JP2013019030A - Magnesium alloy with heat resistance and flame retardancy, and method of manufacturing the same - Google Patents

Magnesium alloy with heat resistance and flame retardancy, and method of manufacturing the same Download PDF

Info

Publication number
JP2013019030A
JP2013019030A JP2011154088A JP2011154088A JP2013019030A JP 2013019030 A JP2013019030 A JP 2013019030A JP 2011154088 A JP2011154088 A JP 2011154088A JP 2011154088 A JP2011154088 A JP 2011154088A JP 2013019030 A JP2013019030 A JP 2013019030A
Authority
JP
Japan
Prior art keywords
phase
alloy
heat resistance
magnesium alloy
flame retardancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011154088A
Other languages
Japanese (ja)
Inventor
Toshiharu Matsumoto
敏治 松本
Mitsuru Sakamoto
満 坂本
Hirofumi Miyahara
広郁 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOBATA SEISAKUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Tobata Seisakusho Co Ltd
Original Assignee
TOBATA SEISAKUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Tobata Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOBATA SEISAKUSHO KK, National Institute of Advanced Industrial Science and Technology AIST, Tobata Seisakusho Co Ltd filed Critical TOBATA SEISAKUSHO KK
Priority to JP2011154088A priority Critical patent/JP2013019030A/en
Publication of JP2013019030A publication Critical patent/JP2013019030A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium alloy with heat resistance and flame retardancy usable under a high temperature environment, and a method of manufacturing the same.SOLUTION: The magnesium alloy 10 contains 0.5-5 mass% Ca and 0.5-5 mass% Si, and a CaMgSi phase 12 is crystallized in a Mg phase 11 serving as a parent phase, thereby providing the heat resistance. The method of manufacturing the magnesium alloy 10 includes the steps of: heating a Mg alloy raw material in a molten state sequentially added with Ca and Si in a temperature range of 800-900°C and then solidifying the same; and crystallizing the CaMgSi phase 12 in the Mg phase 11 serving as the parent phase, thereby providing the heat resistance.

Description

本発明は、高温環境下での使用に適した耐熱性及び難燃性を有するマグネシウム合金及びその製造方法に関する。 The present invention relates to a magnesium alloy having heat resistance and flame retardancy suitable for use in a high temperature environment and a method for producing the same.

近年、自動車産業界においては、更なる燃費の向上と、振動や騒音の低減等が求められているが、例えば、自動車のエンジン材料に使用されているアルミニウム合金の形状や材料開発はすでに成熟し、更なる高機能化が望めない。
この課題に効果的に対応する手段として、エンジン材料に、アルミニウム合金と比較して軽く、また鉄との反応性が低く、更には、高い振動減衰性を有するマグネシウム合金を使用することが考えられている。これにより、軽量化と摩擦や焼付きの低減が図れて燃費を向上できると共に、振動や騒音も低減できる。
In recent years, the automobile industry has demanded further improvements in fuel efficiency and reduction of vibration and noise. For example, the shape and material development of aluminum alloys used in automobile engine materials has already matured. , I can not expect further enhancement of functionality.
As a means to effectively cope with this problem, it is conceivable to use a magnesium alloy as an engine material that is lighter than an aluminum alloy, has a low reactivity with iron, and has a high vibration damping property. ing. As a result, weight reduction and reduction of friction and seizure can be achieved to improve fuel efficiency, and vibration and noise can also be reduced.

しかし、マグネシウム合金は、高温での強度が低く、また温度が上昇すると燃焼に至る材料であるため、エンジン材料のように、高温環境下で使用する材料には適さなかった。
そこで、例えば、特許文献1には、原料にCaを添加することにより、難燃性としたマグネシウム合金が提案されていた(例えば、特許文献1参照)。
However, a magnesium alloy is a material that has low strength at high temperatures and burns when the temperature rises, so it is not suitable for materials used in high temperature environments like engine materials.
Therefore, for example, Patent Document 1 has proposed a magnesium alloy that is made flame retardant by adding Ca to the raw material (see, for example, Patent Document 1).

特許第3318606号公報Japanese Patent No. 3318606

Caが添加されたマグネシウム合金は、Caが添加されていない場合と比較して、マグネシウム合金の硬さを上昇でき、また耐熱性も有するが、自動車のエンジン材料のように、高温状況下(例えば、200℃以上)で使用できる程度の十分な耐熱性は備えていなかった。 The magnesium alloy to which Ca is added can increase the hardness of the magnesium alloy and has heat resistance as compared with the case in which Ca is not added. , 200 ° C. or higher) was not provided with sufficient heat resistance.

本発明はかかる事情に鑑みてなされたもので、高温環境下で使用可能な耐熱性及び難燃性を有するマグネシウム合金及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a magnesium alloy having heat resistance and flame retardancy that can be used in a high temperature environment and a method for producing the same.

前記目的に沿う第1の発明に係る耐熱性及び難燃性を有するマグネシウム合金は、Caを0.5〜5質量%、Siを0.5〜5質量%有し、母相となるMg相中にCaMgSi相を晶出させて耐熱性を備えさせた。 The magnesium alloy having heat resistance and flame retardancy according to the first invention that meets the above-mentioned object has 0.5 to 5% by mass of Ca and 0.5 to 5% by mass of Si, and is an Mg phase that becomes a parent phase A CaMgSi phase was crystallized to provide heat resistance.

第1の発明に係る耐熱性及び難燃性を有するマグネシウム合金において、前記Mg相の粒界に、更にAlCa相を晶出させて硬さを向上させることが好ましい。 In the magnesium alloy having heat resistance and flame retardancy according to the first invention, it is preferable that the Al 2 Ca phase is further crystallized at the grain boundary of the Mg phase to improve the hardness.

第1の発明に係る耐熱性及び難燃性を有するマグネシウム合金において、前記Mg相中に、更にMgSi相を晶出させて耐クリープ性を向上させてもよい。 In the magnesium alloy having heat resistance and flame retardancy according to the first invention, the Mg 2 Si phase may be further crystallized in the Mg phase to improve the creep resistance.

前記目的に沿う第2の発明に係る耐熱性及び難燃性を有するマグネシウム合金の製造方法は、第1の発明に係る耐熱性及び難燃性を有するマグネシウム合金の製造方法であって、CaとSiが順次添加された溶融状態のMg合金原料を、800〜900℃の温度範囲内で加熱した後に凝固させ、前記Mg相中に前記CaMgSi相を晶出させて耐熱性を備えさせる。 A method for producing a magnesium alloy having heat resistance and flame retardancy according to the second invention in accordance with the above object is a method for producing a magnesium alloy having heat resistance and flame retardancy according to the first invention, comprising Ca and The molten Mg alloy raw material to which Si is sequentially added is heated in a temperature range of 800 to 900 ° C. and then solidified, and the CaMgSi phase is crystallized in the Mg phase to provide heat resistance.

第2の発明に係る耐熱性及び難燃性を有するマグネシウム合金の製造方法において、前記CaMgSi相を晶出させた前記Mg合金原料を、600〜800℃の温度範囲内で加熱しながら、該Mg合金原料に更にCaを添加して該Mg合金原料を凝固させ、前記Mg相の粒界にAlCa相を晶出させて硬さを向上させることが好ましい。 In the method for producing a magnesium alloy having heat resistance and flame retardancy according to the second invention, the Mg alloy raw material crystallized from the CaMgSi phase is heated within a temperature range of 600 to 800 ° C. Preferably, Ca is further added to the alloy raw material to solidify the Mg alloy raw material, and the Al 2 Ca phase is crystallized at the Mg phase grain boundary to improve the hardness.

第2の発明に係る耐熱性及び難燃性を有するマグネシウム合金の製造方法において、前記CaMgSi相を晶出させた前記Mg合金原料を加熱しながら、該Mg合金原料に更にSiを添加して該Mg合金原料を凝固させ、前記Mg相中にMgSi相を晶出させて耐クリープ性を向上させてもよい。 In the method for producing a heat-resistant and flame-retardant magnesium alloy according to the second invention, Si is further added to the Mg alloy raw material while heating the Mg alloy raw material crystallized from the CaMgSi phase. Creep resistance may be improved by solidifying the Mg alloy raw material and crystallizing the Mg 2 Si phase in the Mg phase.

本発明に係る耐熱性及び難燃性を有するマグネシウム合金及びその製造方法は、母相となるMg相中にCaMgSi相を晶出させているので、耐熱性を備えることができる。これは、CaMgSi相が硬く、高融点であり、耐熱性に優れているためである。
このように、マグネシウム合金は耐熱性を備えるため、高温環境下で使用でき、利用用途の拡大が図れる。
The magnesium alloy having heat resistance and flame retardancy according to the present invention and the method for producing the same can crystallize the CaMgSi phase in the Mg phase serving as a parent phase, and thus can have heat resistance. This is because the CaMgSi phase is hard, has a high melting point, and is excellent in heat resistance.
As described above, since the magnesium alloy has heat resistance, it can be used in a high temperature environment, and the application can be expanded.

また、マグネシウム合金のMg相の粒界に、更にAlCa相を晶出させた場合、マグネシウム合金の硬さを向上できる。これは、AlCa相が硬く、高融点であり、耐熱性を有するためである。
従って、CaMgSi相とAlCa相の相乗効果により、マグネシウム合金の硬さの更なる向上が図れると共に、耐熱性も十分に高めることができる。
Further, when an Al 2 Ca phase is further crystallized at the grain boundary of the Mg phase of the magnesium alloy, the hardness of the magnesium alloy can be improved. This is because the Al 2 Ca phase is hard, has a high melting point, and has heat resistance.
Therefore, due to the synergistic effect of the CaMgSi phase and the Al 2 Ca phase, the hardness of the magnesium alloy can be further improved and the heat resistance can be sufficiently enhanced.

そして、マグネシウム合金のMg相中に、更にMgSi相を晶出させた場合、マグネシウム合金の耐クリープ性を向上できる。
従って、マグネシウム合金の利用用途の更なる拡大が図れる。
When the Mg 2 Si phase is further crystallized in the Mg phase of the magnesium alloy, the creep resistance of the magnesium alloy can be improved.
Therefore, the use application of the magnesium alloy can be further expanded.

本発明の一実施の形態に係る耐熱性及び難燃性を有するマグネシウム合金の組織の模式図である。It is a schematic diagram of the structure | tissue of the magnesium alloy which has the heat resistance and flame retardance which concern on one embodiment of this invention. 温度がマグネシウム合金の引張強さに及ぼす影響を示す説明図である。It is explanatory drawing which shows the influence which temperature has on the tensile strength of a magnesium alloy.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る耐熱性及び難燃性を有するマグネシウム合金(以下、Mg合金ともいう)10は、組織制御により、母相(ベースメタルともいう)となるαMg(アルファマグネシウム)相11中にCaMgSi相12を晶出させて耐熱性を備えさせたものであり、例えば、自動車のエンジン材料等のように、高温環境下での使用に適したものである。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a magnesium alloy (hereinafter also referred to as Mg alloy) 10 having heat resistance and flame retardancy according to an embodiment of the present invention is a mother phase (also referred to as a base metal) by structure control. The CaMgSi phase 12 is crystallized in the αMg (alphamagnesium) phase 11 to provide heat resistance. For example, it is suitable for use in a high temperature environment such as an automobile engine material. is there. This will be described in detail below.

Mg合金10は、Mg(マグネシウム)、Al(アルミニウム)、Zn(亜鉛)、及びMn(マンガン)を有するMg−Al−Zn系合金に、更にCa(カルシウム)とSi(ケイ素)が添加されたものである。具体的には、Mgを主体(80質量%以上)とし、Alが1〜15質量%(ここでは12質量%)、Znが0.1〜5質量%(ここでは0.7質量%)、Mnが0.1〜2質量%(ここでは0.3質量%)、Caが0.5〜5質量%(ここでは1質量%)、Siが0.5〜5質量%(ここでは1質量%)、及び不可避的不純物で構成されたものである。 In the Mg alloy 10, Ca (calcium) and Si (silicon) are further added to the Mg—Al—Zn alloy having Mg (magnesium), Al (aluminum), Zn (zinc), and Mn (manganese). Is. Specifically, Mg is the main component (80% by mass or more), Al is 1 to 15% by mass (here 12% by mass), Zn is 0.1 to 5% by mass (here 0.7% by mass), Mn is 0.1 to 2% by mass (here 0.3% by mass), Ca is 0.5 to 5% by mass (here 1% by mass), Si is 0.5 to 5% by mass (here 1% by mass) %), And inevitable impurities.

なお、Mg合金は、母相となるMg相(特に、αMg相)中にCaMgSi相を晶出させたものであるため、CaとSiが含まれていれば、Mg合金中のAl、Zn、及びMnの各量は、上記した値に限定されるものではない。また、CaとSiは、例えば、Mg単味、Mg−Al系、Mg−Mn系、Mg−Zn系、Mg−Zn−Zr系等の合金に添加することもできる。更に、Mg合金には、他の元素、例えば、Sr(ストロンチウム)、Be(ベリリウム)、Ag(銀)、Y(イットリウム)、Ti(チタン)、Sn(錫)、Li(リチウム)、Ge(ゲルマニウム)等や、希土類元素(レアアース又はREともいう)等が含まれていてもよい。なお、原価を安くするため、上記したAg、Ti、Sn、Li、Geや、希土類元素等を除いたものを使用することが好ましい。 In addition, since Mg alloy crystallizes CaMgSi phase in Mg phase (especially αMg phase) as a mother phase, if Ca and Si are contained, Al, Zn in Mg alloy, And each quantity of Mn is not limited to an above-described value. Ca and Si can also be added to alloys such as Mg simple, Mg—Al, Mg—Mn, Mg—Zn, and Mg—Zn—Zr. Furthermore, Mg alloys include other elements such as Sr (strontium), Be (beryllium), Ag (silver), Y (yttrium), Ti (titanium), Sn (tin), Li (lithium), Ge ( Germanium) and the like, and rare earth elements (also referred to as rare earth or RE) may be included. In order to reduce the cost, it is preferable to use a material excluding the above-mentioned Ag, Ti, Sn, Li, Ge, rare earth elements and the like.

Mg合金10は、母相となるMg相(以下、αMg相という)11と、このαMg相11の粒界に晶出したAl12Mg17相と、αMg相11中に分散した粒状のCaMgSi相12とで構成されている。なお、Mg相には、特にαMg相が含まれているが、他の相が含まれてもよい。
このAl12Mg17相は、アルミニウムとマグネシウムとの金属間化合物であり、Mg合金の硬さと強度を上昇させることができる一方、Mg合金の伸びを低減させる。なお、Al12Mg17相は、Mg合金10を熱処理することで、Al12Mg17相を溶体化処理し、時効させるのがよい。このMg合金には、後述するAlCa相とMgSi相を晶出させることもできるが、上記した熱処理を行おうとする際、AlCa相の晶出により熱処理の効果が低下する。このため、Mg合金の使用目的や、熱処理の有無に応じて、AlCa相とMgSi相の晶出を制御することができる。
また、CaMgSi相は、カルシウムとマグネシウムとケイ素との金属間化合物であり、Mg合金の硬さを上昇させることができると共に、Mg合金に耐熱性も付与できる。
The Mg alloy 10 includes an Mg phase (hereinafter referred to as αMg phase) 11 serving as a parent phase, an Al 12 Mg 17 phase crystallized at a grain boundary of the αMg phase 11, and a granular CaMgSi phase dispersed in the αMg phase 11. 12. The Mg phase includes an αMg phase in particular, but may include other phases.
This Al 12 Mg 17 phase is an intermetallic compound of aluminum and magnesium, which can increase the hardness and strength of the Mg alloy while reducing the elongation of the Mg alloy. The Al 12 Mg 17 phase is preferably aged by heat-treating the Mg alloy 10 to solution-treat the Al 12 Mg 17 phase. The Mg alloy can crystallize the Al 2 Ca phase and the Mg 2 Si phase, which will be described later, but when the above heat treatment is performed, the effect of the heat treatment decreases due to the crystallization of the Al 2 Ca phase. For this reason, the crystallization of the Al 2 Ca phase and the Mg 2 Si phase can be controlled depending on the purpose of use of the Mg alloy and the presence or absence of heat treatment.
The CaMgSi phase is an intermetallic compound of calcium, magnesium, and silicon, and can increase the hardness of the Mg alloy and also impart heat resistance to the Mg alloy.

ここで、CaMgSi相を晶出させたMg合金の強度に及ぼす温度の影響を検討した結果について、図2を参照しながら説明する。使用した実施例1の試験片の組成は、Alが9質量%、Znが0.7質量%、Mnが0.3質量%、Caが1質量%、Siが1質量%、残部がMg及び不可避的不純物であり、実施例2の試験片の組成は、上記した実施例1の組成のSiを2.00質量%としたものである。一方、比較例の試験片は、汎用合金であるAZ91(例えば、JIS H 5203に記載のマグネシウム合金鋳物の2種MC2に相当する合金)であり、Al12Mg17相はあるが、CaMgSi相がないものである。 Here, the result of examining the influence of the temperature on the strength of the Mg alloy crystallized from the CaMgSi phase will be described with reference to FIG. The composition of the test piece of Example 1 used was 9 mass% for Al, 0.7 mass% for Zn, 0.3 mass% for Mn, 1 mass% for Ca, 1 mass% for Si, and the rest for Mg and It is an unavoidable impurity, and the composition of the test piece of Example 2 is such that Si of the composition of Example 1 described above is 2.00% by mass. On the other hand, the test piece of the comparative example is AZ91 which is a general-purpose alloy (for example, an alloy corresponding to type 2 MC2 of a magnesium alloy casting described in JIS H5203), which has an Al 12 Mg 17 phase, but a CaMgSi phase. There is nothing.

また、実施例1、2の試験片には、欠陥等の影響因子による引張強さのばらつきをなくすため、直径2mm、深さ2mmの人工欠陥を形成したものを用い、比較例の試験片には、人工欠陥が形成されていない平滑なものを用いた。
図2に示すように、実施例1の試験片(○)と実施例2の試験片(△)の各引張強さは、温度150℃までほぼ一定(125MPa)であり、150℃を超えたあたりから若干の低下はあったものの、顕著な強度低下はなかった。一方、比較例の試験片(□)は、温度の上昇と共に、急激な強度低下が発生した。
特に、温度が200℃以上(ここでは、250℃まで)の領域においては、実施例1、2の試験片の強度が、比較例の試験片の強度よりも高くなった。
In addition, in order to eliminate variations in tensile strength due to influencing factors such as defects, the test pieces of Examples 1 and 2 were formed with artificial defects having a diameter of 2 mm and a depth of 2 mm. Used the smooth thing in which the artificial defect was not formed.
As shown in FIG. 2, each tensile strength of the test piece (◯) of Example 1 and the test piece (Δ) of Example 2 was substantially constant up to a temperature of 150 ° C. (125 MPa) and exceeded 150 ° C. Although there was a slight decrease from the vicinity, there was no significant decrease in strength. On the other hand, the strength of the test piece (□) of the comparative example rapidly decreased as the temperature increased.
In particular, in the region where the temperature was 200 ° C. or higher (here, up to 250 ° C.), the strength of the test pieces of Examples 1 and 2 was higher than the strength of the test piece of the comparative example.

以上のことから、CaMgSi相を晶出させることで、Mg合金の高温環境下での強度低下を抑制でき、耐熱性を良好にできることが分かる。なお、CaMgSi相を晶出させたMg合金は、十分な疲労強度を備えると共に、ブリネル硬さHが110程度であり、十分な硬さも備えている。
このように、Mg合金の耐熱性の向上には、CaMgSi相による影響が大きいことから、CaMgSi相を安定に晶出させるため、Mg合金中のCa量を0.5〜5質量%、Si量を0.5〜5質量%とする。
From the above, it can be seen that crystallization of the CaMgSi phase can suppress a decrease in strength of the Mg alloy in a high temperature environment and can improve heat resistance. Incidentally, Mg alloy was crystallized to CaMgSi phase is provided with a sufficient fatigue strength, Brinell hardness H B is about 110, also has sufficient hardness.
Thus, since the influence of the CaMgSi phase is large in improving the heat resistance of the Mg alloy, in order to crystallize the CaMgSi phase stably, the Ca amount in the Mg alloy is 0.5 to 5% by mass and the Si amount. Is 0.5 to 5 mass%.

ここで、CaとSiの量が0.5質量%未満の場合、晶出するCaMgSi量が少なくなり、耐熱性の向上効果が小さくなると共に、難燃性の効果が低減する。一方、5質量%を超える場合、晶出する粒状のCaMgSi相量が多くなり過ぎ、これに起因して鋳造性の低下を招く恐れがある。
このため、Mg合金中のCa量を0.5〜5質量%としたが、下限を0.7質量%、上限を3質量%とすることが好ましく、またMg合金中のSi量を0.5〜5質量%としたが、下限を0.7質量%、上限を3質量%とすることが好ましい。
Here, when the amount of Ca and Si is less than 0.5% by mass, the amount of CaMgSi to be crystallized decreases, the effect of improving heat resistance is reduced, and the effect of flame retardancy is reduced. On the other hand, when it exceeds 5 mass%, the amount of the granular CaMgSi phase to be crystallized becomes too large, which may lead to a decrease in castability.
For this reason, the Ca amount in the Mg alloy is set to 0.5 to 5% by mass, but the lower limit is preferably 0.7% by mass, and the upper limit is preferably 3% by mass. Although the content is 5 to 5% by mass, the lower limit is preferably 0.7% by mass and the upper limit is preferably 3% by mass.

なお、Mg合金のαMg相の粒界に、更にAlCa相を晶出させて、Mg合金の硬さを更に向上させることもできる。
このAlCa相は、アルミニウムとカルシウムとの金属間化合物であり、硬くて高融点であるため、Mg合金の耐熱性の更なる向上も図れる。
また、Mg合金のαMg相の粒界に晶出するAlCa相の代わりに、αMg相中にMgSi相(マグネシウムとケイ素との金属間化合物)を晶出させることもできる。これにより、Mg合金の耐クリープ性を向上できる。このMgSi相は、AlCa相と共に晶出させてもよい。
It is also possible to further improve the hardness of the Mg alloy by further crystallizing the Al 2 Ca phase at the grain boundaries of the αMg phase of the Mg alloy.
This Al 2 Ca phase is an intermetallic compound of aluminum and calcium, and since it is hard and has a high melting point, the heat resistance of the Mg alloy can be further improved.
Further, instead of the Al 2 Ca phase crystallized at the grain boundary of the α-Mg phase of the Mg alloy, a Mg 2 Si phase (an intermetallic compound of magnesium and silicon) can be crystallized in the α-Mg phase. Thereby, the creep resistance of Mg alloy can be improved. This Mg 2 Si phase may be crystallized together with the Al 2 Ca phase.

以上に示したように、Mg合金10は、αMg相11中にCaMgSi相12を晶出させたものであるため、高温状況下(例えば、200℃以上)で使用できる程度の十分な耐熱性を備えることができる。従って、このMg合金10を、例えば、自動車のエンジン材料に使用した場合には、軽量化と摩擦や焼付きの低減が図れて燃費を向上できると共に、振動や騒音も低減できる。 As described above, since the Mg alloy 10 is obtained by crystallizing the CaMgSi phase 12 in the αMg phase 11, the Mg alloy 10 has sufficient heat resistance that it can be used under high temperature conditions (for example, 200 ° C. or more). Can be provided. Therefore, when this Mg alloy 10 is used, for example, as an engine material for automobiles, it is possible to reduce the weight, reduce friction and seizure, improve fuel efficiency, and reduce vibration and noise.

続いて、本発明の一実施の形態に係るマグネシウム合金の製造方法について説明する。
まず、Mg−Al−Zn系合金を準備する。このMg−Al−Zn系合金は、汎用合金であるAZ91(具体的には、Mg−9質量%Al−0.7質量%Zn−0.3質量%Mn)であり、母相となるαMg相と、このαMg相の粒界に晶出したAl12Mg17相(アルミニウムとマグネシウムとの金属間化合物)とで、構成されたものである。
なお、CaとSiを添加する合金は、前記したように、これに限定されるものではない。
Then, the manufacturing method of the magnesium alloy which concerns on one embodiment of this invention is demonstrated.
First, an Mg—Al—Zn alloy is prepared. This Mg-Al-Zn alloy is AZ91 (specifically, Mg-9 mass% Al-0.7 mass% Zn-0.3 mass% Mn), which is a general-purpose alloy, and αMg serving as a parent phase. And an Al 12 Mg 17 phase (intermetallic compound of aluminum and magnesium) crystallized at the grain boundary of the αMg phase.
Note that the alloy to which Ca and Si are added is not limited to this as described above.

次に、準備したMg−Al−Zn系合金を、融点以上に加熱して溶融状態にした後、これにCaを添加し、撹拌しながら混合する。このCa添加量は、最終的に得られるMg合金10中のCa量が、0.5〜5質量%の範囲内となるように調整する。
そして、Caが添加された溶融状態のMg−Al−Zn系合金にSiを添加し、この溶融状態のMg合金原料を、800〜900℃(好ましくは、下限を860℃、上限を880℃)の温度範囲内で加熱し、撹拌しながら混合する。このSi添加量は、最終的に得られるMg合金10中のSi量が、0.5〜5質量%の範囲内となるように調整する。
Next, the prepared Mg—Al—Zn alloy is heated to a melting point or higher to be in a molten state, and then Ca is added thereto and mixed while stirring. The amount of added Ca is adjusted so that the amount of Ca in the finally obtained Mg alloy 10 is in the range of 0.5 to 5% by mass.
Then, Si is added to the molten Mg—Al—Zn alloy to which Ca is added, and the molten Mg alloy raw material is 800 to 900 ° C. (preferably, the lower limit is 860 ° C., and the upper limit is 880 ° C.). In the temperature range of, and mix with stirring. This Si addition amount is adjusted so that the Si amount in the finally obtained Mg alloy 10 is in the range of 0.5 to 5 mass%.

なお、上記した溶融状態のMg合金原料の加熱温度が800℃未満の場合、Mg合金原料の温度がCaMgSi相の融点(845℃程度)を大きく下回り、CaMgSi相の生成効率が低下する。一方、900℃を超える場合、加熱温度が高過ぎてMgが酸化し、製品品質の低下を招く。
このように、CaとSiが順次添加された溶融状態のMg合金原料を加熱し、その後、常温まで冷却して凝固させることで、母相となるαMg相11と、このαMg相11の粒界に晶出したAl12Mg17相と、αMg相11中に分散した粒状のCaMgSi相12とを晶出させたMg合金10を製造できる。
When the heating temperature of the molten Mg alloy raw material is less than 800 ° C., the temperature of the Mg alloy raw material is much lower than the melting point (about 845 ° C.) of the CaMgSi phase, and the CaMgSi phase generation efficiency is lowered. On the other hand, when it exceeds 900 ° C., the heating temperature is too high, and Mg is oxidized, resulting in a decrease in product quality.
In this way, the molten Mg alloy raw material to which Ca and Si are sequentially added is heated, and then cooled to room temperature and solidified, whereby the αMg phase 11 serving as a parent phase and the grain boundaries of the αMg phase 11 are obtained. The Mg alloy 10 in which the Al 12 Mg 17 phase crystallized in the crystal and the granular CaMgSi phase 12 dispersed in the αMg phase 11 are crystallized can be produced.

また、CaとSiが添加されたMg合金原料の凝固過程において、CaMgSi相を晶出させた後に、このMg合金原料を600〜800℃の温度範囲内で加熱しながら、CaMgSi相以外が溶融状態のMg合金原料にCaを添加し、撹拌しながら混合して、Caが添加されたMg合金原料を、常温まで冷却して凝固させることで、αMg相の粒界にAlCa相を晶出させてもよい。ここでのCa添加量は、最終的に得られるMg合金中のCa量が、0.5〜5質量%の範囲内となるように、前記したCaMgSi相の形成に使用するCa添加量を考慮して調整する。
ここで、Caを添加するときの温度が600℃未満の場合、Mg合金が凝固し始める。一方、800℃を超える場合、加熱温度が高過ぎて、AlCa相の形成に使用されるCaが、CaMgSi相の形成に使用され、AlCa相が形成されにくくなる。
従って、Caを添加するときの温度の下限を650℃、上限を750℃とすることが好ましい。
In addition, in the solidification process of the Mg alloy raw material to which Ca and Si are added, after the CaMgSi phase is crystallized, the Mg alloy raw material is heated within a temperature range of 600 to 800 ° C. By adding Ca to the Mg alloy raw material and mixing with stirring, the Mg alloy raw material to which Ca is added is cooled to room temperature and solidified to crystallize the Al 2 Ca phase at the αMg phase grain boundary. You may let them. The amount of Ca added here takes into account the amount of Ca used for forming the CaMgSi phase described above so that the amount of Ca in the finally obtained Mg alloy is in the range of 0.5 to 5% by mass. And adjust.
Here, when the temperature at which Ca is added is less than 600 ° C., the Mg alloy starts to solidify. On the other hand, if it exceeds 800 ° C., the heating temperature is too high, Ca used in the formation of Al 2 Ca phase is used to form the CaMgSi phase, Al 2 Ca phase is less likely to be formed.
Therefore, it is preferable that the lower limit of the temperature when adding Ca is 650 ° C. and the upper limit is 750 ° C.

更に、αMg相の粒界にAlCa相を晶出させる代わりに、αMg相中にMgSi相を晶出させることもできる。例えば、CaMgSi相を晶出させた後に、このMg合金原料を加熱しながら、CaMgSi相以外が溶融状態のMg合金原料にSiを添加し、撹拌しながら混合して、Siが添加されたMg合金原料を、常温まで冷却して凝固させることで、αMg相中にMgSi相を晶出させる。なお、MgSi相は、AlCa相と共に晶出させてもよい。ここでのSi添加量は、最終的に得られるMg合金中のSi量が、0.5〜5質量%の範囲内となるように、前記したCaMgSi相の形成に使用するSi添加量を考慮して調整する。 Furthermore, instead of crystallizing the Al 2 Ca phase at the grain boundaries of the αMg phase, the Mg 2 Si phase can be crystallized in the αMg phase. For example, after crystallizing the CaMgSi phase, while heating the Mg alloy raw material, Si is added to the Mg alloy raw material other than the CaMgSi phase in a molten state, and mixed with stirring, and then the Mg alloy to which Si is added The raw material is cooled to room temperature and solidified to crystallize the Mg 2 Si phase in the αMg phase. Note that the Mg 2 Si phase may be crystallized together with the Al 2 Ca phase. The amount of Si added here takes into account the amount of Si added to form the above-mentioned CaMgSi phase so that the amount of Si in the finally obtained Mg alloy is in the range of 0.5 to 5% by mass. And adjust.

以上の方法により、高温環境下(200℃以上)で使用可能な耐熱性を備えるMg合金10を製造できる。
なお、このMg合金10の使用にあっては、組織構成が変化しない温度まで昇温して溶解させ、目的とする形状にするための型に鋳込んで凝固させる、いわゆる鋳造方法を利用できる。しかし、上記した形状の型を使用することなく、例えば、ブロック状等(形状はこれに限定されない)に鋳造したものに対し、更に、鍛造、押出し、又は圧延等の処理を施して、Mg合金10を利用することもできる。更には、機械加工してもよい。
これにより、得られた製品も、高温環境下で使用可能な耐熱性を備えることができる。
By the above method, the Mg alloy 10 having heat resistance that can be used in a high temperature environment (200 ° C. or higher) can be manufactured.
In using the Mg alloy 10, a so-called casting method can be used in which the temperature is raised to a temperature at which the structure does not change and is melted, and then cast into a mold for obtaining a desired shape and solidified. However, without using the mold having the above-mentioned shape, for example, a casted into a block shape (the shape is not limited to this) is further subjected to a process such as forging, extrusion, or rolling, and an Mg alloy. 10 can also be used. Furthermore, you may machine.
Thereby, the obtained product can also be provided with heat resistance that can be used in a high temperature environment.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の耐熱性及び難燃性を有するマグネシウム合金及びその製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、マグネシウム合金を、自動車の他の材料や、航空機、鉄道車両等の輸送機器、機械部品やロボット部品等にも使用可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where a magnesium alloy having heat resistance and flame retardancy according to the present invention and a manufacturing method thereof are combined by combining some or all of the above-described embodiments and modifications are also included in the scope of the present invention. .
Moreover, in the said embodiment, magnesium alloy can be used also for other materials of a motor vehicle, transport equipment, such as an aircraft and a rail vehicle, a machine part, a robot part, etc.

10:マグネシウム合金、11:αMg相、12:CaMgSi相 10: Magnesium alloy, 11: αMg phase, 12: CaMgSi phase

Claims (6)

Caを0.5〜5質量%、Siを0.5〜5質量%有し、母相となるMg相中にCaMgSi相を晶出させて耐熱性を備えさせたことを特徴とする耐熱性及び難燃性を有するマグネシウム合金。 Heat resistance characterized by having Ca-50.5% by mass and Si 0.5-5% by mass, and crystallizing the CaMgSi phase in the Mg phase as the parent phase to provide heat resistance And a magnesium alloy having flame retardancy. 請求項1記載の耐熱性及び難燃性を有するマグネシウム合金において、前記Mg相の粒界に、更にAlCa相を晶出させて硬さを向上させたことを特徴とする耐熱性及び難燃性を有するマグネシウム合金。 2. The magnesium alloy having heat resistance and flame retardancy according to claim 1, wherein an Al 2 Ca phase is further crystallized at a grain boundary of the Mg phase to improve the hardness. 3. A flammable magnesium alloy. 請求項1又は2記載の耐熱性及び難燃性を有するマグネシウム合金において、前記Mg相中に、更にMgSi相を晶出させて耐クリープ性を向上させたことを特徴とする耐熱性及び難燃性を有するマグネシウム合金。 The magnesium alloy having heat resistance and flame retardancy according to claim 1 or 2, wherein the Mg phase further crystallizes an Mg 2 Si phase to improve creep resistance and Magnesium alloy with flame retardancy. 請求項1記載の耐熱性及び難燃性を有するマグネシウム合金の製造方法であって、CaとSiが順次添加された溶融状態のMg合金原料を、800〜900℃の温度範囲内で加熱した後に凝固させ、前記Mg相中に前記CaMgSi相を晶出させて耐熱性を備えさせることを特徴とする耐熱性及び難燃性を有するマグネシウム合金の製造方法。 It is a manufacturing method of the magnesium alloy which has heat resistance and a flame retardance of Claim 1, Comprising: After heating the Mg alloy raw material of the molten state to which Ca and Si were sequentially added within the temperature range of 800-900 degreeC. A method for producing a magnesium alloy having heat resistance and flame retardancy, characterized by solidifying and crystallizing the CaMgSi phase in the Mg phase to provide heat resistance. 請求項4記載の耐熱性及び難燃性を有するマグネシウム合金の製造方法において、前記CaMgSi相を晶出させた前記Mg合金原料を、600〜800℃の温度範囲内で加熱しながら、該Mg合金原料に更にCaを添加して該Mg合金原料を凝固させ、前記Mg相の粒界にAlCa相を晶出させて硬さを向上させることを特徴とする耐熱性及び難燃性を有するマグネシウム合金の製造方法。 The method for producing a magnesium alloy having heat resistance and flame retardancy according to claim 4, wherein the Mg alloy raw material obtained by crystallizing the CaMgSi phase is heated within a temperature range of 600 to 800 ° C. Ca is added to the raw material to solidify the Mg alloy raw material, and the Al 2 Ca phase is crystallized at the grain boundary of the Mg phase to improve the hardness and has flame resistance. Manufacturing method of magnesium alloy. 請求項4又は5記載の耐熱性及び難燃性を有するマグネシウム合金の製造方法において、前記CaMgSi相を晶出させた前記Mg合金原料を加熱しながら、該Mg合金原料に更にSiを添加して該Mg合金原料を凝固させ、前記Mg相中にMgSi相を晶出させて耐クリープ性を向上させることを特徴とする耐熱性及び難燃性を有するマグネシウム合金の製造方法。 The method for producing a magnesium alloy having heat resistance and flame retardancy according to claim 4 or 5, wherein Si is further added to the Mg alloy raw material while heating the Mg alloy raw material crystallized from the CaMgSi phase. A method for producing a magnesium alloy having heat resistance and flame retardancy, characterized by solidifying the Mg alloy raw material and crystallizing an Mg 2 Si phase in the Mg phase to improve creep resistance.
JP2011154088A 2011-07-12 2011-07-12 Magnesium alloy with heat resistance and flame retardancy, and method of manufacturing the same Pending JP2013019030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154088A JP2013019030A (en) 2011-07-12 2011-07-12 Magnesium alloy with heat resistance and flame retardancy, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154088A JP2013019030A (en) 2011-07-12 2011-07-12 Magnesium alloy with heat resistance and flame retardancy, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013019030A true JP2013019030A (en) 2013-01-31

Family

ID=47690743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154088A Pending JP2013019030A (en) 2011-07-12 2011-07-12 Magnesium alloy with heat resistance and flame retardancy, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013019030A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104259449A (en) * 2014-09-30 2015-01-07 杜春元 Integrated convenient-to-hang environment-friendly high-performance liquid alloy half-pressure container and using method
CN106460133A (en) * 2014-04-18 2017-02-22 特维斯股份有限公司 Galvanically-active in situ formed particles for controlled rate dissolving tools
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US10625336B2 (en) 2014-02-21 2020-04-21 Terves, Llc Manufacture of controlled rate dissolving materials
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
US10808301B2 (en) 2015-05-27 2020-10-20 Honda Motor Co., Ltd. Magnesium alloy and method of manufacturing same
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11674208B2 (en) 2014-02-21 2023-06-13 Terves, Llc High conductivity magnesium alloy

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US11685983B2 (en) 2014-02-21 2023-06-27 Terves, Llc High conductivity magnesium alloy
US10870146B2 (en) 2014-02-21 2020-12-22 Terves, Llc Self-actuating device for centralizing an object
US11674208B2 (en) 2014-02-21 2023-06-13 Terves, Llc High conductivity magnesium alloy
US10625336B2 (en) 2014-02-21 2020-04-21 Terves, Llc Manufacture of controlled rate dissolving materials
US11613952B2 (en) 2014-02-21 2023-03-28 Terves, Llc Fluid activated disintegrating metal system
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11097338B2 (en) 2014-02-21 2021-08-24 Terves, Llc Self-actuating device for centralizing an object
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US10329653B2 (en) 2014-04-18 2019-06-25 Terves Inc. Galvanically-active in situ formed particles for controlled rate dissolving tools
US9903010B2 (en) 2014-04-18 2018-02-27 Terves Inc. Galvanically-active in situ formed particles for controlled rate dissolving tools
US10760151B2 (en) 2014-04-18 2020-09-01 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10724128B2 (en) 2014-04-18 2020-07-28 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
CN106460133A (en) * 2014-04-18 2017-02-22 特维斯股份有限公司 Galvanically-active in situ formed particles for controlled rate dissolving tools
CN104259449A (en) * 2014-09-30 2015-01-07 杜春元 Integrated convenient-to-hang environment-friendly high-performance liquid alloy half-pressure container and using method
US10808301B2 (en) 2015-05-27 2020-10-20 Honda Motor Co., Ltd. Magnesium alloy and method of manufacturing same
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US11898223B2 (en) 2017-07-27 2024-02-13 Terves, Llc Degradable metal matrix composite

Similar Documents

Publication Publication Date Title
JP2013019030A (en) Magnesium alloy with heat resistance and flame retardancy, and method of manufacturing the same
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
JP6361051B2 (en) Flame retardant magnesium alloy and method for producing the same
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
KR101395276B1 (en) Mg-Al based alloys for high temperature casting
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2006257478A (en) Flame-retardant magnesium alloy and its manufacturing method
JP2013083004A (en) Magnesium mother alloy, production method thereof, metal alloy using the same and production method of metal alloy
WO2010055897A1 (en) Magnesium alloy and magnesium alloy casting
KR101614004B1 (en) Magnesium alloy for precipition hardened extrusion and manufacturing method of the magnesium alloy
CN101857934A (en) Heat-resistant magnesium alloy and preparation method thereof
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
JP2004162090A (en) Heat resistant magnesium alloy
KR101385685B1 (en) Mg-Al-Ca MASTER ALLOYS FOR Mg ALLOYS AND MANUFACTURING METHOD THEREOF
JP5458289B2 (en) Magnesium alloy
KR101993506B1 (en) Precipitation hardening magnesium alloy for extruding and method for manufacturing the same
JP5458290B2 (en) Magnesium alloy
US20040151613A1 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy cast product
JP5590413B2 (en) High thermal conductivity magnesium alloy
US10280484B2 (en) Zinc alloy and preparation method therefor
JP2021070871A (en) Aluminum alloy forging and production method thereof
JP2021095590A (en) Production method of aluminum alloy forged material
JP2007131881A (en) Method of producing aluminum alloy sheet for forming and aluminum alloy sheet for forming
JP2018168427A (en) Magnesium alloy and method for producing the same
WO2007094300A1 (en) Aluminum bronze alloy as raw material for semi-molten alloy casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804