JP2013006125A - Wet flue gas desulfurization apparatus, and wet flue gas desulfurization method - Google Patents

Wet flue gas desulfurization apparatus, and wet flue gas desulfurization method Download PDF

Info

Publication number
JP2013006125A
JP2013006125A JP2011138320A JP2011138320A JP2013006125A JP 2013006125 A JP2013006125 A JP 2013006125A JP 2011138320 A JP2011138320 A JP 2011138320A JP 2011138320 A JP2011138320 A JP 2011138320A JP 2013006125 A JP2013006125 A JP 2013006125A
Authority
JP
Japan
Prior art keywords
spray
exhaust gas
droplets
sprayed
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011138320A
Other languages
Japanese (ja)
Other versions
JP5817971B2 (en
Inventor
Hiroshi Ishizaka
浩 石坂
Shigeto Omine
成人 大峰
Yoshiaki Mitsui
良晃 三井
Koji Muramoto
考司 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011138320A priority Critical patent/JP5817971B2/en
Publication of JP2013006125A publication Critical patent/JP2013006125A/en
Application granted granted Critical
Publication of JP5817971B2 publication Critical patent/JP5817971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flue gas desulfurization apparatus with high soot removing ability, suppressing enlargement of facilities and increase of cost in a simple constitution.SOLUTION: In the flue gas desulfurization apparatus having an absorbing tower 1 having a spray header 12 having a plurality of spray nozzles 13 for spraying absorbing liquid to the flue gas from a boiler chamber or like, and a mist eliminator 9 in the downstream side of the flow of the flue gas of the spray headers 12 and absorbing and removing the sulfur oxide in the flue gas, a dust removing spray header 17 having a plurality of two fluid nozzle 14 forming fine particle liquid droplets smaller than the spray nozzles 13 of the spray headers 12 from replenishing water supplied from a replenishing water supplying line 15 and countercurrently splaying the same to the flue gas flow is arranged between the spray headers 12 and the mist eliminator 9. It is possible to remove, by the two fluid spray nozzle 14, soot with less particle size which cannot be removed by the spray nozzles 13 of the spray headers 12. The constitution becomes simple by using the replenishing water in the dust removing two fluid spray nozzle 14.

Description

本発明は、火力発電所や工場等に設置されるボイラ等の燃焼設備から排出される排ガス中の有害成分である硫黄酸化物を除去する湿式排煙脱硫装置に係わり、特に、浮遊粒子状物質のうち2.5μm以下の煤塵も除去可能な煤塵除去機能を備えた湿式排煙脱硫装置及び湿式排煙脱硫方法に関する。   The present invention relates to a wet flue gas desulfurization apparatus that removes sulfur oxides, which are harmful components in exhaust gas discharged from combustion facilities such as boilers installed in thermal power plants and factories, and in particular, suspended particulate matter In particular, the present invention relates to a wet flue gas desulfurization apparatus and a wet flue gas desulfurization method having a dust removal function capable of removing dust of 2.5 μm or less.

火力発電設備における一般的な湿式排煙脱硫装置の側面図を図12に示す。
この湿式排煙脱硫装置は、主に排ガス中の有害成分である硫黄酸化物を吸収・除去する吸収塔1と、吸収塔1の排ガス入口ダクト2と、吸収塔1の排ガス出口ダクト3と、排ガスに吸収液を噴霧するスプレノズル13を備えたスプレヘッダ12と、吸収塔1内の吸収液の循環ポンプ4と、吸収塔1内の吸収液を貯留する循環タンク6と、循環タンク6内の吸収液を攪拌する攪拌機7と、循環タンク6内の吸収液に酸化用空気を吹き込むための空気吹込み管8と、排ガスに同伴される液滴径の小さいミストを捕集するミストエリミネータ9と、循環タンク6内の吸収液の抜出し管10と、循環タンク6内の吸収液をスプレヘッダ12に送る循環配管11等から構成される。
FIG. 12 shows a side view of a general wet flue gas desulfurization apparatus in a thermal power generation facility.
This wet flue gas desulfurization apparatus mainly includes an absorption tower 1 that absorbs and removes sulfur oxide, which is a harmful component in exhaust gas, an exhaust gas inlet duct 2 of the absorption tower 1, an exhaust gas outlet duct 3 of the absorption tower 1, A spray header 12 provided with a spray nozzle 13 for spraying an absorption liquid onto exhaust gas, a circulation pump 4 for the absorption liquid in the absorption tower 1, a circulation tank 6 for storing the absorption liquid in the absorption tower 1, and an absorption in the circulation tank 6 A stirrer 7 for agitating the liquid, an air blowing pipe 8 for blowing oxidizing air into the absorption liquid in the circulation tank 6, a mist eliminator 9 for collecting mist with a small droplet diameter accompanying the exhaust gas, An absorption liquid extraction pipe 10 in the circulation tank 6 and a circulation pipe 11 for sending the absorption liquid in the circulation tank 6 to the spray header 12 are constituted.

火力発電所や工場等に設置されるボイラ等の燃焼装置から排出される硫黄酸化物を含む排ガスは、図示していない脱硫ファンにより入口ダクト2から吸収塔1にほぼ水平方向に導入され、上方に流れて吸収塔1の塔頂部に設けられた出口ダクト3から排出される。   Exhaust gas containing sulfur oxides discharged from a combustion apparatus such as a boiler installed in a thermal power plant or factory is introduced into the absorption tower 1 from the inlet duct 2 in a substantially horizontal direction by a desulfurization fan (not shown) And is discharged from an outlet duct 3 provided at the top of the absorption tower 1.

吸収塔1では、スプレノズル13から微細な液滴として噴霧される石灰石または石灰を含むスラリなどの吸収剤の液滴と排ガスとを気液接触させることで、排ガス中のばいじんや塩化水素(HCl)、フッ化水素(HF)等の酸性ガスと共に、排ガス中の硫黄酸化物(SOx)はスプレノズル13の吸収液滴表面で化学的に吸収、除去される。   In the absorption tower 1, dust particles and hydrogen chloride (HCl) in exhaust gas are brought into gas-liquid contact with exhaust gas droplets of an absorbent such as limestone or slurry containing lime sprayed as fine droplets from the spray nozzle 13. Along with the acidic gas such as hydrogen fluoride (HF), sulfur oxide (SOx) in the exhaust gas is chemically absorbed and removed on the surface of the absorbing droplets of the spray nozzle 13.

SO2を吸収した吸収液は、一旦循環タンク6に溜まり、酸化用攪拌機7によって攪拌されながら、空気吹込み管8から供給される空気中の酸素により酸化され硫酸カルシウム(石膏)を生成する。
循環タンク6にあるスラリ状の吸収液5は、吸収液循環ポンプ4により昇圧され、吸収液循環配管11を経由して、吸収塔1内の上部のスプレヘッダ12に供給される。
The absorbing solution that has absorbed SO 2 once accumulates in the circulation tank 6 and is oxidized by oxygen in the air supplied from the air blowing pipe 8 while being stirred by the oxidizing stirrer 7 to generate calcium sulfate (gypsum).
The slurry-like absorption liquid 5 in the circulation tank 6 is boosted by the absorption liquid circulation pump 4 and supplied to the upper spray header 12 in the absorption tower 1 via the absorption liquid circulation pipe 11.

炭酸カルシウム及び石膏が共存する循環タンク6内の吸収液5の一部は、吸収液循環ポンプ4によって再びスプレノズル13に送られ、一部は吸収液抜き出し管10より図示していない廃液処理・石膏回収系へと送られる。また、スプレノズル13からの噴霧によって微粒化された吸収液5の中で、液滴径が微小なミストは排ガスに同伴されるが、出口ダクト3側に設けられたミストエリミネータ9によって捕集・除去される。   A part of the absorption liquid 5 in the circulation tank 6 in which calcium carbonate and gypsum coexist is sent again to the spray nozzle 13 by the absorption liquid circulation pump 4, and a part of the waste liquid treatment / gypsum (not shown) from the absorption liquid discharge pipe 10. It is sent to the recovery system. Further, in the absorbing liquid 5 atomized by the spray from the spray nozzle 13, the mist having a small droplet diameter is accompanied by the exhaust gas, but is collected and removed by the mist eliminator 9 provided on the outlet duct 3 side. Is done.

湿式脱硫装置の排ガス流れの上流には図示していない集塵装置が設置され、ボイラから排出されるほとんどの灰は除去されるが、微細な灰は集塵装置でも除去されず、排ガスに同伴されながら湿式脱硫装置に流入する。しかし、湿式脱硫装置の吸収塔1内ではスプレノズル13から噴霧された多量の吸収液5の液滴が落下しているため、微細な灰のほとんどはこの液滴との慣性衝突により除去される。   A dust collector (not shown) is installed upstream of the exhaust gas flow of the wet desulfurizer, and most of the ash discharged from the boiler is removed, but fine ash is not removed by the dust collector and is accompanied by the exhaust gas. While flowing, it flows into the wet desulfurization apparatus. However, since a large amount of droplets of the absorbing liquid 5 sprayed from the spray nozzle 13 are falling in the absorption tower 1 of the wet desulfurization apparatus, most of the fine ash is removed by inertial collision with the droplets.

しかし、スプレノズル13から噴霧される液滴で除去できる灰の大きさには限界があり、浮遊粒子状物質のうち2.5μm以下のものを対象とするような1μm以下のサブミクロン領域の灰は除去されずに、そのまま吸収塔1から排出される。
一方、吸収塔1には90〜160℃程度の排ガスが導入されるため、この排ガスと接触する吸収液5が蒸発して、その蒸発水は図示しない煙突から排出される。したがって、吸収塔1には蒸発した分に見合うだけの補給水として、工業用水を補給水供給ライン15から連続的に供給している。
However, there is a limit to the size of ash that can be removed by droplets sprayed from the spray nozzle 13, and ash in the submicron region of 1 μm or less that targets 2.5 μm or less of suspended particulate matter It is discharged from the absorption tower 1 as it is without being removed.
On the other hand, since an exhaust gas of about 90 to 160 ° C. is introduced into the absorption tower 1, the absorbing liquid 5 that comes into contact with the exhaust gas evaporates, and the evaporated water is discharged from a chimney (not shown). Therefore, industrial water is continuously supplied to the absorption tower 1 from the makeup water supply line 15 as makeup water corresponding to the amount evaporated.

下記特許文献1には、吸収塔内に吸収液を噴霧するスプレノズルを複数段設置し、ガス流れ方向に対して最上流のスプレ段よりも下流側のスプレ段の内、少なくとも一段以上に、最上流のスプレ段から噴霧される液滴よりも微粒な液滴を噴霧するスプレノズルを有する微粒液滴スプレ段を設け、サブミクロン単位のダスト粒子の捕集効率を向上させた湿式排煙脱硫装置が開示されている。   In Patent Document 1 below, a plurality of spray nozzles for spraying the absorbing liquid are installed in the absorption tower, and at least one or more of the spray stages downstream from the most upstream spray stage in the gas flow direction is disposed at the most. Wet flue gas desulfurization equipment that has a fine droplet spray stage with a spray nozzle that sprays finer droplets than the droplet sprayed from the upstream spray stage, and improves the collection efficiency of dust particles in submicron units. It is disclosed.

また、下記特許文献2には、排ガスの処理温度よりも冷たい微粒液滴を排ガスに噴霧してダストを肥大化させることで捕集効率を高めた脱硫装置が開示されている。
更に、下記特許文献3には、脱硫塔内に水蒸気を吹き込む水蒸気管を設けることで、水蒸気がダストを核として肥大化することで排ガス中の粒子を捕集する脱硫装置が開示されている。
Further, Patent Document 2 below discloses a desulfurization apparatus that improves the collection efficiency by spraying fine droplets cooler than the exhaust gas treatment temperature on the exhaust gas to enlarge the dust.
Further, Patent Document 3 below discloses a desulfurization apparatus that collects particles in exhaust gas by providing a steam pipe for blowing steam into a desulfurization tower so that the steam is enlarged using dust as a nucleus.

特開平9−173764号公報JP-A-9-173762 特開2000−325742号公報JP 2000-325742 A 特開平7−178314号公報JP 7-178314 A

特許文献1〜3に記載の構成によれば、排ガスに微粒な液滴や水蒸気を吹き込むことで、ダスト粒子などの捕集効率を高めている。
しかし、このように排ガスに噴霧したり、吹き込んだりするための液滴や水蒸気等には多量の水が必要となる。また、そのための設備や動力も必要となることから、設備の大型化や費用の増大などの問題が生じる。例えば、特許文献2に記載の構成では、噴霧液の冷却装置、特許文献3に記載の構成では、100度以上の水蒸気の供給装置などが必要となる。
According to the configurations described in Patent Documents 1 to 3, the collection efficiency of dust particles and the like is enhanced by blowing fine droplets or water vapor into the exhaust gas.
However, a large amount of water is required for droplets, water vapor, and the like for spraying or blowing into the exhaust gas. Moreover, since the equipment and power for that are also needed, problems, such as an enlargement of equipment and an increase in cost, arise. For example, the configuration described in Patent Document 2 requires a spray liquid cooling device, and the configuration described in Patent Document 3 requires a water vapor supply device of 100 degrees or more.

更に、近年、浮遊粒子状物質のうち2.5μm以下の煤塵等の規制が強化されつつあり、このような粒径の煤塵の除去性能の向上が、より一層求められている。
特許文献1に記載の構成では、1000μm以下の微粒液滴を噴霧しているが、この程度の大きさでは効率良くサブミクロン単位の煤塵を除去することは難しい。また、特許文献2に記載の構成では、排ガスの処理温度よりも冷たい微粒液滴を噴霧後、回収してリサイクルしており、このように循環使用した場合は捕集した煤塵が蓄積してしまう。
Further, in recent years, regulations on dust particles of 2.5 μm or less among the suspended particulate matter are being strengthened, and further improvement in the removal performance of dust particles having such a particle size is required.
In the configuration described in Patent Document 1, fine droplets having a size of 1000 μm or less are sprayed. However, it is difficult to efficiently remove dust in submicron units at this size. Further, in the configuration described in Patent Document 2, fine droplets cooler than the treatment temperature of exhaust gas are sprayed and then collected and recycled, and thus collected dust accumulates when used in a circulating manner. .

本発明の課題は、簡素な構成で、設備の大型化や費用の増大を抑えた煤塵除去性能の高い湿式排煙脱硫装置を提供することである。   An object of the present invention is to provide a wet flue gas desulfurization apparatus having a simple configuration and having high dust removal performance that suppresses increase in size and cost of facilities.

上記課題は、排ガス流れの最下流のスプレ部とミストエリミネータとの間に、スプレ部のスプレノズルから噴霧される液滴よりも径の小さい微粒液滴を排ガス流れに対して向流噴霧する複数の二流体スプレノズルからなる除塵用の微粒スプレ部を設け、湿式排煙脱硫装置内の蒸発などによる損失分を補うための補給水を微粒スプレ部から排ガスに噴霧することにより達成される。   The above problem is that a plurality of droplets having a diameter smaller than the droplet sprayed from the spray nozzle of the spray portion are sprayed countercurrently to the exhaust gas flow between the spray portion at the most downstream of the exhaust gas flow and the mist eliminator. This is achieved by providing a fine particle spray part for dust removal composed of a two-fluid spray nozzle and spraying makeup water from the fine particle spray part to the exhaust gas to compensate for loss due to evaporation in the wet flue gas desulfurization apparatus.

また、上記本発明の課題は、下記の構成を採用することにより達成できる。
請求項1記載の発明は、ボイラを含む燃焼装置から排出される排ガスに吸収液を噴霧する複数のスプレノズルを有するスプレ部と該スプレ部の排ガス流路の下流側に設けられ、排ガス流れに同伴されるミストを捕集するミストエリミネータとを有し、排ガス中の硫黄酸化物を吸収、除去する吸収塔を備えた湿式排煙脱硫装置において、前記吸収塔に補給水を供給する補給水供給部を設け、前記スプレ部と前記ミストエリミネータとの間に、前記補給水供給部により供給される水を前記スプレ部のスプレノズルから噴霧される液滴よりも微粒液滴にして排ガス流れに対して向流噴霧する複数の二流体スプレノズルからなる除塵用の微粒スプレ部を設けた湿式排煙脱硫装置である。
Further, the above-described problems of the present invention can be achieved by adopting the following configuration.
The invention according to claim 1 is provided on the downstream side of the exhaust gas flow path of the spray part and the spray part having a plurality of spray nozzles for spraying the absorbing liquid onto the exhaust gas discharged from the combustion apparatus including the boiler, and is accompanied by the exhaust gas flow In a wet flue gas desulfurization apparatus having a mist eliminator that collects mist that is collected and having an absorption tower that absorbs and removes sulfur oxides in exhaust gas, a makeup water supply section that supplies makeup water to the absorption tower Between the spray unit and the mist eliminator, the water supplied by the makeup water supply unit is made finer droplets than the droplets sprayed from the spray nozzle of the spray unit, and is suitable for the exhaust gas flow. It is a wet type flue gas desulfurization device provided with a fine particle spray part for dust removal composed of a plurality of two-fluid spray nozzles for spraying.

請求項2記載の発明は、前記微粒スプレ部の複数の二流体スプレノズルから噴霧される液滴の平均径は、予め求められた排ガス中の一定の大きさの煤塵を所定割合以上除去可能な排ガスと微粒スプレ部の噴霧液量との液ガス比(L/G)と前記微粒スプレ部の複数の二流体スプレノズルから噴霧される液滴の平均径との関係と、前記吸収塔に供給する補給水から換算される液ガス比(L/G)とにより求められる平均径である請求項1記載の湿式排煙脱硫装置である。   According to a second aspect of the present invention, the average diameter of the droplets sprayed from the plurality of two-fluid spray nozzles of the fine particle spray portion is an exhaust gas capable of removing a predetermined amount or more of dust of a certain size in the exhaust gas obtained in advance. Between the liquid gas ratio (L / G) between the amount of sprayed liquid in the fine particle spray part and the average diameter of the droplets sprayed from a plurality of two-fluid spray nozzles in the fine particle spray part, and replenishment supplied to the absorption tower The wet flue gas desulfurization apparatus according to claim 1, wherein the wet flue gas desulfurization apparatus has an average diameter determined by a liquid gas ratio (L / G) converted from water.

請求項3記載の発明は、前記微粒スプレ部の複数の二流体スプレノズルは、上方に流れる排ガスに対して、下方に噴霧する二流体スプレノズルであって、微粒スプレ部の複数の二流体スプレノズルを略水平方向に設けると共に、該複数の二流体スプレノズル同士の間隔を、排ガス流速と各スプレノズルの噴霧領域の外周をなす液滴の噴射速度とその液滴の排ガス流れ方向に対する噴射角度とにより求められる、各スプレノズルの噴霧領域の外周をなす液滴の噴霧されてから排ガス流れにより反転するまでの水平方向の移動距離に基づいて設定する請求項1又は請求項2に記載の湿式排煙脱硫装置である。   According to a third aspect of the present invention, the plurality of two-fluid spray nozzles in the fine particle spray portion are two-fluid spray nozzles that spray downward with respect to the exhaust gas flowing upward, and the plurality of two-fluid spray nozzles in the fine particle spray portion are substantially omitted. While being provided in the horizontal direction, the interval between the plurality of two-fluid spray nozzles is determined by the exhaust gas flow velocity, the spray velocity of the droplets forming the outer periphery of the spray region of each spray nozzle, and the spray angle of the droplets with respect to the exhaust gas flow direction. 3. The wet flue gas desulfurization device according to claim 1, wherein the wet flue gas desulfurization device is set based on a movement distance in a horizontal direction from when the droplet forming the outer periphery of the spray region of each spray nozzle is sprayed to when being reversed by the exhaust gas flow. .

請求項4記載の発明は、前記微粒スプレ部の複数の二流体スプレノズルは、上方に流れる排ガスに対して、下方に噴霧する二流体スプレノズルであって、微粒スプレ部の複数の二流体スプレノズルを略水平方向に設けると共に、該複数の二流体スプレノズル同士の間隔P(m)を、各スプレノズルの噴霧領域の外周をなす液滴の噴射速度Vp(m/s)とその液滴の排ガス流れ方向に対する噴射角度θ(deg)とにより表される下記式(1)[(−1.2×10-5)θ2+(1.5×10-3)θ−8.5×10-3]×Vp0.5 (1)
の値に基づいて設定する請求項1又は請求項2に記載の湿式排煙脱硫装置である。
According to a fourth aspect of the present invention, the plurality of two-fluid spray nozzles in the fine particle spray portion are two-fluid spray nozzles that spray downward with respect to the exhaust gas flowing upward, and the plurality of two-fluid spray nozzles in the fine particle spray portion are substantially omitted. The distance P (m) between the plurality of two-fluid spray nozzles is provided in the horizontal direction with respect to the spray velocity Vp (m / s) of the droplets forming the outer periphery of the spray region of each spray nozzle and the exhaust gas flow direction of the droplets. The following formula (1) [(-1.2 × 10 −5 ) θ 2 + (1.5 × 10 −3 ) θ−8.5 × 10 −3 ] × expressed by the injection angle θ (deg) Vp 0.5 (1)
It is a wet flue gas desulfurization apparatus of Claim 1 or Claim 2 set based on the value of.

請求項5記載の発明は、ボイラを含む燃焼装置から排出される排ガスを吸収塔に導入して、吸収塔内に設けたスプレ部の複数のスプレノズルから吸収液を噴霧して、前記排ガス中に含まれる硫黄酸化物を吸収、除去し、吸収塔内の排ガス流れに同伴されるミストをスプレ部より排ガス流路の下流側に設けたミストエリミネータにより捕集する排煙脱硫方法において、前記スプレ部と前記ミストエリミネータとの間の排ガスに、前記吸収塔に供給する補給水に気体を混合して微粒化することで前記スプレノズルから噴霧される液滴よりも微粒液滴にして、排ガス流れに対して向流噴霧する湿式排煙脱硫方法である。   The invention according to claim 5 introduces exhaust gas discharged from a combustion apparatus including a boiler into an absorption tower, sprays an absorption liquid from a plurality of spray nozzles of a spray section provided in the absorption tower, and puts the exhaust gas into the exhaust gas. In the exhaust gas desulfurization method of absorbing and removing contained sulfur oxides, and collecting mist accompanying the exhaust gas flow in the absorption tower by a mist eliminator provided downstream of the exhaust gas flow path from the spray part, the spray part The exhaust gas between the mist eliminator and the mist eliminator is mixed with gas in the makeup water supplied to the absorption tower and atomized to form finer droplets than the droplets sprayed from the spray nozzle. This is a wet flue gas desulfurization method in which counter-current spraying is performed.

請求項6記載の発明は、排ガス中の一定の大きさの煤塵を所定割合以上除去可能な微粒液滴の平均径と排ガスと微粒液滴の噴霧液量との液ガス比(L/G)との関係を予め求めておき、前記吸収塔に供給する補給水から換算される液ガス比(L/G)と前記予め求めた関係から求められる平均径の微粒液滴を噴霧する請求項5記載の湿式排煙脱硫方法である。   According to the sixth aspect of the present invention, the liquid-gas ratio (L / G) between the average diameter of fine droplets capable of removing a predetermined amount or more of dust in the exhaust gas at a predetermined ratio or more and the amount of sprayed liquid of the fine particles and the fine droplets The liquid-gas ratio (L / G) converted from the makeup water supplied to the absorption tower is sprayed with fine droplets having an average diameter determined from the previously determined relationship. The wet flue gas desulfurization method described.

請求項7記載の発明は、前記微粒液滴を略水平方向に設けた複数の噴霧位置から上方に流れる排ガスに対して下方に噴霧する湿式排煙脱硫方法であって、排ガス流速と前記各噴霧位置の噴霧領域の外周をなす液滴の噴射速度とその液滴の排ガス流れ方向に対する噴射角度とにより求められる、各噴霧位置の噴霧領域の外周をなす微粒液滴の噴霧されてから排ガス流れにより反転するまでの微粒液滴の水平方向の移動距離に基づいて、間隔を設けた噴霧位置から微粒液滴を噴霧する請求項5又は請求項6に記載の湿式排煙脱硫方法である。   The invention according to claim 7 is a wet flue gas desulfurization method in which the fine droplets are sprayed downward with respect to the exhaust gas flowing upward from a plurality of spray positions provided in a substantially horizontal direction. The flow rate of the droplets forming the outer periphery of the spray region at the position and the spray angle of the droplets with respect to the exhaust gas flow direction are determined by the exhaust gas flow after the spray of the fine droplets forming the outer periphery of the spray region at each spray position. The wet flue gas desulfurization method according to claim 5 or 6, wherein the fine droplets are sprayed from a spray position at an interval based on a moving distance in the horizontal direction of the fine droplets until they are reversed.

請求項8記載の発明は、前記微粒液滴を略水平方向に設けた複数の噴霧位置から上方に流れる排ガスに対して下方に噴霧する湿式排煙脱硫方法であって、前記各噴霧位置の噴霧領域の外周をなす液滴の噴射速度Vp(m/s)とその液滴の排ガス流れ方向に対する噴射角度θ(deg)とにより表される下記式(1)
[(−1.2×10-5)θ2+(1.5×10-3)θ−8.5×10-3]×Vp0.5 (1)
の値に基づいて、間隔を設けた噴霧位置から微粒液滴を噴霧する請求項5又は請求項6に記載の湿式排煙脱硫方法である。
The invention according to claim 8 is a wet flue gas desulfurization method in which the fine droplets are sprayed downward with respect to exhaust gas flowing upward from a plurality of spray positions provided in a substantially horizontal direction. The following formula (1) expressed by the jet velocity Vp (m / s) of the droplet forming the outer periphery of the region and the jet angle θ (deg) of the droplet with respect to the exhaust gas flow direction
[(-1.2 × 10 −5 ) θ 2 + (1.5 × 10 −3 ) θ−8.5 × 10 −3 ] × Vp 0.5 (1)
7. The wet flue gas desulfurization method according to claim 5, wherein fine droplets are sprayed from a spray position provided with an interval on the basis of the value of.

(作用)
排ガスに微粒な液滴や水蒸気を吹き込む場合は、多量の水が必要となり、そのための設備や動力も必要となるが、本発明によれば、除塵用の微粒スプレ部から噴霧する水として湿式排煙脱硫装置内の蒸発などによる損失分を補うための補給水を利用する。したがって、微粒スプレ部の水には新たな水を必要とせず、ユーティリティが増加することもなく、排煙脱硫装置内の水バランス(水の蒸発量と補給量)が崩れることもない。
(Function)
When fine droplets or water vapor are blown into the exhaust gas, a large amount of water is required, and equipment and power for that purpose are also required. However, according to the present invention, the wet spray is used as the water sprayed from the fine particle spray part for dust removal. Use makeup water to make up for the loss caused by evaporation in the smoke desulfurization unit. Therefore, new water is not required for the water in the fine particle spray section, the utility is not increased, and the water balance (the amount of evaporation and replenishment of water) in the flue gas desulfurization apparatus is not lost.

そして、除塵用の微粒スプレ部には、液体と気体を混合させることで微細な液体の粒子を作り出す二流体スプレノズルを使用することで、スプレ部から噴霧される吸収液の液滴よりも微細な液滴を噴霧することが可能となり、より小さな煤塵をも除去することが可能となる。   The fine particle spray part for dust removal uses a two-fluid spray nozzle that produces fine liquid particles by mixing liquid and gas, so that the finer particle than the liquid droplets of the absorbing liquid sprayed from the spray part. It becomes possible to spray droplets and to remove even smaller dust particles.

すなわち、請求項1又は請求項5記載の発明によれば、スプレ部とミストエリミネータとの間に、スプレ部のスプレノズルよりも液滴径の小さい液滴を排ガス流れに対して向流噴霧する複数の二流体スプレノズルからなる除塵用の微粒スプレ部を設けることで、スプレ部で除去できない粒径のより小さい煤塵を除去することが可能となる。   That is, according to the first or fifth aspect of the invention, a plurality of droplets having a droplet diameter smaller than that of the spray nozzle of the spray portion are sprayed countercurrently to the exhaust gas flow between the spray portion and the mist eliminator. By providing the fine particle spray part for dust removal composed of the two-fluid spray nozzle, it becomes possible to remove soot having a smaller particle diameter that cannot be removed by the spray part.

また、除塵用の微粒スプレ部に補給水を利用することで、簡素な構成となり、設備の大型化や費用の増大を抑えることができる。
更に、ミストエリミネータよりも排ガス流れの上流側で連続的に補給水を噴霧することで、ミストエリミネータの洗浄効果も期待できると共に、ミストエリミネータの洗浄水量及び洗浄頻度を低減することも可能である。
Moreover, it becomes a simple structure by using supplementary water for the fine particle spray part for dust removal, and it can suppress the enlargement of an installation and the increase in cost.
Furthermore, by continuously spraying makeup water upstream of the exhaust gas flow from the mist eliminator, it is possible to expect a cleaning effect of the mist eliminator, and it is also possible to reduce the amount of cleaning water and the cleaning frequency of the mist eliminator.

また、排ガス中に微粒液滴を噴霧して煤塵を捕集する際、排ガス中の煤塵と液滴との慣性衝突の作用で除去できる煤塵の大きさには限界がある。従来技術における脱硫装置では、スプレノズルから噴霧される液滴の大きさが2000〜3000μmと比較的大きく、微粒子の除去に関して十分配慮されていなかった。   Further, when dust is collected by spraying fine droplets in the exhaust gas, there is a limit to the size of the dust that can be removed by the inertial collision between the dust and the droplets in the exhaust gas. In the conventional desulfurization apparatus, the size of the droplets sprayed from the spray nozzle is relatively large, 2000 to 3000 μm, and the removal of fine particles has not been sufficiently considered.

排ガス中の煤塵と液滴との慣性衝突で除去される煤塵の大きさは液滴の大きさに依存し、液滴を小さくすることで除去可能な煤塵の限界粒径を小さくすることができる。また、その煤塵の除去に要する液量を低減することも可能となる。   The size of the dust removed by the inertial collision between the dust in the exhaust gas and the droplet depends on the size of the droplet, and by reducing the droplet, the limit particle size of the removable dust can be reduced. . It is also possible to reduce the amount of liquid required for removing the dust.

そこで、一定の大きさの煤塵を所定割合以上除去可能な排ガスと噴霧液量(微粒スプレ部のみの液量)との液ガス比(L/G)と微粒スプレ部の複数の二流体スプレノズルから噴霧される液滴の平均径との関係(すなわち、液ガス比と液滴の平均径との関係)を予め求めておき、吸収塔に必要な補給水供給量を液ガス比に換算して、この液ガス比と前記液ガス比と液滴の平均径との関係から微粒スプレ部の液滴の平均径を求める。そして、この求められた平均径の液滴を微粒スプレ部から排ガスに噴霧すれば、補給水供給量で微粒スプレ部に必要な水量を賄うことができる。なお、液ガス比とは、単位排ガス量当たりに噴霧する液量であり、L/Gと表す場合がある。   Therefore, the liquid gas ratio (L / G) between the exhaust gas and the spray liquid amount (the liquid amount of only the fine particle spray part) capable of removing a certain amount of soot and dust at a predetermined ratio or more, and a plurality of two-fluid spray nozzles of the fine particle spray part The relationship between the average diameter of the droplets to be sprayed (that is, the relationship between the liquid gas ratio and the average diameter of the droplets) is obtained in advance, and the makeup water supply amount required for the absorption tower is converted into the liquid gas ratio. The average diameter of the droplets in the fine particle spray portion is obtained from the relationship between the liquid gas ratio, the liquid gas ratio, and the average droplet diameter. Then, if the liquid droplets having the determined average diameter are sprayed from the fine particle spray portion onto the exhaust gas, the amount of water necessary for the fine particle spray portion can be covered by the supply amount of makeup water. The liquid gas ratio is the amount of liquid sprayed per unit exhaust gas amount and may be expressed as L / G.

例えば、1μmの煤塵を90%除去するために必要な前記液ガス比(L/G)と微粒スプレ部の複数の二流体スプレノズルから噴霧される液滴の平均径とには後述する図2に示すような関係がある。そこで、吸収塔に必要な補給水供給量を液ガス比に換算して、この液ガス比と前記液ガス比と液滴の平均径との関係から微粒スプレ部の液滴の平均径を求めることで、より効果的にサブミクロン単位の煤塵を除去できる。   For example, the liquid gas ratio (L / G) necessary for removing 90% of 1 μm soot and the average diameter of droplets sprayed from a plurality of two-fluid spray nozzles in the fine particle spray portion are shown in FIG. There is a relationship as shown. Therefore, the supply amount of makeup water necessary for the absorption tower is converted into the liquid gas ratio, and the average diameter of the droplets in the fine particle spray portion is obtained from the relationship between the liquid gas ratio and the liquid gas ratio and the average diameter of the droplets. Thus, submicron-unit dust can be removed more effectively.

図2によれば、微粒スプレ部の複数の二流体スプレノズルから噴霧される液滴の平均径を130μm以下にすることで、より少ない液量で1μm以下の小さな煤塵も除去することが可能になる。   According to FIG. 2, by setting the average diameter of droplets sprayed from a plurality of two-fluid spray nozzles in the fine particle spray portion to 130 μm or less, it becomes possible to remove small dust particles of 1 μm or less with a smaller liquid amount. .

したがって、請求項2又は請求項6記載の発明によれば、上記請求項1又は請求項5記載の発明の作用に加えて、一定の大きさの煤塵を所定割合以上除去可能な液ガス比(L/G)と微粒スプレ部の液滴の平均径との関係を予め求めておき、吸収塔に必要な補給水供給量を液ガス比に換算して、この液ガス比と前記液ガス比と液滴の平均径との関係により求められる平均径の液滴を排ガスに噴霧することで、より効果的にサブミクロン単位の煤塵を除去できる。   Therefore, according to the invention of claim 2 or claim 6, in addition to the action of the invention of claim 1 or claim 5, the liquid gas ratio (in which a certain amount of soot can be removed at a predetermined rate or more) L / G) and the average diameter of the droplets in the fine particle spray portion are obtained in advance, and the supply amount of makeup water required for the absorption tower is converted into a liquid gas ratio. By spraying the exhaust gas with droplets having an average diameter determined from the relationship between the average particle diameter and the average droplet diameter, submicron dust can be removed more effectively.

一方、除塵用の微粒スプレ部から噴霧する液滴の径を小さくすると、排ガス流れに対して向流噴霧された液滴も排ガスにあおられて反転し、排ガス流れに同伴されるようになる。その同伴流では効果的にサブミクロン単位の煤塵を除去できないため、微粒スプレ部のいずれの領域も液滴と排ガスが向流接触するように、二流体スプレノズルの間隔に配慮する必要がある。   On the other hand, when the diameter of the droplet sprayed from the fine particle spray portion for dust removal is reduced, the droplet sprayed counter-currently to the exhaust gas flow is also reversed by the exhaust gas and is accompanied by the exhaust gas flow. Since the entrained flow cannot effectively remove dust in submicron units, it is necessary to consider the interval between the two-fluid spray nozzles so that the droplets and the exhaust gas are in countercurrent contact with each region of the fine particle spray portion.

微粒スプレ部の複数の二流体スプレノズルを略水平方向に設置する場合、微粒スプレ部の二流体スプレノズルの間隔は、液滴が下方に噴霧されてから上昇する排ガス流れにより反転して液滴が上昇するまでの液滴の水平方向の移動距離を基準に設定すれば良い。二流体スプレノズルからは液滴が霧状に噴霧されるため、この噴霧領域の外周部をなす、すなわち二流体スプレノズルの中心から遠くに飛散する液滴の水平方向の移動距離を基準にすれば良い。   When a plurality of two-fluid spray nozzles in the fine particle spray section are installed in a substantially horizontal direction, the interval between the two-fluid spray nozzles in the fine particle spray section is reversed by the exhaust gas flow rising after the liquid droplets are sprayed downward, and the liquid droplets rise. What is necessary is just to set on the basis of the movement distance of the droplet of a horizontal direction until it does. Since the droplets are sprayed in a mist form from the two-fluid spray nozzle, the horizontal movement distance of the droplets forming the outer peripheral portion of the spray region, that is, disperse far from the center of the two-fluid spray nozzle may be used as a reference. .

この水平方向の移動距離は、上昇する排ガスの流速と微粒スプレ部の二流体スプレノズルから下方に噴霧される液滴のうち噴霧領域の外周部をなす液滴の噴射速度とその液滴の排ガス流れに対する噴射角度から定まる。   This horizontal movement distance is determined by the flow rate of the rising exhaust gas, the jet velocity of the droplets forming the outer periphery of the spray region, and the exhaust gas flow of the droplets, of the droplets sprayed downward from the two-fluid spray nozzle of the fine particle spray portion. It is determined from the injection angle with respect to.

例えば、全てのスプレノズルの噴霧条件が同じである場合は、微粒スプレ部の複数の二流体スプレノズル同士の間隔を、前記水平方向の移動距離の2倍以内にすれば良い。
なお、この間隔の基準は、各スプレノズルの中心間の距離とすれば良い。
For example, when the spraying conditions of all the spray nozzles are the same, the interval between the plurality of two-fluid spray nozzles in the fine particle spray portion may be set within twice the moving distance in the horizontal direction.
Note that the reference for this interval may be the distance between the centers of the spray nozzles.

したがって、請求項3又は請求項7記載の発明によれば、上記請求項1又は請求項2、請求項5又は請求項6記載の発明の作用に加えて、微粒スプレ部の複数の二流体スプレノズル同士の間隔を、各スプレノズルの噴霧領域の外周部をなす液滴の噴霧されてから排ガス流れにより反転するまでの水平方向の移動距離に基づいて設定することで、微粒スプレ部のいずれの領域も液滴と排ガスの向流接触が可能となる。   Therefore, according to the invention of claim 3 or claim 7, in addition to the action of the invention of claim 1, claim 2, claim 5 or claim 6, a plurality of two-fluid spray nozzles in the fine particle spray portion. By setting the interval between each spray nozzle based on the horizontal movement distance from the spraying of the droplets forming the outer periphery of the spray area of each spray nozzle until it is reversed by the exhaust gas flow, any area of the fine particle spray part Counter-current contact between droplets and exhaust gas is possible.

微粒スプレ部の二流体スプレノズルから噴霧される液滴はスプレノズルの中心を頂点とした円錐状に噴霧されるため、前記水平方向の移動距離は、外周部の液滴の噴霧されてから反転するまでの移動距離を円錐の側面長さ(母線の長さ)とした場合の底面の円の半径Rとなる。この円錐で囲まれる範囲が、液滴と排ガスが向流接触可能な範囲となり、すなわち、除塵に効果的な範囲である。そして、この半径Rを有効半径Rといい、平面視ではスプレノズルの中心を中心とした半径Rの円で囲まれる範囲がスプレノズルから噴霧される液滴と排ガスが向流接触可能な範囲となる。また円錐状とは、概ね円錐形状であれば良く、シャワー状、傘状、釣り鐘状などの形状も含む意である。   Since the droplet sprayed from the two-fluid spray nozzle in the fine particle spray portion is sprayed in a conical shape with the center of the spray nozzle as a vertex, the horizontal movement distance is from the spraying of the droplet in the outer peripheral portion to the inversion. Is the radius R of the circle on the bottom surface when the moving distance is the length of the side surface of the cone (the length of the generatrix). The range surrounded by the cone is a range where the liquid droplet and the exhaust gas can counter-contact, that is, an effective range for dust removal. The radius R is referred to as an effective radius R, and in a plan view, a range surrounded by a circle having a radius R centered on the center of the spray nozzle is a range in which the droplet sprayed from the spray nozzle and the exhaust gas can be in countercurrent contact. The conical shape may be a generally conical shape and includes shapes such as a shower shape, an umbrella shape, and a bell shape.

そして、微粒スプレ部の二流体スプレノズルから噴霧される液滴と排ガスが向流接触可能な範囲は、排ガスの流速よりも液滴の噴射速度と噴射角度に大きく影響を受ける。例えば、微粒スプレ部の液滴の噴射速度及び噴射角度と有効半径Rには、後述する図9に示すような関係がある。微粒スプレ部の二流体スプレノズルから噴霧される液滴は下降するが、それに抗する排ガス流れにより反転して上昇する。   The range in which the droplet sprayed from the two-fluid spray nozzle of the fine particle spray portion and the exhaust gas can be counter-contacted is greatly influenced by the droplet ejection speed and the ejection angle rather than the exhaust gas flow velocity. For example, the ejection speed and the ejection angle of the droplets in the fine particle spray portion and the effective radius R have a relationship as shown in FIG. The droplet sprayed from the two-fluid spray nozzle of the fine particle spray portion descends, but reverses and rises due to the exhaust gas flow against it.

したがって、微粒スプレ部の二流体スプレノズルの間隔Pをスプレノズルの噴霧条件である噴射角度(排ガス流に対する液滴の噴射角度)と噴射速度の関係で一義的に決まるように定義づけすると良い。
そして、図9に示す関係から液滴の噴射速度Vp(m/s)と噴射角度θ(deg)との関係を整理すると、下記式(1)で表すことができる。
R(m)=[(−1.2×10-5) θ2+(1.5×10-3)θ−8.5×10-3]×Vp0.5(1)
例えば、微粒スプレ部の各二流体スプレノズルから同じ噴霧条件で噴霧される場合は、スプレノズルの間隔P(m)を式(1)の有効半径R(m)の2倍以内にすると良い。
したがって、請求項4又は請求項8記載の発明によれば、上記請求項1又は請求項2、請求項5又は請求項6記載の発明の作用に加えて、微粒スプレ部の二流体スプレノズル同士の間隔P(m)を 式(1)の数値に基づいて設定することで、サブミクロン単位の煤塵を除去することが可能となる。
Therefore, the interval P between the two-fluid spray nozzles in the fine-particle spray portion may be defined so as to be uniquely determined by the relationship between the spray angle (spray angle of droplets with respect to the exhaust gas flow) that is the spray condition of the spray nozzle and the spray speed.
Then, when the relationship between the droplet ejection speed Vp (m / s) and the ejection angle θ (deg) is arranged from the relationship shown in FIG. 9, it can be expressed by the following equation (1).
R (m) = [(-1.2 × 10 −5 ) θ 2 + (1.5 × 10 −3 ) θ−8.5 × 10 −3 ] × Vp 0.5 (1)
For example, when spraying from each two-fluid spray nozzle of the fine particle spray portion under the same spraying condition, the spray nozzle interval P (m) may be set within twice the effective radius R (m) of the equation (1).
Therefore, according to invention of Claim 4 or Claim 8, in addition to the effect | action of the invention of the said Claim 1 or Claim 2, Claim 5 or Claim 6, between two fluid spray nozzles of a fine particle spray part. By setting the interval P (m) based on the numerical value of the expression (1), it becomes possible to remove dust in submicron units.

本発明によれば、簡素な構成で、設備の大型化や費用の増大を抑えて煤塵の除去性能を高めることができる。具体的には、以下の効果を奏する。
請求項1又は請求項5記載の発明によれば、スプレ部のスプレノズルよりも液滴径の小さい液滴を除塵用の微粒スプレ部の複数の二流体スプレノズルから排ガス流れに対して向流に噴霧することで、スプレ部で除去できない粒径のより小さい煤塵を除去することが可能となる。また、微粒スプレ部に補給水を利用することで、新たな水を必要とせず、ユーティリティが増加することもなく、排煙脱硫装置内の水バランス(水の蒸発量と補給量)が崩れることもない。
According to the present invention, dust removal performance can be enhanced with a simple configuration while suppressing an increase in equipment size and cost. Specifically, the following effects are exhibited.
According to the first or fifth aspect of the invention, droplets having a droplet diameter smaller than that of the spray nozzle of the spray portion are sprayed countercurrently to the exhaust gas flow from the plurality of two-fluid spray nozzles of the fine particle spray portion for dust removal. By doing so, it becomes possible to remove soot having a smaller particle diameter that cannot be removed by the spray portion. In addition, by using makeup water for the fine particle spray section, no new water is required, utilities are not increased, and the water balance (evaporation amount and replenishment amount of water) in the flue gas desulfurizer is destroyed. Nor.

更に、ミストエリミネータよりも排ガス流れの上流側で連続的に補給水を噴霧することで、ミストエリミネータの洗浄効果も期待でき、ミストエリミネータの洗浄水量及び洗浄頻度を低減できる。   Further, by spraying the makeup water continuously upstream of the exhaust gas flow with respect to the mist eliminator, the cleaning effect of the mist eliminator can be expected, and the amount of cleaning water and the cleaning frequency of the mist eliminator can be reduced.

また、請求項2又は請求項6記載の発明によれば、上記請求項1又は請求項5記載の発明の効果に加えて、予め求めた除塵に効果的な液ガス比(L/G)と微粒スプレ部の液滴の平均径との関係と、補給水供給量から換算した液ガス比とによって求められる平均径の液滴を排ガスに噴霧することで、より効果的にサブミクロン単位の煤塵を除去できる。   According to the invention described in claim 2 or claim 6, in addition to the effect of the invention described in claim 1 or claim 5, a liquid gas ratio (L / G) effective for dust removal determined in advance is obtained. By spraying the exhaust gas with droplets with an average diameter determined by the relationship between the average diameter of the droplets in the fine particle spray section and the liquid gas ratio converted from the supply amount of makeup water, dust in submicron units is more effectively applied. Can be removed.

そして、請求項3又は請求項7記載の発明によれば、上記請求項1又は請求項2、請求項5又は請求項6記載の発明の効果に加えて、微粒スプレ部の複数の二流体スプレノズル同士の間隔を、各スプレノズルの噴霧領域の外周部をなす液滴の噴霧されてから排ガス流れにより反転して上昇するまでの水平方向の移動距離に基づいて設定することで、微粒スプレ部のいずれの領域においても液滴と排ガスが向流接触するため、効果的に煤塵を除去できる。   And according to invention of Claim 3 or Claim 7, in addition to the effect of the invention of the said Claim 1 or Claim 2, Claim 5 or Claim 6, the several two-fluid spray nozzle of a fine particle spray part. By setting the interval between each spray nozzle based on the horizontal movement distance from the spray of the droplets forming the outer periphery of the spray area of each spray nozzle until it is reversed and raised by the exhaust gas flow, Also in this region, since the droplets and the exhaust gas are in countercurrent contact, soot can be effectively removed.

請求項4又は請求項8記載の発明によれば、上記請求項1又は請求項2、請求項5又は請求項6記載の発明の効果に加えて、微粒スプレ部の二流体スプレノズル同士の間隔P(m)を 式(1)の数値に基づいて設定することで、スプレノズルの間隔設定が容易であると共に、より効果的にサブミクロン単位の煤塵を除去することが可能となる。   According to the invention of claim 4 or claim 8, in addition to the effect of the invention of claim 1 or claim 2, claim 5 or claim 6, the interval P between the two-fluid spray nozzles of the fine particle spray portion. By setting (m) based on the numerical value of Equation (1), it is easy to set the spray nozzle interval, and it is possible to more effectively remove dust in submicron units.

本発明の一実施例である湿式排煙脱硫装置の側面図である。It is a side view of the wet flue gas desulfurization apparatus which is one Example of this invention. 図1の湿式排煙脱硫装置において、1μmの煤塵を90%除去するのに必要な液ガス比(L/G)と除塵用スプレノズルから噴霧される液滴の平均径との関係を示した図である。FIG. 1 is a diagram showing the relationship between the liquid gas ratio (L / G) necessary for removing 90% of 1 μm soot and the average diameter of droplets sprayed from a dust removal spray nozzle in the wet flue gas desulfurization apparatus of FIG. It is. 排ガスの流速を4m/sとした場合の除塵用スプレノズルから噴霧された液滴の飛跡を計算した結果を示した図である。It is the figure which showed the result of having calculated the track of the droplet sprayed from the spray nozzle for dust removal when the flow velocity of exhaust gas is 4 m / s. 排ガスの流速を2m/sとした場合(比較的低負荷時)の除塵用スプレノズルから噴霧された液滴の飛跡を計算した結果を示した図である。It is the figure which showed the result of having calculated the track of the droplet sprayed from the spray nozzle for dust removal when the flow velocity of exhaust gas is 2 m / s (at the time of a comparatively low load). 排ガスの流速を1m/sとした場合(低負荷時)の除塵用スプレノズルから噴霧された液滴の飛跡を計算した結果を示した図である。It is the figure which showed the result of having calculated the track of the droplet sprayed from the spray nozzle for dust removal when the flow velocity of exhaust gas is 1 m / s (at the time of low load). 除塵用スプレノズルから噴霧される液滴の噴射方向を示した図である。It is the figure which showed the injection direction of the droplet sprayed from the spray nozzle for dust removal. 除塵用スプレノズルから噴霧される液滴の噴射方向を示した図である。It is the figure which showed the injection direction of the droplet sprayed from the spray nozzle for dust removal. 除塵用スプレノズルから噴霧される液滴の噴射速度Vpと有効半径Rとの関係を示した図である。It is the figure which showed the relationship between the injection speed Vp of the droplet sprayed from the spray nozzle for dust removal, and the effective radius. 除塵用スプレノズルから噴霧される液滴の噴射速度Vpと噴射角度θと有効半径Rとの関係を示した図である。It is the figure which showed the relationship between the injection speed Vp of the droplet sprayed from the spray nozzle for dust removal, the injection angle (theta), and the effective radius. 図9に示した除塵用スプレノズルから噴霧される液滴の噴射角度θと比例乗数αとの関係を示した図である。It is the figure which showed the relationship between the spray angle (theta) of the droplet sprayed from the spray nozzle for dust removal shown in FIG. 9, and proportional multiplier (alpha). 本発明の他の実施例である湿式排煙脱硫装置の側面図である。It is a side view of the wet flue gas desulfurization apparatus which is another Example of this invention. 従来の湿式排煙脱硫装置の側面図である。It is a side view of the conventional wet flue gas desulfurization apparatus.

以下に、本発明の実施の形態を示す。   Embodiments of the present invention are shown below.

図1には、本発明の一実施例である湿式排煙脱硫装置の側面図を示す。なお、図1の湿式排煙脱硫装置において、図12の湿式排煙脱硫装置と同じ符号の部材の説明は一部省略している。   In FIG. 1, the side view of the wet flue gas desulfurization apparatus which is one Example of this invention is shown. In the wet flue gas desulfurization apparatus in FIG. 1, the description of members having the same reference numerals as those in the wet flue gas desulfurization apparatus in FIG. 12 is partially omitted.

この湿式排煙脱硫装置は、主に排ガス中の有害成分である硫黄酸化物を吸収・除去する吸収塔1と、吸収塔1の排ガス入口ダクト2と、吸収塔1の排ガス出口ダクト3と、排ガスに吸収液を噴霧するスプレノズル13を備えたスプレヘッダ12と、吸収塔1内の吸収液の循環ポンプ4と、吸収塔1内の吸収液を貯留する循環タンク6と、循環タンク6内の吸収液を攪拌する攪拌機7と、循環タンク6内の吸収液に酸化用空気を吹き込むための空気吹込み管8と、排ガスに同伴される液滴径の小さいミストを捕集するミストエリミネータ9と、循環タンク6内の吸収液の抜出し管10と、循環タンク6内の吸収液をスプレヘッダ12に送る循環配管11等から構成される。   This wet flue gas desulfurization apparatus mainly includes an absorption tower 1 that absorbs and removes sulfur oxide, which is a harmful component in exhaust gas, an exhaust gas inlet duct 2 of the absorption tower 1, an exhaust gas outlet duct 3 of the absorption tower 1, A spray header 12 provided with a spray nozzle 13 for spraying an absorption liquid onto exhaust gas, a circulation pump 4 for the absorption liquid in the absorption tower 1, a circulation tank 6 for storing the absorption liquid in the absorption tower 1, and an absorption in the circulation tank 6 A stirrer 7 for agitating the liquid, an air blowing pipe 8 for blowing oxidizing air into the absorption liquid in the circulation tank 6, a mist eliminator 9 for collecting mist with a small droplet diameter accompanying the exhaust gas, An absorption liquid extraction pipe 10 in the circulation tank 6 and a circulation pipe 11 for sending the absorption liquid in the circulation tank 6 to the spray header 12 are constituted.

火力発電所や工場等に設置されるボイラ等の燃焼装置から排出される硫黄酸化物を含む排ガスは、図示していない脱硫ファンにより入口ダクト2から吸収塔1にほぼ水平方向に導入され、上方に流れて吸収塔1の塔頂部に設けられた出口ダクト3から排出される。   Exhaust gas containing sulfur oxides discharged from a combustion apparatus such as a boiler installed in a thermal power plant or factory is introduced into the absorption tower 1 from the inlet duct 2 in a substantially horizontal direction by a desulfurization fan (not shown) And is discharged from an outlet duct 3 provided at the top of the absorption tower 1.

吸収塔1では、スプレノズル13から微細な液滴として噴霧される石灰石または石灰を含むスラリなどの吸収剤の液滴と排ガスとを気液接触させることで、排ガス中のばいじんや塩化水素(HCl)、フッ化水素(HF)等の酸性ガスと共に、排ガス中の硫黄酸化物(SOx)はスプレノズル13の吸収液滴表面で化学的に吸収、除去される。   In the absorption tower 1, dust particles and hydrogen chloride (HCl) in exhaust gas are brought into gas-liquid contact with exhaust gas droplets of an absorbent such as limestone or slurry containing lime sprayed as fine droplets from the spray nozzle 13. Along with the acidic gas such as hydrogen fluoride (HF), sulfur oxide (SOx) in the exhaust gas is chemically absorbed and removed on the surface of the absorbing droplets of the spray nozzle 13.

SO2を吸収した吸収液は、一旦循環タンク6に溜まり、酸化用攪拌機7によって攪拌されながら、空気吹込み管8から供給される空気中の酸素により酸化され硫酸カルシウム(石膏)を生成する。 The absorbing solution that has absorbed SO 2 once accumulates in the circulation tank 6 and is oxidized by oxygen in the air supplied from the air blowing pipe 8 while being stirred by the oxidizing stirrer 7 to generate calcium sulfate (gypsum).

循環タンク6にあるスラリ状の吸収液5は、吸収液循環ポンプ4により昇圧され、吸収液循環配管11を経由して、吸収塔1内の上部のスプレヘッダ12に供給される。
炭酸カルシウム及び石膏が共存する循環タンク6内の吸収液5の一部は、吸収液循環ポンプ4によって再びスプレノズル13に送られ、一部は吸収液抜き出し管10より図示していない廃液処理・石膏回収系へと送られる。また、スプレノズル13からの噴霧によって微粒化された吸収液5の中で、液滴径が微小なミストは排ガスに同伴されるが、出口ダクト3側に設けられたミストエリミネータ9によって捕集・除去される。
The slurry-like absorption liquid 5 in the circulation tank 6 is boosted by the absorption liquid circulation pump 4 and supplied to the upper spray header 12 in the absorption tower 1 via the absorption liquid circulation pipe 11.
A part of the absorption liquid 5 in the circulation tank 6 in which calcium carbonate and gypsum coexist is sent again to the spray nozzle 13 by the absorption liquid circulation pump 4, and a part of the waste liquid treatment / gypsum (not shown) from the absorption liquid discharge pipe 10. It is sent to the recovery system. Further, in the absorbing liquid 5 atomized by the spray from the spray nozzle 13, the mist having a small droplet diameter is accompanied by the exhaust gas, but is collected and removed by the mist eliminator 9 provided on the outlet duct 3 side. Is done.

湿式脱硫装置の排ガス流れの上流には図示していない集塵装置が設置され、ボイラから排出されるほとんどの灰は除去されるが、微細な灰は集塵装置でも除去されず、排ガスに同伴されながら湿式脱硫装置に流入する。しかし、湿式脱硫装置の吸収塔1内ではスプレノズル13から噴霧された多量の吸収液5の液滴が落下しているため、微細な灰のほとんどはこの液滴との慣性衝突により除去される。   A dust collector (not shown) is installed upstream of the exhaust gas flow of the wet desulfurizer, and most of the ash discharged from the boiler is removed, but fine ash is not removed by the dust collector and is accompanied by the exhaust gas. While flowing, it flows into the wet desulfurization apparatus. However, since a large amount of droplets of the absorbing liquid 5 sprayed from the spray nozzle 13 are falling in the absorption tower 1 of the wet desulfurization apparatus, most of the fine ash is removed by inertial collision with the droplets.

図1に示す湿式排煙脱硫装置は、最上段のスプレノズル13とミストエリミネータ9との間に二流体方式の除塵用スプレノズル14を複数配置した除塵用スプレヘッダ17を備え、この除塵用スプレヘッダ17に補給水供給ライン15を設け、除塵用スプレノズル14から補給水として工業用水を噴霧する点で図12に示す従来の湿式排煙脱硫装置と異なる。   The wet flue gas desulfurization apparatus shown in FIG. 1 includes a dust removal spray header 17 in which a plurality of two-fluid type dust removal spray nozzles 14 are arranged between the uppermost spray nozzle 13 and the mist eliminator 9. It differs from the conventional wet flue gas desulfurization apparatus shown in FIG. 12 in that a water supply line 15 is provided and industrial water is sprayed from the dust removal spray nozzle 14 as makeup water.

従来の湿式排煙脱硫装置では、スプレノズル13から噴霧される液滴で除去できる灰の大きさには限界があり、浮遊粒子状物質のうち2.5μm以下のものを対象とするような1μm以下のサブミクロン領域の灰は除去されずに、そのまま吸収塔1から排出されていた。   In conventional wet flue gas desulfurization equipment, there is a limit to the size of ash that can be removed by droplets sprayed from the spray nozzle 13, and 1 μm or less that targets 2.5 μm or less of suspended particulate matter. The ash in the submicron region was not removed and was directly discharged from the absorption tower 1.

排ガス中の煤塵とスプレノズル13から噴霧される吸収液5の液滴との慣性衝突で除去される煤塵の大きさは噴霧される液滴の大きさに依存し、排ガスに噴霧される液滴を小さくすることで除去可能な煤塵の限界粒径を小さくすることができる。また、その煤塵の除去に要する液量を低減することも可能となる。   The size of the dust removed by the inertial collision between the dust in the exhaust gas and the droplet of the absorbing liquid 5 sprayed from the spray nozzle 13 depends on the size of the sprayed droplet. The critical particle size of dust that can be removed can be reduced by reducing the size. It is also possible to reduce the amount of liquid required for removing the dust.

本実施例によれば、ミストエリミネータ9の上流側に小容量の除塵用スプレノズル14として二流体スプレノズルを複数配置しており、除塵用スプレノズル14から微粒液滴が円錐状に噴霧される。二流体スプレノズルによれば、圧縮空気供給管16から圧縮空気を除塵用スプレノズル14に送り、除塵用スプレノズル14の内部で水に気体を混合させるため、高速気流によって液体が粉砕して微粒化する。このように、液体と気体を混合させることで微細な液体の粒子を作り出し、スプレノズル13から噴霧される吸収液5の液滴よりも微細な液滴を噴霧することが可能となり、より小さな煤塵をも除去することが可能となる。なお、除塵用スプレヘッダ17を複数段備えても良い。   According to the present embodiment, a plurality of two-fluid spray nozzles are arranged on the upstream side of the mist eliminator 9 as small-capacity dust removal spray nozzles 14, and fine droplets are sprayed from the dust removal spray nozzle 14 in a conical shape. According to the two-fluid spray nozzle, the compressed air is sent from the compressed air supply pipe 16 to the dust removal spray nozzle 14 and gas is mixed with water inside the dust removal spray nozzle 14, so that the liquid is pulverized and atomized by the high-speed air flow. In this way, by mixing the liquid and gas, fine liquid particles can be created, and it is possible to spray finer droplets than the droplets of the absorbing liquid 5 sprayed from the spray nozzle 13, so that smaller dust can be generated. Can also be removed. A plurality of dust removal spray headers 17 may be provided.

また、吸収塔1には90〜160℃程度の排ガスが導入されるため、この排ガスと接触する吸収液5が蒸発して、その蒸発水は図示しない煙突から排出される。したがって、吸収塔1には蒸発した分に見合うだけの補給水として工業用水を連続的に供給する必要がある。   Moreover, since the exhaust gas of about 90-160 degreeC is introduce | transduced into the absorption tower 1, the absorption liquid 5 which contacts this exhaust gas evaporates, and the evaporated water is discharged | emitted from the chimney which is not shown in figure. Therefore, it is necessary to continuously supply industrial water to the absorption tower 1 as makeup water corresponding to the amount evaporated.

本実施例によれば、除塵用スプレノズル14から噴霧する水に補給水を利用することで、新たな水を必要とせず、ユーティリティが増加することもなく、水バランスが崩れることもない。また、ミストエリミネータ9よりも排ガス流れの上流側で連続的に補給水を噴霧することで、ミストエリミネータ9の洗浄効果も期待できると共に、ミストエリミネータの洗浄水量及び洗浄頻度を低減することも可能である。   According to the present embodiment, by using makeup water as the water sprayed from the dust removal spray nozzle 14, no new water is required, the utility is not increased, and the water balance is not lost. Further, by spraying makeup water continuously upstream of the exhaust gas flow from the mist eliminator 9, it is possible to expect the cleaning effect of the mist eliminator 9, and it is also possible to reduce the amount of cleaning water and the cleaning frequency of the mist eliminator. is there.

図2には、図1の湿式排煙脱硫装置において、1μmの煤塵を90%除去するのに必要な液ガス比(L/G)と除塵用スプレノズル14から噴霧される液滴の平均径との関係を示す。吸収塔1に導入される排ガス流速を4m/sとし、除塵用スプレノズル14から噴霧される液滴径を、レーザー位相ドップラー計測器により測定した。なお、スプレノズル13から噴霧される液滴は、除塵用スプレノズル14から噴霧される液滴に比べて大きいため、サブミクロン単位の煤塵を除去できない。したがって、スプレノズル13からの噴霧滴量は考慮する必要はない。   FIG. 2 shows the liquid gas ratio (L / G) required to remove 90% of 1 μm soot and the average diameter of droplets sprayed from the dust removal spray nozzle 14 in the wet flue gas desulfurization apparatus of FIG. The relationship is shown. The exhaust gas flow velocity introduced into the absorption tower 1 was set to 4 m / s, and the droplet diameter sprayed from the dust removal spray nozzle 14 was measured with a laser phase Doppler measuring instrument. In addition, since the droplet sprayed from the spray nozzle 13 is larger than the droplet sprayed from the spray nozzle 14 for dust removal, the dust in a submicron unit cannot be removed. Therefore, there is no need to consider the amount of spray droplets from the spray nozzle 13.

図2からも分かるように、除塵用スプレノズル14から噴霧される液滴を小さくすることで、より少ないL/Gで微粒の煤塵を除去できることが分かる。
したがって、除塵に効果的な液ガス比(L/G)と除塵用スプレノズル14の液滴の平均径との関係を予め求めておき、吸収塔1に必要な補給水供給量を液ガス比に換算して、この液ガス比と前記液ガス比と液滴の平均径との関係から除塵用スプレノズル14により噴霧する液滴の平均径を求めることで、より効果的にサブミクロン単位の煤塵を除去できる。
As can be seen from FIG. 2, it can be seen that by reducing the droplets sprayed from the dust removal spray nozzle 14, fine particulate dust can be removed with less L / G.
Therefore, the relationship between the liquid gas ratio (L / G) effective for dust removal and the average diameter of the droplets of the dust removal spray nozzle 14 is obtained in advance, and the supply water supply amount necessary for the absorption tower 1 is set to the liquid gas ratio. In conversion, the average diameter of the droplets sprayed by the dust removal spray nozzle 14 is obtained from the relationship between the liquid gas ratio, the liquid gas ratio, and the average diameter of the liquid droplets. Can be removed.

例えば、一般的な湿式排煙脱硫装置の補給水供給量をL/Gに換算すると0.05L/m3Nであり、除塵用スプレノズル14から噴霧する水を補給水だけで賄うためには、除塵用スプレノズル14から噴霧される液滴の径を130μm以下にすればよいことが分かる。ここで、一般的な湿式排煙脱硫装置とは、排ガス流路の上流側に冷却塔やガスクーラが設置されていない入口ガス温度として130〜160℃の脱硫装置であり、その補給水供給量とは1000MWのボイラの場合で125〜160t/h程度である。1000MWの排ガス量を300万m3N/hとすれば、L/G=(125〜160)×1000/300万≒0.05リットル/m3Nとなる。
そして、除塵用スプレノズル14から噴霧される液滴の径を130μm以下にすることで、より少ない液量で1μm以下の小さな煤塵も除去することが可能になる。
For example, when the amount of makeup water supplied from a general wet flue gas desulfurization device is converted to L / G, it is 0.05 L / m 3 N. It can be seen that the diameter of the droplet sprayed from the dust removal spray nozzle 14 should be 130 μm or less. Here, a general wet flue gas desulfurization device is a desulfurization device having an inlet gas temperature of 130 to 160 ° C. in which no cooling tower or gas cooler is installed upstream of the exhaust gas flow path. Is about 125 to 160 t / h in the case of a 1000 MW boiler. If the amount of exhaust gas of 1000 MW is 3 million m 3 N / h, L / G = (125 to 160) × 1000/3 million≈0.05 liter / m 3 N.
Then, by setting the diameter of the droplet sprayed from the dust removal spray nozzle 14 to 130 μm or less, it is possible to remove small dust of 1 μm or less with a smaller liquid amount.

一方、除塵用スプレノズル14から噴霧する液滴の径を小さくすると、排ガスに対して向流噴霧された液滴も排ガスにあおられて反転し、排ガス流れに同伴されるようになる。その同伴流では効果的にサブミクロン単位の煤塵を除去できないため、除塵用スプレノズル14を設置したいずれの領域も液滴と排ガスが向流接触するように、除塵用スプレノズル14の間隔に配慮する必要がある。   On the other hand, when the diameter of the droplet sprayed from the dust removal spray nozzle 14 is reduced, the droplet sprayed counter-currently to the exhaust gas is also reversed by the exhaust gas and is accompanied by the exhaust gas flow. Since the entrained flow cannot effectively remove sub-micron soot dust, it is necessary to consider the distance between the dust removal spray nozzles 14 so that the droplets and the exhaust gas are in countercurrent contact in any area where the dust removal spray nozzles 14 are installed. There is.

図3には、排ガスの流速を4m/sとした場合の除塵用スプレノズル14から噴霧された液滴の飛跡を計算した結果を示し、図4には、排ガスの流速を2m/sとした場合(比較的低負荷時)の除塵用スプレノズルから噴霧された液滴の飛跡を計算した結果を示し、図5には、排ガスの流速を1m/sとした場合(低負荷時)の除塵用スプレノズルから噴霧された液滴の飛跡を計算した結果を示す。この液滴は、円錐状(シャワー状)に噴霧する場合の一番外側(噴霧領域の外周をなす)の液滴であり、霧状に噴霧される液滴のうちの一滴(代表的な液滴)を指している。また、図3〜図5のx軸、y軸の基準点(ゼロ点)は除塵用スプレノズル14の中心である。   FIG. 3 shows the result of calculating the tracks of droplets sprayed from the dust removal spray nozzle 14 when the exhaust gas flow rate is 4 m / s. FIG. 4 shows the exhaust gas flow rate is 2 m / s. FIG. 5 shows the result of calculating the track of the droplet sprayed from the dust removal spray nozzle (at a relatively low load), and FIG. 5 shows the dust removal spray nozzle when the flow rate of the exhaust gas is 1 m / s (when the load is low). The result of having calculated the track of the droplet sprayed from is shown. This droplet is the outermost droplet (which forms the outer periphery of the spray region) when sprayed in a conical shape (shower shape), and is one of the droplets sprayed in a mist (typical liquid). Point). 3 to 5, the reference point (zero point) of the x-axis and y-axis is the center of the dust removal spray nozzle 14.

図3の計算条件として、ガス流速を4m/s、液滴径を130μm、噴射角度を45度、液滴の噴射速度Vpを50〜400m/s(5段階の速度)とした。また、図4及び図5には、低負荷(低ボイラ出力)時を想定したガス流速2m/s及び1m/sの場合の液滴の飛跡を計算した結果を示す。図4及び図5の計算条件としては、ガス流速以外は図3の計算条件と同様とした。   The calculation conditions in FIG. 3 were as follows: the gas flow rate was 4 m / s, the droplet diameter was 130 μm, the ejection angle was 45 degrees, and the droplet ejection speed Vp was 50 to 400 m / s (5-stage speed). FIG. 4 and FIG. 5 show the results of calculating droplet trajectories when the gas flow rates are 2 m / s and 1 m / s assuming low load (low boiler output). The calculation conditions of FIGS. 4 and 5 were the same as the calculation conditions of FIG. 3 except for the gas flow rate.

除塵用スプレノズル14から下方に噴射された液滴は吸収塔1内を上昇する排ガスに抗して下方に飛散するが、液滴が有する運動エネルギーは排ガスに抗して下方に飛散する際に、排ガスによる抵抗力によって失われ、除塵用スプレノズル14から或る距離で排ガスにあおられて反転し、排ガス流れに同伴されて上昇する。したがって、除塵用スプレノズル14から噴霧される液滴は、Uターンの飛跡を描く。   The droplets sprayed downward from the spray nozzle 14 for dust removal are scattered downward against the exhaust gas rising in the absorption tower 1, but when the kinetic energy of the droplets is scattered downward against the exhaust gas, It is lost by the resistance due to the exhaust gas, and is reversed by being swept by the exhaust gas at a certain distance from the spray nozzle 14 for dust removal, and rises accompanying the exhaust gas flow. Therefore, the droplet sprayed from the spray nozzle 14 for dust removal draws a U-turn track.

そして、この液滴が反転する除塵用スプレノズル14からの距離(噴霧されてから反転するまでの液滴の移動距離)は図3から図5に示される通り、排ガスのガス流速Ugと噴射速度Vp、更には噴射角度θによっても変わってくるが、液滴が排ガス流れと同伴流になるとサブミクロン単位の煤塵粒子を除去することは難しくなるため、液滴と排ガスが向流接触する微粒子を効果的に除去可能な範囲は液滴が噴射されてから反転するまでと考えられる。   The distance from the dust removal spray nozzle 14 where the liquid droplets are reversed (the movement distance of the liquid droplets from when the liquid is sprayed to when the liquid droplets are reversed) is, as shown in FIGS. 3 to 5, the gas flow velocity Ug and the injection velocity Vp of the exhaust gas. In addition, although it varies depending on the injection angle θ, it is difficult to remove the dust particles in submicron units when the droplet becomes an exhaust gas flow and entrained flow. The range that can be removed is considered to be from when the droplet is ejected to when it is reversed.

したがって、除塵用スプレノズル14同士の間隔を、各除塵用スプレノズル14の噴霧領域の外周部をなす液滴の噴霧されてから反転するまでの水平方向の移動距離に基づいて設定することで、除塵用スプレノズル14を設置したいずれの領域も液滴と排ガスの向流接触が可能となり、効果的に煤塵を除去できる。   Therefore, by setting the interval between the dust removal spray nozzles 14 based on the horizontal movement distance from the spraying of the droplets forming the outer peripheral portion of the spray area of each dust removal spray nozzle 14 to the reverse, In any area where the spray nozzle 14 is installed, the countercurrent contact between the droplet and the exhaust gas is possible, and soot can be effectively removed.

例えば、図6に示すように、各除塵用スプレノズル14から噴霧される液滴の噴射速度や噴射角度などの噴射条件がほぼ同じであれば(噴射方向を実線で示す)、除塵用スプレノズル14同士の間隔をこの液滴の水平方向の移動距離h1の2倍と同じ間隔又はそれ以内にすれば良い。   For example, as shown in FIG. 6, if spray conditions such as the spray speed and spray angle of droplets sprayed from each dust removal spray nozzle 14 are substantially the same (the spray direction is indicated by a solid line), the dust spray nozzles 14 Is equal to or less than twice the horizontal movement distance h1 of the droplet.

また、図7に示すように、各除塵用スプレノズル14から噴霧される液滴の噴射条件が異なる場合は、隣接する除塵用スプレノズル14の互いに向かい合う方向に噴霧される各液滴の水平方向の移動距離を足した距離(h2+h3)と同じ又はそれ以内の距離を、これら除塵用スプレノズル14同士の間隔とすれば良い。   In addition, as shown in FIG. 7, when the ejection conditions of the droplets sprayed from each dust removal spray nozzle 14 are different, the horizontal movement of each droplet sprayed in the direction in which the adjacent dust removal spray nozzles 14 face each other is performed. The distance between the dust removal spray nozzles 14 may be a distance equal to or within the distance (h2 + h3) obtained by adding the distances.

除塵用スプレノズル14から噴霧される液滴は除塵用スプレノズル14の中心を頂点とした円錐状に噴霧されるため、前記水平方向の移動距離は、外周部の液滴の噴霧されてから反転するまでの移動距離(除塵用スプレノズル14の中心からの移動距離)を円錐の側面長さ(母線の長さ)とした場合の底面の円の半径Rとなる。この円錐で囲まれる範囲が、液滴と排ガスが向流接触可能な範囲となり、すなわち、除塵に効果的な範囲である。そして、この半径Rを有効半径Rといい、平面視では除塵用スプレノズル14の中心を中心とした半径Rの円で囲まれる範囲が除塵用スプレノズル14から噴霧される液滴と排ガスが向流接触可能な範囲となる。   Since the droplets sprayed from the dust removal spray nozzle 14 are sprayed in a conical shape with the center of the dust removal spray nozzle 14 as the apex, the horizontal movement distance is from the spraying of the droplets on the outer periphery to the inversion. Is the radius R of the bottom circle when the side distance of the cone (the distance of the generatrix) is the length of the cone (the distance from the center of the spray nozzle 14 for dust removal). The range surrounded by the cone is a range where the liquid droplet and the exhaust gas can counter-contact, that is, an effective range for dust removal. The radius R is referred to as an effective radius R. In a plan view, the range surrounded by a circle of radius R centered on the center of the dust removal spray nozzle 14 is in countercurrent contact between the droplets sprayed from the dust removal spray nozzle 14 and the exhaust gas. To the extent possible.

図8には、除塵用スプレノズル14から噴霧される液滴の噴射速度Vpと有効半径Rとの関係を示し、図9には、除塵用スプレノズル14から噴霧される液滴の噴射角度θを変えた場合の噴射速度Vpと有効半径Rとの関係を示す。なお、図8の数値は図3〜図5の計算結果から求めた。   FIG. 8 shows the relationship between the spray velocity Vp of the droplet sprayed from the dust removal spray nozzle 14 and the effective radius R, and FIG. 9 shows the change in the spray angle θ of the droplet sprayed from the dust spray nozzle 14. In this case, the relationship between the injection speed Vp and the effective radius R is shown. In addition, the numerical value of FIG. 8 was calculated | required from the calculation result of FIGS.

図8からも分かるように、排ガスの流速、すなわち負荷(ボイラ出力)が変化しても、通常想定される排ガスの流速の範囲(ここでは1〜4m/s)では、有効半径Rにはほとんど影響しないことが分かる。むしろ低負荷(排ガスの流速が遅い)になると有効半径Rは若干大きくなる傾向があり、除塵用スプレノズル14同士の間隔Pを定格負荷時の有効半径Rに合わせて設定しておけば、低負荷時においてもサブミクロン領域の煤塵の除去性能が低下することはない。   As can be seen from FIG. 8, even if the exhaust gas flow rate, that is, the load (boiler output) changes, the effective radius R is almost within the normally assumed exhaust gas flow rate range (1 to 4 m / s in this case). It can be seen that there is no effect. Rather, when the load is low (the exhaust gas flow rate is slow), the effective radius R tends to increase slightly. If the interval P between the dust removal spray nozzles 14 is set in accordance with the effective radius R at the rated load, the load decreases. Even at times, the dust removal performance in the submicron region does not deteriorate.

そして、この有効半径Rは、上述の排ガスの流速に比べて液滴の噴射速度と噴射角度に大きく影響を受ける。図9に示すように、液滴の噴射速度Vp(図中ではx軸)と有効半径R(図中ではy軸)の関係は、それぞれ図中の式で表され、Vpの約0.5乗に比例することが分かる。噴射角度θによって比例乗数αが変化するため、液滴の噴射角度θと比例乗数αの関係を整理すると図10のようになる。   The effective radius R is greatly influenced by the droplet ejection speed and the ejection angle compared to the above-described exhaust gas flow velocity. As shown in FIG. 9, the relationship between the droplet ejection speed Vp (x-axis in the figure) and the effective radius R (y-axis in the figure) is expressed by the equation in the figure, and Vp is about 0.5. It can be seen that it is proportional to the power. Since the proportional multiplier α varies depending on the ejection angle θ, the relationship between the droplet ejection angle θ and the proportional multiplier α is shown in FIG.

図10には、図9に示した除塵用スプレノズル14から噴霧される液滴の噴射角度θと比例乗数αとの関係を示す。このθとαの関係は図中に示したような二次関数で表されるため、有効半径Rは、下記式(1)で表すことができる。
R=[(−1.2×10-5) θ2+(1.5×10-3)θ−8.5×10-3]×Vp0.5(1)
したがって、除塵用スプレノズル14から噴霧される液滴が円錐状に噴霧される場合、隣り合うスプレノズルからは互いに向かい合う方向に液滴が噴霧されるため、隣り合う除塵用スプレノズル14同士の間隔Pをこの有効半径R1(一方のスプレノズルの有効半径)とR2(他方のスプレノズルの有効半径)の加算値(R1+R2)以内にしておけば、除塵用スプレノズル14を設置したいずれの領域も液滴と排ガスの向流接触が可能となり、サブミクロン単位のダスト粒子を除去することが可能となる。
FIG. 10 shows the relationship between the spray angle θ of the droplet sprayed from the dust removal spray nozzle 14 shown in FIG. 9 and the proportional multiplier α. Since the relationship between θ and α is expressed by a quadratic function as shown in the figure, the effective radius R can be expressed by the following formula (1).
R = [(− 1.2 × 10 −5 ) θ 2 + (1.5 × 10 −3 ) θ−8.5 × 10 −3 ] × Vp 0.5 (1)
Therefore, when the droplet sprayed from the dust removal spray nozzle 14 is sprayed in a conical shape, the droplet is sprayed in a direction facing each other from the adjacent spray nozzle. Therefore, the interval P between the dust removal spray nozzles 14 is set to this distance P. As long as the effective radius R1 (effective radius of one spray nozzle) and R2 (effective radius of the other spray nozzle) are within the added value (R1 + R2), any area where the dust removal spray nozzle 14 is installed is directed to the direction of droplets and exhaust gas. Flow contact is possible, and dust particles in submicron units can be removed.

また、全ての除塵用スプレノズル14の噴射条件が同じである場合は、全ての除塵用スプレノズル14の設置間隔を有効半径Rの2倍以内にすることで、除塵用スプレノズル14の間隔設定が容易になる。   In addition, when the spraying conditions of all the dust removal spray nozzles 14 are the same, the interval between the dust removal spray nozzles 14 can be easily set by setting the installation interval of all the dust removal spray nozzles 14 within twice the effective radius R. Become.

図11には、本発明の他の実施例である湿式排煙脱硫装置の側面図を示す。
この実施例2の湿式排煙脱硫装置は実施例1(図1)の湿式排煙脱硫装置とは、補給水に海水を利用した点で異なる。補給水に海水を利用することで海水中の塩類が濃縮され、吸収液5中の塩濃度が増大することになるが、補給水として使用される工業用水の量を低減することができ、節水が求められる地域の湿式排煙脱硫装置として適用することが可能となる。
In FIG. 11, the side view of the wet flue gas desulfurization apparatus which is another Example of this invention is shown.
The wet flue gas desulfurization apparatus of Example 2 differs from the wet flue gas desulfurization apparatus of Example 1 (FIG. 1) in that seawater is used as makeup water. By using seawater as make-up water, the salt in the seawater is concentrated and the salt concentration in the absorbent 5 is increased. However, the amount of industrial water used as make-up water can be reduced, and water is saved. Therefore, it can be applied as a wet type flue gas desulfurization apparatus in an area where the demand is required.

また、本実施例特有の効果としては、吸収液5中の塩濃度が増大することで、吸収液中の水銀(排ガス中の水銀を吸収したもの)が安定化し、吸収塔1からの再放出を抑制できる。排ガス中の水銀は、吸収液中の塩類と錯体を形成するため安定化する。   Further, as an effect peculiar to the present embodiment, the salt concentration in the absorption liquid 5 is increased, so that the mercury in the absorption liquid (which absorbs mercury in the exhaust gas) is stabilized and re-released from the absorption tower 1. Can be suppressed. Mercury in the exhaust gas is stabilized because it forms a complex with the salts in the absorbing solution.

補給水に海水を使用する本実施例の場合でも、図2のような関係と吸収塔1に必要な補給水供給量を液ガス比に換算した値とから求められる平均径の液滴を除塵用スプレノズル14により噴霧しても良い。この場合は、より少ない液量で1μm以下の小さな煤塵も除去することが可能になる。   Even in the case of this embodiment in which seawater is used as make-up water, the average diameter droplets obtained from the relationship shown in FIG. 2 and the value obtained by converting the make-up water supply amount required for the absorption tower 1 into the liquid gas ratio are removed. The spray nozzle 14 may be used for spraying. In this case, it is possible to remove small dust of 1 μm or less with a smaller liquid amount.

また、除塵用スプレノズル14同士の間隔を、各除塵用スプレノズル14の噴霧領域の外周部をなす液滴の噴霧されてから反転するまでの水平方向の移動距離に基づいて設定したり、上記式(1)の有効半径Rに基づいて設定することで、より効果的にサブミクロン単位の煤塵を除去できる。   Further, the interval between the dust removal spray nozzles 14 is set based on the horizontal movement distance from when the droplets forming the outer peripheral portion of the spray region of each dust removal spray nozzle 14 are sprayed to when they are reversed, or the above formula ( By setting based on the effective radius R of 1), dust in submicron units can be removed more effectively.

湿式排煙脱硫装置などにおいて、補給水量を低減可能な技術として利用可能性がある。   In wet flue gas desulfurization equipment and the like, it may be used as a technology that can reduce the amount of makeup water.

1 吸収塔 2 排ガス入口ダクト
3 排ガス出口ダクト 4 循環ポンプ
5 吸収液 6 循環タンク
7 攪拌機 8 空気吹込み管
9 ミストエリミネータ 10 抜出し管
11 循環配管 12 スプレヘッダ
13 スプレノズル 14 除塵用スプレノズル
15 補給水供給ライン 16 圧縮空気供給管
17 除塵用スプレヘッダ
DESCRIPTION OF SYMBOLS 1 Absorption tower 2 Exhaust gas inlet duct 3 Exhaust gas outlet duct 4 Circulation pump 5 Absorption liquid 6 Circulation tank 7 Stirrer 8 Air blowing pipe 9 Mist eliminator 10 Extraction pipe 11 Circulation pipe 12 Spray header 13 Spray nozzle 14 Dust removal spray nozzle 15 Supplementary water supply line 16 Compressed air supply pipe 17 Dust removal spray header

Claims (8)

ボイラを含む燃焼装置から排出される排ガスに吸収液を噴霧する複数のスプレノズルを有するスプレ部と該スプレ部の排ガス流路の下流側に設けられ、排ガス流れに同伴されるミストを捕集するミストエリミネータとを有し、排ガス中の硫黄酸化物を吸収、除去する吸収塔を備えた湿式排煙脱硫装置において、
前記吸収塔に補給水を供給する補給水供給部を設け、
前記スプレ部と前記ミストエリミネータとの間に、前記補給水供給部により供給される水を前記スプレ部のスプレノズルから噴霧される液滴よりも微粒液滴にして排ガス流れに対して向流噴霧する複数の二流体スプレノズルからなる除塵用の微粒スプレ部を設けたことを特徴とする湿式排煙脱硫装置。
A spray part having a plurality of spray nozzles for spraying an absorbing liquid onto exhaust gas discharged from a combustion apparatus including a boiler, and a mist provided on the downstream side of the exhaust gas flow path of the spray part to collect mist accompanying the exhaust gas flow In a wet flue gas desulfurization apparatus having an eliminator and having an absorption tower for absorbing and removing sulfur oxides in exhaust gas,
Providing a makeup water supply section for supplying makeup water to the absorption tower;
Between the spray part and the mist eliminator, the water supplied by the makeup water supply part is made finer droplets than those sprayed from the spray nozzle of the spray part, and sprayed countercurrently to the exhaust gas flow. A wet flue gas desulfurization apparatus comprising a fine particle spray portion for dust removal comprising a plurality of two-fluid spray nozzles.
前記微粒スプレ部の複数の二流体スプレノズルから噴霧される液滴の平均径は、予め求められた排ガス中の一定の大きさの煤塵を所定割合以上除去可能な排ガスと微粒スプレ部の噴霧液量との液ガス比(L/G)と前記微粒スプレ部の複数の二流体スプレノズルから噴霧される液滴の平均径との関係と、前記吸収塔に供給する補給水から換算される液ガス比(L/G)とにより求められる平均径であることを特徴とする請求項1記載の湿式排煙脱硫装置。   The average diameter of droplets sprayed from a plurality of two-fluid spray nozzles in the fine-particle spray part is the amount of sprayed liquid in the exhaust gas and fine-particle spray part capable of removing a predetermined amount or more of dust of a certain size in the exhaust gas obtained in advance. Between the liquid gas ratio (L / G) and the average diameter of droplets sprayed from a plurality of two-fluid spray nozzles of the fine particle spray section, and the liquid gas ratio converted from the makeup water supplied to the absorption tower The wet flue gas desulfurization apparatus according to claim 1, wherein the average diameter is determined by (L / G). 前記微粒スプレ部の複数の二流体スプレノズルは、上方に流れる排ガスに対して、下方に噴霧する二流体スプレノズルであって、
微粒スプレ部の複数の二流体スプレノズルを略水平方向に設けると共に、該複数の二流体スプレノズル同士の間隔を、排ガス流速と各スプレノズルの噴霧領域の外周をなす液滴の噴射速度とその液滴の排ガス流れ方向に対する噴射角度とにより求められる、各スプレノズルの噴霧領域の外周をなす液滴の噴霧されてから排ガス流れにより反転するまでの水平方向の移動距離に基づいて設定することを特徴とする請求項1又は請求項2に記載の湿式排煙脱硫装置。
The plurality of two-fluid spray nozzles of the fine particle spray portion are two-fluid spray nozzles that spray downward with respect to the exhaust gas flowing upward,
A plurality of two-fluid spray nozzles in the fine-particle spray section are provided in a substantially horizontal direction, and the interval between the plurality of two-fluid spray nozzles is determined according to the exhaust gas flow velocity, the ejection speed of the droplets forming the outer periphery of the spray region of each spray nozzle, It is set based on a moving distance in the horizontal direction from when the droplet forming the outer periphery of the spray region of each spray nozzle is sprayed until it is reversed by the exhaust gas flow, which is obtained by an injection angle with respect to the exhaust gas flow direction. Item 3. The wet flue gas desulfurization apparatus according to item 1 or 2.
前記微粒スプレ部の複数の二流体スプレノズルは、上方に流れる排ガスに対して、下方に噴霧する二流体スプレノズルであって、
微粒スプレ部の複数の二流体スプレノズルを略水平方向に設けると共に、該複数の二流体スプレノズル同士の間隔P(m)を、各スプレノズルの噴霧領域の外周をなす液滴の噴射速度Vp(m/s)とその液滴の排ガス流れ方向に対する噴射角度θ(deg)とにより表される下記式(1)
[(−1.2×10-5)θ2+(1.5×10-3)θ−8.5×10-3]×Vp0.5 (1)
の値に基づいて設定することを特徴とする請求項1又は請求項2に記載の湿式排煙脱硫装置。
The plurality of two-fluid spray nozzles of the fine particle spray portion are two-fluid spray nozzles that spray downward with respect to the exhaust gas flowing upward,
A plurality of two-fluid spray nozzles in the fine particle spray portion are provided in a substantially horizontal direction, and an interval P (m) between the plurality of two-fluid spray nozzles is set to an ejection velocity Vp (m / m) forming the outer periphery of the spray region of each spray nozzle. s) and an injection angle θ (deg) of the droplet with respect to the exhaust gas flow direction, the following formula (1)
[(-1.2 × 10 −5 ) θ 2 + (1.5 × 10 −3 ) θ−8.5 × 10 −3 ] × Vp 0.5 (1)
The wet flue gas desulfurization device according to claim 1 or 2, wherein the wet flue gas desulfurization device is set based on the value of the above.
ボイラを含む燃焼装置から排出される排ガスを吸収塔に導入して、吸収塔内に設けたスプレ部の複数のスプレノズルから吸収液を噴霧して、前記排ガス中に含まれる硫黄酸化物を吸収、除去し、吸収塔内の排ガス流れに同伴されるミストをスプレ部より排ガス流路の下流側に設けたミストエリミネータにより捕集する排煙脱硫方法において、
前記スプレ部と前記ミストエリミネータとの間の排ガスに、前記吸収塔に供給する補給水に気体を混合して微粒化することで前記スプレノズルから噴霧される液滴よりも微粒液滴にして、排ガス流れに対して向流噴霧することを特徴とする湿式排煙脱硫方法。
Introducing exhaust gas discharged from a combustion apparatus including a boiler into an absorption tower, spraying an absorbing liquid from a plurality of spray nozzles of a spray section provided in the absorption tower, and absorbing sulfur oxides contained in the exhaust gas, In the flue gas desulfurization method of removing and collecting the mist accompanying the exhaust gas flow in the absorption tower by a mist eliminator provided on the downstream side of the exhaust gas flow channel from the spray part,
The exhaust gas between the spray part and the mist eliminator is mixed with the replenishing water supplied to the absorption tower and atomized to form finer droplets than the droplets sprayed from the spray nozzle. A wet flue gas desulfurization method characterized by spraying countercurrent to a flow.
排ガス中の一定の大きさの煤塵を所定割合以上除去可能な微粒液滴の平均径と排ガスと微粒液滴の噴霧液量との液ガス比(L/G)との関係を予め求めておき、前記吸収塔に供給する補給水から換算される液ガス比(L/G)と前記予め求めた関係から求められる平均径の微粒液滴を噴霧することを特徴とする請求項5記載の湿式排煙脱硫方法。   The relationship between the average diameter of fine droplets capable of removing a certain size of dust in the exhaust gas at a predetermined ratio or more and the liquid gas ratio (L / G) between the exhaust gas and the spray liquid amount of the fine droplets is obtained in advance. 6. The wet liquid according to claim 5, wherein fine droplets having an average diameter obtained from the liquid gas ratio (L / G) converted from the makeup water supplied to the absorption tower and the previously obtained relationship are sprayed. Flue gas desulfurization method. 前記微粒液滴を略水平方向に設けた複数の噴霧位置から上方に流れる排ガスに対して下方に噴霧する湿式排煙脱硫方法であって、
排ガス流速と前記各噴霧位置の噴霧領域の外周をなす液滴の噴射速度とその液滴の排ガス流れ方向に対する噴射角度とにより求められる、各噴霧位置の噴霧領域の外周をなす微粒液滴の噴霧されてから排ガス流れにより反転するまでの微粒液滴の水平方向の移動距離に基づいて、間隔を設けた噴霧位置から微粒液滴を噴霧することを特徴とする請求項5又は請求項6に記載の湿式排煙脱硫方法。
A wet flue gas desulfurization method in which the fine droplets are sprayed downward with respect to exhaust gas flowing upward from a plurality of spray positions provided in a substantially horizontal direction,
Spray of fine droplets forming the outer periphery of the spray region at each spray position, which is obtained from the exhaust gas flow velocity, the spray speed of the droplet forming the outer periphery of the spray region at each spray position, and the spray angle of the droplet with respect to the exhaust gas flow direction 7. The fine droplets are sprayed from a spray position at an interval based on a horizontal movement distance of the fine droplets from when the gas droplets are reversed to when they are reversed by the exhaust gas flow. Wet flue gas desulfurization method.
前記微粒液滴を略水平方向に設けた複数の噴霧位置から上方に流れる排ガスに対して下方に噴霧する湿式排煙脱硫方法であって、
前記各噴霧位置の噴霧領域の外周をなす液滴の噴射速度Vp(m/s)とその液滴の排ガス流れ方向に対する噴射角度θ(deg)とにより表される下記式(1)
[(−1.2×10-5)θ2+(1.5×10-3)θ−8.5×10-3]×Vp0.5 (1)
の値に基づいて、間隔を設けた噴霧位置から微粒液滴を噴霧することを特徴とする請求項5又は請求項6に記載の湿式排煙脱硫方法。
A wet flue gas desulfurization method in which the fine droplets are sprayed downward with respect to exhaust gas flowing upward from a plurality of spray positions provided in a substantially horizontal direction,
The following formula (1) expressed by the spray velocity Vp (m / s) of the droplets forming the outer periphery of the spray region at each spray position and the spray angle θ (deg) of the droplets with respect to the exhaust gas flow direction.
[(-1.2 × 10 −5 ) θ 2 + (1.5 × 10 −3 ) θ−8.5 × 10 −3 ] × Vp 0.5 (1)
7. The wet flue gas desulfurization method according to claim 5, wherein fine droplets are sprayed from a spray position at an interval based on the value of
JP2011138320A 2011-06-22 2011-06-22 Wet flue gas desulfurization apparatus and wet flue gas desulfurization method Expired - Fee Related JP5817971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138320A JP5817971B2 (en) 2011-06-22 2011-06-22 Wet flue gas desulfurization apparatus and wet flue gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138320A JP5817971B2 (en) 2011-06-22 2011-06-22 Wet flue gas desulfurization apparatus and wet flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JP2013006125A true JP2013006125A (en) 2013-01-10
JP5817971B2 JP5817971B2 (en) 2015-11-18

Family

ID=47673979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138320A Expired - Fee Related JP5817971B2 (en) 2011-06-22 2011-06-22 Wet flue gas desulfurization apparatus and wet flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JP5817971B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148494A (en) * 2012-08-15 2013-06-12 于海涛 Chimney-free device for boiler
CN103736381A (en) * 2013-12-24 2014-04-23 航天环境工程有限公司 Dust removal device and dust removal method for sintering flue gas by shunted and graded desulfurization
CN104056535A (en) * 2014-06-03 2014-09-24 陈浩 Organic absorbent process flue gas desulfurization, denitrification and demercuration system
CN104984606A (en) * 2015-07-10 2015-10-21 佛山君帝环保科技有限公司 Synchronous desulphurization and dust removal system shared by multi-tower and multi-kiln and method
CN104998538A (en) * 2015-08-20 2015-10-28 滕州市东郭水泥有限公司 Demisting, dedusting, deodorizing and desulfurizing equipment as well as demisting, dedusting, deodorizing and desulfurizing technology thereof
CN105688635A (en) * 2016-03-03 2016-06-22 中国地质大学(北京) Smoke desulfuration and desulfuration agent treatment integrated device and working method thereof
CN106547968A (en) * 2016-10-26 2017-03-29 中国神华能源股份有限公司 The nearly wall escape phenomenon quantization method in absorption tower
CN110624391A (en) * 2019-11-05 2019-12-31 无锡市东方工业节能环保有限公司 Desulfurization dust collecting equipment
CN111167290A (en) * 2019-12-30 2020-05-19 北京天中方环保科技有限公司 Waste gas purification tower
CN113551708A (en) * 2021-07-21 2021-10-26 西安热工研究院有限公司 Water balance evaluation and control method for wet flue gas desulfurization system of thermal power plant

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136617A (en) * 1980-03-25 1981-10-26 Babcock Hitachi Kk Gas absorption tower
JPS57115630U (en) * 1980-12-30 1982-07-17
US4627965A (en) * 1983-08-17 1986-12-09 Gottfried Bischoff Bau Kompl. Gasreinigungsund Wasserruckkuhlanlagen GmbH & Co. Method of desulfurizing industrial flue gases
JPH0478412A (en) * 1990-07-23 1992-03-12 Ishikawajima Harima Heavy Ind Co Ltd Gas absorption method
JPH06304444A (en) * 1993-04-21 1994-11-01 Mitsubishi Heavy Ind Ltd High-performance exhaust smoke desulfurization
US5427608A (en) * 1991-06-28 1995-06-27 Voest Alpine Industrieanlagenges, M.B.H. Method of separating solid and/or liquid particles and/or polluting gas from a gas stream, and apparatus for carrying out the method
JPH09173764A (en) * 1995-12-22 1997-07-08 Babcock Hitachi Kk Wet flue gas desulfurizer and method thereof
JP2000325742A (en) * 1999-05-21 2000-11-28 Babcock Hitachi Kk Method and apparatus for removing dust and recovering water or steam from outlet gas of desurfurization equipment
JP2001009237A (en) * 1999-07-02 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Spray type flue gas desulfurization equipment
JP2006326575A (en) * 2005-04-26 2006-12-07 Mitsubishi Heavy Ind Ltd Device and method of treating exhaust gas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136617A (en) * 1980-03-25 1981-10-26 Babcock Hitachi Kk Gas absorption tower
JPS57115630U (en) * 1980-12-30 1982-07-17
US4627965A (en) * 1983-08-17 1986-12-09 Gottfried Bischoff Bau Kompl. Gasreinigungsund Wasserruckkuhlanlagen GmbH & Co. Method of desulfurizing industrial flue gases
JPH0478412A (en) * 1990-07-23 1992-03-12 Ishikawajima Harima Heavy Ind Co Ltd Gas absorption method
US5427608A (en) * 1991-06-28 1995-06-27 Voest Alpine Industrieanlagenges, M.B.H. Method of separating solid and/or liquid particles and/or polluting gas from a gas stream, and apparatus for carrying out the method
JPH06304444A (en) * 1993-04-21 1994-11-01 Mitsubishi Heavy Ind Ltd High-performance exhaust smoke desulfurization
JPH09173764A (en) * 1995-12-22 1997-07-08 Babcock Hitachi Kk Wet flue gas desulfurizer and method thereof
JP2000325742A (en) * 1999-05-21 2000-11-28 Babcock Hitachi Kk Method and apparatus for removing dust and recovering water or steam from outlet gas of desurfurization equipment
JP2001009237A (en) * 1999-07-02 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Spray type flue gas desulfurization equipment
JP2006326575A (en) * 2005-04-26 2006-12-07 Mitsubishi Heavy Ind Ltd Device and method of treating exhaust gas

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148494A (en) * 2012-08-15 2013-06-12 于海涛 Chimney-free device for boiler
CN103736381A (en) * 2013-12-24 2014-04-23 航天环境工程有限公司 Dust removal device and dust removal method for sintering flue gas by shunted and graded desulfurization
CN104056535A (en) * 2014-06-03 2014-09-24 陈浩 Organic absorbent process flue gas desulfurization, denitrification and demercuration system
CN104984606A (en) * 2015-07-10 2015-10-21 佛山君帝环保科技有限公司 Synchronous desulphurization and dust removal system shared by multi-tower and multi-kiln and method
CN104998538A (en) * 2015-08-20 2015-10-28 滕州市东郭水泥有限公司 Demisting, dedusting, deodorizing and desulfurizing equipment as well as demisting, dedusting, deodorizing and desulfurizing technology thereof
CN105688635A (en) * 2016-03-03 2016-06-22 中国地质大学(北京) Smoke desulfuration and desulfuration agent treatment integrated device and working method thereof
CN106547968A (en) * 2016-10-26 2017-03-29 中国神华能源股份有限公司 The nearly wall escape phenomenon quantization method in absorption tower
CN106547968B (en) * 2016-10-26 2020-05-05 中国神华能源股份有限公司 Method for quantifying near-wall escape phenomenon of absorption tower
CN110624391A (en) * 2019-11-05 2019-12-31 无锡市东方工业节能环保有限公司 Desulfurization dust collecting equipment
CN111167290A (en) * 2019-12-30 2020-05-19 北京天中方环保科技有限公司 Waste gas purification tower
CN113551708A (en) * 2021-07-21 2021-10-26 西安热工研究院有限公司 Water balance evaluation and control method for wet flue gas desulfurization system of thermal power plant
CN113551708B (en) * 2021-07-21 2022-08-16 西安热工研究院有限公司 Water balance evaluation and control method for wet flue gas desulfurization system of thermal power plant

Also Published As

Publication number Publication date
JP5817971B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5817971B2 (en) Wet flue gas desulfurization apparatus and wet flue gas desulfurization method
US9700837B2 (en) Wet scrubber nozzle system and method of use for cleaning a process gas
CN103316553B (en) Efficient wet-type variable flow fog-spraying sprinkling dust-removing purification device
US20150336049A1 (en) Wet scrubber and a method of cleaning a process gas
EP2335804B1 (en) A method and a device for cleaning a carbon dioxide rich flue gas
JP4845568B2 (en) Wet flue gas desulfurization equipment
WO2016058141A1 (en) Method and device for dedusting and desulphurizing flue gas
CN101219333A (en) Method and device for cooperation-removal of PM2,5 in flue gas wet desulphurization
PH12015501897B1 (en) Seawater flue-gas desulfurization device and method for operating same
US20020110511A1 (en) Horizontal scrubber system
CN1094069C (en) Improved entrainment separator for high velocity gases and reheating of scrubber gases
JP2015174025A (en) Seawater flue gas desulfurization apparatus and application method of the same
US8968450B1 (en) Wet scrubber design
CN205084558U (en) Flue gas two -stage condensation dust collector after desulfurization
JP2010115602A (en) Two-step wet desulfurization method and apparatus
CN207786313U (en) Smoke multistage high-effective dust-removing demister
JP2011230047A (en) Exhaust gas desulfurizer and oxygen combustion apparatus and method having the same
CN205760545U (en) Three circulating flue gas desulfurization tower or the systems for wet ammonia process desulfurizing
KR102262666B1 (en) Exhaust gas purifying scrubber and exhaust gas purifying method using the same
JP2015120102A (en) Flue gas desulfurizer and flue gas desulfurization method
JPH115014A (en) Wet waste gas desulfurizer
JPH07178314A (en) Wet desulfurizer and desulfurization method
JPH07155536A (en) Wet type flue gas desulfurization apparatus
CN109833748A (en) A kind of near-zero release flue gas coordinated desulfurization denitration dust collecting group technology
CN112221341A (en) A high-efficient desulfurization absorption tower for industrial flue gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R150 Certificate of patent or registration of utility model

Ref document number: 5817971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees