JP2013002613A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2013002613A
JP2013002613A JP2011137304A JP2011137304A JP2013002613A JP 2013002613 A JP2013002613 A JP 2013002613A JP 2011137304 A JP2011137304 A JP 2011137304A JP 2011137304 A JP2011137304 A JP 2011137304A JP 2013002613 A JP2013002613 A JP 2013002613A
Authority
JP
Japan
Prior art keywords
layer
metal
sliding member
alloy
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011137304A
Other languages
Japanese (ja)
Other versions
JP5707245B2 (en
Inventor
Ryo Sato
遼 佐藤
Naohisa Kawakami
直久 川上
Moritaka Fukuda
守孝 福田
Tadatoshi Nagasaki
忠利 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46641259&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013002613(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2011137304A priority Critical patent/JP5707245B2/en
Priority to KR1020120065338A priority patent/KR101373683B1/en
Priority to GB1210977.3A priority patent/GB2492228B/en
Priority to DE102012210382.1A priority patent/DE102012210382B4/en
Publication of JP2013002613A publication Critical patent/JP2013002613A/en
Application granted granted Critical
Publication of JP5707245B2 publication Critical patent/JP5707245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/127Details of intermediate layers, e.g. nickel dams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/20Thermal properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sliding member farther superior in fatigue resistance and seizure resistance.SOLUTION: The sliding member has a third layer 4 disposed between a first layer 2 which mainly comprises a first metal of which thermal conductivity ranges from 200 to 450 W/(mK) in a range between 450K and a room temperature, and the second layer 3 which mainly comprises a second metal whose hardness is lower than the first metal. The third layer 4 has the first metal as a parent phase and the second metal as a secondary phase, and area rate of the secondary phase in the third layer ranges from 10 to 30%, and thickness of the third layer amounts to 3% or more of the total thickness of the third layer and the first layer.

Description

本発明は、耐疲労性および非焼付性の向上を図った摺動部材に関する。   The present invention relates to a sliding member with improved fatigue resistance and non-seizure properties.

従来、例えば船舶等の大型機関のディーゼルエンジン用の軸受においては、軸受合金としてSn合金やAl−Sn合金等が使用されている。近年、ディーゼルエンジンの大型化や高出力化に伴い、軸受等の摺動部材は一層厳しい環境にさらされるという事情がある。しかしながら、従来のSn合金では強度が低いために疲労破壊が起きやすく、また、Al-Sn合金では、Sn合金と比較すると焼付きに至りやすい傾向があるといった問題がある。そのため、耐疲労性と非焼付性共に優れた摺動部材が求められている。   Conventionally, for example, in a bearing for a diesel engine of a large engine such as a ship, an Sn alloy, an Al—Sn alloy, or the like is used as a bearing alloy. In recent years, with the increase in size and output of diesel engines, sliding members such as bearings are exposed to a more severe environment. However, the conventional Sn alloy has a problem that fatigue fracture is likely to occur because the strength is low, and the Al—Sn alloy tends to be seized more easily than the Sn alloy. Therefore, a sliding member having excellent fatigue resistance and non-seizure properties is required.

上記の課題を解決する手段として、耐疲労性に優れるAl合金層上に、非焼付性に優れるSn合金層を施した複層構造とすることが効果的であると考えられる。このような複層構造としたものは、従来から提案されている。例えば特許文献1には、大型機関用軸受メタルとして、次のような構造のものが開示されている。軸受合金層となるAl-Sn合金板と、中間接着層となるAl箔とを重ね合わせて、これらを圧延して接合することにより二層の複合板とし、この複合板と、基材となる鋼裏金とを、前記Al箔の層と鋼裏金とが接触する状態で重ね合わせて、これらを圧接することにより、三層の複合体(バイメタル)を形成する。この後、この複合体を半円筒形に加工した後、Al-Sn合金層の表面に、電気めっき手段によりSn合金層を表面層として設けた構造とする。この場合、軸受合金層(Al-Sn合金層)と表面層(Sn合金層)との接着を良好にするために、それらの間にNiめっき層を設けることが開示されている。   As a means for solving the above problems, it is considered effective to have a multilayer structure in which an Sn alloy layer having excellent non-seizure properties is provided on an Al alloy layer having excellent fatigue resistance. Such a multilayer structure has been proposed in the past. For example, Patent Document 1 discloses the following structure as a large-sized engine bearing metal. An Al—Sn alloy plate serving as a bearing alloy layer and an Al foil serving as an intermediate adhesive layer are overlapped, and these are rolled and joined to form a two-layer composite plate, which serves as a base material A three-layer composite (bimetal) is formed by superimposing a steel back metal in a state where the Al foil layer and the steel back metal are in contact with each other and press-contacting them. Thereafter, the composite is processed into a semi-cylindrical shape, and then the surface of the Al—Sn alloy layer is provided with a Sn alloy layer as a surface layer by electroplating means. In this case, in order to improve the adhesion between the bearing alloy layer (Al—Sn alloy layer) and the surface layer (Sn alloy layer), it is disclosed that a Ni plating layer is provided between them.

特開平5−99229号公報(図2参照)JP-A-5-99229 (see FIG. 2)

上記した技術においては、軸受合金層(Al-Sn合金層)と表面層(Sn合金層)との接着を良好にするために、それらの間にNiめっき層を設けることを必要とする。しかしながら、表面層が摩滅してNiめっき層が露出すると、当該Niめっき層と相手部材(例えば軸)とが直接接触することにより焼付きに至りやすい。特に船舶用の製品では、一般自動車用等の小型の製品と比べて大型であるため、ミスアライメントが大きくなり易い等によって摺動部の摩耗が早く、焼付きに至りやすい。   In the above-described technique, in order to improve the adhesion between the bearing alloy layer (Al—Sn alloy layer) and the surface layer (Sn alloy layer), it is necessary to provide a Ni plating layer therebetween. However, if the surface layer is worn away and the Ni plating layer is exposed, the Ni plating layer and the mating member (for example, a shaft) are in direct contact with each other, and seizure is likely to occur. In particular, marine products are large compared to small products such as those for general automobiles, so that misalignment tends to increase, resulting in rapid wear of sliding parts and easy seizure.

本発明は上記した事情に鑑みてなされたものであり、その目的は、耐疲労性と非焼付性に一層優れた摺動部材を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a sliding member that is further excellent in fatigue resistance and non-seizure properties.

上記した目的を達成するために、本発明の摺動部材は、室温から450Kにおいて熱伝導率が200〜450W/(mK)である第1金属を主成分とする第1層と、前記第1金属よりも硬度が低い第2金属を主成分とする第2層との間に、第3層を有し、前記第3層は、前記第1金属を母相、前記第2金属を二次相として有し、前記第3層中での前記二次相の面積率が10〜30%であり、前記第3層の厚さは、当該第3層と前記第1層を合わせた合計厚さの3%以上であることを特徴とする(請求項1の発明)。   In order to achieve the above object, the sliding member of the present invention includes a first layer mainly composed of a first metal having a thermal conductivity of 200 to 450 W / (mK) from room temperature to 450 K, and the first layer. A third layer is provided between the second layer mainly composed of a second metal having a hardness lower than that of the metal, and the third layer has the first metal as a parent phase and the second metal as a secondary layer. As a phase, the area ratio of the secondary phase in the third layer is 10 to 30%, the thickness of the third layer is the total thickness of the third layer and the first layer together 3% or more of the thickness (invention of claim 1).

請求項1の摺動部材は、第1層と第3層と第2層とを有する複層構造となっている。この摺動部材は、第2層を摺動面側に、第1層を反摺動面側に配する。裏金となる鋼板等の基材の一面に第1層を配して使用するのが好ましい。第1層と第2層との間に位置する第3層は、第1層が主成分とする第1金属を母相として有しているので、第1層との接着性が良い。また、第3層は、その摺動面側で接する層が主成分とする第2金属を二次相として有しているので、その層との接着性の面で有利である。   The sliding member of claim 1 has a multilayer structure having a first layer, a third layer, and a second layer. In this sliding member, the second layer is disposed on the sliding surface side, and the first layer is disposed on the anti-sliding surface side. It is preferable to use the first layer on one surface of a base material such as a steel plate as a backing metal. The third layer located between the first layer and the second layer has the first metal, which is the main component of the first layer, as a parent phase, and thus has good adhesion to the first layer. In addition, the third layer is advantageous in terms of adhesiveness to the layer because it has as a secondary phase the second metal whose main component is the layer in contact with the sliding surface.

第1層の主成分でかつ第3層の母相である第1金属は、室温から450K(約20℃〜約177℃)における熱伝導率が200〜450W/(mK)である。第1金属の熱伝導率が200W/(mK)以上であると、相手部材との摺動によって発生する第2層の熱を、その第1金属を介して効率良く逃がすことができる。そして、その第2層として前述の第1金属よりも硬度が低い第2金属を主成分とする層を摺動面へ配するので、非焼付性が向上する。耐疲労性と非焼付性のみならず量産性も求められる摺動部材に用いることができる金属は、熱伝導率が450W/(mK)以内である。   The first metal which is the main component of the first layer and the parent phase of the third layer has a thermal conductivity of 200 to 450 W / (mK) from room temperature to 450 K (about 20 ° C. to about 177 ° C.). When the thermal conductivity of the first metal is 200 W / (mK) or more, the heat of the second layer generated by sliding with the mating member can be efficiently released through the first metal. And since the layer which has as a main component the 2nd metal whose hardness is lower than the above-mentioned 1st metal as a 2nd layer is distribute | arranged to a sliding surface, non-seizure property improves. A metal that can be used for a sliding member that is required not only for fatigue resistance and non-seizure properties but also for mass production has a thermal conductivity of 450 W / (mK) or less.

第3層における二次相(第2金属)の面積率は10〜30%である。二次相の面積率は次のようにして求める。製造された摺動部材について、厚さ方向断面の組成像を電子顕微鏡で撮影する。得られた画像を解析ソフトを用いて解析し、二次相の占める面積を求め、百分率で表す。   The area ratio of the secondary phase (second metal) in the third layer is 10 to 30%. The area ratio of the secondary phase is determined as follows. About the manufactured sliding member, the composition image of the cross section of thickness direction is image | photographed with an electron microscope. The obtained image is analyzed using analysis software, and the area occupied by the secondary phase is obtained and expressed as a percentage.

二次相の面積率が10%未満であると、第3層と第2金属を主成分とする層との接着性を十分に確保することができない。この場合、第3層における第2層側界面付近の二次相と母相との間で微小な剥離が発生しやすく、それを起点に接着界面からクラックが発生しやすくなり、ひいては耐疲労性が低下する。二次相の面積率が30%を超えると、第3層における二次相が比較的軟質であるがゆえ、そこでの破壊が発生して、クラックが進展しやすくなり、やはり耐疲労性が低下する。このため、第3層における二次相の面積率は10〜30%の範囲が好ましい。   When the area ratio of the secondary phase is less than 10%, sufficient adhesion between the third layer and the layer mainly composed of the second metal cannot be ensured. In this case, minute peeling is likely to occur between the secondary phase in the vicinity of the interface on the second layer side in the third layer and the matrix phase, and cracks are likely to occur from the adhesive interface starting from that, and as a result fatigue resistance Decreases. If the area ratio of the secondary phase exceeds 30%, the secondary phase in the third layer is relatively soft, so that the breakage occurs and the cracks are likely to progress, and the fatigue resistance also decreases. To do. For this reason, the area ratio of the secondary phase in the third layer is preferably in the range of 10 to 30%.

第3層の厚さは、当該第3層と第1層を合わせた合計厚さの3%以上である。第3層と第2金属を主成分とする層との接着性を十分に確保するには、第3層の厚さは、当該第3層と第1層を合わせた合計厚さの3%以上必要である。   The thickness of the third layer is 3% or more of the total thickness of the third layer and the first layer. In order to sufficiently secure the adhesion between the third layer and the layer containing the second metal as a main component, the thickness of the third layer is 3% of the total thickness of the third layer and the first layer. This is necessary.

請求項1の摺動部材は、上記した第1層と第3層と第2層とを有する複層構造とすることで、耐疲労性と非焼付性に優れたものとすることができる。
上記した摺動部材は、例えば次のようにして製造することができる。説明を簡易にするため、例示として以下、第1金属は、上記熱伝導率の条件を満たすAlを用いる。同様に第2金属は、Alよりも硬度が低いSnを用いる。そして、第1層は第1金属であるAlを主成分とし、第2層は第2金属であるSnを主成分とするSn合金、第3層は第1金属のAlを母相で第2金属のSnを二次相としたAl−Sn合金とする。
The sliding member according to claim 1 can be excellent in fatigue resistance and non-seizure property by adopting a multilayer structure having the first layer, the third layer, and the second layer.
The above-mentioned sliding member can be manufactured as follows, for example. In order to simplify the description, as an example, the first metal uses Al that satisfies the above thermal conductivity conditions. Similarly, Sn whose hardness is lower than Al is used for the second metal. The first layer is mainly composed of Al as the first metal, the second layer is Sn alloy composed mainly of Sn as the second metal, and the third layer is composed of the first metal Al as the parent phase. An Al—Sn alloy having a metallic Sn as a secondary phase is used.

まず、Al-Sn合金を板状に鋳造する。得られたAl-Sn合金板を、接着層となるAl板を介して、例えば鋼板製の基材と圧着し、3層のいわゆるバイメタルを得る。この後、Al-Sn合金板の表面に、コールドスプレー法によって、第2金属であるSnの皮膜を設け、そのSn皮膜の上にSn合金を鋳造により設ける。なお、Sn合金層は、めっきにより設けることも可能である。   First, an Al—Sn alloy is cast into a plate shape. The obtained Al—Sn alloy plate is pressure-bonded to, for example, a steel plate base material through an Al plate serving as an adhesive layer to obtain a so-called bimetal having three layers. Thereafter, a film of Sn, which is the second metal, is provided on the surface of the Al—Sn alloy plate by a cold spray method, and an Sn alloy is provided on the Sn film by casting. The Sn alloy layer can also be provided by plating.

図1には、このようにして製造された摺動部材の断面図が模式的に示されている。この図1において、基材1の上に、第1金属であるAlを主成分とする第1層2が設けられている。この第1層2と、Alよりも硬度が低いSnを主成分とするSn合金からなる第2層3との間に、第3層4が設けられている。第3層4は、第1金属であるAl5を母相、第2金属であるSn6を二次相として有したAl-Sn合金により構成されている。   FIG. 1 schematically shows a cross-sectional view of the sliding member thus manufactured. In FIG. 1, a first layer 2 mainly composed of Al, which is a first metal, is provided on a substrate 1. A third layer 4 is provided between the first layer 2 and the second layer 3 made of an Sn alloy whose main component is Sn having a hardness lower than that of Al. The third layer 4 is made of an Al—Sn alloy having Al5 as a first metal as a parent phase and Sn6 as a second metal as a secondary phase.

上記した構造においては、Al-Sn合金からなる第3層4の上にコールドスプレー法によってSn皮膜を形成し、そのSn皮膜の上にSn合金を鋳造することで、Al-Sn合金層(第3層4)とSn合金層(第2層3)の複合構造を製造するようにした。   In the above-described structure, an Sn film is formed on the third layer 4 made of an Al—Sn alloy by a cold spray method, and an Sn alloy is cast on the Sn film, whereby an Al—Sn alloy layer (first film) is formed. A composite structure of three layers 4) and an Sn alloy layer (second layer 3) was manufactured.

ところで、Al-Sn合金層上にSn合金層を設ける場合、通常、Al-Sn合金層の表面には安定した酸化皮膜が形成されているため、そのままで鋳造を行っても容易にはSn合金を接合させることができない。そのため、従来技術では、鋳造前の前処理としてAl-Sn合金層表面の酸化皮膜除去が必要となる。酸化皮膜除去としては、例えば薬品等による化学的措置が行われることが多いが、工程が複雑となりコストが高くなる。また、この場合、酸化皮膜除去後、Niめっきを施すことになる。しかし、Niめっきを施した場合、上述したように表面側のSn合金層(第2層3)が摩滅してそのNiめっき層が露出すると、当該Niめっき層と相手部材(例えば軸)とが直接接触することにより焼付きに至りやすいという問題がある。   By the way, when an Sn alloy layer is provided on an Al—Sn alloy layer, a stable oxide film is usually formed on the surface of the Al—Sn alloy layer. Cannot be joined. Therefore, in the prior art, it is necessary to remove the oxide film on the surface of the Al—Sn alloy layer as a pretreatment before casting. For removing the oxide film, for example, chemical measures such as chemicals are often performed, but the process becomes complicated and the cost increases. In this case, Ni plating is performed after the oxide film is removed. However, when Ni plating is performed, as described above, when the Sn alloy layer (second layer 3) on the surface side is worn and the Ni plating layer is exposed, the Ni plating layer and the mating member (for example, the shaft) are removed. There is a problem that it is easy to be seized by direct contact.

そこで、本開発では、Al−Sn合金層(第3層4)上の酸化皮膜除去の手段として、コールドスプレー法を採用した。コールドスプレー法とは、材料粉末の融点または軟化温度よりも低い温度のガスを先細末広形のラバルノズルによる超音速流にして、その流れの中に材料粉末(この場合、Sn粉末)を投入して加速させ、固相状態のまま基材(この場合、Al−Sn合金層(第3層4))の表面に高速で衝突させて皮膜を形成する技術である。コールドスプレー法の利点としては、材料粉末を高速で基材表面へ衝突させるため、基材表面の酸化皮膜を除去できるとともにその材料粉末による皮膜を形成できる点にある。   Therefore, in this development, the cold spray method was adopted as a means for removing the oxide film on the Al—Sn alloy layer (third layer 4). In the cold spray method, a gas having a temperature lower than the melting point or softening temperature of the material powder is changed to a supersonic flow by a tapered fine laval nozzle, and the material powder (in this case, Sn powder) is introduced into the flow. This is a technique for forming a film by accelerating and colliding at high speed with the surface of a base material (in this case, the Al—Sn alloy layer (third layer 4)) in a solid state. The advantage of the cold spray method is that the material powder collides with the surface of the base material at a high speed, so that the oxide film on the surface of the base material can be removed and a film made of the material powder can be formed.

上記した製造方法の場合、コールドスプレー法を採用することによって、Al−Sn合金層(第3層4)上の酸化皮膜を除去するとともにSn(第2金属)の皮膜が形成される。そのため、このSn皮膜が接着補助部としての役割を果たし、濡れ性が悪いAl−Sn合金とSn合金との接着性が向上する。すなわち、コールドスプレー法では、酸化皮膜除去と接着補助部形成を同時に行うことができ、コストの面でも有利である。接着補助部を所定厚さ未満とする場合は、例えば第2層3を形成する際のSn合金の鋳造時に溶けきってしまい、第3層4と第2層3とが接する構造になる。接着補助部を所定厚さ以上とする場合は、接着補助部が溶けきることなく、第3層4と第2層3との間に層が形成された構造となる。
第2層3となるSn合金層は、めっき法により形成しても良い。
In the case of the manufacturing method described above, by adopting the cold spray method, the oxide film on the Al—Sn alloy layer (third layer 4) is removed and a film of Sn (second metal) is formed. Therefore, this Sn film plays a role as an adhesion assisting portion, and the adhesion between the Al—Sn alloy and the Sn alloy with poor wettability is improved. That is, in the cold spray method, oxide film removal and adhesion auxiliary portion formation can be performed simultaneously, which is advantageous in terms of cost. In the case where the adhesion assisting portion is less than the predetermined thickness, for example, the third layer 4 and the second layer 3 are in contact with each other because they are completely melted during the casting of the Sn alloy when forming the second layer 3. In the case where the adhesion assisting portion has a predetermined thickness or more, the adhesion assisting portion is not melted and a layer is formed between the third layer 4 and the second layer 3.
The Sn alloy layer to be the second layer 3 may be formed by a plating method.

請求項2の発明は、上記した請求項1の摺動部材において、さらに前記第2層と前記第3層との間に第4層を有し、前記第4層は、前記第3層に接する第5層と、前記第2層に接する第6層とからなり、前記第5層は、前記第2金属を主成分とし、かつ前記第2層よりも軟質であり、前記第6層は、前記第1金属を含む微細金属間化合物粒子の群からなることを特徴とする。   The invention according to claim 2 is the sliding member according to claim 1, further comprising a fourth layer between the second layer and the third layer, wherein the fourth layer is formed on the third layer. The fifth layer is in contact with the second layer, the fifth layer is mainly composed of the second metal and is softer than the second layer, and the sixth layer is And a group of fine intermetallic compound particles containing the first metal.

第2層と第3層との間に第4層を設けることで、耐疲労性を一層向上させる効果がある。その理由の一つとして、第2層と第3層との間に、第2層よりも軟らかい第5層が存在することで、摺動部材の表面から荷重がかかった場合に、その第5層がクッションとしての役割を果たす。これにより、第2層への負担が軽減し、耐疲労性が向上する。第6層は、微細金属間化合物粒子の群からなり、帯状に分布して存在している。この微細金属間化合物粒子は、母相よりも硬い。この微細金属間化合物粒子が存在することで、粒子分散強化が発揮されて第5層の過剰な変形を抑制することができ、耐疲労性が向上する。さらに、第2層でクラックが生じた場合、そのクラックの進展を第6層で防げるため、大きな損傷を防ぐことができる。   By providing the fourth layer between the second layer and the third layer, there is an effect of further improving the fatigue resistance. One of the reasons is that the fifth layer softer than the second layer exists between the second layer and the third layer. The layer serves as a cushion. This reduces the burden on the second layer and improves fatigue resistance. The sixth layer is composed of a group of fine intermetallic compound particles and is distributed in a band shape. The fine intermetallic compound particles are harder than the parent phase. By the presence of the fine intermetallic compound particles, the particle dispersion strengthening can be exerted, and excessive deformation of the fifth layer can be suppressed, and fatigue resistance is improved. Furthermore, when a crack occurs in the second layer, the crack can be prevented from progressing in the sixth layer, so that a large damage can be prevented.

図2には、第2層3と第3層4との間に第4層7を有する構造が模式的に示されている。第4層7は、第5層8と第6層9とから構成されている。第6層9は、微細金属間化合物粒子10の群からなり、帯状に分布している。
請求項2の摺動部材は、例えば次のようにして製造することができる。説明を簡易にするため、例示として第2層は副成分としてCuを有する構成とする。同様に、第6層の微細金属間化合物粒子はCuを主成分とする。
FIG. 2 schematically shows a structure having the fourth layer 7 between the second layer 3 and the third layer 4. The fourth layer 7 includes a fifth layer 8 and a sixth layer 9. The sixth layer 9 is composed of a group of fine intermetallic compound particles 10 and is distributed in a band shape.
The sliding member according to claim 2 can be manufactured as follows, for example. In order to simplify the description, the second layer is assumed to have Cu as a subcomponent as an example. Similarly, the fine intermetallic compound particles of the sixth layer are mainly composed of Cu.

前記請求項2の摺動部材を製造する際において、第2層(Sn合金層)を形成する前に、第3層を形成するAl-Sn合金上に溶融Snめっきを施し、その上に、Cuを含むSn合金を鋳造する工程を採用する。具体的には、溶融Sn浴中へ、Al-Sn合金を有するバイメタルを浸漬し、Sn浴内でバレル研磨等物理的手法にてAl-Sn合金表面の酸化皮膜や不純物を除去して、そのAl-Sn合金表面へ溶融Snめっきを施す。この方法によれば、コールドスプレー法よりも厚い接着補助部即ちSn皮膜を形成し易い。その後、Sn皮膜の上に、適正な温度、時間にてSn合金を鋳造することで、図2に示すような複層構造を得ることができる。この場合、例えば、第5層8はSn、第6層9の微細金属間化合物粒子10は、Cuを主成分としてAlを含むCu−Al合金となる。   In manufacturing the sliding member according to claim 2, before forming the second layer (Sn alloy layer), hot-dip Sn plating is performed on the Al-Sn alloy forming the third layer, and then, A step of casting an Sn alloy containing Cu is employed. Specifically, a bimetal having an Al—Sn alloy is immersed in a molten Sn bath, and an oxide film and impurities on the surface of the Al—Sn alloy are removed in the Sn bath by a physical method such as barrel polishing. Molten Sn plating is applied to the surface of the Al—Sn alloy. According to this method, it is easier to form a thick adhesion assisting portion, that is, an Sn film than in the cold spray method. Then, a multilayer structure as shown in FIG. 2 can be obtained by casting an Sn alloy on the Sn film at an appropriate temperature and time. In this case, for example, the fifth layer 8 is Sn, and the fine intermetallic compound particles 10 of the sixth layer 9 are Cu—Al alloys containing Cu as a main component and Al.

このような製造方法によれば、上記請求項2の摺動部材の構造が得られるだけでなく、接着性の良さも利点として挙げられる。Al-Sn合金表面の酸化皮膜や不純物の除去をSn浴内で行うため、Al-Sn合金表面の新生面が形成された後、即座にAl-Sn合金とSnとが結びつくことができる。このため、酸化皮膜や不純物を巻き込む可能性が低く、接着性が向上する。また、Sn合金の鋳造時に接合界面にて原子の相互拡散が充分に行われるため、より強い接着力を得ることができる。接着性が良好であると、その界面でのクラック発生を抑制することができ、耐疲労性が良好となる。さらに、厚いSn皮膜を形成させ易いので、第3層と第2層との間に第4層を形成させるのに特に適している。
第2層3となるSn合金層は、めっき法により形成しても良い。
According to such a manufacturing method, not only the structure of the sliding member of claim 2 can be obtained, but also good adhesion can be mentioned as an advantage. Since the oxide film and impurities on the surface of the Al—Sn alloy are removed in the Sn bath, the Al—Sn alloy and Sn can be immediately combined after the new surface of the Al—Sn alloy surface is formed. For this reason, the possibility that an oxide film and impurities are involved is low, and the adhesiveness is improved. Moreover, since the mutual diffusion of atoms is sufficiently performed at the bonding interface during the casting of the Sn alloy, a stronger adhesive force can be obtained. When the adhesiveness is good, the occurrence of cracks at the interface can be suppressed, and the fatigue resistance becomes good. Furthermore, since it is easy to form a thick Sn film, it is particularly suitable for forming the fourth layer between the third layer and the second layer.
The Sn alloy layer to be the second layer 3 may be formed by a plating method.

請求項3の発明は、前記第2層は、主成分のマトリクス中に金属間化合物粒子が分散して存在する組織であり、前記金属間化合物粒子の平均粒子角度が55°以下であることを特徴とする。
図2において、第2層3には、例えばSnとCuの金属間化合物粒子11が分散した状態で存している。その金属間化合物粒子11の粒子角度は次のようにして測定する。製造された摺動部材について、厚さ方向断面の組織を光学顕微鏡で撮影する。得られた画像から解析ソフトを用いて解析し、金属間化合物粒子11の粒子角度を測定する。粒子角度は、第3層の厚さ方向(深さ方向)に直交する水平な線を0°とした。図3に示すように、金属間化合物粒子11を四角で囲み、tanθ=b/aから、粒子角度θを測定した。得られた粒子角度θの平均を平均粒子角度とした。その平均粒子角度が55°以下であると、金属間化合物粒子11を起点にした疲労破壊を起こし難い。よって、第2層における金属間化合物粒子の平均粒子角度は55°以下が好ましい。第2層を鋳造法により形成することによって、平均粒子角度を確実に55°以下に制御することができる。
The invention according to claim 3 is that the second layer has a structure in which intermetallic compound particles are dispersed in a main component matrix, and an average particle angle of the intermetallic compound particles is 55 ° or less. Features.
In FIG. 2, the second layer 3 is in a state in which, for example, Sn and Cu intermetallic compound particles 11 are dispersed. The particle angle of the intermetallic compound particles 11 is measured as follows. About the manufactured sliding member, the structure of the thickness direction cross section is image | photographed with an optical microscope. The obtained image is analyzed using analysis software, and the particle angle of the intermetallic compound particles 11 is measured. The particle angle was set to 0 ° on a horizontal line perpendicular to the thickness direction (depth direction) of the third layer. As shown in FIG. 3, the intermetallic compound particles 11 were surrounded by a square, and the particle angle θ was measured from tan θ = b / a. The average of the obtained particle angles θ was defined as the average particle angle. When the average particle angle is 55 ° or less, it is difficult to cause fatigue failure starting from the intermetallic compound particles 11. Therefore, the average particle angle of the intermetallic compound particles in the second layer is preferably 55 ° or less. By forming the second layer by a casting method, the average particle angle can be reliably controlled to 55 ° or less.

請求項4の発明は、前記第2層の厚さは、前記第1層から第3層、場合により第4層を経た前記第2層までの総合計厚さの3〜45%であることを特徴とする。第2層に比べて耐疲労性が優れる第1層及び第3層の存在割合を考慮すると、第2層の厚さが、前記総合計厚さの45%以下が好ましい。第2層の摩滅による第3層のAl-Sn合金層の露出可能性を考慮すると、第2層の厚さは前記総合厚さの3%以上が好ましい。   According to a fourth aspect of the present invention, the thickness of the second layer is 3 to 45% of the total thickness from the first layer to the third layer, and optionally through the fourth layer to the second layer. It is characterized by. Considering the existence ratio of the first layer and the third layer, which have better fatigue resistance than the second layer, the thickness of the second layer is preferably 45% or less of the total thickness. Considering the possibility of exposure of the third Al—Sn alloy layer due to abrasion of the second layer, the thickness of the second layer is preferably 3% or more of the total thickness.

請求項5の発明は、前記第5層の平均厚さは、前記第1層と前記第3層の合計厚さの0.2〜5%であり、前記第5層における前記第6層側の界面形状は波形状をなしていて、前記波形状における凸部の平均高さが2〜15μm、隣り合った前記凸部間の平均距離が20〜100μmであることを特徴とする。   According to a fifth aspect of the present invention, the average thickness of the fifth layer is 0.2 to 5% of the total thickness of the first layer and the third layer, and the sixth layer side in the fifth layer The interface shape is a wave shape, and the average height of the convex portions in the wave shape is 2 to 15 μm, and the average distance between the adjacent convex portions is 20 to 100 μm.

第5層と第6層との界面は、波形状をなしている(厚さ方向に凹凸を有している)。これにより、剪断方向(厚さ方向に垂直な方向)からの荷重に対してもクッション効果を効率良く得ることができ、耐疲労性の向上に効果がある。第5層の厚さが、第1層と第3層の合計厚さの0.2%以上であると、当該第5層のクッション効果を確実に得ることができる。第5層の厚さが、第1層と第3層の合計厚さの5%以下であると、軟らかい第5層が厚くなりすぎず、高い耐疲労性を発揮できる。よって、第5層の厚さは、第1層と第3層の合計厚さの0.2〜5%の範囲が好ましい。   The interface between the fifth layer and the sixth layer has a wave shape (has irregularities in the thickness direction). Thereby, the cushion effect can be efficiently obtained even with respect to the load from the shearing direction (direction perpendicular to the thickness direction), which is effective in improving fatigue resistance. When the thickness of the fifth layer is 0.2% or more of the total thickness of the first layer and the third layer, the cushion effect of the fifth layer can be reliably obtained. When the thickness of the fifth layer is 5% or less of the total thickness of the first layer and the third layer, the soft fifth layer does not become too thick, and high fatigue resistance can be exhibited. Therefore, the thickness of the fifth layer is preferably in the range of 0.2 to 5% of the total thickness of the first layer and the third layer.

第5層における第6層側の界面の波形状における凸部の平均高さと、隣り合う凸部間の平均距離は、次のようにして測定する。製造された摺動部材について、厚さ方向断面の組成像を電子顕微鏡で撮影する。得られた画像を解析ソフトを用いて解析し、波形状おける凸部の平均高さと、隣り合う凸部間の平均距離を測定する。   The average height of the convex portions in the corrugated shape of the interface on the sixth layer side in the fifth layer and the average distance between adjacent convex portions are measured as follows. About the manufactured sliding member, the composition image of the cross section of thickness direction is image | photographed with an electron microscope. The obtained image is analyzed using analysis software, and the average height of the convex portions in the waveform and the average distance between adjacent convex portions are measured.

波形状における凸部の高さは、凸部の底部から頂部までの高さのことである。波形状における凸部の平均高さが2〜15μmであるということは、本願では3視野での各測定視野における凸部の高さの平均値がそれぞれ2〜15μmの範囲内に入っていることをいう。具体的には、例えば、ある第1の測定視野において2個の凸部があり、それら2個の平均高さが3μm、別の第2の測定視野において3個の凸部があり、それら3個の平均高さが6μm、さらに別の第3の測定視野において4個の凸部があり、それら4個の凸部の平均高さが13μmである場合、凸部の平均高さが2〜15μmの範囲内に入っているという。   The height of the convex portion in the wave shape is the height from the bottom portion to the top portion of the convex portion. The average height of the convex portions in the wave shape is 2 to 15 μm. In this application, the average value of the height of the convex portions in each of the three visual fields is within the range of 2 to 15 μm. Say. Specifically, for example, there are two convex portions in a certain first measurement visual field, the average height of these two is 3 μm, and there are three convex portions in another second measurement visual field, When the average height of the projections is 6 μm and there are four convex portions in another third measurement visual field, and the average height of the four convex portions is 13 μm, the average height of the convex portions is 2 to 2. It is said that it is within the range of 15 μm.

また、隣り合った凸部間の距離とは、隣り合った2つの凸部の頂部間の距離のことである。隣り合った凸部間の平均距離が20〜100μmであるということは、前記凸部の平均高さの測定と同様に、3視野での各測定視野における隣り合った凸部間の距離の平均値がそれぞれ20〜100μmの範囲内に入っていることをいう。   Moreover, the distance between adjacent convex parts is the distance between the top parts of two adjacent convex parts. The average distance between adjacent convex portions being 20 to 100 μm means that the average distance between adjacent convex portions in each of the three visual fields is the same as the measurement of the average height of the convex portions. Each value is in the range of 20 to 100 μm.

波形状における凸部の平均高さが2μm以上では、前記剪断方向からの荷重に対するクッション効果が高い。その凸部の平均高さが15μmを超えると、耐疲労性が低下する傾向にある。よって、第5層と第6層との間の界面の波形状おける凸部の平均高さは、2〜15μmの範囲が好ましい。   When the average height of the convex portions in the wave shape is 2 μm or more, the cushioning effect against the load from the shear direction is high. When the average height of the convex portion exceeds 15 μm, fatigue resistance tends to be lowered. Therefore, the average height of the convex portions in the corrugated shape at the interface between the fifth layer and the sixth layer is preferably in the range of 2 to 15 μm.

隣り合った凸部間の平均距離が20μm未満では、応力が集中する凸部間の距離が近くなり、破断しやすくなる傾向がある。その平均距離が100μmを超えると、前記剪断方向からの荷重に対するクッション効果が弱まる傾向にある。よって、隣り合った凸部間の平均距離は、20〜100μmの範囲が好ましい。
これらの凸部の高さと距離は、第2層形成時の鋳造条件や熱処理条件等を調整することで、制御することができる。
If the average distance between adjacent convex parts is less than 20 μm, the distance between the convex parts where stress is concentrated tends to be close and tends to break easily. When the average distance exceeds 100 μm, the cushion effect against the load from the shear direction tends to be weakened. Therefore, the average distance between adjacent convex portions is preferably in the range of 20 to 100 μm.
The height and distance of these convex portions can be controlled by adjusting the casting conditions, heat treatment conditions, etc. when forming the second layer.

請求項6の発明は、前記第6層は、前記第5層の前記界面形状に沿って平均粒子径が5μm以下の前記微細金属間化合物粒子が帯状に分布する状態になっていて、前記微細金属間化合物粒子は、前記第5層から前記第2層側への厚さ方向の10μm幅の間にその存在面積のうち70%以上が存在していることを特徴とする。   According to a sixth aspect of the present invention, the sixth layer has a state in which the fine intermetallic compound particles having an average particle diameter of 5 μm or less are distributed in a band shape along the interface shape of the fifth layer, and the fine layer The intermetallic compound particles are characterized in that 70% or more of the existing area exists in the thickness direction of 10 μm from the fifth layer to the second layer side.

第6層の微細金属間化合物粒子の平均粒子径が5μmを超えると、微細金属間化合物粒子同士が繋がる確率が増え、第5層によるクッションとしての役割の効果が下がる傾向がある。微細金属間化合物粒子が、第5層から第2層側への厚さ方向の10μm幅の間に70%以上存在する状態であると、第6層の効果が効果的に発揮される。   If the average particle diameter of the fine intermetallic compound particles in the sixth layer exceeds 5 μm, the probability that the fine intermetallic compound particles are connected to each other increases, and the effect of the role as a cushion by the fifth layer tends to decrease. The effect of the sixth layer is effectively exhibited when the fine intermetallic compound particles are present in a state of 70% or more in the thickness direction of 10 μm from the fifth layer to the second layer side.

請求項7の発明は、前記第1金属はAl又はCuであり、前記第2金属はSn又はPbであり、前記第2層は副成分としてCuを有していることを特徴とする。
第1金属としては耐疲労性に優れるAlが特に好ましい。コスト面を考慮すると、CuよりもAlの方がより好ましい。第2金属としては非焼付性に優れるSnが特に好ましい。環境問題を考慮すると、PbよりもSnを用いた方が良い。第2層の副成分としてCuを含むことで、第2層の強度を向上させることができる。また、第2層は、Cuに加えてSbを含むようにしても良い。第2層にSbが含まれることで、第5層のクッション性を損なわずに、第2層の強度を向上させることができる。
The invention according to claim 7 is characterized in that the first metal is Al or Cu, the second metal is Sn or Pb, and the second layer has Cu as a subcomponent.
As the first metal, Al having excellent fatigue resistance is particularly preferable. Considering the cost, Al is more preferable than Cu. As the second metal, Sn which is excellent in non-seizure property is particularly preferable. In consideration of environmental problems, it is better to use Sn than Pb. By including Cu as a subcomponent of the second layer, the strength of the second layer can be improved. Further, the second layer may contain Sb in addition to Cu. By containing Sb in the second layer, the strength of the second layer can be improved without impairing the cushioning properties of the fifth layer.

請求項8の発明は、請求項7の発明において、さらに、第6層の微細金属間化合物粒子はCuを主成分とすることを特徴とする。したがって、この場合、微細金属間化合物粒子は、Cuを主成分として第1金属を含むものとなる。微細金属間化合物粒子はCu−Al系であることが好ましい。第2層にCuを含ませることで、第6層の形成が効率良く行われ、第6層の効果を効果的に得ることができる。   According to an eighth aspect of the present invention, in the seventh aspect of the invention, the fine intermetallic compound particles of the sixth layer are mainly composed of Cu. Therefore, in this case, the fine intermetallic compound particles contain Cu as the main component and the first metal. The fine intermetallic compound particles are preferably Cu-Al-based. By including Cu in the second layer, the sixth layer is efficiently formed, and the effect of the sixth layer can be effectively obtained.

本発明の第1の実施形態における摺動部材を模式的に示す断面図Sectional drawing which shows typically the sliding member in the 1st Embodiment of this invention 本発明の第2の実施形態における摺動部材を模式的に示す断面図Sectional drawing which shows typically the sliding member in the 2nd Embodiment of this invention. 粒子角度を説明する説明図Explanatory drawing explaining particle angle 波形状の凸部の高さ、および隣り合う凸部間の距離を説明する説明図Explanatory drawing explaining the height of a corrugated convex part, and the distance between adjacent convex parts

本発明の摺動部材の効果を確認するために、表1および表2に示す試料(実施例品1〜34と比較例品1〜5)を製作し、これらの試料に対して、表3に示す試験条件で焼付試験を行うとともに、表4に示す試験条件で疲労試験を行った。試験結果は表2に示されている。   In order to confirm the effect of the sliding member of the present invention, samples (Example products 1 to 34 and Comparative products 1 to 5) shown in Table 1 and Table 2 were manufactured. A seizure test was performed under the test conditions shown in FIG. The test results are shown in Table 2.

Figure 2013002613
Figure 2013002613

Figure 2013002613
Figure 2013002613

Figure 2013002613
Figure 2013002613

Figure 2013002613
Figure 2013002613

実施例品の構造としては、大きく分けて、第4層がない図1の構造と、第4層(第5層と第6層)を有する図2の構造とがある。
第4層が無い第1の実施形態(実施例品1〜4、9〜12、33,34)の摺動部材の製造方法は次のとおりである。
The structure of the example product is roughly divided into the structure of FIG. 1 having no fourth layer and the structure of FIG. 2 having a fourth layer (fifth layer and sixth layer).
The manufacturing method of the sliding member of 1st Embodiment (Example goods 1-4, 9-12, 33, 34) without a 4th layer is as follows.

まず、実施例品9〜12の製造方法について説明する。まず、第3層となるAl-Sn合金を板状に鋳造した。得られたAl-Sn合金板を、第1層となるAl板を介して、鋼板製の基材上に圧着し、三層のバイメタルを作製した。このとき、圧着の代わりに、爆着によりバイメタルを作製しても良い。作製したバイメタルにおけるAl-Sn合金板上に、コールドスプレー法により、ガス圧1.5MPaで平均粒径が15μmのSn粉末を衝突させ、Sn皮膜を形成した。この後、そのSn皮膜上に、500℃のSn合金を鋳込んで鋳造を行った。各層の組成を表1に示した。以上のようにして製造した複層構造体を半円筒状に加工し、半割軸受として試料とした。   First, the manufacturing method of Example goods 9-12 is demonstrated. First, an Al—Sn alloy to be the third layer was cast into a plate shape. The obtained Al—Sn alloy plate was pressure-bonded onto a steel plate substrate through an Al plate serving as a first layer, to produce a three-layer bimetal. At this time, a bimetal may be produced by explosion instead of crimping. Sn powder having an average particle size of 15 μm and a gas pressure of 1.5 MPa was collided on the produced bimetal Al—Sn alloy plate by a cold spray method to form a Sn film. Thereafter, an Sn alloy at 500 ° C. was cast on the Sn film and cast. The composition of each layer is shown in Table 1. The multilayer structure produced as described above was processed into a semicylindrical shape, and a sample was prepared as a half bearing.

実施例品1〜4については、第2層となるSn合金を、鋳造に代えて、電気めっきにより設けた点が実施例品9〜12とは異なっている。   The example products 1 to 4 differ from the example products 9 to 12 in that the Sn alloy serving as the second layer is provided by electroplating instead of casting.

実施例品33は、第1層をCuとし、第2層を、Cuよりも硬度が低いBiを主成分とするBi合金とし、第3層を、Cuを母相、Biを二次相として有するCu−Bi合金としたものである。製造方法は、実施例品1〜4と同様であり、第2層のBi合金は電気めっきにより設けた。   In Example 33, the first layer is made of Cu, the second layer is made of a Bi alloy whose main component is Bi, which is lower in hardness than Cu, the third layer is made of Cu as a parent phase, and Bi as a secondary phase. It has a Cu-Bi alloy. The manufacturing method was the same as in Examples 1 to 4, and the Bi alloy of the second layer was provided by electroplating.

実施例品34は、第1層をCuとし、第2層を、Cuよりも硬度が低いPbを主成分とするPb合金とし、第3層を、Cuを母相、Pbを二次相として有するCu−Pb合金としたものである。製造方法は、実施例品9〜12と同様であり、第2層のPb合金は鋳造により設けた。   In Example 34, the first layer is made of Cu, the second layer is made of a Pb alloy mainly composed of Pb whose hardness is lower than Cu, the third layer is made of Cu as a parent phase, and Pb as a secondary phase. It has a Cu—Pb alloy. The manufacturing method was the same as that of Examples 9 to 12, and the Pb alloy of the second layer was provided by casting.

第4層が有る第2の実施形態(実施例品5〜8、13〜32)の摺動部材の製造方法は次のとおりである。
実施例品13〜32については、上述した実施例品9〜12と同様に、まず第3層となるAl-Sn合金を板状に鋳造した。得られたAl-Sn合金板を、第1層となるAl板を介して、鋼板製の基材上に圧着し、三層のバイメタルを作製した。このとき、圧着の代わりに、爆着によりバイメタルを作製しても良い。作製したバイメタルを、直径5mmの鉄球を多数個入れた300℃の溶融Sn浴の中に浸漬し、そのSn浴の容器を回転数100rpmで回転させることにより、Al-Sn合金表面の酸化皮膜や不純物を除去して当該Al-Sn合金表面に溶融Snめっきを施した。この後、その溶融Snめっき上に、500℃のSn合金を鋳込んで鋳造を行った。各層の組成を表1に示した。以上のようにして製造した複層構造体を半円筒状に加工し、半割軸受として試料とした。
The manufacturing method of the sliding member of 2nd Embodiment (Example goods 5-8, 13-32) which has a 4th layer is as follows.
For the example products 13 to 32, similarly to the example products 9 to 12 described above, an Al—Sn alloy serving as the third layer was first cast into a plate shape. The obtained Al—Sn alloy plate was pressure-bonded onto a steel plate substrate through an Al plate serving as a first layer, to produce a three-layer bimetal. At this time, a bimetal may be produced by explosion instead of crimping. The prepared bimetal is immersed in a 300 ° C. molten Sn bath containing a number of iron balls having a diameter of 5 mm, and the Sn bath container is rotated at a rotation speed of 100 rpm, whereby an oxide film on the surface of the Al—Sn alloy is obtained. And the impurities were removed, and the surface of the Al—Sn alloy was subjected to hot Sn plating. Thereafter, an Sn alloy at 500 ° C. was cast on the molten Sn plating. The composition of each layer is shown in Table 1. The multilayer structure produced as described above was processed into a semicylindrical shape, and a sample was prepared as a half bearing.

実施例品5〜8については、第2層となるSn合金を、鋳造に代えて、電気めっきにより設けた点が実施例品13〜32とは異なっている。
比較例品1〜5については、基本的には、実施例品1〜4と同様な製造方法により製造した。
The example products 5 to 8 are different from the example products 13 to 32 in that the Sn alloy serving as the second layer is provided by electroplating instead of casting.
About Comparative example goods 1-5, it manufactured with the manufacturing method similar to Example goods 1-4 fundamentally.

表1において、第2層の硬さはHV0.01で、第5層の硬さはHV0.0001で、それぞれマイクロビッカース硬さ試験機を用いて測定した。
表2において、第3層の厚さ(%)は、第3層と第1層を合わせた合計厚さに対する第3層の厚さの占める百分率である。各層の厚さは、厚さ方向断面の組成像を電子顕微鏡で撮影し、得られた画像を解析ソフト(Image−Pro Plus(version4.5);(株)プラネトロン製)を用いて解析し、求めた。第3層における二次相面積率(%)は、上記と同様に、製造された摺動部材について、厚さ方向断面の組成像を電子顕微鏡で撮影し、得られた画像を上記解析ソフトを用いて解析し、二次相の占める面積を求め、百分率で表した。
In Table 1, the hardness of the second layer was HV0.01, the hardness of the fifth layer was HV0.0001, and each was measured using a micro Vickers hardness tester.
In Table 2, the thickness (%) of the third layer is a percentage of the thickness of the third layer to the total thickness of the third layer and the first layer. The thickness of each layer was obtained by taking a composition image of a cross section in the thickness direction with an electron microscope, and analyzing the obtained image using analysis software (Image-Pro Plus (version 4.5); manufactured by Planetron Co., Ltd.) Asked. As for the secondary phase area ratio (%) in the third layer, the composition image of the cross section in the thickness direction of the manufactured sliding member was photographed with an electron microscope in the same manner as described above. The area occupied by the secondary phase was determined and expressed as a percentage.

第2層の金属間化合物粒子の平均粒子角度は、次のようにして求めた。上記と同様に、製造された摺動部材について、厚さ方向断面の組成像を光学顕微鏡で撮影し、得られた画像を上記解析ソフトを用いて解析し、図3に示す粒子角度θを測定した。得られた粒子角度θの平均を平均粒子角度とした。第2層の厚さ(%)は、第1層から第3層、場合により第4層を経た第2層までの総合厚さに対する第2層の厚さの占める百分率である。   The average particle angle of the intermetallic compound particles in the second layer was determined as follows. In the same manner as described above, the composition image of the cross section in the thickness direction of the manufactured sliding member was taken with an optical microscope, the obtained image was analyzed using the analysis software, and the particle angle θ shown in FIG. 3 was measured. did. The average of the obtained particle angles θ was defined as the average particle angle. The thickness (%) of the second layer is the percentage of the thickness of the second layer to the total thickness from the first layer to the third layer, and possibly the second layer through the fourth layer.

第5層の平均厚さ(%)は、第1層と第3層の合計厚さに対する第5層の平均厚さの占める百分率である。凸部の平均高さは、第5層の界面の波形状における凸部の高さ、即ち、凸部12の隣り合う底部を結ぶ接線と頂部からの厚さ方向Tの線との交点から、頂部までの距離H(図4参照)の平均である。また、凸部間の平均距離は、第5層の界面の波形状において隣り合った凸部間の距離、即ち、隣り合う凸部12の頂部の厚さ方向Tに垂直な方向の距離L(図4参照)の平均である。これら凸部の平均高さおよび凸部間の平均距離も、製造された摺動部材について、厚さ方向断面の組成像を電子顕微鏡で撮影し、得られた画像を上記解析ソフトを用いて解析し、求めた。   The average thickness (%) of the fifth layer is a percentage of the average thickness of the fifth layer to the total thickness of the first layer and the third layer. The average height of the convex portion is the height of the convex portion in the corrugated shape of the interface of the fifth layer, that is, the intersection of the tangent line connecting the adjacent bottom portions of the convex portion 12 and the line in the thickness direction T from the top portion, It is the average of the distance H to the top (see FIG. 4). The average distance between the convex portions is the distance between adjacent convex portions in the corrugated shape of the interface of the fifth layer, that is, the distance L (in the direction perpendicular to the thickness direction T of the top portions of the adjacent convex portions 12 ( (See FIG. 4). The average height of these protrusions and the average distance between the protrusions were also taken for the manufactured sliding member by taking a composition image of the cross section in the thickness direction with an electron microscope and analyzing the obtained image using the above analysis software. And asked.

第6層の微細金属間化合物粒子の平均粒子径も、製造された摺動部材について、厚さ方向断面の組成像を電子顕微鏡で撮影し、得られた画像を上記解析ソフトを用いて解析し、求めた。第6層の微細金属間化合物粒子の分布(%)は、当該微細金属間化合物粒子のうち第5層から第2層への厚さ方向の10μm幅の間に存している微細金属間化合物粒子が占める面積の割合の合計を百分率で表したものである。この第6層の微細金属間化合物粒子の分布(%)も、製造された摺動部材について、厚さ方向断面の組成像を電子顕微鏡で撮影し、得られた画像を上記解析ソフトを用いて解析し、求めた。   The average particle diameter of the fine intermetallic compound particles of the sixth layer was also analyzed for the manufactured sliding member by taking a composition image of the cross section in the thickness direction with an electron microscope and analyzing the obtained image using the above analysis software. Asked. The distribution (%) of the fine intermetallic compound particles in the sixth layer is a fine intermetallic compound existing in a thickness direction of 10 μm from the fifth layer to the second layer among the fine intermetallic compound particles. This is the percentage of the total area occupied by the particles. As for the distribution (%) of the fine intermetallic compound particles in the sixth layer, the composition image of the cross section in the thickness direction was taken with an electron microscope for the manufactured sliding member, and the obtained image was analyzed using the above analysis software. Analyzed and determined.

次に試験結果について、主に表2を参照して考察する。
まず、実施例品1〜4と比較例品1〜5とを比較してみる。比較例品1〜3は、第3層の厚さが、第3層と第1層を合わせた合計厚さに対して3%未満である。比較例品1,4は二次相の面積率が10%未満であり、また、比較例品2,5は二次相の面積率が30%を超えている。これに対して、実施例品1〜4は、第3層の厚さが、第3層と第1層を合わせた合計厚さに対して3%以上で、かつ、二次相の面積率が10〜30%であるため、比較例品1〜5よりも非焼付性および耐疲労性に優れていることがわかる。
Next, the test results will be discussed mainly with reference to Table 2.
First, the example products 1 to 4 and the comparative product 1 to 5 will be compared. In Comparative Examples 1 to 3, the thickness of the third layer is less than 3% with respect to the total thickness of the third layer and the first layer. The comparative example products 1 and 4 have a secondary phase area ratio of less than 10%, and the comparative example products 2 and 5 have a secondary phase area ratio of more than 30%. On the other hand, as for Example goods 1-4, the thickness of a 3rd layer is 3% or more with respect to the total thickness which match | combined the 3rd layer and the 1st layer, and the area ratio of a secondary phase Is 10 to 30%, it can be seen that the non-seizure property and the fatigue resistance are superior to those of Comparative Examples 1 to 5.

実施例品1〜4と実施例品9〜12とを比較してみる。実施例品1〜4は、第2層となるSn合金層を電気めっきにより設けたものである。これに対して、実施例品9〜12は、第2層となるSn合金層を鋳造により設けたものである。実施例品9〜12は、第2層となるSn合金層を鋳造により設けたことにより、当該第2層における金属間化合物粒子の平均粒子角度を55°以下と制御しているため、実施例品1〜4よりも非焼付性が向上していることがわかる。なお、実施例品3は、第2層中に金属間化合物粒子を析出させなかった。   The example products 1 to 4 and the example products 9 to 12 will be compared. Example goods 1-4 provide the Sn alloy layer used as the 2nd layer by electroplating. On the other hand, Example goods 9-12 provide the Sn alloy layer used as the 2nd layer by casting. Since Example goods 9-12 provided the Sn alloy layer used as the 2nd layer by casting, and controlled the average particle angle of the intermetallic compound particles in the 2nd layer to be 55 degrees or less. It can be seen that the non-seizure property is improved as compared with the products 1 to 4. In Example Product 3, no intermetallic compound particles were precipitated in the second layer.

実施例品1〜4と実施例品5〜8とを比較してみる。実施例品5〜8は、第4層を有しているため、第4層を有していない実施例品1〜4よりも耐疲労性が向上していることがわかる。
実施例品5〜8と実施例品13〜16とを比較してみる。実施例品13〜16は、第2層となるSn合金層を鋳造により設けたことにより、当該第2層における金属間化合物粒子の平均粒子角度を55°以下と制御しているため、実施例品5〜8よりも非焼付性および耐疲労性が共に向上していることがわかる。
The example products 1 to 4 and the example products 5 to 8 will be compared. Since Example goods 5-8 have the 4th layer, it turns out that fatigue resistance is improving rather than Example goods 1-4 which do not have the 4th layer.
The example products 5 to 8 and the example products 13 to 16 will be compared. In the example products 13 to 16, since the Sn alloy layer as the second layer was provided by casting, the average particle angle of the intermetallic compound particles in the second layer was controlled to 55 ° or less. It can be seen that both the seizure resistance and the fatigue resistance are improved as compared with the products 5-8.

実施例品13〜16と実施例品17〜19とを比較してみる。実施例品17〜19は、第2層の厚さを、第1層から第2層までの総合計厚さの3〜45%の範囲内に制御しているため、実施例品13〜16よりも耐疲労性が向上していることがわかる。
実施例品18と実施例品20〜22とを比較してみる。実施例品20〜22は、第5層の厚さを、第1層と第3層の合計厚さの0.2〜5%の範囲内に制御しているため、実施例品18よりも耐疲労性が向上していることがわかる。
The example products 13 to 16 and the example products 17 to 19 will be compared. In the example products 17 to 19, since the thickness of the second layer is controlled within the range of 3 to 45% of the total thickness from the first layer to the second layer, the example products 13 to 16 It can be seen that the fatigue resistance is improved.
The example product 18 and the example products 20 to 22 will be compared. Since the example products 20 to 22 control the thickness of the fifth layer within the range of 0.2 to 5% of the total thickness of the first layer and the third layer, they are more than the example product 18 It can be seen that the fatigue resistance is improved.

実施例品21と実施例品23〜25とを比較してみる。実施例品23〜25は、第5層の界面における波形状の凸部の平均高さを2〜15μmの範囲内に制御しているため、実施例品21よりも耐疲労性が向上していることがわかる。
実施例品24と実施例品26〜28とを比較してみる。実施例品26〜28は、第5層の界面における波形状の凸部間の平均距離を20〜100μmの範囲内に制御しているため、実施例品24よりも耐疲労性が向上していることがわかる。
The example product 21 and the example products 23 to 25 will be compared. Since the example products 23 to 25 control the average height of the wave-shaped convex portions at the interface of the fifth layer within the range of 2 to 15 μm, the fatigue resistance is improved as compared with the example product 21. I understand that.
The example product 24 and the example products 26 to 28 will be compared. In the example products 26 to 28, the average distance between the corrugated convex portions at the interface of the fifth layer is controlled within the range of 20 to 100 μm, so that the fatigue resistance is improved compared to the example product 24. I understand that.

実施例品27と実施例品29,30とを比較してみる。実施例品29,30は、第6層における微細金属間化合物粒子の平均粒子径を5μm以下に制御しているため、実施例品27よりも耐疲労性が向上していることがわかる。
実施例品30と実施例品31,32とを比較してみる。実施例品31,32は、第6層における微細金属間化合物粒子の分布状態を70%以上にしているため、実施例品30よりも耐疲労性が向上していることがわかる。
The example product 27 and the example products 29 and 30 will be compared. Since Example goods 29 and 30 have controlled the average particle diameter of the fine intermetallic compound particle | grains in a 6th layer to 5 micrometers or less, it turns out that the fatigue resistance is improving rather than Example goods 27. FIG.
The example product 30 and the example products 31 and 32 will be compared. Since the example products 31 and 32 have a distribution state of the fine intermetallic compound particles in the sixth layer of 70% or more, it can be seen that the fatigue resistance is improved compared to the example product 30.

実施例品33と実施例品1とを比較してみる。実施例品33は、第1金属をCu、第2金属をBi、第3層をCu−Bi合金、第2層をBi合金めっきとしたものであり、実施例品1とは各層の成分が異なっているが、非焼付性および耐疲労性共に実施例品1と同等な結果が得られている。   The example product 33 and the example product 1 will be compared. In the example product 33, the first metal is Cu, the second metal is Bi, the third layer is Cu-Bi alloy, and the second layer is Bi alloy plating. Although different, both the non-seizure property and the fatigue resistance are the same as those of Example Product 1.

実施例品34と実施例品9とを比較してみる。実施例品34は、第1金属をCu、第2金属をPb、第3層をCu−Pb合金、第2層をPb合金の鋳造としたものであり、実施例品9とは各層の成分が異なっているが、非焼付性および耐疲労性共に実施例品9と同等な結果が得られている。   The example product 34 and the example product 9 will be compared. The example product 34 is obtained by casting the first metal as Cu, the second metal as Pb, the third layer as a Cu-Pb alloy, and the second layer as a Pb alloy, and the example product 9 is a component of each layer. Although different from each other, the same results as those of Example Product 9 were obtained in both non-seizure property and fatigue resistance.

また、特に非焼付性を要求される摺動部材では、第1金属としてAg、第2金属としてSnを用いることができる。
本実施形態では、第1層としてAlを用いた例で説明したが、Al−Sn合金を用いても良い。即ち、第1層を、第1金属を主成分とした上で、第1金属を母相、第2金属を二次相として有する形態としても良い。この場合、第1層の二次相面積率を第3層のそれよりも少なくすることが、摺動部材の強度上特に好ましい。また、第1層の副成分として、第3層の第2金属と異なる元素を用いても良い。
本実施形態は、要旨を逸脱しない範囲内で適宜変更して実施し得る。
不可避的不純物については説明を省略し、各組成には不可避的不純物が含まれ得る。
各層には、本発明の効果を妨げない範囲で前述した以外の元素、例えばSi、Mn、Zr、Fe等や、硬質粒子や固体潤滑剤等の添加物を加えても良い。
In particular, in a sliding member that requires non-seizure properties, Ag can be used as the first metal and Sn can be used as the second metal.
In the present embodiment, the example in which Al is used as the first layer has been described, but an Al—Sn alloy may be used. That is, the first layer may have the first metal as a main component, the first metal as a parent phase, and the second metal as a secondary phase. In this case, it is particularly preferable in terms of the strength of the sliding member that the secondary phase area ratio of the first layer is smaller than that of the third layer. Further, an element different from the second metal of the third layer may be used as the subcomponent of the first layer.
The present embodiment can be implemented with appropriate modifications within a range not departing from the gist.
Description of inevitable impurities is omitted, and each composition may contain inevitable impurities.
Elements other than those described above, such as Si, Mn, Zr, Fe, etc., and additives such as hard particles and solid lubricants may be added to each layer as long as the effects of the present invention are not impaired.

図面中、1は基材、2は第1層、3は第2層、4は第3層、5はAl、6はSn、7は第4層、8は第5層、9は第6層、10は微細金属間化合物粒子、11は金属間化合物粒子、12は凸部、Hは凸部の高さ、Lは凸部間の距離、θは粒子角度を示す。   In the drawings, 1 is a substrate, 2 is a first layer, 3 is a second layer, 4 is a third layer, 5 is Al, 6 is Sn, 7 is a fourth layer, 8 is a fifth layer, and 9 is a sixth layer. Layers, 10 are fine intermetallic compound particles, 11 are intermetallic compound particles, 12 is a convex portion, H is the height of the convex portion, L is the distance between the convex portions, and θ is the particle angle.

Claims (8)

室温から450Kにおいて熱伝導率が200〜450W/(mK)である第1金属を主成分とする第1層と、前記第1金属よりも硬度が低い第2金属を主成分とする第2層との間に、第3層を有し、前記第3層は、前記第1金属を母相、前記第2金属を二次相として有し、前記第3層中での前記二次相の面積率が10〜30%であり、前記第3層の厚さは、当該第3層と前記第1層を合わせた合計厚さの3%以上である摺動部材。   A first layer mainly composed of a first metal having a thermal conductivity of 200 to 450 W / (mK) from room temperature to 450 K, and a second layer mainly composed of a second metal having a hardness lower than that of the first metal. And a third layer, the third layer having the first metal as a parent phase and the second metal as a secondary phase, and the second phase in the third layer. A sliding member having an area ratio of 10 to 30% and a thickness of the third layer being 3% or more of a total thickness of the third layer and the first layer. 請求項1記載の摺動部材において、さらに前記第2層と前記第3層との間に第4層を有し、前記第4層は、前記第3層に接する第5層と、前記第2層に接する第6層とからなり、前記第5層は、前記第2金属を主成分とし、かつ前記第2層よりも軟質であり、前記第6層は、前記第1金属を含む微細金属間化合物粒子の群からなることを特徴とする摺動部材。   The sliding member according to claim 1, further comprising a fourth layer between the second layer and the third layer, wherein the fourth layer includes a fifth layer in contact with the third layer, and the first layer. The fifth layer is composed of the second metal as a main component and is softer than the second layer, and the sixth layer is a fine layer containing the first metal. A sliding member comprising a group of intermetallic compound particles. 前記第2層は、主成分のマトリクス中に金属間化合物粒子が分散して存在する組織であり、前記金属間化合物粒子の平均粒子角度が55°以下であることを特徴とする請求項1または2記載の摺動部材。   The second layer is a structure in which intermetallic compound particles are dispersed in a main component matrix, and an average particle angle of the intermetallic compound particles is 55 ° or less. 2. The sliding member according to 2. 前記第2層の厚さは、前記第1層から前記第2層までの総合計厚さの3〜45%であることを特徴とする請求項1から3のいずれか一項記載の摺動部材。   The thickness of the said 2nd layer is 3 to 45% of the total thickness from the said 1st layer to the said 2nd layer, The sliding as described in any one of Claim 1 to 3 characterized by the above-mentioned. Element. 前記第5層の平均厚さは、前記第1層と前記第3層の合計厚さの0.2〜5%であり、前記第5層における前記第6層側の界面形状は波形状をなしていて、前記波形状における凸部の平均高さが2〜15μm、隣り合った前記凸部間の平均距離が20〜100μmであることを特徴とする請求項2記載の摺動部材。   The average thickness of the fifth layer is 0.2 to 5% of the total thickness of the first layer and the third layer, and the interface shape on the sixth layer side of the fifth layer is a wave shape. The sliding member according to claim 2, wherein an average height of the convex portions in the wave shape is 2 to 15 μm, and an average distance between the adjacent convex portions is 20 to 100 μm. 前記第6層は、前記第5層の前記界面形状に沿って平均粒子径が5μm以下の前記微細金属間化合物粒子が帯状に分布する状態になっていて、前記微細金属間化合物粒子は、前記第5層から前記第2層側への厚さ方向の10μm幅の間に70%以上が存在していることを特徴とする請求項2または5記載の摺動部材。   The sixth layer has a state in which the fine intermetallic compound particles having an average particle diameter of 5 μm or less are distributed in a band shape along the interface shape of the fifth layer, and the fine intermetallic compound particles are 6. The sliding member according to claim 2, wherein 70% or more exists in a thickness direction of 10 μm from the fifth layer to the second layer side. 前記第1金属はAl又はCuであり、前記第2金属はSn又はPbであり、前記第2層は副成分としてCuを有していることを特徴とする請求項1から6のいずれか一項記載の摺動部材。   7. The first metal according to claim 1, wherein the first metal is Al or Cu, the second metal is Sn or Pb, and the second layer has Cu as a subcomponent. The sliding member according to item. 前記第1金属はAl又はCuであり、前記第2金属はSn又はPbであり、前記第2層は副成分としてCuを有し、前記第6層の前記微細金属間化合物粒子はCuを主成分とすることを特徴とする請求項2から6のいずれか一項記載の摺動部材。   The first metal is Al or Cu, the second metal is Sn or Pb, the second layer has Cu as a subcomponent, and the fine intermetallic compound particles of the sixth layer are mainly Cu. The sliding member according to any one of claims 2 to 6, wherein the sliding member is a component.
JP2011137304A 2011-06-21 2011-06-21 Sliding member Active JP5707245B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011137304A JP5707245B2 (en) 2011-06-21 2011-06-21 Sliding member
KR1020120065338A KR101373683B1 (en) 2011-06-21 2012-06-19 Slide member
GB1210977.3A GB2492228B (en) 2011-06-21 2012-06-20 Slide member
DE102012210382.1A DE102012210382B4 (en) 2011-06-21 2012-06-20 SLIDING MENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137304A JP5707245B2 (en) 2011-06-21 2011-06-21 Sliding member

Publications (2)

Publication Number Publication Date
JP2013002613A true JP2013002613A (en) 2013-01-07
JP5707245B2 JP5707245B2 (en) 2015-04-22

Family

ID=46641259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137304A Active JP5707245B2 (en) 2011-06-21 2011-06-21 Sliding member

Country Status (4)

Country Link
JP (1) JP5707245B2 (en)
KR (1) KR101373683B1 (en)
DE (1) DE102012210382B4 (en)
GB (1) GB2492228B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223631A (en) * 2016-07-29 2016-12-28 大豊工業株式会社 Sliding member and sliding bearing
JP2017036835A (en) * 2016-08-24 2017-02-16 大豊工業株式会社 Sliding member and slide bearing
WO2018142223A1 (en) * 2017-02-03 2018-08-09 日産自動車株式会社 Sliding member, and sliding member of internal combustion engine
JP2019502820A (en) * 2015-12-15 2019-01-31 ポスコPosco Metal coating method for steel plate and metal coated steel plate manufactured using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135979B (en) * 2018-05-10 2022-05-10 日产自动车株式会社 Bearing component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500700A (en) * 1989-07-03 1992-02-06 ティーアンドエヌ テクノロジー リミテッド journal bearing
JP2005291360A (en) * 2004-03-31 2005-10-20 Daido Metal Co Ltd Sliding bearing and its manufacturing method
WO2008111617A1 (en) * 2007-03-12 2008-09-18 Taiho Kogyo Co. Ltd. Slide bearing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902419B2 (en) * 1989-10-13 1999-06-07 大豊工業株式会社 Plain bearing
JP2532778B2 (en) * 1991-10-02 1996-09-11 大同メタル工業株式会社 Bearing metal for large engines
JP2001132754A (en) 1999-11-04 2001-05-18 Daido Metal Co Ltd Multilayer slide bearing
JP2003090343A (en) 2001-09-19 2003-03-28 Daido Metal Co Ltd Multi-layer sliding material
JP5072510B2 (en) 2007-09-21 2012-11-14 大同メタル工業株式会社 Sliding member
JP4709294B2 (en) * 2009-04-15 2011-06-22 大同メタル工業株式会社 Sliding member
EP2365109B1 (en) * 2010-03-02 2013-05-01 KS Gleitlager GmbH Friction bearing composite material with galvanised running layer
DE102010040469B3 (en) * 2010-09-09 2012-01-12 Federal-Mogul Wiesbaden Gmbh Laminated material for sliding elements, process for its production and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500700A (en) * 1989-07-03 1992-02-06 ティーアンドエヌ テクノロジー リミテッド journal bearing
JP2005291360A (en) * 2004-03-31 2005-10-20 Daido Metal Co Ltd Sliding bearing and its manufacturing method
WO2008111617A1 (en) * 2007-03-12 2008-09-18 Taiho Kogyo Co. Ltd. Slide bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502820A (en) * 2015-12-15 2019-01-31 ポスコPosco Metal coating method for steel plate and metal coated steel plate manufactured using the same
JP2016223631A (en) * 2016-07-29 2016-12-28 大豊工業株式会社 Sliding member and sliding bearing
JP2017036835A (en) * 2016-08-24 2017-02-16 大豊工業株式会社 Sliding member and slide bearing
WO2018142223A1 (en) * 2017-02-03 2018-08-09 日産自動車株式会社 Sliding member, and sliding member of internal combustion engine
JP2018123401A (en) * 2017-02-03 2018-08-09 日産自動車株式会社 Slide member, slide member of internal combustion engine, and method for manufacturing slide member
US10927893B2 (en) 2017-02-03 2021-02-23 Nissan Motor Co., Ltd. Sliding member, and sliding member for internal combustion engine
RU2759361C2 (en) * 2017-02-03 2021-11-12 Рено С.А.С. Sliding element and sliding element for internal combustion engine

Also Published As

Publication number Publication date
DE102012210382B4 (en) 2017-01-26
KR20120140614A (en) 2012-12-31
GB201210977D0 (en) 2012-08-01
KR101373683B1 (en) 2014-03-13
GB2492228A (en) 2012-12-26
DE102012210382A1 (en) 2012-12-27
GB2492228B (en) 2013-11-20
JP5707245B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5707245B2 (en) Sliding member
JP4570998B2 (en) Metal-based spherical bearing
JP5399645B2 (en) Aluminum base bearing alloy
JP6454234B2 (en) Multi-layer covering structure of plain bearing and manufacturing method thereof
JP4504328B2 (en) Sliding member
TW200905095A (en) Machine part belonging to a sliding pair and method for the production thereof
WO2015141572A1 (en) Slide bearing
JP6574302B2 (en) Multi-layer plain bearing element
JP4389026B2 (en) Sliding material and manufacturing method thereof
JP2006198679A (en) Different kind of metal joining method
JPS63118058A (en) Member thermally sprayed with ceramic and its production
JP3754315B2 (en) Multi-layer sliding material
WO2014157650A1 (en) Aluminum alloy, slide bearing, and slide bearing manufacturing method
Chen et al. Interfacial reaction in twin-roll cast AA1100/409L clad sheet during different sequence of cold rolling and annealing
CN110199042B (en) Multi-layer plain bearing element
US20090214887A1 (en) Sliding member
JP5981097B2 (en) Al alloy bearing and manufacturing method of Al alloy bearing
EP1826290A1 (en) Method for producing steel pipe plated with metal by thermal spraying
JP5453532B2 (en) Sliding member
Hordych et al. Effect of Pre‐Rolling Heat Treatments on the Bond Strength of Cladded Galvanized Steels in a Cold Roll Bonding Process
JP7113793B2 (en) sliding member
Gençer et al. Effect of the surface nanocrystallization on tribological behavior of the Cu based bimetallic materials (CuPbSn)
KR101398616B1 (en) Sliding member
JP2018094618A (en) Laminated structure conjugate, and manufacturing method of laminated structure conjugate
JP3776228B2 (en) Heat treatment reinforced aluminum sliding material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250