d,3H),1.10(s,3H),1.78(s,3H),1.91(m,1H),4.25(d,1H),6.54(d,1H),7.02−7.20(m,5H),7.33(m,2H),7.37(d,2H) Oxazolidine derivative trifluoroacetate (g3); 1 H-NMR (400 MHz, C 6 D 6 , δ (ppm)): 0.51 (d, 3H), 1.07 (d, 3H), 1.10 ( s, 3H), 1.78 (s, 3H), 1.91 (m, 1H), 4.25 (d, 1H), 6.54 (d, 1H), 7.02-7.20 (m , 5H), 7.33 (m, 2H), 7.37 (d, 2H)

(オキサゾリジン誘導体塩(g1)を触媒としたイソキヌクリジン誘導体(j)及び(k)の合成)
以下に示すスキームで、イソキヌクリジン誘導体(j)及び(k)を合成した。
(Synthesis of isoquinuclidine derivatives (j) and (k) using oxazolidine derivative salt (g1) as a catalyst)
Isoquinuclidine derivatives (j) and (k) were synthesized by the scheme shown below.

Figure 2010229097
Figure 2010229097

10mLのナス型フラスコに触媒(g1)(5mg,0.01mmol)をとり、アセトニトリル(0.5mL)に溶解させ、更に水(0.03mmol)を加えた。氷冷下、蒸留したアクロレイン(i)(0.07mL,0.01mmol)及び1,2−ジヒドロピリジン(h)(43mg,0.2mmol)を加え、0℃で撹拌した。反応終了後、反応溶液に氷水を加えてエーテルで抽出した。有機層を飽和NaCl水溶液と水で洗い、硫酸ナトリウムで乾燥した後、溶媒を減圧留去することによってイソキヌクリジン誘導体(7S)−(j)(82%)が得られた。得られた粗生成物は精製することなく次の反応に用いた。   The catalyst (g1) (5 mg, 0.01 mmol) was taken in a 10 mL eggplant-shaped flask, dissolved in acetonitrile (0.5 mL), and water (0.03 mmol) was further added. Distilled acrolein (i) (0.07 mL, 0.01 mmol) and 1,2-dihydropyridine (h) (43 mg, 0.2 mmol) were added under ice cooling, and the mixture was stirred at 0 ° C. After completion of the reaction, ice water was added to the reaction solution and extracted with ether. The organic layer was washed with saturated NaCl aqueous solution and water, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain isoquinuclidine derivative (7S)-(j) (82%). The obtained crude product was used for the next reaction without purification.

10mLナス型フラスコに前の反応で得られたイソキヌクリジン誘導体(j)をとり、エタノール(2mL)に溶解させ、水素化ホウ素ナトリウム(2mg,0.05mmol)を加え、室温で1時間撹拌した。反応終了後、反応溶液を減圧留去し、水を加えて酢酸エチルで抽出した。有機層を減圧蒸留し、得られた粗生成物をプレパラティブTLC(SiO,n−ヘキサン:酢酸エチル=1:1)で分離精製することによって、イソキヌクリジン誘導体(7S)−(k)を定量的に得た。 The isoquinuclidine derivative (j) obtained in the previous reaction was taken in a 10 mL eggplant-shaped flask, dissolved in ethanol (2 mL), sodium borohydride (2 mg, 0.05 mmol) was added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was evaporated under reduced pressure, water was added and the mixture was extracted with ethyl acetate. The organic layer was distilled under reduced pressure and purified by preparative The resulting crude product TLC (SiO 2, n-hexane: ethylacetate = 1: 1) by separating purified by isoquinuclidine derivatives (7S) - (k) Quantitative Obtained.

(オキサゾリジン誘導体塩(g2)、(g3)を触媒としたイソキヌクリジン誘導体(j)及び(k)の合成)
触媒をそれぞれ(g2)、(g3)にしたこと以外は(g1)を用いて合成したのと全く同様にして、イソキヌクリジン誘導体(j)及び(k)を合成した。それぞれの触媒を用いた時のイソキヌクリジン誘導体(j)のendo/exo比はアルコール体(k)のH−NMRのデータから決定した。また、それぞれの触媒を用いた時のイソキヌクリジン誘導体((7S)−endo−(j)、(7R)−exo−(j))の光学収率は、アルコール体(k)のHPLCデータ(ダイセル化学社製キラルパックAS−H,n−ヘキサン:2−プロパノール=93:7)により決定した。各触媒(g1)〜(g3)を用いてイソキヌクリジン誘導体(j)を合成した際の収率、光学収率について表1に示す。
(Synthesis of isoquinuclidine derivatives (j) and (k) using oxazolidine derivative salts (g2) and (g3) as catalysts
Isoquinuclidine derivatives (j) and (k) were synthesized in exactly the same manner as the synthesis using (g1) except that the catalysts were (g2) and (g3), respectively. The endo / exo ratio of the isoquinuclidine derivative (j) when each catalyst was used was determined from 1 H-NMR data of the alcohol form (k). The optical yields of isoquinuclidine derivatives ((7S) -endo- (j), (7R) -exo- (j)) using the respective catalysts were determined by HPLC data (Daicel Chemistry) of the alcohol form (k). Chiral Pack AS-H, n-hexane: 2-propanol = 93: 7). Table 1 shows the yield and optical yield when the isoquinuclidine derivative (j) was synthesized using each of the catalysts (g1) to (g3).

Figure 2010229097
Figure 2010229097

いずれの触媒を用いた場合も非常に高いエンド/エキソ選択性を示し、エンド体のみを選択的に得ることができた。また、エナンチオ選択性にも優れており、高い光学収率で(7S)−endo−(j)を得ることができた。特に、触媒(g1)及び(g2)を用いた場合は、化学収率も80%以上と非常に良好であった。   When any catalyst was used, very high endo / exo selectivity was exhibited, and only the endo form could be selectively obtained. Moreover, it was excellent in enantioselectivity, and (7S) -endo- (j) could be obtained with high optical yield. In particular, when the catalysts (g1) and (g2) were used, the chemical yield was also very good at 80% or more.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うオキサゾリジン誘導体及びその塩、並びにオキサゾリジン誘導体塩を用いた光学活性化合物の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. The oxazolidine derivative and its salt, and the optically active compound using the oxazolidine derivative salt can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. This manufacturing method should also be understood as being included in the technical scope of the present invention.

本発明のオキサゾリジン誘導体塩を不斉有機分子触媒、特に不斉Diels−Alder反応の触媒として用いることで、医薬品や生理活性物質の中間体となるイソキヌクリジン誘導体をはじめとした光学活性物質を高い化学収率と高い光学収率で得ることができる。そのため、本発明オキサゾリジン誘導体塩及びこれを触媒として用いた反応は、医薬品や生理活性物質の効率的な合成に有用である。   By using the oxazolidine derivative salt of the present invention as an asymmetric organic molecular catalyst, particularly an asymmetric Diels-Alder reaction catalyst, an optically active substance such as an isoquinuclidine derivative that is an intermediate of a pharmaceutical or a physiologically active substance can be obtained with a high chemical yield. And high optical yield. Therefore, the oxazolidine derivative salt of the present invention and the reaction using this as a catalyst are useful for the efficient synthesis of pharmaceuticals and physiologically active substances.

Claims (6)

下記式(1)で表わされるオキサゾリジン誘導体。
Figure 2010229097
(式(1)中、R、Rはそれぞれ置換されていてもよいアリール基であり、Rはアルキル基又はアリール基であり、Rは水素原子又はアルキル基であり、Rはアルキル基(イソプロピル基は除く)、アリール基、シリル基のいずれかである。)
An oxazolidine derivative represented by the following formula (1).
Figure 2010229097
(In Formula (1), R 1 and R 2 are each an optionally substituted aryl group, R 3 is an alkyl group or an aryl group, R 4 is a hydrogen atom or an alkyl group, and R 5 is (It is either an alkyl group (excluding isopropyl group), an aryl group, or a silyl group.)
下記式(2)で表わされるオキサゾリジン誘導体塩。
Figure 2010229097
(式(2)中、R、Rはそれぞれ置換されていてもよいアリール基であり、Rはアルキル基又はアリール基であり、Rは水素原子又はアルキル基であり、Rはアルキル基、アリール基、シリル基のいずれかであり、Xはオキサゾリジン誘導体骨格と塩を形成する有機酸を表わす。)
An oxazolidine derivative salt represented by the following formula (2).
Figure 2010229097
(In Formula (2), R 1 and R 2 are each an optionally substituted aryl group, R 3 is an alkyl group or an aryl group, R 4 is a hydrogen atom or an alkyl group, and R 5 is X is an organic acid that forms a salt with the oxazolidine derivative skeleton.
下記式(2)で表わされる不斉有機分子触媒。
Figure 2010229097
(式(2)中、R、Rはそれぞれ置換されていてもよいアリール基であり、Rはアルキル基又はアリール基であり、Rは水素原子又はアルキル基であり、Rはアルキル基、アリール基、シリル基のいずれかであり、Xはオキサゾリジン誘導体骨格と塩を形成する有機酸を表わす。)
An asymmetric organic molecular catalyst represented by the following formula (2).
Figure 2010229097
(In Formula (2), R 1 and R 2 are each an optionally substituted aryl group, R 3 is an alkyl group or an aryl group, R 4 is a hydrogen atom or an alkyl group, and R 5 is X is an organic acid that forms a salt with the oxazolidine derivative skeleton.
請求項3に記載の不斉有機分子触媒を用いて不斉反応を行うことを特徴とする、光学活性化合物の製造方法。 A method for producing an optically active compound, comprising performing an asymmetric reaction using the asymmetric organic molecular catalyst according to claim 3. 前記不斉反応が不斉Diels−Alder反応であることを特徴とする、請求項4に記載の光学活性化合物の製造方法。 The method for producing an optically active compound according to claim 4, wherein the asymmetric reaction is an asymmetric Diels-Alder reaction. 前記光学活性化合物がイソキヌクリジン誘導体であり、前記不斉Diels−Alder反応が下記式(3)で表わされる1,2−ジヒドロピリジン誘導体を共役ジエンとし、下記式(4)で表わされるアクロレイン誘導体をジエノフィルとするものであることを特徴とする、請求項5に記載の製造方法。
Figure 2010229097
(式(3)及び式(4)において、R〜R10、R12〜R14は水素原子又は一価の置換基を表わし、R11はアルキル基又はアリール基を表わす。)
The optically active compound is an isoquinuclidine derivative, the asymmetric Diels-Alder reaction is a 1,2-dihydropyridine derivative represented by the following formula (3) as a conjugated diene, and an acrolein derivative represented by the following formula (4) is a dienophile. The manufacturing method according to claim 5, wherein:
Figure 2010229097
(In Formula (3) and Formula (4), R 6 to R 10 and R 12 to R 14 represent a hydrogen atom or a monovalent substituent, and R 11 represents an alkyl group or an aryl group.)
JP2009079482A 2009-03-27 2009-03-27 New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst Pending JP2010229097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079482A JP2010229097A (en) 2009-03-27 2009-03-27 New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079482A JP2010229097A (en) 2009-03-27 2009-03-27 New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst

Publications (1)

Publication Number Publication Date
JP2010229097A true JP2010229097A (en) 2010-10-14

Family

ID=43045250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079482A Pending JP2010229097A (en) 2009-03-27 2009-03-27 New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst

Country Status (1)

Country Link
JP (1) JP2010229097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112622A1 (en) * 2012-01-25 2013-08-01 Demerx, Inc. (1r,4r) 7-oxo-2-azabicyclo[2.2.2]oct-5-ene and derivatives thereof
US9150584B2 (en) 2012-01-25 2015-10-06 Demerx, Inc. Indole and benzofuran fused isoquinuclidene derivatives and processes for preparing them
US9550789B2 (en) 2014-06-18 2017-01-24 Demerx, Inc. Halogenated indole and benzofuran derivatives of isoquinuclidene and processes for preparing them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013040807; 中野博人: '1,2-ジヒドロピリジン誘導体の有機分子触媒的不斉Diels-Alder反応を用いる光学活性イソキヌクリジン誘' 日本化学会第89春季年会-講演予稿集II , 20090313, p.1472 2PC-067 *
JPN6013040809; Yong-feng Kang et al.: Tetrahedron Letters 46(5), 2005, 863-865 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112622A1 (en) * 2012-01-25 2013-08-01 Demerx, Inc. (1r,4r) 7-oxo-2-azabicyclo[2.2.2]oct-5-ene and derivatives thereof
JP2015506371A (en) * 2012-01-25 2015-03-02 デメルクス,インコーポレイテッド (1R, 4R) 7-oxo-2-azabicyclo [2.2.2] oct-5-ene and derivatives thereof
US9150584B2 (en) 2012-01-25 2015-10-06 Demerx, Inc. Indole and benzofuran fused isoquinuclidene derivatives and processes for preparing them
CN108912117A (en) * 2012-01-25 2018-11-30 德莫科斯公司 (1R, 4R) 7- oxo -2- azabicyclo [2.2.2] octyl- 5- alkene and its derivative
US9550789B2 (en) 2014-06-18 2017-01-24 Demerx, Inc. Halogenated indole and benzofuran derivatives of isoquinuclidene and processes for preparing them

Similar Documents

Publication Publication Date Title
RU2335500C2 (en) Method of production of mevalonic acid derivatives inhibiting hmg-coa reductase
JP3171931B2 (en) (R)-(-)-4-cyano-3-hydroxybutyric acid t-butyl ester and method for producing the same
EP0385733B1 (en) Process for preparing optically active 6-t-butoxy-3,5-dihydroxyhexanoic esters
JP5417560B2 (en) Method for producing optically active carboxylic acid ester
JP5108383B2 (en) Process for producing optically active monosulfonate compound
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
JP2010229097A (en) New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst
JPH06172256A (en) Production of 3-hydroxybutyric acid derivative
JP5665041B2 (en) Iodonium compound, production method thereof, functionalized spirocyclic compound and production method thereof
JP2006519786A (en) Chemical methods for making intermediates to obtain N-formylhydroxylamine compounds
JP5192856B2 (en) Process for producing oseltamivir and its related compounds
WO2014094511A1 (en) Intermediates for synthesizing treprostinil and preparation method thereof as well as the preparation method of treprostinil thereby
JP2006070017A (en) Method for producing unsaturated aminodiol
JP4661272B2 (en) Process for producing chiral 4-methyl-4-[(arylcarbooxy) ethyl] -oxetan-2-one and chiral mevalonolactone
JP5329462B2 (en) Optically active dicarboxylic acid derivative
CN108912077B (en) Preparation method of chiral phthalide derivative
JP2005194243A (en) Menthol derivative and method for producing the same
JP5787980B2 (en) Method for preparing isoserine derivatives
JPH0791223B2 (en) Process for producing optically active 6-t-butoxy-3,5-dihydroxyhexanoic acid ester
JP4560309B2 (en) Method for producing optically active amino acid derivative
JP4064645B2 (en) New production method of polysubstituted cycloalkenes
JP3770678B2 (en) Optically active alcohol and its carboxylic acid ester
KR100985251B1 (en) Separation of d-muscone and l-muscone from dl-muscone
MXPA02007077A (en) Method for the enantioselective preparation of 3,3 diphenyl 2,3 epoxy propionic acid esters.
JP2009232735A (en) Method for producing (1r, 2r)-1-acyloxy-3-cycloalkene or (1s, 2s)-3-cycloalken-1-ol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217