JP2013007666A - Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same - Google Patents

Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same Download PDF

Info

Publication number
JP2013007666A
JP2013007666A JP2011140901A JP2011140901A JP2013007666A JP 2013007666 A JP2013007666 A JP 2013007666A JP 2011140901 A JP2011140901 A JP 2011140901A JP 2011140901 A JP2011140901 A JP 2011140901A JP 2013007666 A JP2013007666 A JP 2013007666A
Authority
JP
Japan
Prior art keywords
noise
surface shape
low
displacement sensor
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011140901A
Other languages
Japanese (ja)
Inventor
Naoki Mizutani
直樹 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011140901A priority Critical patent/JP2013007666A/en
Publication of JP2013007666A publication Critical patent/JP2013007666A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a stylus type step profiler for surface shape measurement excellent in followability to a surface shape while having small displacement noise and a measurement accuracy improvement method in the stylus type step profiler.SOLUTION: A ferromagnetic core having small intrinsic noise is used for a magnetic core of a displacement sensor 20 and formed as a differential transformer with low noise. An output of the differential transformer with low noise is measured by a digital lock-in amplifier with low noise. Based on the measurement result of displacement, a noise caused by characteristic vibration of the sensor 20 is removed by a moving average method by using a low pass filter, and a cutoff frequency of the low pass filter is set to be hither than a normal level of some 15 Hz.

Description

本発明は、試料の表面形状を測定する触針式段差計及び該段差計における測定精度の改善方法に関するものである。   The present invention relates to a stylus type step meter for measuring the surface shape of a sample and a method for improving measurement accuracy in the step meter.

本明細書において、用語“試料の表面形状”は試料の段差、膜厚、表面粗さの概念を包含して意味するものとする。   In the present specification, the term “surface shape of the sample” is meant to include the concept of the step, film thickness, and surface roughness of the sample.

この種の段差計としては従来、先端が試料表面に接触する探針と、探針を試料表面に一定の負荷で接触させる針圧発生装置と、その負荷方向と直交する方向に振動して探針を試料表面に対して平行運動で往復動させる装置と、振動付加時の探針の試料に対する摩擦力に対応する振動の大きさを検出する検出装置とを備えた構造のものが知られている。   Conventionally, this type of step gauge has a probe whose tip contacts the sample surface, a needle pressure generator that contacts the sample surface with a constant load, and a probe that vibrates in a direction perpendicular to the load direction. Known to have a structure with a device that reciprocates the needle in parallel with the sample surface and a detection device that detects the magnitude of vibration corresponding to the frictional force of the probe against the sample when vibration is applied. Yes.

特許文献1において、本発明者は、先に、支点に揺動可能に取付けられた支持体の一端に探針を取付け、この一端に隣接して探針の垂直方向変位を検出する変位センサを成す差動トランスの磁性体コアを取付け、支持体の他端には探針に針圧を加える針圧発生装置の磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計を提案した。   In Patent Document 1, the present inventor previously attached a displacement sensor for detecting a vertical displacement of a probe adjacent to one end of a support body that is swingably attached to a fulcrum. The magnetic core of the differential transformer is attached, and the magnetic core of the needle pressure generator that applies the needle pressure to the probe is attached to the other end of the support. The surface shape of the sample captured by the probe is the fulcrum of the support. A stylus profilometer for surface shape measurement, which is measured with a displacement sensor by a rotational movement around, was proposed.

このように変位センサに差動トランスを用いた触針式段差計では、例えばロックインアンプの手法により、センサコアの変位は低雑音で高精度に測定される(例えば、特許文献2、特許文献3及び特許文献4参照)。   As described above, in a stylus profilometer using a differential transformer as a displacement sensor, the displacement of the sensor core is measured with low noise and high accuracy by, for example, a lock-in amplifier technique (for example, Patent Document 2 and Patent Document 3). And Patent Document 4).

測定された変位雑音を小さくするために、測定結果には通常、遮断周波数が15Hz程度の低域通過フィルターがかけられる。それにより雑音の1秒間でのピーク−ピークが1〜2nm程度となり、表面形状測定に使用される。なお、特許文献1、3のセンサは通常よりも変位雑音は小さく、遮断周波数が15Hzの低域通過フィルターをかけたとき、雑音の1秒間でのピーク‐ピークは0.3nm程度と非常に小さい。   In order to reduce the measured displacement noise, the measurement result is usually subjected to a low-pass filter having a cutoff frequency of about 15 Hz. Thereby, the peak-peak in 1 second of noise becomes about 1 to 2 nm and is used for surface shape measurement. In addition, the displacement noise of the sensors of Patent Documents 1 and 3 is smaller than usual, and when a low-pass filter with a cutoff frequency of 15 Hz is applied, the peak-to-peak of noise for about 1 second is as small as about 0.3 nm. .

触針式段差計では通常、特許文献1に記載のように探針と変位センサコアが棒状物で接続され、それらを支持する支点から離れて設置されているが、表面の凹凸への探針の追随性を良くするために、本発明者は、支点から探針までの距離を、支点からセンサコアまでの距離よりも大きくすることを提案してきた(特許文献5及び特許文献6参照)。支点から探針までの距離を、支点からセンサコアまでの距離の例えば2倍にすると、探針での変位雑音はコアでの変位雑音の2倍になる。従って、そのような配置設計では、雑音の1秒間でのピーク‐ピークが0.3nmのセンサを用いると、探針での変位雑音は0.6nmとなる。   In a stylus type step meter, the probe and the displacement sensor core are usually connected with a rod-like object as described in Patent Document 1, and are installed away from the fulcrum that supports them. In order to improve the followability, the inventor has proposed that the distance from the fulcrum to the probe is larger than the distance from the fulcrum to the sensor core (see Patent Documents 5 and 6). When the distance from the fulcrum to the probe is, for example, twice the distance from the fulcrum to the sensor core, the displacement noise at the probe becomes twice the displacement noise at the core. Therefore, in such an arrangement design, if a sensor having a peak-to-peak noise of 0.3 nm per second is used, the displacement noise at the probe is 0.6 nm.

特開2007-17296JP2007-17296 特開2008-122254JP2008-122254 特願2009-229525Japanese Patent Application No. 2009-229525 特願2010-089355Japanese Patent Application 2010-089355 特開2006-226964JP 2006-226964 特開2009-20050JP2009-20050

上述のように、変位雑音を小さくするために、変位センサでの計測結果に、低域通過フィルターがかけられ、その遮断周波数が低いと雑音は小さくなるが、表面形状への追随性が悪くなる。一方、遮断周波数を上げると追随性はよくなるが、変位雑音が大きくなる。このような問題点を解決するため、本発明は、表面形状への追随性が良く、かつ、変位雑音が小さい表面形状測定用触針式段差計及び該段差計における測定精度の改善方法を提供することを目的としている。   As described above, in order to reduce the displacement noise, a low-pass filter is applied to the measurement result of the displacement sensor. When the cutoff frequency is low, the noise is reduced, but the followability to the surface shape is deteriorated. . On the other hand, when the cut-off frequency is increased, the followability is improved, but the displacement noise is increased. In order to solve such problems, the present invention provides a stylus-type step gauge for measuring a surface shape with good followability to the surface shape and low displacement noise, and a method for improving measurement accuracy in the step meter. The purpose is to do.

上記の目的を達成するために、本発明の第1の発明によれば、支点に揺動可能に取付けられた支持体の一端に探針を取付け、この一端に隣接して探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、支持体の他端には探針に針圧を加える針圧発生装置の磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計における測定精度の改善方法において、
変位センサの磁性体コアに固有雑音の小さい強磁性体のコアを使用し、低雑音の差動トランスとして形成し、
低雑音の差動トランスの出力を、低雑音のデジタルロックインアンプで計測し、
変位の測定結果からセンサの固有振動に起因する雑音を、低域通過フィルターを用いて移動平均法で除去し、低域通過フィルターの遮断周波数を通常の15Hz程度よりも高くすること
を特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a probe is attached to one end of a support that is swingably attached to a fulcrum, and the probe is positioned in the vertical direction adjacent to the one end. A magnetic core of a displacement sensor that detects displacement is attached, and a magnetic core of a needle pressure generator that applies needle pressure to the probe is attached to the other end of the support, and the surface shape of the sample captured by the probe is supported. In the method of improving the measurement accuracy in the stylus type step gauge for surface shape measurement that is measured by the displacement sensor by the rotational movement around
Using a ferromagnetic core with low intrinsic noise for the magnetic core of the displacement sensor, it is formed as a low noise differential transformer,
Measure the output of the low noise differential transformer with a low noise digital lock-in amplifier,
Noise resulting from the natural vibration of the sensor is removed from the measurement result of displacement by a moving average method using a low-pass filter, and the cut-off frequency of the low-pass filter is made higher than the usual 15 Hz. .

また、本発明の第2の発明によれば、支点に揺動可能に取付けられた支持体の一端に探針を取付け、この一端に隣接して探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、支持体の他端には探針に針圧を加える針圧発生装置の磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計において、
変位センサを成し、固有雑音が小さい強磁性体のコアを使用した低雑音の差動トランスと、
低雑音の差動トランスの一次コイル及び二次コイルに接続され、低雑音の差動トランスの出力を測定する低雑音のデジタルロックイン増幅器を備えた測定回路手段と、
測定回路手段で測定した変位の測定結果から変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターを備え、フィルターの遮断周波数を通常の15Hz程度よりも高くするように構成した雑音除去手段と
を有することを特徴としている。
Further, according to the second aspect of the present invention, a displacement sensor for attaching a probe to one end of a support body swingably attached to a fulcrum and detecting a vertical displacement of the probe adjacent to the one end. A magnetic core is attached to the other end of the support, and the magnetic core of the needle pressure generator that applies the needle pressure to the probe is attached to the other end of the support, and the surface shape of the sample captured by the probe is rotated by a rotating motion around the fulcrum of the support. In the stylus type step gauge for measuring the surface shape measured by the displacement sensor,
A low-noise differential transformer that uses a ferromagnetic core that forms a displacement sensor and has low intrinsic noise,
Measuring circuit means comprising a low noise digital lock-in amplifier connected to the primary coil and secondary coil of the low noise differential transformer and measuring the output of the low noise differential transformer;
A noise removal system comprising a filter that removes noise caused by the natural vibration of the displacement sensor from the displacement measurement result measured by the measuring circuit means by a moving average method, and configured so that the cutoff frequency of the filter is higher than the usual 15 Hz. Means.

本発明の表面形状測定用触針式段差計において、変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターは遮断周波数15Hzの低域通過フィルターであり得る。代わりに該フィルターは、バンドストップフィルターでもよい。   In the stylus profilometer for surface shape measurement of the present invention, the filter that removes noise caused by the natural vibration of the displacement sensor by the moving average method may be a low-pass filter having a cutoff frequency of 15 Hz. Alternatively, the filter may be a band stop filter.

本発明の方法によれば、変位センサの磁性体コアに固有雑音の小さい強磁性体のコアを使用し、低雑音の差動トランスとして形成し、低雑音の差動トランスの出力を、低雑音のデジタルロックインアンプで計測し、変位の測定結果からセンサの固有振動に起因する雑音を、低域通過フィルターを用いて移動平均法で除去し、低域通過フィルターの遮断周波数を通常の15Hz程度よりも高くしていることにより、その固有振動数の雑音を、効果的に消し、他の周波数成分は残すことができ、その結果、低雑音と表面形状への追随性の良さとを両立させることができる。 According to the method of the present invention, the magnetic core of the displacement sensor is made of a ferromagnetic core having a small intrinsic noise and formed as a low noise differential transformer, and the output of the low noise differential transformer is reduced to a low noise. The noise caused by the natural vibration of the sensor is removed by the moving average method using the low-pass filter from the displacement measurement result, and the cutoff frequency of the low-pass filter is usually about 15 Hz. By setting the frequency higher, the noise at the natural frequency can be effectively eliminated and other frequency components can be left. As a result, both low noise and good trackability of the surface shape can be achieved. be able to.

また本発明の装置によれば、変位センサを成し、固有雑音が小さい強磁性体のコアを使用した低雑音の差動トランスと、低雑音の差動トランスの一次コイル及び二次コイルに接続され、低雑音の差動トランスの出力を測定する低雑音のデジタルロックイン増幅器を備えた測定回路手段と、測定回路手段で測定した変位の測定結果から変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターを備え、フィルターの遮断周波数を通常の15Hz程度よりも高くするように構成した雑音除去手段とを設けたことにより、変位センサの雑音密度が元々小さく、段差計の固有振動に起因する雑音を移動平均法でそれのみを効果的に除去することで、低雑音と表面形状への追随性の良さとの両立が達成できる。   Further, according to the apparatus of the present invention, a displacement sensor is formed and connected to a primary coil and a secondary coil of a low noise differential transformer using a ferromagnetic core having a small intrinsic noise and a low noise differential transformer. Measurement circuit means with a low noise digital lock-in amplifier for measuring the output of the low noise differential transformer, and the noise caused by the natural vibration of the displacement sensor is moved from the measurement result of the displacement measured by the measurement circuit means. The noise density of the displacement sensor is originally low due to the provision of noise removal means that is equipped with a filter that removes by the average method and that makes the cutoff frequency of the filter higher than the usual 15 Hz. By effectively removing only the noise caused by the noise by the moving average method, it is possible to achieve both the low noise and the good followability to the surface shape.

本発明の方法を実施している触針式段差計の構成を概略図。The schematic of the structure of the stylus type level difference meter which is implementing the method of this invention. 図1における触針式段差計の要部を下から見た概略線図。The schematic diagram which looked at the principal part of the stylus type level difference meter in FIG. 1 from the bottom. 図1における触針式段差計のホルダー部分の構成を示すA−B線に沿った拡大部分断面図。The expanded partial sectional view along the AB line which shows the structure of the holder part of the stylus type level difference meter in FIG. 図1における触針式段差計のホルダー部分を下から見た図。The figure which looked at the holder part of the stylus type level difference meter in FIG. 1 from the bottom. 図1における触針式段差計の支点部の構造を示す拡大断面図。The expanded sectional view which shows the structure of the fulcrum part of the stylus type level difference meter in FIG. 本発明における変位測定用計測回路装置の一実施形態を示すブロック線図。The block diagram which shows one Embodiment of the measurement circuit apparatus for displacement measurement in this invention. 遮断周波数15Hzの低域通過フィルターをかけた後の段差計の探針での変位測定例を示すグラフ。The graph which shows the example of a displacement measurement with the probe of a level difference meter after applying the low-pass filter of cutoff frequency 15Hz. 図7と同様の測定での1秒間でのピーク−ピークと標準偏差を6000回、10時間に渡って記録したグラフ。The graph which recorded the peak-peak and standard deviation in 1 second in the measurement similar to FIG. 7 over 6000 times for 10 hours. 遮断周波数20Hzの低域通過フィルターの振幅比の周波数特性の例を示すグラフ。The graph which shows the example of the frequency characteristic of the amplitude ratio of the low-pass filter of cutoff frequency 20Hz. 段差計における変位センサの入力換算電圧雑音密度の測定例を示すグラフ。The graph which shows the example of a measurement of the input conversion voltage noise density of the displacement sensor in a level difference meter. 230Hz相当の移動平均と遮断周波数700Hzの低域通過フィルターをかけた例を示すグラフ。The graph which shows the example which applied the low-pass filter of 230 Hz equivalent moving average and cutoff frequency 700Hz. 230Hz相当の移動平均をかけながらSi基板上を走査した例を示すグラフ。The graph which shows the example which scanned on the Si substrate, applying the moving average equivalent to 230 Hz. 図12のデータに遮断周波数15Hzの低域通過フィルターをかけた結果を示すグラフ。The graph which shows the result of having applied the low-pass filter of cutoff frequency 15Hz to the data of FIG. 230Hz相当の移動平均をかけながら凹凸のある試料表面を走査した結果を示すグラフ。The graph which shows the result of having scanned the uneven | corrugated sample surface, applying the moving average equivalent to 230 Hz. 図14のデータに遮断周波数15Hzの低域通過フィルターをかけた結果を示すグラフ。The graph which shows the result of having applied the low-pass filter of cutoff frequency 15Hz to the data of FIG. 図14のデータの一部を拡大して示すグラフ。The graph which expands and shows a part of data of FIG.

以下、添付図面を参照して本発明の実施の形態について説明する。
本発明が適用される先に提案した触針式段差計は、添付図面の図1〜図5に示すように、棒状の第1の支持部材1を有し、であり、この第1の支持部材1はその中間部位に左右両横方向にのびる支点用針取付け部材2を備え、支点用針取付け部材2の両端には二つの支点用針3が取付けられている。これら二つの支点用針3は二つの支点受け部材4(図5)で支持され、それにより第1の支持部材1は支点受け部材4に支点用針3を介して揺動自在に支持される。第1の支持部材1の一端には、変位センサ5の測定子すなわちコア6が取付けられている。この変位センサ5は探針の垂直方向変位に応じて電気信号を発生する差動トランスから成り、コイル7を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The stylus profilometer previously proposed to which the present invention is applied has a rod-like first support member 1 as shown in FIGS. 1 to 5 of the accompanying drawings. The member 1 includes a fulcrum needle mounting member 2 extending in the left and right lateral directions at an intermediate portion thereof, and two fulcrum needles 3 are mounted on both ends of the fulcrum needle mounting member 2. These two fulcrum needles 3 are supported by two fulcrum receiving members 4 (FIG. 5), whereby the first support member 1 is supported by the fulcrum receiving member 4 so as to be swingable. . At one end of the first support member 1, a measuring element of the displacement sensor 5, that is, a core 6 is attached. The displacement sensor 5 comprises a differential transformer that generates an electrical signal in accordance with the vertical displacement of the probe, and includes a coil 7.

第1の支持部材1の他端には、探針に針圧を加える針圧発生装置8のコア9が設けられ、針圧発生装置8はコイル10を備えている。コア9は、コイル10の中心から軸方向にずれた位置に配置した高透磁率部材から成っている。   The other end of the first support member 1 is provided with a core 9 of a needle pressure generator 8 that applies a needle pressure to the probe, and the needle pressure generator 8 includes a coil 10. The core 9 is made of a high magnetic permeability member arranged at a position shifted in the axial direction from the center of the coil 10.

第1の支持部材1における支点用針取付け部材2の両端の二つの支点用針3を結ぶ線上を中心として、第1の支持部材1の下面には、二つの磁石11を埋め込んだホルダー12が取付けられている。ホルダー12は図3に示すように断面台形の長手方向溝13を備え、この長手方向溝13の両側壁は下方へ向ってテーパー状に開いており、水平平面に対して傾斜面を構成している。ホルダー12に埋め込まれた二つの磁石11は、図1に示すように極性が互いに逆向きになるように配置されている。二つの磁石11を内蔵したホルダー12は軽くするためにカーボンで構成されている。   A holder 12 having two magnets 11 embedded in the lower surface of the first support member 1 is centered on a line connecting the two fulcrum needles 3 at both ends of the fulcrum needle mounting member 2 of the first support member 1. Installed. As shown in FIG. 3, the holder 12 is provided with a longitudinal groove 13 having a trapezoidal cross section, and both side walls of the longitudinal groove 13 are tapered downward to form an inclined surface with respect to a horizontal plane. Yes. The two magnets 11 embedded in the holder 12 are arranged so that the polarities are opposite to each other as shown in FIG. The holder 12 containing the two magnets 11 is made of carbon in order to reduce the weight.

また図1、図2及び図4において、14は棒状の第2の支持部材でありその先端には探針15が下向きに取付けられ、他端は高透磁率部材16で構成されている。高透磁率部材16の長手方向の両端には上向きにのびるガイド突起17が形成され、これらガイド突起17の対向側面は上方に向って開いた傾斜面として形成される。この高透磁率部材16の傾斜面はホルダー12における長手方向溝13の両側壁の傾斜面と共に、第1の支持部材に第2の支持部材を取付ける際の互いの位置決めを確保すると共にガイドの役割を果たしている。第2の支持部材14の他端における高透磁率部材16は第1の支持部材1におけるホルダー12の溝13に嵌るようにされ、その際に第2の支持部材14の他端における高透磁率部材16はホルダー12の溝の底面に接触し、二つの磁石11には接触しないように構成されている。また溝と高透磁率材部品には図3に示したような傾斜面を設け、互いの位置決めの確保と取付け時のガイドの役割を果たしている。   1, 2, and 4, reference numeral 14 denotes a rod-like second support member. A probe 15 is attached to the tip of the second support member, and the other end is formed of a high permeability member 16. Guide protrusions 17 extending upward are formed at both ends in the longitudinal direction of the high magnetic permeability member 16, and opposing side surfaces of these guide protrusions 17 are formed as inclined surfaces that open upward. The inclined surfaces of the high permeability member 16 together with the inclined surfaces of the both side walls of the longitudinal groove 13 in the holder 12 ensure the mutual positioning when the second support member is attached to the first support member and also serve as a guide. Plays. The high permeability member 16 at the other end of the second support member 14 is fitted in the groove 13 of the holder 12 in the first support member 1, and at that time, the high permeability at the other end of the second support member 14. The member 16 is configured to contact the bottom surface of the groove of the holder 12 and not to contact the two magnets 11. Further, the groove and the high permeability member are provided with inclined surfaces as shown in FIG. 3 to ensure the mutual positioning and serve as a guide when mounting.

第1の支持部材1及び第2支持部材14は慣性モーメントを小さくするために軽いカーボンで構成されている。一方、密度が高く質量が大きい第2支持部材14における高透磁率部材16及び第1の支持部材1におけるホルダー12内の磁石11は、支点まわりの慣性モーメントを小さくするために、支点の近くに配置している。   The first support member 1 and the second support member 14 are made of light carbon in order to reduce the moment of inertia. On the other hand, the high permeability member 16 in the second support member 14 having a high density and a large mass and the magnet 11 in the holder 12 in the first support member 1 are close to the fulcrum in order to reduce the moment of inertia around the fulcrum. It is arranged.

さらに図3に示すように、第2支持部材14における高透磁率部材16の下側には板状部材18が設けられ、この板状部材18は磁場遮蔽効果を高めるため、高透磁率の材料で構成され、この板状部材18により交換部品を第1の支持部材1におけるホルダー12の溝13に傾けて近づけても正しい位置に収まるようにしている。   Further, as shown in FIG. 3, a plate-like member 18 is provided below the high-permeability member 16 in the second support member 14, and this plate-like member 18 has a high permeability material in order to enhance the magnetic field shielding effect. The plate-like member 18 allows the replacement part to be placed in the correct position even if it is tilted and brought close to the groove 13 of the holder 12 in the first support member 1.

上述のように第1の支持部材1におけるホルダー12に埋め込まれた磁石11は極性が逆になるように配置したことにより、磁気双極子が離れた場所に作る磁場が小さくなるので、差動トランス5、針圧発生装置8及び試料での磁場を小さくできる。また、この配置により磁石11の下部では磁力線が第2の支持部材14における高透磁率部材16の中を通るので、その下方及び探針位置の試料での磁場が小さくなる。   As described above, the magnet 11 embedded in the holder 12 in the first support member 1 is arranged so that the polarity is reversed, so that the magnetic field created in the place where the magnetic dipole is separated becomes small. 5. The magnetic field in the needle pressure generator 8 and the sample can be reduced. Further, due to this arrangement, the magnetic lines of force pass through the high permeability member 16 in the second support member 14 below the magnet 11, so that the magnetic field in the sample below and at the probe position is reduced.

図5には、支点用針3を受ける支点受け部材4の構造を拡大して示している。支点受け部材4は図示したように支点用針3を受ける凹面4aを備え、この凹面は逆円錐形状に構成され、支点用針3を精度よく位置決めして受けるようにされている。   FIG. 5 shows an enlarged structure of the fulcrum receiving member 4 that receives the fulcrum needle 3. As shown in the drawing, the fulcrum receiving member 4 has a concave surface 4a for receiving the fulcrum needle 3. The concave surface is formed in an inverted conical shape so that the fulcrum needle 3 is positioned and received with high accuracy.

このように構成した図示触針式段差計においては、両端にそれぞれ変位センサ5及び針圧発生装置8を備え、二つの支点受け部材4に支点用針3を介して揺動自在に支持された第1の支持部材1のホルダー12に、両端にそれぞれ探針15及び高透磁率部材16を備えた第2の支持部材14を磁石の吸着力によって固定する。この場合、ホルダー12における長手方向溝13の両側壁の傾斜面と第2の支持部材14の高透磁率部材16におけるガイド突起17の対向傾斜面とにより、第2の支持部材14は第1の支持部材1のホルダー12に対して予定の位置に正確に位置決めして簡単に固定できる。   The illustrated stylus profilometer constructed in this way is provided with a displacement sensor 5 and a needle pressure generating device 8 at both ends, and is supported by two fulcrum receiving members 4 via a fulcrum needle 3 so as to be swingable. A second support member 14 having a probe 15 and a high magnetic permeability member 16 at both ends is fixed to the holder 12 of the first support member 1 by the magnet's attracting force. In this case, the second support member 14 is formed by the inclined surfaces of both side walls of the longitudinal groove 13 in the holder 12 and the opposed inclined surfaces of the guide protrusions 17 in the high permeability member 16 of the second support member 14. The support member 1 can be easily positioned by being accurately positioned at a predetermined position with respect to the holder 12.

そして、針圧発生装置8のコイル10に所定の電流を流すことにより、その電流の大きさに応じて力が発生され、この力により針圧発生装置8のコア9はコイル10の中心へ引き込まれる。それにより第1及び第2の支持部材1、14は支点用針3を介して揺動し、探針15を試料に押し当てる。試料又は検出系を走査することにより、探針15は試料表面をなぞり、その表面形状に応じて、固定された支点のまわりに第1及び第2の支持部材1、14が微小に回転運動し、差動トランス5のコア6の変位が検出され、このコア6の変位を探針15の針先の変位に換算することにより試料の表面形状や段差が測定される。   Then, by applying a predetermined current to the coil 10 of the needle pressure generator 8, a force is generated according to the magnitude of the current, and the core 9 of the needle pressure generator 8 is drawn into the center of the coil 10 by this force. It is. As a result, the first and second support members 1 and 14 swing via the fulcrum needle 3 and press the probe 15 against the sample. By scanning the sample or the detection system, the probe 15 traces the surface of the sample, and the first and second support members 1 and 14 rotate slightly around the fixed fulcrum according to the surface shape. Then, the displacement of the core 6 of the differential transformer 5 is detected, and the displacement of the core 6 is converted into the displacement of the probe tip of the probe 15 to measure the surface shape and level difference of the sample.

図6には、本発明を実施している制御回路装置の一つの実施形態をブロック線図で示し、20は触針式段差計の変位センサであり、21は前置増幅器であり、22はデジタルシグナル処理回路(DSP)であり、23はアナログ入力ボードであり、24は設定、表示用のコンピュータである。デジタルシグナル処理回路(DSP)22は、前置増幅器21を介して触針式段差計の変位センサ20に接続され、変位センサ20を構成している差動トランスの二次コイルからの測定信号を受けるようにされている。またデジタルシグナル処理回路(DSP)22は、図示していないがデジタル−アナログ変換器及び電圧−電流変換回路を介して針圧付加手段の力発生用コイルに接続される。さらにデジタルシグナル処理回路(DSP)22は、RS−232Cシリアル通信系を介して設定、表示用のコンピュータ24に接続されている。またアナログ入力ボード23はデジタルシグナル処理回路(DSP)22におけるデジタル−アナログ変換器(図示していない)からアナログ電圧を受け、そして設定、表示用のコンピュータ24に接続されている。   FIG. 6 is a block diagram showing one embodiment of a control circuit device embodying the present invention, 20 is a displacement sensor of a stylus type step gauge, 21 is a preamplifier, and 22 is A digital signal processing circuit (DSP), 23 is an analog input board, and 24 is a computer for setting and displaying. The digital signal processing circuit (DSP) 22 is connected to the displacement sensor 20 of the stylus type step meter via the preamplifier 21, and receives the measurement signal from the secondary coil of the differential transformer that constitutes the displacement sensor 20. It is supposed to receive. The digital signal processing circuit (DSP) 22 is connected to a force generating coil of the stylus pressure applying means via a digital-analog converter and a voltage-current conversion circuit, which are not shown. Further, the digital signal processing circuit (DSP) 22 is connected to a setting / display computer 24 via an RS-232C serial communication system. The analog input board 23 receives an analog voltage from a digital-analog converter (not shown) in a digital signal processing circuit (DSP) 22 and is connected to a computer 24 for setting and display.

デジタルシグナル処理回路(DSP)22では、デジタルロックインアンプの手法により変位センサのコアの位置を算出し、コアと探針の支点からの距離の比を用いて探針の位置を算出する。一般には、その結果に低域通過フィルターをかけて雑音が低減される。かかるフィルターは、デジタルシグナル処理回路(DSP)22とアナログ入力ボード23の間に設けることができ、そして抵抗、コンデンサを使ったアナログフィルターでも計算によるデジタルフィルターでもよい。デジタルフィルターを使用する場合には、デジタルシグナル処理回路(DSP)22において低域通過フィルターをかけてもよいし、設定、表示用のコンピュータ24へデータを送信後に設定、表示用のコンピュータ24において低域通過フィルターをかけることもできる。   The digital signal processing circuit (DSP) 22 calculates the position of the core of the displacement sensor by a digital lock-in amplifier technique, and calculates the position of the probe using the ratio of the distance from the core and the fulcrum of the probe. In general, the result is subjected to a low-pass filter to reduce noise. Such a filter can be provided between the digital signal processing circuit (DSP) 22 and the analog input board 23, and may be an analog filter using resistors and capacitors, or a digital filter by calculation. In the case of using a digital filter, a low-pass filter may be applied in the digital signal processing circuit (DSP) 22, or it may be set after the data is transmitted to the setting / displaying computer 24. A band-pass filter can also be applied.

図7は、特許文献4に記載のコアを特許文献2に記載の差動トランスのコイルに入れ、図1の段差計を構成して、探針の変位雑音を測定した例である。探針を2mgfで試料上に押し付け、走査はせず静止した状態で探針の変位を1msごとにモニターした。支点から探針までの距離は、支点から変位センサのコアまでの2倍あり、探針での変位雑音は変位センサのコアでの変位雑音の2倍になっている。遮断周波数15Hzの低域通過フィルターをかけており、1秒間での雑音のピーク−ピークは0.6nm程度と小さい。フィルターは無限インパルス応答のデジタルフィルターでバタワース特性の4次を用いた。   FIG. 7 shows an example in which the displacement noise of the probe is measured by inserting the core described in Patent Document 4 into the coil of the differential transformer described in Patent Document 2 to configure the step meter of FIG. The probe was pressed onto the sample with 2 mgf, and the displacement of the probe was monitored every 1 ms in a stationary state without scanning. The distance from the fulcrum to the probe is twice that from the fulcrum to the core of the displacement sensor, and the displacement noise at the probe is twice the displacement noise at the core of the displacement sensor. A low-pass filter with a cut-off frequency of 15 Hz is applied, and the peak-peak of noise in 1 second is as small as about 0.6 nm. The filter was a digital filter with an infinite impulse response, and a 4th order Butterworth characteristic was used.

図8には、図7の測定を繰り返して『1秒間での雑音のピーク−ピーク』と標準偏差を10時間に渡り6000回測定した結果を示している。平均はそれぞれ0.664nm、0.140nmと十分に小さい値を得た。   FIG. 8 shows the result of measuring 6000 times over 10 hours by repeating the measurement of FIG. 7 and measuring “peak-peak of noise in 1 second” and standard deviation over 10 hours. The average obtained sufficiently small values of 0.664 nm and 0.140 nm, respectively.

図9には、低域通過フィルターの通過前後での振幅比の周波数特性の例を示す。バタワース特性4次とベッセル特性4次の遮断周波数20Hzの場合である。図7及び図8に示すデータでは15Hz以上の雑音が同様の振幅比でカットされて、それにより低雑音(時間軸で見た場合の小さい『ピーク−ピーク』)が達成できている。   FIG. 9 shows an example of the frequency characteristic of the amplitude ratio before and after passing through the low-pass filter. This is a case where the cutoff frequency of the Butterworth characteristic fourth order and the Bessel characteristic fourth order is 20 Hz. In the data shown in FIG. 7 and FIG. 8, noise of 15 Hz or higher is cut with the same amplitude ratio, thereby achieving low noise (small “peak-peak” when viewed on the time axis).

低域通過フィルターをかける前の雑音密度の測定例を図10に示す。差動トランスの励起は5kHzで行っており、測定する2次電圧信号も同じ周波数である。ロックインアンプの手法では測定信号と参照信号の掛け算の後、その5kHz成分を除去する。その除去のために5kHz分の移動平均をデジタルシグナル処理回路(DSP)22で行っている。差動トランスの2次コイルの5kHzの出力を測定信号として、デジタルシグナル処理回路(DSP)22内で生成した同じく5kHzだが位相の異なる参照信号と掛け算し、それを低域通過フィルターに通して直流成分を得ると、5kHz以外の雑音成分が除去され5kHzの成分が抽出されて、測定信号の振幅と位相情報が低雑音、高精度に測定できる。図10には測定信号と参照信号を掛けて5kHz分の移動平均を行ったデータを設定、表示用のコンピュータ24でフーリエ変換した結果で雑音の周波数特性を表わしている。周波数軸のどこでカットするかで測定結果の時間に対する応答の善し悪しが決まる。15Hz以上をカットしてしまえば、それ以上速い応答は得られなくなる。   A measurement example of noise density before applying the low-pass filter is shown in FIG. The differential transformer is excited at 5 kHz, and the secondary voltage signal to be measured has the same frequency. In the lock-in amplifier method, the 5 kHz component is removed after multiplication of the measurement signal and the reference signal. For the removal, a moving average for 5 kHz is performed by a digital signal processing circuit (DSP) 22. The output of 5 kHz of the secondary coil of the differential transformer is used as a measurement signal, multiplied by the same 5 kHz but different phase reference signal generated in the digital signal processing circuit (DSP) 22, and passed through a low-pass filter for direct current. When the components are obtained, noise components other than 5 kHz are removed and 5 kHz components are extracted, and the amplitude and phase information of the measurement signal can be measured with low noise and high accuracy. FIG. 10 shows the frequency characteristics of noise as a result of setting the data obtained by multiplying the measurement signal and the reference signal and performing a moving average for 5 kHz and performing Fourier transform on the display computer 24. The quality of the response to the time of the measurement result is determined depending on where the frequency axis is cut. If the frequency of 15 Hz or higher is cut, a faster response cannot be obtained.

ところで、図10において230Hzには大きいピークがある。これは支点上の棒状部の固有振動によると考えられる。これを効果的に除去すれば、遮断周波数15Hzの低域通過フィルターはなくても低雑音が実現できる。1kHz以上の成分は必要ないので、遮断周波数700Hzの低域通過フィルターをかけ、その後、230Hzに相当する移動平均を行った結果を図11に示す。不要な高い周波数成分が除去され、230Hzの大きい雑音のピークが減少している。しかし、100数10Hzより下では応答が残っていることを示している。そして、この場合の『1秒間での雑音のピーク−ピーク』は2.3nmであった。つまり、遮断周波数15Hzの低域通過フィルターをかけなくても、図11で示すように100数10Hzまでの応答性のある変位データにおいて、実用的な使用で問題のない低雑音が得られたことになる。このことは、表面形状への応答が速く、かつ、低雑音なので、これまで見えなかった微細な表面形状が見えることになることを意味している。   Incidentally, there is a large peak at 230 Hz in FIG. This is thought to be due to the natural vibration of the rod-shaped part on the fulcrum. If this is effectively removed, low noise can be realized without a low-pass filter having a cutoff frequency of 15 Hz. Since a component of 1 kHz or higher is not necessary, FIG. 11 shows the result of applying a low-pass filter with a cutoff frequency of 700 Hz and then performing a moving average corresponding to 230 Hz. Unnecessary high frequency components are removed, and a large noise peak at 230 Hz is reduced. However, the response remains below 100 Hz. In this case, “noise peak-peak in 1 second” was 2.3 nm. That is, even without applying a low-pass filter with a cut-off frequency of 15 Hz, low noise having no problem in practical use was obtained with responsive displacement data up to several hundreds of 10 Hz as shown in FIG. become. This means that since the response to the surface shape is fast and the noise is low, a fine surface shape that could not be seen before can be seen.

図12及び図13には、Si基板表面を探針で走査した結果の例を示す。図12に示す例は、前述の230Hz分の移動平均のみで遮断周波数15Hzの低域通過フィルターをかけていない結果であり、図13に示す例は、図12の結果に遮断周波数15Hzの低域通過フィルター(ベッセル特性、4次)をかけた結果である。探針先端の曲率半径は2.5μm、走査速度は100μm/s、探針を試料に押さえ付ける力は0.048mgfである。この力は、この種の触針式段差計としては、かなり小さい値である。試料を載せたピエゾステージを駆動し、探針で試料上の同じ箇所を5回走査した結果である。変位センサの0点は僅かながら時間変化するので、それぞれの測定結果をz方向にシフトさせて重ねてプロットした。図12及び図13において全体がたわんでいるのは、5回の走査結果が良く重なり再現性があることから、試料表面のそりと用いたステージの駆動特性によると思われる。 12 and 13 show examples of results obtained by scanning the surface of the Si substrate with a probe. The example shown in FIG. 12 is the result of not applying a low-pass filter with a cut-off frequency of 15 Hz only by the above-mentioned moving average for 230 Hz, and the example shown in FIG. 13 is the result of FIG. It is the result of applying a pass filter (Bessel characteristic, 4th order). The radius of curvature of the tip of the probe is 2.5 μm, the scanning speed is 100 μm / s, and the force for pressing the probe against the sample is 0.048 mgf. This force is quite small for this type of stylus profilometer. This is a result of driving the piezo stage on which the sample is placed and scanning the same portion on the sample five times with a probe. Since the zero point of the displacement sensor slightly changes with time, the respective measurement results are plotted while being shifted in the z direction. 12 and FIG. 13 seems to be due to the warpage of the sample surface and the driving characteristics of the stage used because the results of the five scans are well overlapped and reproducible.

図12(移動平均230Hz)では図13(遮断周波数15Hz)に比べると雑音は大きいが、例えば10μmの走査領域での、たわみを除いた雑音のピーク‐ピークは1〜2nm程度であり、実用上は問題ない。むしろ、図13での低雑音が際立っていると言える。   In FIG. 12 (moving average 230 Hz), the noise is larger than that in FIG. 13 (cutoff frequency 15 Hz). For example, the peak-peak of noise excluding deflection in the scanning region of 10 μm is about 1 to 2 nm. Is no problem. Rather, it can be said that the low noise in FIG. 13 stands out.

図14及び図15には、凹凸のある試料表面を走査した結果を示す。探針先の曲率半径と走査速度は図12及び図13と同じで、力は0.26mgfである。図14は前述の230Hz分の移動平均のみで、図15は図14の結果に遮断周波数15Hzの低域通過フィルター(ベッセル特性、4次)をかけた結果である。そして同じ箇所での4回の走査結果を重ねてプロットしている。図16は図14(移動平均230Hz)の一部を拡大して表示している。図16において4回の測定結果に再現性があり、試料表面の凹凸を測定できていることが分かる。それに対して図15(遮断周波数15Hz)では再現性はあるものの、表面の微細な形状は見えていない。   14 and 15 show the results of scanning the uneven sample surface. The radius of curvature of the probe tip and the scanning speed are the same as in FIGS. 12 and 13, and the force is 0.26 mgf. FIG. 14 shows only the above-mentioned moving average for 230 Hz, and FIG. 15 shows the result of applying the low-pass filter (Bessel characteristic, fourth order) with a cutoff frequency of 15 Hz to the result of FIG. The results of four scans at the same location are plotted in an overlapping manner. FIG. 16 is an enlarged view of a part of FIG. 14 (moving average 230 Hz). In FIG. 16, it can be seen that the measurement results of the four times are reproducible and the unevenness of the sample surface can be measured. On the other hand, in FIG. 15 (cutoff frequency 15 Hz), although there is reproducibility, the fine shape of the surface is not visible.

本発明によれば、雑音の小さい差動トランスを用いた触針式段差計において、センサ部品の固有振動に起因する雑音を移動平均などの方法で効果的に除去することにより、応答の速い表面形状測定ができ、通常では測定できない微細な表面形状が測定できるようになる。   According to the present invention, in a stylus profilometer using a differential transformer with low noise, a surface having a quick response can be obtained by effectively removing noise caused by natural vibration of sensor parts by a method such as moving average. The shape can be measured, and a fine surface shape that cannot be measured normally can be measured.

ところで、固有振動に起因する雑音の除去には、バンドストップフィルター(バンドエリミネイトフィルター)を用いてもよい。かかるフィルターはアナログフィルターでもデジタルフィルターでもよい。   Incidentally, a band stop filter (band elimination filter) may be used to remove noise caused by natural vibration. Such a filter may be an analog filter or a digital filter.

また、遮断周波数15Hzの低域通過フィルターをかけた場合でも、走査速度を小さくすれば、図14のような表面形状は見えてくるが、遮断周波数が1桁程度低いので、走査速度を1桁遅くする必要がある。その場合には計測器としてのスループットが1桁落ち、作業効率が大幅に低下することになる。さらに、1回の走査に10倍の時間がかかるということは、その間での変位センサ出力の0点のシフトも10倍に大きくなり、無視できないドリフトを含むような測定結果になり、再現性に問題が出てくる。   Even when a low-pass filter with a cutoff frequency of 15 Hz is applied, if the scanning speed is reduced, the surface shape as shown in FIG. 14 can be seen, but since the cutoff frequency is about one digit lower, the scanning speed is one digit lower. Need to be late. In that case, the throughput of the measuring instrument is reduced by an order of magnitude, and the working efficiency is greatly reduced. Furthermore, the fact that the time required for one scan takes 10 times means that the shift of the zero point of the displacement sensor output during that time also becomes 10 times larger, resulting in a measurement result including a drift that cannot be ignored, and reproducibility. Problems come out.

1:第1の支持部材
2:支点用針取付け部材
3 :支点用針
4 :支点受け部材
5 :変位センサ
6 :コア
7 :コイル
8 :針圧発生装置
9 :コア
10:針圧発生装置8のコイル
15:探針
20:触針式段差計の変位センサ
21:前置増幅器
22:デジタルシグナル処理回路(DSP)
23:アナログ入力ボード
24:設定、表示用のコンピュータ
1: first support member 2: fulcrum needle mounting member 3: fulcrum needle 4: fulcrum receiving member 5: displacement sensor 6: core 7: coil 8: needle pressure generator 9: core 10: needle pressure generator 8 Coil 15: probe 20: displacement sensor of stylus type step gauge 21: preamplifier 22: digital signal processing circuit (DSP)
23: Analog input board 24: Computer for setting and display

Claims (9)

支点に揺動可能に取付けられた支持体の一端に探針を取付け、この一端に隣接して探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、支持体の他端には探針に針圧を加える針圧発生装置の磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計における測定精度の改善方法において、
変位センサの磁性体コアに固有雑音の小さい強磁性体のコアを使用し、低雑音の差動トランスとして形成し、
低雑音の差動トランスの出力を、低雑音のデジタルロックインアンプで計測し、
変位の測定結果からセンサの固有振動に起因する雑音を、低域通過フィルターを用いて移動平均法で除去し、低域通過フィルターの遮断周波数を通常の15Hz程度よりも高くすること
を特徴とする表面形状測定用触針式段差計における測定精度の改善方法。
A probe is attached to one end of a support that is swingably attached to a fulcrum, and a magnetic core of a displacement sensor that detects the vertical displacement of the probe is attached adjacent to this end, and the other end of the support is attached to the other end of the support. A stylus-type step for measuring the surface shape, which is attached to the magnetic core of the needle pressure generator that applies the needle pressure to the probe, and the surface shape of the sample captured by the probe is measured by a displacement sensor by rotational movement around the fulcrum of the support In the measurement accuracy improvement method in the meter,
Using a ferromagnetic core with low intrinsic noise for the magnetic core of the displacement sensor, it is formed as a low noise differential transformer,
Measure the output of the low noise differential transformer with a low noise digital lock-in amplifier,
The noise caused by the natural vibration of the sensor is removed from the measurement result of displacement by a moving average method using a low-pass filter, and the cutoff frequency of the low-pass filter is made higher than the usual 15 Hz. A method for improving measurement accuracy in a stylus profilometer for surface shape measurement.
変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターとして遮断周波数15Hzの低域通過フィルターを使用することを特徴とする請求項1記載の方法。   The method according to claim 1, wherein a low-pass filter having a cutoff frequency of 15 Hz is used as a filter for removing noise caused by natural vibration of the displacement sensor by a moving average method. 支点に揺動可能に取付けられた支持体の一端に探針を取付け、この一端に隣接して探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、支持体の他端には探針に針圧を加える針圧発生装置の磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計において、
変位センサを成し、固有雑音が小さい強磁性体のコアを使用した低雑音の差動トランスと、
低雑音の差動トランスの一次コイル及び二次コイルに接続され、低雑音の差動トランスの出力を測定する低雑音のデジタルロックイン増幅器を備えた測定回路手段と、
測定回路手段で測定した変位の測定結果から変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターを備え、フィルターの遮断周波数を通常の15Hz程度よりも高くするように構成した雑音除去手段と
を有することを特徴とする表面形状測定用触針式段差計。
A probe is attached to one end of a support that is swingably attached to a fulcrum, and a magnetic core of a displacement sensor that detects the vertical displacement of the probe is attached adjacent to this end, and the other end of the support is attached to the other end of the support. A stylus-type step for measuring the surface shape, which is attached to the magnetic core of the needle pressure generator that applies the needle pressure to the probe, and the surface shape of the sample captured by the probe is measured by a displacement sensor by rotational movement around the fulcrum of the support In total
A low-noise differential transformer that uses a ferromagnetic core that forms a displacement sensor and has low intrinsic noise,
Measuring circuit means comprising a low noise digital lock-in amplifier connected to the primary coil and secondary coil of the low noise differential transformer and measuring the output of the low noise differential transformer;
A noise removal system comprising a filter that removes noise caused by the natural vibration of the displacement sensor from the displacement measurement result measured by the measuring circuit means by a moving average method, and configured so that the cutoff frequency of the filter is higher than the usual 15 Hz. A stylus type step gauge for measuring the surface shape.
雑音除去手段が、低雑音の差動トランスの出力を測定する低雑音のデジタルロックイン増幅器の後段に設けられていることを特徴とする請求項3記載の表面形状測定用触針式段差計。   4. The surface shape measuring stylus step meter according to claim 3, wherein the noise removing means is provided after the low noise digital lock-in amplifier for measuring the output of the low noise differential transformer. 測定回路手段がデジタルシグナル処理回路を備え、該デジタルシグナル処理回路に、変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターが設けられることを特徴とする請求項3記載の表面形状測定用触針式段差計。   4. The surface shape according to claim 3, wherein the measurement circuit means includes a digital signal processing circuit, and the digital signal processing circuit is provided with a filter for removing noise caused by the natural vibration of the displacement sensor by a moving average method. A stylus step meter for measurement. 変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターが、遮断周波数15Hzの低域通過フィルターであることを特徴とする請求項3記載の表面形状測定用触針式段差計。   The stylus type step meter for measuring a surface shape according to claim 3, wherein the filter for removing noise caused by the natural vibration of the displacement sensor by a moving average method is a low-pass filter having a cutoff frequency of 15 Hz. 変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターが、アナログフィルターから成ることを特徴とする請求項3記載の表面形状測定用触針式段差計。   The stylus type step gauge for measuring surface shape according to claim 3, wherein the filter for removing noise caused by the natural vibration of the displacement sensor by a moving average method comprises an analog filter. 測定回路手段からの出力を受ける設定、表示用のコンピュータを有し、該コンピュータに、変位センサの固有振動に起因する雑音を移動平均法で除去するフィルターが設けられることを特徴とする請求項3記載の表面形状測定用触針式段差計。   4. A setting and display computer for receiving an output from the measurement circuit means, and a filter for removing noise caused by the natural vibration of the displacement sensor by a moving average method is provided in the computer. The stylus type step gauge for surface shape measurement as described. デジタルシグナル処理回路に設けられるフィルターがデジタルフィルターであることを特徴とする請求項8記載の表面形状測定用触針式段差計。   9. The surface shape measuring stylus step meter according to claim 8, wherein the filter provided in the digital signal processing circuit is a digital filter.
JP2011140901A 2011-06-24 2011-06-24 Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same Pending JP2013007666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140901A JP2013007666A (en) 2011-06-24 2011-06-24 Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140901A JP2013007666A (en) 2011-06-24 2011-06-24 Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same

Publications (1)

Publication Number Publication Date
JP2013007666A true JP2013007666A (en) 2013-01-10

Family

ID=47675130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140901A Pending JP2013007666A (en) 2011-06-24 2011-06-24 Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same

Country Status (1)

Country Link
JP (1) JP2013007666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180120087A1 (en) * 2016-10-31 2018-05-03 Omron Corporation Control system, and control method and program for control system
CN117268662A (en) * 2023-11-22 2023-12-22 贵州省建筑设计研究院有限责任公司 Municipal road and bridge junction roughness detection device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046390A (en) * 2001-07-31 2003-02-14 Denso Corp Filtering method and analog/digital converter with filtering function
JP2003097940A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Method and device for shape measuring, storage medium storing computer program for shape measuring, and computer program for shape measuring
JP2003279343A (en) * 2002-03-22 2003-10-02 Mitsutoyo Corp Measured-data shaping method
JP2004523737A (en) * 2000-11-30 2004-08-05 アサイラム リサーチ コーポレーション Improved linear variable differential transformer for accurate position measurement
JP2005249625A (en) * 2004-03-05 2005-09-15 Ricoh Co Ltd Configuration data acquisition method and configuration measuring device
JP2006005164A (en) * 2004-06-17 2006-01-05 Shin Etsu Handotai Co Ltd Wafer-shape evaluating and managing methods
JP2007003336A (en) * 2005-06-23 2007-01-11 Ulvac Japan Ltd Probe type step profiler for surface shape measurement and its needle pressure correction method
JP2008122254A (en) * 2006-11-13 2008-05-29 Ulvac Japan Ltd Differential transformer for displacement sensor in probe type step profiler
JP2009020050A (en) * 2007-07-13 2009-01-29 Ulvac Japan Ltd Method and apparatus for measuring surface shape of specimen
JP2009133730A (en) * 2007-11-30 2009-06-18 Ulvac Japan Ltd Step measuring method and device using stylus type step profiler for surface shape measurement

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523737A (en) * 2000-11-30 2004-08-05 アサイラム リサーチ コーポレーション Improved linear variable differential transformer for accurate position measurement
JP2003046390A (en) * 2001-07-31 2003-02-14 Denso Corp Filtering method and analog/digital converter with filtering function
JP2003097940A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Method and device for shape measuring, storage medium storing computer program for shape measuring, and computer program for shape measuring
JP2003279343A (en) * 2002-03-22 2003-10-02 Mitsutoyo Corp Measured-data shaping method
JP2005249625A (en) * 2004-03-05 2005-09-15 Ricoh Co Ltd Configuration data acquisition method and configuration measuring device
JP2006005164A (en) * 2004-06-17 2006-01-05 Shin Etsu Handotai Co Ltd Wafer-shape evaluating and managing methods
JP2007003336A (en) * 2005-06-23 2007-01-11 Ulvac Japan Ltd Probe type step profiler for surface shape measurement and its needle pressure correction method
JP2008122254A (en) * 2006-11-13 2008-05-29 Ulvac Japan Ltd Differential transformer for displacement sensor in probe type step profiler
JP2009020050A (en) * 2007-07-13 2009-01-29 Ulvac Japan Ltd Method and apparatus for measuring surface shape of specimen
JP2009133730A (en) * 2007-11-30 2009-06-18 Ulvac Japan Ltd Step measuring method and device using stylus type step profiler for surface shape measurement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180120087A1 (en) * 2016-10-31 2018-05-03 Omron Corporation Control system, and control method and program for control system
EP3318939A1 (en) * 2016-10-31 2018-05-09 Omron Corporation Control system, and control method and program for control system
CN108021089A (en) * 2016-10-31 2018-05-11 欧姆龙株式会社 Control system and its control method, computer-readable recording medium
CN117268662A (en) * 2023-11-22 2023-12-22 贵州省建筑设计研究院有限责任公司 Municipal road and bridge junction roughness detection device
CN117268662B (en) * 2023-11-22 2024-02-06 贵州省建筑设计研究院有限责任公司 Municipal road and bridge junction roughness detection device

Similar Documents

Publication Publication Date Title
JP5183989B2 (en) Shape measuring device
US20100205699A1 (en) Magnetic device inspection apparatus and magnetic device inspection method
JP2009222437A (en) Vibration tester
EP1482297A4 (en) Scanning probe microscope and specimen surface structure measuring method
JP2003121136A (en) Touch sensor
JP2002230728A (en) Measuring device for magnetic head and measuring method applied to the device
JP2013007666A (en) Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same
Chu et al. Development of an optical accelerometer with a DVD pick-up head
JP5124249B2 (en) Level difference measuring method and apparatus using stylus type level difference meter for surface shape measurement
KR101997993B1 (en) Crack inspection device and crack inspecting method using the same
JP5782863B2 (en) Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method
JP3731047B2 (en) Micro hardness tester
CN108801438A (en) A kind of vibration displacement measuring device based on optical interference
RU2442131C1 (en) Method for measuring surface texture properties and mechanical properties of the materials
JP4922583B2 (en) Friction force correction method of stylus type step gauge for surface shape measurement
JP2013007667A (en) Measurement accuracy improvement method in stylus type step profiler for surface shape measurement and device
JP2016057225A (en) Eddy current flaw detection sensor device
JP2001108601A (en) Scanning-type probe microscope
RU2510009C1 (en) Device to measure parameters of surface relief and mechanical properties of materials
JP2011169736A (en) Device and method for measuring alternating current magnetostriction
JP3670777B2 (en) Cantilever evaluation device
JP5570154B2 (en) Vibration characteristic measuring device and measuring method
JP6358788B2 (en) AC magnetic field measuring apparatus and AC magnetic field measuring method
JP5382947B2 (en) DIFFERENTIAL TRANSFORMER CORE FOR PROTECT TYPE STEP METER AND ITS MANUFACTURING METHOD
JPH1038792A (en) Surface characteristics measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150318