JP4504328B2 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP4504328B2
JP4504328B2 JP2006095108A JP2006095108A JP4504328B2 JP 4504328 B2 JP4504328 B2 JP 4504328B2 JP 2006095108 A JP2006095108 A JP 2006095108A JP 2006095108 A JP2006095108 A JP 2006095108A JP 4504328 B2 JP4504328 B2 JP 4504328B2
Authority
JP
Japan
Prior art keywords
surface layer
based alloy
layer
alloy
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006095108A
Other languages
Japanese (ja)
Other versions
JP2007270893A (en
Inventor
秀雄 辻
茂 稲見
正仁 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2006095108A priority Critical patent/JP4504328B2/en
Publication of JP2007270893A publication Critical patent/JP2007270893A/en
Application granted granted Critical
Publication of JP4504328B2 publication Critical patent/JP4504328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明はSn基合金からなる表面層を設けた摺動部材に関する。   The present invention relates to a sliding member provided with a surface layer made of a Sn-based alloy.

摺動部材、例えば内燃機関などに用いられるすべり軸受にあっては、なじみ性および異物埋収性を向上させて非焼付性を高めるために、軸受合金層上にオーバレイと称される表面層を被着している。表面層は、純Sn、純Pb、Sn基合金、Pb基合金などが用いられる。特に、Sn基合金は、SnがSbやCuなどと、硬質の化合物を形成するので、耐疲労性が向上するといった理由から良く用いられている。   In a sliding bearing used for a sliding member, for example, an internal combustion engine, a surface layer called an overlay is formed on the bearing alloy layer in order to improve the conformability and foreign matter burying property and to enhance the non-seizure property. I'm wearing it. For the surface layer, pure Sn, pure Pb, Sn-base alloy, Pb-base alloy, or the like is used. In particular, Sn-based alloys are often used because Sn forms a hard compound with Sb, Cu, or the like, so that fatigue resistance is improved.

Sn基合金からなる表面層を軸受合金層上に被着させる方法として、鋳造法、溶射法、湿式の電気めっき法(以下、単にめっき法;例えば特許文献1参照)が広く知られている。
鋳造法は、軸受合金層の表面に溶融したSn基合金を付着させてSn基合金表面層を形成するものである。しかしながら、鋳造法で形成したSn基合金表面層では、その冷却速度の関係などから、結晶粒が大きくなる傾向がある。このため、Snを含む化合物(以下、単にSn化合物)の結晶粒も大きくなってSnマトリックス中での分布が不均一になり、Sn化合物の少ない部分では強度が低くなり、耐疲労性が低下する。
As a method for depositing a surface layer made of an Sn-based alloy on a bearing alloy layer, a casting method, a thermal spraying method, and a wet electroplating method (hereinafter simply referred to as a plating method; see, for example, Patent Document 1) are widely known.
In the casting method, an Sn-based alloy surface layer is formed by adhering a molten Sn-based alloy to the surface of the bearing alloy layer. However, in the Sn-based alloy surface layer formed by the casting method, the crystal grains tend to increase due to the cooling rate and the like. For this reason, the crystal grains of the compound containing Sn (hereinafter simply referred to as “Sn compound”) are also enlarged, and the distribution in the Sn matrix becomes non-uniform, and the strength is lowered and the fatigue resistance is lowered in a portion where there is little Sn compound. .

溶射法は、軸受合金層の表面にSn基合金粉末を溶射によって付着させてSn基合金表面層を形成するものである。即ち、軸受合金層の表面に溶融状態のSn基合金粉末を衝突させて、Sn基合金からなる皮膜を形成する。その際、Sn基合金粉末は溶融状態のために軟らかいので、衝突時のエネルギーが小さい。そのため、溶射皮膜はSn基合金粉末が積層されたような形態にはなるが、それらの間に隙間が必然的にできる。これが気孔となり、結果的に表面層中に気孔が多く含まれるようになる。このため、表面層のマトリックスを形成するSn基合金の延性が低くなり、耐疲労性の低下をきたす。   In the thermal spraying method, an Sn-based alloy surface layer is formed by depositing Sn-based alloy powder on the surface of a bearing alloy layer by thermal spraying. That is, a molten Sn-based alloy powder collides with the surface of the bearing alloy layer to form a film made of Sn-based alloy. At that time, since the Sn-based alloy powder is soft because of the molten state, the energy at the time of collision is small. For this reason, the sprayed coating has a form in which Sn-based alloy powder is laminated, but a gap is inevitably formed between them. This becomes pores, and as a result, many pores are included in the surface layer. For this reason, the ductility of the Sn-based alloy forming the matrix of the surface layer is lowered, and the fatigue resistance is lowered.

これに対し、めっき法は、軸受合金層の表面にSn基合金をめっきによって被着させるものであるため、Sn基合金表面層中のSn化合物も微細で、気孔も非常に少なくなる。
特開平5−117790号公報
On the other hand, in the plating method, since the Sn-based alloy is deposited on the surface of the bearing alloy layer by plating, the Sn compound in the Sn-based alloy surface layer is also fine and the pores are very small.
Japanese Patent Laid-Open No. 5-117790

めっき法により形成したSn基合金表面層では、Sn化合物が緻密に分散し、しかも、気孔も少ない。しかし、めっき法により形成したSn基合金表面層であっても、ある種の用途に使用される場合、未だ耐疲労性が十分でなく、更なる耐疲労性の向上が要望されている。
本発明は上記の事情に鑑みてなされたもので、その目的は、基材上にSn基合金の表面層を被着してなる摺動部材において、耐疲労性の更なる向上を図ることができる摺動部材を提供することにある。
In the Sn-based alloy surface layer formed by the plating method, the Sn compound is finely dispersed, and there are few pores. However, even if it is a Sn-based alloy surface layer formed by a plating method, when it is used for a certain kind of application, the fatigue resistance is not yet sufficient, and further improvement of the fatigue resistance is desired.
The present invention has been made in view of the above circumstances, and its purpose is to further improve fatigue resistance in a sliding member formed by depositing a surface layer of a Sn-based alloy on a base material. It is in providing the sliding member which can be performed.

本発明者は、めっき法によるSn基合金表面層の耐疲労性が不十分であることについて、鋭意実験を行い、次のような結論を得た。
めっき法によりSn基合金表面層を形成する場合、そのめっき浴には、分散剤(有機物添加剤)が添加される。分散剤は、表面層組織の緻密化、表面粗さの平滑化、めっき浴中のSnイオンなどの酸化防止、析出電位の異なる金属を合金析出(同時に析出)させて合金めっき化するなどを目的に用いられている。
The present inventor has conducted earnest experiments on the fact that the fatigue resistance of the Sn-based alloy surface layer by plating is insufficient, and has obtained the following conclusion.
When the Sn-based alloy surface layer is formed by plating, a dispersant (organic additive) is added to the plating bath. The purpose of the dispersant is to densify the surface layer structure, smooth the surface roughness, prevent oxidation of Sn ions, etc. in the plating bath, and deposit alloys with different precipitation potentials (simultaneously depositing) to form alloys. It is used for.

有機物の分散剤を添加しためっき浴を用いてSn基合金表面層を形成すると、そのSn基合金表面層中に有機物形態のCが混入する。前記特許文献1では、この混入Cを適当量に抑えると、Snの拡散を抑制できるとしている。
しかしながら、本願発明者の実験によると、Sn基合金表面層中に析出した有機物形態のCは、非金属の介在物となって表面層の破壊の起点となり、表面層の耐疲労性に悪影響を及ぼす。しかも、有機物形態のCは、Sn基合金表面層と軸受合金層との間にも析出して表面層の接着力を弱め、耐疲労性を低くさせる。
When a Sn-based alloy surface layer is formed using a plating bath to which an organic dispersant is added, organic form C is mixed in the Sn-based alloy surface layer. According to Patent Document 1, it is said that Sn diffusion can be suppressed by suppressing the mixing C to an appropriate amount.
However, according to the experiments of the present inventor, organic form C precipitated in the surface layer of the Sn-based alloy becomes a non-metallic inclusion and becomes a starting point of the destruction of the surface layer, which adversely affects the fatigue resistance of the surface layer. Effect. Moreover, the organic form of C also precipitates between the Sn-based alloy surface layer and the bearing alloy layer, weakens the adhesion of the surface layer, and lowers fatigue resistance.

一方、Sn基合金表面層の耐疲労性を高めるには、表面層中の気孔を少なくし、しかも、Sn基合金表面層中に存在するSn化合物が微細で、表面層中に均一に存在することが必要である。前述したように、めっき法は、気孔が少なく、微細なSn化合物が均一に分散した表面層を得ることができる点で優れているが、しかし、有機物形態のCが析出して耐疲労性に悪影響を及ぼすので、本発明者は、めっき法によらずとも、気孔が少なく、微細なSn化合物が均一に分散する成膜法を開拓することに努めた。   On the other hand, in order to increase the fatigue resistance of the Sn-based alloy surface layer, the pores in the surface layer are reduced, and the Sn compound present in the Sn-based alloy surface layer is fine and uniformly present in the surface layer. It is necessary. As described above, the plating method is excellent in that a surface layer in which fine pores are few and fine Sn compound is uniformly dispersed can be obtained. However, organic form C is precipitated and fatigue resistance is improved. Since the present invention has an adverse effect, the present inventors have sought to pioneer a film forming method in which fine Sn compounds are uniformly dispersed with few pores, regardless of the plating method.

本発明者は、従来の表面層形成方法である鋳造法、溶射法、めっき法とは異なるコールドスプレー法を用いてSn基合金表面層を形成した。そして、このコールドスプレー法によって、気孔が少なく、微細なSn化合物が均一に分散する表面層を得た。しかも、このSn基合金表面層は、めっき法によるものとは異なり、有機物形態のCを含んでおらず、耐疲労性に優れるという結果を得た。本発明は、このような本発明者の鋭意研究の結果に基づいてなされたものである。   The present inventor formed the Sn-based alloy surface layer by using a cold spray method different from the conventional surface layer forming methods such as casting, thermal spraying and plating. And by this cold spray method, the surface layer with few pores and a fine Sn compound disperse | distributed uniformly was obtained. Moreover, this Sn-based alloy surface layer was different from the plating method in that it did not contain organic form C, and was excellent in fatigue resistance. The present invention has been made based on the results of such extensive research by the present inventors.

(1)本発明が対象とする摺動部材の基本構造
本発明は、基材の全体をSn基合金表面層で覆う軟層被覆タイプの摺動部材(請求項1)と、相手材が接する表面層を、軸受合金の表面層部とSn基合金の表面層部とを交互に並べた硬軟層並列タイプの摺動部材(請求項3)を対象とする。
(1) Basic structure of sliding member targeted by the present invention In the present invention, a soft layer-coated sliding member (Claim 1) that covers the entire base material with a Sn-based alloy surface layer is in contact with a mating member. The object is a hard-soft layer parallel type sliding member in which the surface layer portion of the bearing alloy and the surface layer portion of the Sn-based alloy are alternately arranged.

<軟層被覆タイプの摺動部材について>
軟層被覆タイプの摺動部材では、Sn基合金表面を被着する基材を、軸受合金層とすることができる(請求項2)。
例えば、ラジアル軸受用の摺動部材(すべり軸受)は、図2(c)に示す裏金層1上に軸受合金層2を被着したバイメタル3を円筒状、或いは半円筒状に形成して用いられる。そして、軸受合金層2がCu基軸受合金からなる摺動部材については、図2(a)に示すように、基材としての軸受合金層2上に例えばNiのめっき層からなる中間層4を形成し、この中間層4上にSn基合金の表面層5を被着する。また、軸受合金層2がAl基軸受合金からなる摺動部材については、図2(b)に示すように、基材としての軸受合金層2上に直接Sn基合金の表面層5を被着する。
<About soft-layer-coated sliding members>
In the soft layer covering type sliding member, the base material on which the Sn-based alloy surface is deposited can be a bearing alloy layer.
For example, a sliding member (slide bearing) for a radial bearing is used by forming a bimetal 3 having a bearing alloy layer 2 on a backing metal layer 1 shown in FIG. It is done. And about the sliding member which the bearing alloy layer 2 consists of Cu base bearing alloy, as shown to Fig.2 (a), the intermediate | middle layer 4 which consists of a plating layer of Ni, for example on the bearing alloy layer 2 as a base material. Then, a surface layer 5 of an Sn-based alloy is deposited on the intermediate layer 4. For a sliding member in which the bearing alloy layer 2 is made of an Al-based bearing alloy, as shown in FIG. 2 (b), the surface layer 5 of the Sn-based alloy is directly deposited on the bearing alloy layer 2 as a base material. To do.

軸受合金層2がCu基軸受合金からなる図2(a)の摺動部材において、中間層4は、Sn基合金の表面層5中のSnが軸受合金層2中へ拡散することを防止する機能を持つ。なお、軸受合金層2がAl基軸受合金からなる図2(b)の摺動部材においても、軸受合金層2とSn基合金の表面層5との間に、接着性の向上を目的としてNiなどのめっき層からなる中間層を形成しても良い。   In the sliding member of FIG. 2A in which the bearing alloy layer 2 is made of a Cu-based bearing alloy, the intermediate layer 4 prevents Sn in the surface layer 5 of the Sn-based alloy from diffusing into the bearing alloy layer 2. Has function. In the sliding member shown in FIG. 2B in which the bearing alloy layer 2 is made of an Al-based bearing alloy, Ni is used between the bearing alloy layer 2 and the surface layer 5 of the Sn-based alloy for the purpose of improving adhesion. You may form the intermediate | middle layer which consists of plating layers, such as.

一方、摺動部材には、スラスト軸受用として用いられるものがある。このスラスト軸受用の摺動部材は、平板状というだけで、その基本構造は、上述のラジアル軸受用と同様で、軸受合金層2上に直接、或いは中間層4を介してSn基合金の表面層5を被着して構成される。   On the other hand, some sliding members are used for thrust bearings. The sliding member for the thrust bearing is simply a flat plate, and its basic structure is the same as that for the radial bearing described above. The surface of the Sn-based alloy is directly on the bearing alloy layer 2 or via the intermediate layer 4. Constructed by depositing layer 5.

また、裏金層がなく、軸受合金層だけの摺動部材に対しては、その軸受合金層(基材)上に直接、或いは中間層を介してSn基合金の表面層を被着したりすることができる。
更に、軸受合金層がなく、裏金層相当部分だけの摺動部材に対しては、その裏金層相当部分を基材として、その上に直接、或いは中間層を介してSn基合金の表面層を被着したりすることもできる。
Further, for a sliding member having only a bearing alloy layer without a backing metal layer, a surface layer of an Sn-based alloy is deposited directly on the bearing alloy layer (base material) or via an intermediate layer. be able to.
Further, for a sliding member having no bearing alloy layer and having only a portion corresponding to the back metal layer, the surface layer of the Sn-based alloy is directly or via an intermediate layer on the back metal layer corresponding portion. It can also be attached.

基材を軸受合金層として、その上にSn基合金の表面層を被着する場合、その軸受合金層は、前述した通り、Al基軸受合金とCu基軸受合金が考えられるが、他の軸受合金であっても良い。
Al基軸受合金には、Al−Sn、Al−Pb、Al−Bi、Al−Sn−Pb、Al−Sn−Si、Al−Sn−Cu、Al−Sn−Cu−Si、Al−Pb−Zn、Al−Pb−Zn−Si、Al−Sn−SiCなどがある。Cu基軸受合金には、Cu−Pb、Cu−Pb−Sn、Cu−Pb−Si、Cu−Bi、Cu−Bi−Sn、Cu−Bi−Si、Cu−Pb−Zn、Cu−Bi−Zn、Cu−Pb−Alなどがある。
When the base material is a bearing alloy layer and the surface layer of the Sn-based alloy is deposited thereon, the bearing alloy layer can be an Al-based bearing alloy and a Cu-based bearing alloy as described above. An alloy may be used.
Al-based bearing alloys include Al-Sn, Al-Pb, Al-Bi, Al-Sn-Pb, Al-Sn-Si, Al-Sn-Cu, Al-Sn-Cu-Si, Al-Pb-Zn. Al-Pb-Zn-Si, Al-Sn-SiC, and the like. Cu-based bearing alloys include Cu-Pb, Cu-Pb-Sn, Cu-Pb-Si, Cu-Bi, Cu-Bi-Sn, Cu-Bi-Si, Cu-Pb-Zn, Cu-Bi-Zn. , and the like Cu-Pb-Al 2 O 3 .

<硬軟層並列タイプの摺動部材について>
硬軟層並列タイプの摺動部材は、例えば図3に示すように、表面層14(相手材が接する摺動表面を有した層)をB−B線に沿って上から見た場合、軸受合金の表面層部(硬質表面層部)6とSn基合金の表面層部(軟質表面層部)7とが交互に存在している。
例えば、図2(c)に示すバイメタル3から硬軟層並列タイプの摺動部材を製造するには、図3(b)に示すように、軸受合金層2の表層部分に凹部8を形成し、この凹部8内にSn基合金を充填する。これにより凹部8の形成から除かれた軸受合金層2の表層部分が軸受合金表面層部6となり、凹部8内のSn基合金がSn基合金表面層部7となる。
なお、本発明は、Sn基合金表面層部7を軸受合金層(基材)2上に設けるものに限らない。同一の基材上に軸受合金表面層部とSn基合金表面層部とを並べて被着した構造の摺動部材であっても良い。
<About hard-soft layer parallel type sliding member>
For example, as shown in FIG. 3, the hard-soft layer parallel type sliding member is a bearing alloy when the surface layer 14 (the layer having the sliding surface with which the mating member contacts) is viewed from above along the line BB. Surface layer portions (hard surface layer portions) 6 and Sn-based alloy surface layer portions (soft surface layer portions) 7 are alternately present.
For example, in order to manufacture a hard-soft layer parallel type sliding member from the bimetal 3 shown in FIG. 2 (c), as shown in FIG. 3 (b), the recess 8 is formed in the surface layer portion of the bearing alloy layer 2, The recess 8 is filled with a Sn-based alloy. Thus, the surface layer portion of the bearing alloy layer 2 removed from the formation of the recess 8 becomes the bearing alloy surface layer portion 6, and the Sn-based alloy in the recess 8 becomes the Sn-based alloy surface layer portion 7.
The present invention is not limited to the case where the Sn-based alloy surface layer portion 7 is provided on the bearing alloy layer (base material) 2. A sliding member having a structure in which the bearing alloy surface layer portion and the Sn-based alloy surface layer portion are disposed side by side on the same substrate may be used.

この硬軟層並列タイプの摺動部材の場合、軸受合金表面層部6は、Al基軸受合金が好ましい。一般に、Cu基軸受合金では、凹部8の内面にNiめっき層を施してSn基合金表面層部7中のSnが軸受合金表面層部6へ拡散することを防止する必要がある。摺動表面において、軸受合金表面層部6とSn基合金表面層部7との境界にNiめっき層が露出し、その露出率によっては、Niが相手材に凝着して非焼付性を低下させることもあり得る。
なお、軸受合金表面層部6とSn基合金表面層部7とが並ぶ形態は、両層部6,7が縦横の両方向に交互に並ぶ形態の他、縦横方向のうち一方の方向にだけ交互に並ぶ形態としても良い。
硬軟層並列タイプの摺動部材では、軸受合金表面層部とSn基合金表面層部とが相手材に接するので、軸受合金表面層部によって高い耐摩耗性および耐疲労性が得られ、Sn基合金表面層部によって良好なるなじみ性および異物埋収性が得られる。
In the case of this hard-soft layer parallel type sliding member, the bearing alloy surface layer portion 6 is preferably an Al-based bearing alloy. In general, in a Cu-based bearing alloy, it is necessary to prevent the Sn in the Sn-based alloy surface layer portion 7 from diffusing into the bearing alloy surface layer portion 6 by providing a Ni plating layer on the inner surface of the recess 8. On the sliding surface, the Ni plating layer is exposed at the boundary between the bearing alloy surface layer portion 6 and the Sn-based alloy surface layer portion 7, and depending on the exposure rate, Ni adheres to the mating material and reduces non-seizure properties. It is possible that
The bearing alloy surface layer portion 6 and the Sn-based alloy surface layer portion 7 are arranged in a line in which both layer portions 6 and 7 are alternately arranged in both the vertical and horizontal directions, or in only one of the vertical and horizontal directions. It is good also as a form lined up.
In the hard-soft layer parallel type sliding member, since the bearing alloy surface layer portion and the Sn-based alloy surface layer portion are in contact with the mating material, the bearing alloy surface layer portion provides high wear resistance and fatigue resistance. good Naru conformability and the foreign matter embeddability an alloy surface layer portion is Ru obtained.

(2)Sn基合金表面層について
本発明の特徴は、基材を覆うSn基合金表面層、或いは軸受合金表面層部と並んで設けられるSn基合金表面層部が、5μm以下のSnを含む化合物を分散して含有し、且つ有機物形態のCを含まず、更に、コールドスプレー法により形成されたものであり、且つ気孔率が0.2%以下であることを特徴としている。
<Sn基合金>
表面層を構成するSn基合金は、軟質であるから、なじみ性および異物埋収性にすぐれる。
この異物埋収性をより向上させるために、Sn基合金に、軟質金属であるBi、Pbの一方、或いは両方を添加することができる(請求項)。
(2) About Sn-base alloy surface layer A feature of the present invention is that the Sn-base alloy surface layer covering the base material or the Sn-base alloy surface layer portion provided side by side with the bearing alloy surface layer portion contains Sn of 5 μm or less. It is characterized by containing a compound in a dispersed manner, not containing organic form C, and formed by a cold spray method, and having a porosity of 0.2% or less.
<Sn base alloy>
Since the Sn-based alloy constituting the surface layer is soft, it has excellent conformability and foreign substance embeddability.
In order to further improve the foreign substance burying property, one or both of Bi and Pb, which are soft metals, can be added to the Sn-based alloy (Claim 5 ).

<Sn基合金中のSn化合物>
図1に示すように、Sn基合金の表面層5を構成する軟質なSn基合金マトリックス9中には、微細なSn化合物10が分散している。そして、このSn化合物10は金属間化合物であり、硬質であるから、軟質なSn基合金マトリックス9の機械強度を高め、荷重を分散して受ける。このため、Sn基合金の表面層5の耐摩耗性、耐疲労性が向上する。しかも、Sn化合物は、Sn基合金マトリックス9と化学的に結合し、容易に脱落しないので、当該Sn基合金表面層は、優れたなじみ性及び異物埋収性を有しながら良好なる耐摩耗性、耐疲労性を長期にわたり維持する。このSn化合物の大きさは、5μm以下とする。5μmを超えるSn化合物では、耐摩耗性、耐疲労性の向上効果がない。
<Sn compound in Sn-based alloy>
As shown in FIG. 1, fine Sn compounds 10 are dispersed in a soft Sn-based alloy matrix 9 constituting the surface layer 5 of the Sn-based alloy. Since this Sn compound 10 is an intermetallic compound and is hard, the mechanical strength of the soft Sn-based alloy matrix 9 is increased and the load is dispersedly received. For this reason, the wear resistance and fatigue resistance of the surface layer 5 of the Sn-based alloy are improved. In addition, since the Sn compound is chemically bonded to the Sn-based alloy matrix 9 and does not easily fall off, the Sn-based alloy surface layer has excellent wear resistance while having excellent conformability and foreign matter embedding property. Maintain fatigue resistance for a long time. The size of this Sn compound shall be 5 micrometers or less. Sn compounds exceeding 5 μm have no effect of improving wear resistance and fatigue resistance.

このSn化合物の生成のために、Sn基合金には、Sb、Cu、Ag、Co、Fe、Niから選択された1種以上金属を含ませることができる(請求項)。これらSb、Cu、Ag、Co、Fe、Niの金属は、上記のBi、Pbと共に、総量で30質量%以下であることが好ましい。 In order to produce this Sn compound, the Sn-based alloy can contain one or more metals selected from Sb, Cu, Ag, Co, Fe, and Ni (Claim 6 ). These metals of Sb, Cu, Ag, Co, Fe, and Ni are preferably 30% by mass or less in total with Bi and Pb.

表面層を構成するSn基合金がSbとCuを含むSn−Sb−Cu合金の場合、Sn化合物は、CuSn、CuSn、SnSb、SnSb、SnSb、SnSb、SnSbである。
表面層を構成するSn基合金がSbとCuとNiを含むSn−Sb−Cu−Ni合金の場合、Sn化合物は、CuSn、CuSn、SnSb、SnSb、SnSb、SnSb、SnSb、NiSn、NiSn、NiSnである。
表面層を構成するSn基合金がCuとNiを含むSn−Cu−Ni合金の場合、Sn化合物は、CuSn、CuSn、NiSn、NiSn、NiSnである。
表面層を構成するSn基合金がCuとPbを含むSn−Cu−Pb合金の場合、Sn化合物は、CuSn、CuSnである。
When the Sn-based alloy constituting the surface layer is an Sn—Sb—Cu alloy containing Sb and Cu, the Sn compound is Cu 6 Sn 5 , Cu 3 Sn, SnSb, Sn 2 Sb, Sn 3 Sb 4 , Sn 3 Sb. 2 and Sn 4 Sb 5 .
When the Sn-based alloy constituting the surface layer is an Sn—Sb—Cu—Ni alloy containing Sb, Cu, and Ni, the Sn compound is Cu 6 Sn 5 , Cu 3 Sn, SnSb, Sn 2 Sb, Sn 3 Sb 4. , Sn 3 Sb 2 , Sn 4 Sb 5 , Ni 3 Sn, Ni 3 Sn 2 , and Ni 3 Sn 4 .
When the Sn-based alloy constituting the surface layer is an Sn—Cu—Ni alloy containing Cu and Ni, the Sn compounds are Cu 6 Sn 5 , Cu 3 Sn, Ni 3 Sn, Ni 3 Sn 2 , and Ni 3 Sn 4 . is there.
When the Sn-based alloy constituting the surface layer is a Sn—Cu—Pb alloy containing Cu and Pb, the Sn compound is Cu 6 Sn 5 or Cu 3 Sn.

表面層を構成するSn基合金がCuを含むSn−Cu合金の場合、Sn化合物は、CuSn、CuSnである。
表面層を構成するSn基合金がAgを含むSn−Ag合金の場合、Sn化合物は、AgSnである。
表面層を構成するSn基合金がNiを含むSn−Ni合金の場合、Sn化合物は、NiSn、NiSn、NiSnである。
When the Sn-based alloy constituting the surface layer is an Sn—Cu alloy containing Cu, the Sn compound is Cu 6 Sn 5 or Cu 3 Sn.
When the Sn-based alloy constituting the surface layer is an Sn—Ag alloy containing Ag, the Sn compound is Ag 3 Sn.
When the Sn-based alloy constituting the surface layer is a Sn—Ni alloy containing Ni, the Sn compound is Ni 3 Sn, Ni 3 Sn 2 , or Ni 3 Sn 4 .

<有機物形態のC>
本発明のSn基合金表面層は、有機物形態のCを含有しない。有機物形態のCを含む表面層では、そのCが非金属の介在物となるため、破壊の起点となったり、基材との間に有機物形態のCが析出してSn基合金表面層の接着性を低下させるが、そのようなCを含まない本発明の表面層は、耐疲労性に優れたものとなる。
<表面層の気孔率>
後述のコールドスプレー法により形成したSn基合金表面層は、組織が緻密であり、気孔率が低い。気孔率が高いと、表面層の延性が低くなり、耐疲労性が低下する。表面層の延性を低下させずに、良好なる耐疲労性を維持するためには、気孔率を0.2%以下とする。ここで、気孔率とは、ある断面を想定したとき、その断面積に占める気孔の面積の割合を言う。なお、コールドスプレー法において、気孔率を制御するには、作動ガスの速度を制御してやれば良い。気孔率を小さくするには、作動ガスの速度を速くしてやれば良い。
<C in organic form>
The Sn-based alloy surface layer of the present invention does not contain organic form C. In the surface layer containing C in the form of organic matter, since C becomes a non-metallic inclusion, it becomes a starting point of destruction, or C in the form of organic matter precipitates between the base material and adhesion of the Sn-based alloy surface layer. However, such a surface layer of the present invention that does not contain C is excellent in fatigue resistance.
<Porosity of surface layer>
The Sn-based alloy surface layer formed by the cold spray method described later has a dense structure and a low porosity. When the porosity is high, the ductility of the surface layer is lowered and the fatigue resistance is lowered. In order to maintain good fatigue resistance without reducing the ductility of the surface layer, the porosity is set to 0.2% or less. Here, the porosity means the ratio of the area of the pores to the cross-sectional area when a certain cross-section is assumed. In the cold spray method, in order to control the porosity, the speed of the working gas may be controlled. In order to reduce the porosity, the working gas speed may be increased.

(3)コールドスプレー法
一般に、金属粉末を高速度の作動ガス流により基材に衝突させて基材上に金属層を形成する方法をコールドスプレー法という。上述のようなSn基合金表面層は、コールドスプレー法、つまりSn基合金粉末(この粉末中にはSn化合物が存在する。)を高速度の作動ガス流により基材に衝突させて形成することが好ましい(請求項1、3)。
(3) Cold spray method Generally, a method in which a metal powder is collided with a base material by a high-speed working gas flow to form a metal layer on the base material is called a cold spray method. The Sn-based alloy surface layer as described above is formed by a cold spray method, that is, Sn-based alloy powder (the Sn compound is present in this powder) is made to collide with the substrate by a high-speed working gas flow. (Claims 1 and 3 ).

コールドスプレー法に用いるSn基合金粉末は、5μm以下の微細なSn化合物を含有する例えば15μm程度の大きさのものを使用することが好ましい。このSn基合金粉末を高速度の作動ガス流により基材に衝突させると、Sn基合金粉末は、基材中に入り込むと共に、その基材に入り込んだSn基合金粉末の上にSn基合金粉末が積層されてゆき、表面層として成膜される。基材中に入り込んだSn基合金粉末は、基材表面を粗くし、基材との接触面積を増加させて接着性を向上させる。このため、このコールドスプレー法を用いると、接着性の向上を目的とした中間層を設けなくても良いという利点もある。   The Sn-based alloy powder used in the cold spray method preferably has a size of, for example, about 15 μm and contains a fine Sn compound of 5 μm or less. When this Sn-based alloy powder is made to collide with the base material by a high-speed working gas flow, the Sn-based alloy powder enters the base material, and on top of the Sn-based alloy powder that has entered the base material, the Sn-based alloy powder Are stacked and formed as a surface layer. The Sn-based alloy powder that has entered the base material roughens the surface of the base material, increases the contact area with the base material, and improves adhesion. For this reason, when this cold spray method is used, there also exists an advantage that it is not necessary to provide the intermediate | middle layer aiming at the improvement of adhesiveness.

(4)表面層の硬度
表面層を構成するSn基合金の硬さは、Hv40以下が好ましい(請求項)。
表面層がなじみ性および異物埋収性を良好に発揮するためには、その表面層を構成するSn基合金は軟質であることが好ましい。非焼付性にも有利である。
(4) Hardness of surface layer The hardness of the Sn-based alloy constituting the surface layer is preferably Hv40 or less (claim 4 ).
In order for the surface layer to satisfactorily exhibit conformability and foreign substance burying property, the Sn-based alloy constituting the surface layer is preferably soft. It is also advantageous for non-seizure properties.

本発明の効果を確認するために、試料を作成し、この試料に焼付試験および疲労試験を実施した。作成した試料は、下の表1および表2に示す参考例品1,8、実施例品7,9〜13および比較例品1〜9である。焼付試験および疲労試験の条件は、下の表3および表4にそれぞれ示した。 In order to confirm the effect of the present invention, a sample was prepared, and a seizure test and a fatigue test were performed on the sample. The prepared samples are Reference Example Products 1 and 8, Example Products 2 to 7, 9 to 13 and Comparative Example Products 1 to 9 shown in Table 1 and Table 2 below. The conditions of the seizure test and the fatigue test are shown in Table 3 and Table 4 below, respectively.

Figure 0004504328
Figure 0004504328

Figure 0004504328
Figure 0004504328

Figure 0004504328
Figure 0004504328

Figure 0004504328
Figure 0004504328

なお、疲労試験は、疲労試験後の亀裂発生の面積割合が5%以下の最大試験面圧を、疲労しない最大面圧とした。また、焼付試験は、ならし運転後、試験面圧を5MPaずつ上げてゆき、試料背面の温度が200℃を超えるか、トルク変動によって相手軸を回転させる軸駆動用ベルトがスリップしたときの試験面圧を焼付かない最大面圧とした。   In the fatigue test, the maximum test surface pressure at which the area ratio of crack generation after the fatigue test was 5% or less was set as the maximum surface pressure at which fatigue did not occur. The seizure test is a test when the test surface pressure is increased by 5 MPa after the leveling operation and the temperature of the back surface of the sample exceeds 200 ° C or the shaft driving belt that rotates the mating shaft slips due to torque fluctuation. The surface pressure was the maximum surface pressure that would not be seized.

参考例品1,8、実施例品2〜7,9〜13および比較例品1〜9は、全て裏金層上に軸受合金としてAl基軸受合金を被着したバイメタルから製作した。表1および表2において、表面層の組成は、元素記号の前に付した数値がそれぞれの元素の成分量で、Snは残部を占めている。表面層の表面形状の欄に合金層と表面層との混在が「無」と表示された試料は、軸受合金層上を全てSn基合金表面層で被覆している場合を示し(表1の試料は全て無)、「有」と表示された試料は、摺動表面に軸受合金表面層と、Sn基合金表面層とが交互に存在する形態の試料を示し(表2の試料は全て有)ている。 Reference example products 1 and 8, example products 2 to 7 , 9 to 13, and comparative product 1 to 9 were all manufactured from a bimetal in which an Al-based bearing alloy was deposited as a bearing alloy on the back metal layer. In Table 1 and Table 2, as for the composition of the surface layer, the numerical value given before the element symbol is the component amount of each element, and Sn occupies the balance. The sample in which the mixture of the alloy layer and the surface layer is indicated as “none” in the surface shape column of the surface layer indicates a case where the entire surface of the bearing alloy layer is covered with the Sn-based alloy surface layer (see Table 1). The samples indicated as “Yes” indicate samples in which the bearing alloy surface layer and the Sn-based alloy surface layer are alternately present on the sliding surface (all the samples in Table 2 are present). )ing.

表面層をコールドスプレー法によって形成する場合に使用するコールドスプレー装置は、粉末供給装置、ガス加熱装置、先細末広がり状のノズル(ラバルノズル)からなるガンを備えている。粉末供給装置からガンに粉末を供給すると共に、ガンから作動ガスを高速度で噴出させることにより、粉末を基材に勢い良く衝突させる。この場合、作動ガスをガス加熱装置によって加熱することで、ガンから噴き出る作動ガスの速度を高くすることができる。この加熱装置による加熱は、高くし過ぎると、金属粒子が溶融したりするため、500℃以下の温度とする。通常は、200〜400℃で行い、ここでは300℃で行った。また、作動ガス圧は、通常は0.4〜4MPaで行い、ここでは気孔率を制御するために1.0〜2.0MPaで行った。作動ガス圧を制御して作動ガス速度を制御する。なお、基材に対するガンの移動速度は、20〜100mm/secとした。このコールドスプレー装置のガンから勢い良く噴き出された金属粉末は、基材に衝突して基材中に入り込むと共に、その基材に入り込んだ粉末上に粉末が積層されてゆくことで成膜される。   A cold spray device used when a surface layer is formed by a cold spray method includes a powder supply device, a gas heating device, and a gun composed of a tapered nozzle (Laval nozzle). The powder is supplied to the gun from the powder supply device and the working gas is ejected from the gun at a high speed, thereby causing the powder to collide with the substrate vigorously. In this case, the speed of the working gas ejected from the gun can be increased by heating the working gas with the gas heating device. If the heating by the heating device is too high, the metal particles are melted, so the temperature is set to 500 ° C. or lower. Usually, it performed at 200-400 degreeC, and was performed at 300 degreeC here. The working gas pressure was usually 0.4 to 4 MPa, and here it was 1.0 to 2.0 MPa in order to control the porosity. The working gas pressure is controlled by controlling the working gas pressure. In addition, the moving speed of the gun with respect to the base material was 20-100 mm / sec. The metal powder ejected vigorously from the gun of this cold spray device collides with the base material and enters the base material, and the film is formed by laminating the powder on the powder that has entered the base material. The

次に試料の製造方法を説明する。
各試料の製造に使用するバイメタルは、例えば、4質量%のZn、1質量%のSi、残部AlからなるAl基軸受合金を鋳造および圧延してAl合金板を製造し、このAl合金板を鋼板上に重ね、圧下率40%以上でロール圧延することによって圧延圧接して製造した。このバイメタルを所定寸法に切断して半円筒状に加工し、試料素材を得た。この試料素材は、外側が鋼板(裏金層)、内側がAl合金板(軸受合金層)となる。
Next, a sample manufacturing method will be described.
The bimetal used for the production of each sample is, for example, cast and rolled an Al-based bearing alloy consisting of 4% by mass of Zn, 1% by mass of Si and the balance Al to produce an Al alloy plate. It was rolled and pressed on the steel sheet and rolled and rolled at a rolling reduction of 40% or more. The bimetal was cut into a predetermined size and processed into a semi-cylindrical shape, thereby obtaining a sample material. This sample material is a steel plate (back metal layer) on the outside and an Al alloy plate (bearing alloy layer) on the inside.

参考例品1、実施例品2〜7、比較例品5>
試料素材を脱脂した後、この試料素材を治具に固定し、その内側にコールドスプレー装置のガンを差し入れ、ガンと治具を移動させて軸受合金層上にSn基合金粉末によって表面層を成膜した。このときの成膜厚さは100μmとし、その後、表面加工を行って表面層を厚さ20μmに仕上げ、参考例品1、実施例品2〜7、比較例品5を得た。
< Reference Example Product 1, Example Product 2-7, Comparative Example Product 5>
After degreasing the sample material, the sample material is fixed to a jig, a gun of a cold spray device is inserted inside, and the gun and jig are moved to form a surface layer with Sn-based alloy powder on the bearing alloy layer. Filmed. The film thickness at this time was 100 μm, and then surface processing was performed to finish the surface layer to a thickness of 20 μm. Thus, Reference Example Product 1, Example Products 2-7, and Comparative Example Product 5 were obtained.

参考例品8、実施例品9〜13、比較例品9>
バイメタルを所定寸法に切断して半円筒状に加工し、図4(a)に示すように、軸受合金層2の表面に、80μm深さの凹部8(本実施例品および以下の比較例品では周方向に略平行な溝)を間欠的に形成し、試料素材を得た。そして、試料素材を脱脂し、上述したと同様にしてコールドスプレー装置により試料素材の軸受合金層2上にSn基合金からなる皮膜11を形成し(図4(b)参照)、その後、試料素材の内面を凹部8の深さ(凹部8内の皮膜11の厚さ)が20μmとなるまで表面加工し、内周面に軸受合金表面層部6と、Sn基合金表面層部7とが交互に存在する参考例品8、実施例品9〜13、比較例品9を得た(図4(c)参照)。
< Reference Example Product 8, Example Products 9 to 13, Comparative Example Product 9>
The bimetal is cut into a predetermined size and processed into a semi-cylindrical shape, and as shown in FIG. 4A, on the surface of the bearing alloy layer 2, a recess 8 having a depth of 80 μm (this embodiment product and the following comparative product) Then, a groove substantially parallel to the circumferential direction) was intermittently formed to obtain a sample material. Then, the sample material is degreased, and a coating 11 made of an Sn-based alloy is formed on the bearing alloy layer 2 of the sample material by a cold spray apparatus in the same manner as described above (see FIG. 4 (b)), and then the sample material. The inner surface of the surface is processed until the depth of the recess 8 (thickness of the film 11 in the recess 8) reaches 20 μm, and the bearing alloy surface layer 6 and the Sn-based alloy surface layer 7 are alternately formed on the inner peripheral surface. Reference product 8, Example products 9 to 13 and Comparative product 9 were obtained (see FIG. 4C).

<比較例品1>
脱脂した半円筒状の試料素材の軸受合金層上に、Sn基合金を鋳込んでSn基合金表面層を形成し、そのSn基合金表面層を厚さ20μmとなるまで表面加工し、比較例品1を得た。
<Comparative product 1>
A Sn-based alloy is cast on a bearing alloy layer of a defatted semi-cylindrical sample material to form a Sn-based alloy surface layer, and the Sn-based alloy surface layer is surface processed to a thickness of 20 μm. Product 1 was obtained.

<比較例品2>
半円筒状の試料素材を脱脂した後、試料素材を治具に固定し、その内側に溶射装置のガンを差し入れ、ガンと治具を移動させて軸受合金層上にSn基合金からなる表面層を成膜した。このときの成膜厚さは100μmとし、その後、表面加工を行って表面層を厚さ20μmに仕上げ、比較例品2を得た。
<Comparative product 2>
After degreasing the semi-cylindrical sample material, the sample material is fixed to a jig, the gun of the thermal spraying device is inserted inside, and the gun and the jig are moved to form a surface layer made of Sn-based alloy on the bearing alloy layer Was deposited. The film thickness at this time was 100 μm, and then surface processing was performed to finish the surface layer to a thickness of 20 μm. Thus, Comparative Example Product 2 was obtained.

<比較例品3,4>
半円筒状の試料素材を脱脂した後、軸受合金層の表面に厚さ20μmのSn基合金めっきを施して表面層とし、比較例品3を得た。また、半円筒状の試料素材を脱脂した後、軸受合金層の表面に厚さ3μmのNiからなる中間層をめっきし、次いでNiの中間層上に厚さ20μmのSn基合金をめっきしてSn基合金の表面層とし、比較例品4を得た。
<Comparative product 3, 4>
After degreasing the semi-cylindrical sample material, the surface of the bearing alloy layer was subjected to Sn-based alloy plating with a thickness of 20 μm to obtain a surface layer, and Comparative Example Product 3 was obtained. Also, after degreasing the semi-cylindrical sample material, an intermediate layer made of Ni having a thickness of 3 μm is plated on the surface of the bearing alloy layer, and then an Sn-based alloy having a thickness of 20 μm is plated on the intermediate layer of Ni. A comparative example product 4 was obtained as a surface layer of an Sn-based alloy.

<比較例品6>
バイメタルを所定寸法に切断して半円筒状に加工し、図4(a)に示すように、軸受合金層2の表面に、深さ80μmの凹部8を間欠的に形成し、試料素材を得た。そして、試料素材を脱脂した後、前述の溶射装置によって図4(b)に示すように試料素材の軸受合金層2上にSn基合金からなる厚さ100μmの皮膜11を形成し、その後、試料素材の内面を凹部8の深さが20μmとなるまで表面加工し、図4(c)に示すように軸受合金表面層部6とSn基合金表面層部7とが交互に存在する比較例品6を得た。
<Comparative Example Product 6>
The bimetal is cut into a predetermined dimension and processed into a semicylindrical shape, and as shown in FIG. 4A, a recess 8 having a depth of 80 μm is intermittently formed on the surface of the bearing alloy layer 2 to obtain a sample material. It was. Then, after degreasing the sample material, a coating 11 having a thickness of 100 μm made of Sn-based alloy is formed on the bearing alloy layer 2 of the sample material as shown in FIG. Comparative example product in which the inner surface of the material is surface-processed until the depth of the concave portion 8 becomes 20 μm, and the bearing alloy surface layer portion 6 and the Sn-based alloy surface layer portion 7 are alternately present as shown in FIG. 6 was obtained.

<比較例品7>
バイメタルを所定寸法に切断して半円筒状に加工し、図4(a)に示すように、軸受合金層2の表面に、深さ80μmの凹部8を間欠的に形成し、試料素材を得た。この試料素材を脱脂した後、軸受合金層の表面にめっきによって厚さ100μmのSn基合金を被着し、図4(b)に示すように試料素材の軸受合金層2上にSn基合金からなる厚さ100μmの皮膜11を形成し、その後、試料素材の内面を凹部8の深さが20μmとなるまで表面加工し、図4(c)に示すように内周面に軸受合金表面層部6とSn基合金表面層部7とが交互に存在する比較例品7を得た。
<Comparative product 7>
The bimetal is cut into a predetermined dimension and processed into a semicylindrical shape, and as shown in FIG. 4A, a recess 8 having a depth of 80 μm is intermittently formed on the surface of the bearing alloy layer 2 to obtain a sample material. It was. After degreasing the sample material, a 100 μm-thick Sn-base alloy was deposited on the surface of the bearing alloy layer by plating, and the Sn-base alloy was deposited on the bearing alloy layer 2 of the sample material as shown in FIG. The film 11 having a thickness of 100 μm is formed, and then the inner surface of the sample material is processed until the depth of the recess 8 becomes 20 μm, and the bearing alloy surface layer portion is formed on the inner peripheral surface as shown in FIG. A comparative product 7 in which 6 and Sn-based alloy surface layer portions 7 were alternately present was obtained.

<比較例品8>
バイメタルを所定寸法に切断して半円筒状に加工し、図5(a)に示すように、軸受合金層2の表面に、深さ80μmの凹部8を間欠的に形成し、試料素材を得た。この試料素材を脱脂した後、図5(b)に示すように軸受合金層2の表面に厚さ3μmのNiからなる中間層12をめっきし、次いでNiの中間層12上にSn基合金をめっきして図5(c)に示すように試料素材の軸受合金層2上に厚さ100μmの皮膜13を形成し、その後、試料素材の内面を凹部8の深さが20μmとなるまで表面加工し、内周面に軸受合金表面層部6とSn基合金表面層部7とが交互に存在する比較例品8を得た。この比較例品8では、摺動表面において、Sn基合金表面層部7を取り巻くようにしてNiめっきの中間層12が露出している。
<Comparative product 8>
The bimetal is cut into a predetermined dimension and processed into a semi-cylindrical shape, and as shown in FIG. 5A, a recess 8 having a depth of 80 μm is intermittently formed on the surface of the bearing alloy layer 2 to obtain a sample material. It was. After the sample material is degreased, an intermediate layer 12 made of Ni having a thickness of 3 μm is plated on the surface of the bearing alloy layer 2 as shown in FIG. 5B, and then an Sn-based alloy is formed on the Ni intermediate layer 12. As shown in FIG. 5 (c), a coating 13 having a thickness of 100 μm is formed on the bearing alloy layer 2 of the sample material, and thereafter the inner surface of the sample material is subjected to surface processing until the depth of the recess 8 becomes 20 μm. Thus, a comparative product 8 in which the bearing alloy surface layer portions 6 and the Sn-based alloy surface layer portions 7 exist alternately on the inner peripheral surface was obtained. In the comparative product 8, the Ni plating intermediate layer 12 is exposed so as to surround the Sn-based alloy surface layer portion 7 on the sliding surface.

以上のようにして得た参考例品1,8、実施例品2〜7,9〜13、比較例品1〜9について、Sn基表面層の気孔率、硬さ、有機物形態のCの含有の有無を測定し、表1、表2に示した。
次に焼付試験と疲労試験の結果について考察する。
まず、比較例品1〜9は、十分な耐疲労性を得られなかったという試験結果を呈しているが、コールドスプレー法で製造した参考例品1,8、実施例品2〜7,9〜13は、耐疲労性のみならず非焼付性をも優れている。このことは、参考例品1,8、実施例品2〜7,9〜13のSn基合金表面層が優れたなじみ性および優れた異物埋収性を呈することによって良好なる非焼付性が得られると共に、Sn基合金表面層中に分散しているSn化合物の荷重分散効果によって良好なる耐疲労性を呈するからと考えられる。
About the reference example goods 1 and 8 obtained as mentioned above, the example goods 2-7 , 9-13 , and the comparative example goods 1-9, the porosity of the Sn group surface layer, hardness, inclusion of C of organic substance form The presence or absence was measured and shown in Tables 1 and 2.
Next, the results of seizure test and fatigue test are discussed.
First, Comparative Examples 1 to 9 exhibited a test result that sufficient fatigue resistance was not obtained, but Reference Examples 1 and 8 and Example Products 2 to 7 and 9 manufactured by the cold spray method were used. ˜13 is excellent not only in fatigue resistance but also in non-seizure properties. This is because the Sn-based alloy surface layers of Reference Example Products 1 and 8 and Example Products 2 to 7 and 9 to 13 exhibit excellent conformability and excellent foreign matter embedding properties, thereby providing good non-seizure properties. In addition, it is considered that excellent fatigue resistance is exhibited by the load dispersion effect of the Sn compound dispersed in the Sn-based alloy surface layer.

以下に具体的に比較してみると、実施例品3と比較例品1,2,4とは、表面層の組成は同じで、その製法が異なっており、コールドスプレー法による実施例品3は、鋳造法による比較例品1、溶射法による比較例品2、めっき法による比較例品4のいずれに比べても、非焼付性および耐疲労性共に優れている。特に、めっき法による比較例品4では、表面層中に有機物形態のCを含んでいるので、組織が緻密な割には耐疲労性が低かった。
実施例品3,4と比較例品5とは、表面層のSn化合物の大きさが異なる。つまり、実施例品3,4では、Sn化合物の大きさが4μm、2μmであるが、比較例品5では、Sn化合物が8μmと大きい。このため、実施例品3,4は、比較例品5に比べ、非焼付性、耐疲労性共に優れている。
As a specific comparison, Example Product 3 and Comparative Product 1, 2, 4 have the same surface layer composition and different manufacturing methods. Compared to any of Comparative Example Product 1 by the casting method, Comparative Example Product 2 by the thermal spraying method, and Comparative Example Product 4 by the plating method, both non-seizure property and fatigue resistance are excellent. In particular, in Comparative Example Product 4 by the plating method, since the surface layer contains organic form C, the fatigue resistance was low even though the structure was dense.
Example products 3 and 4 and comparative product 5 differ in the size of the Sn compound in the surface layer. That is, in the example products 3 and 4, the size of the Sn compound is 4 μm and 2 μm, but in the comparative product 5 the Sn compound is as large as 8 μm. For this reason, the example products 3 and 4 are superior to the comparative product 5 in both non-seizure property and fatigue resistance.

実施例品2,3,6は、それぞれSn基表面層の硬度が異なる。これら実施例品2,3,6の実験結果を見ると、Hv28、Hv24の実施例品3,6は、Hv55の実施例品2に比べて非焼付性、耐疲労性共に向上している。このことから、Sn基表面層の硬さは、非焼付性および耐疲労性に影響を及ぼすことが理解される。本発明者の他の実験によれば、Sn基表面層の硬さがHv40以下、特に30以下であると、非焼付性、耐疲労性に極めて有利であることが分かった。
参考例品1、実施例品3〜5は、それぞれSn基表面層の気孔率が異なる。これら参考例品1、実施例品3〜5の実験結果からすると、気孔率が0.10%、0.10%、0.05%の実施例品3〜5は、気孔率0.30%の参考例品1に比べて耐疲労性が高い。このことから、気孔率は耐疲労性に影響を与えることが理解される。本発明者の他の実験によれば、気孔率が0.2%以下、特に0.1%以下であると、耐疲労性に極めて有利であることが分かった。
Example products 2, 3, and 6 have different Sn-based surface layer hardnesses. Looking at the experimental results of these example products 2, 3 and 6, the example products 3 and 6 of Hv28 and Hv24 are improved in both non-seizure and fatigue resistance as compared with the example product 2 of Hv55. From this, it is understood that the hardness of the Sn-based surface layer affects non-seizure properties and fatigue resistance. According to another experiment of the present inventor, it has been found that if the hardness of the Sn-based surface layer is Hv 40 or less, particularly 30 or less, it is extremely advantageous for non-seizure property and fatigue resistance.
The reference example product 1 and the example products 3 to 5 have different Sn-base surface layer porosity. From the experimental results of these reference example product 1 and example products 3 to 5, the example products 3 to 5 having the porosity of 0.10%, 0.10%, and 0.05% have the porosity of 0.30%. The fatigue resistance is higher than that of Reference Example Product 1. From this, it is understood that the porosity affects the fatigue resistance. According to another experiment of the present inventor, it has been found that if the porosity is 0.2% or less, particularly 0.1% or less, it is extremely advantageous for fatigue resistance.

本発明のSn基合金表面層の組織を示す図The figure which shows the structure | tissue of the Sn base alloy surface layer of this invention 本発明の摺動部材の例を示す断面図Sectional drawing which shows the example of the sliding member of this invention 本発明の摺動部材の例を示し、(a)は表面の平面図、(b)は(a)のB−B線に沿う断面図The example of the sliding member of this invention is shown, (a) is a top view of the surface, (b) is sectional drawing which follows the BB line of (a). 摺動表面に軸受合金表面層部とSn基合金表面層部とが交互に存在する摺動部材の製造過程を示す断面図Sectional drawing which shows the manufacturing process of the sliding member in which a bearing alloy surface layer part and a Sn base alloy surface layer part exist alternately on a sliding surface 摺動表面に軸受合金表面層部とSn基合金表面層部とが交互に存在する比較例品のSn基合金表面層部をめっきで形成する場合の製造過程を示す断面図Sectional drawing which shows the manufacturing process in the case of forming the Sn base alloy surface layer part of the comparative example product in which the bearing alloy surface layer part and the Sn base alloy surface layer part exist alternately on the sliding surface by plating

符号の説明Explanation of symbols

図面中、1は裏金層、2は軸受合金層、3はバイメタル、4は中間層、5は表面層、6は軸受合金表面層部、7はSn基合金表面層部、9はSn基合金マトリックス、10はSn化合物、12はNiめっきの中間層を示す。   In the drawings, 1 is a back metal layer, 2 is a bearing alloy layer, 3 is a bimetal, 4 is an intermediate layer, 5 is a surface layer, 6 is a bearing alloy surface layer portion, 7 is a Sn-based alloy surface layer portion, and 9 is a Sn-based alloy. Matrix, 10 is an Sn compound, and 12 is an intermediate layer of Ni plating.

Claims (6)

基材上に、相手材が接するSn基合金の表面層を被着した摺動部材において、
前記表面層を構成するSn基合金は、5μm以下のSnを含む化合物を分散して含有し、且つ有機物形態のCを含まず、
更に、前記Sn基合金の表面層は、コールドスプレー法により形成されたものであり、且つ気孔率が0.2%以下であることを特徴とする摺動部材。
In the sliding member in which the surface layer of the Sn-based alloy in contact with the counterpart material is deposited on the base material,
The Sn-based alloy constituting the surface layer contains a compound containing Sn of 5 μm or less in a dispersed manner, and does not contain organic form C.
Further, the surface layer of the Sn-based alloy is formed by a cold spray method and has a porosity of 0.2% or less.
前記表面層を被着する前記基材は、軸受合金層であることを特徴とする請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the base material on which the surface layer is deposited is a bearing alloy layer. 相手材が接する表面層を、軸受合金の表面層部とSn基合金の表面層部とを交互に並べて構成し、
前記表面層を構成するSn基合金は、5μm以下のSnを含む化合物を分散して含有し、且つ有機物形態のCを含まず、
更に、前記Sn基合金の表面層は、コールドスプレー法により形成されたものであり、且つ気孔率が0.2%以下であることを特徴とする摺動部材。
The surface layer in contact with the mating material is configured by alternately arranging the surface layer portion of the bearing alloy and the surface layer portion of the Sn-based alloy,
The Sn-based alloy constituting the surface layer contains a compound containing Sn of 5 μm or less in a dispersed manner, and does not contain organic form C.
Further, the surface layer of the Sn-based alloy is formed by a cold spray method and has a porosity of 0.2% or less.
前記Sn基合金の表面層は、硬さがHv40以下であることを特徴とする請求項1ないし3のいずれかに記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein the surface layer of the Sn-based alloy has a hardness of Hv 40 or less . 前記表面層を構成するSn基合金は、Biおよび/またはPbを含んでいることを特徴とする請求項1ないし4のいずれかに記載の摺動部材。 The sliding member according to any one of claims 1 to 4, wherein the Sn-based alloy constituting the surface layer contains Bi and / or Pb . 前記表面層を構成するSn基合金は、Sb、Cu、Ag、Co、Fe、Niから選択された1種以上を含んでいることを特徴とする請求項1ないし5のいずれかに記載の摺動部材。 6. The slide according to claim 1, wherein the Sn-based alloy constituting the surface layer includes one or more selected from Sb, Cu, Ag, Co, Fe, and Ni. Moving member.
JP2006095108A 2006-03-30 2006-03-30 Sliding member Expired - Fee Related JP4504328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095108A JP4504328B2 (en) 2006-03-30 2006-03-30 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095108A JP4504328B2 (en) 2006-03-30 2006-03-30 Sliding member

Publications (2)

Publication Number Publication Date
JP2007270893A JP2007270893A (en) 2007-10-18
JP4504328B2 true JP4504328B2 (en) 2010-07-14

Family

ID=38673919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095108A Expired - Fee Related JP4504328B2 (en) 2006-03-30 2006-03-30 Sliding member

Country Status (1)

Country Link
JP (1) JP4504328B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114971A1 (en) * 2007-01-05 2012-05-10 Gerd Andler Wear resistant lead free alloy sliding element method of making
US8679641B2 (en) 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
AT505664B1 (en) * 2008-03-03 2009-03-15 Miba Gleitlager Gmbh SLIDE BEARING ALLOY OF WHITE METAL ON TIN BASIS
AT509111B1 (en) * 2009-12-10 2011-09-15 Miba Gleitlager Gmbh SLIDING LAYER
AT509112B1 (en) * 2009-12-10 2011-09-15 Miba Gleitlager Gmbh SLIDING LAYER
AT510190B1 (en) * 2010-07-30 2012-05-15 Miba Gleitlager Gmbh METHOD FOR PRODUCING A MULTILAYER SLIDING BEARING
US20150044493A1 (en) * 2012-03-22 2015-02-12 Nippon Light Metal Company, Ltd METHOD FOR ANCHORING Sn POWDER ON ALUMINIUM SUBSTRATE AND ALUMINIUM ELECRTOCONDUCTIVE MEMBER
AT515099B1 (en) 2014-01-31 2015-06-15 Miba Gleitlager Gmbh Multilayer plain bearings
CN107090578B (en) * 2016-11-22 2020-04-24 佛山市顺德区美的电热电器制造有限公司 Magnetic conductive coating with compact structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252693A (en) * 1994-03-17 1995-10-03 Daido Metal Co Ltd Plain bearing having composite plated film
JP2000160269A (en) * 1998-10-27 2000-06-13 Dana Corp Bearing material
WO2004092602A1 (en) * 2003-04-17 2004-10-28 Daido Metal Company Ltd. Sliding member
JP2005095886A (en) * 2003-09-02 2005-04-14 Nippon Steel Corp Cold spray nozzle, cold spray film, and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252693A (en) * 1994-03-17 1995-10-03 Daido Metal Co Ltd Plain bearing having composite plated film
JP2000160269A (en) * 1998-10-27 2000-06-13 Dana Corp Bearing material
WO2004092602A1 (en) * 2003-04-17 2004-10-28 Daido Metal Company Ltd. Sliding member
JP2005095886A (en) * 2003-09-02 2005-04-14 Nippon Steel Corp Cold spray nozzle, cold spray film, and production method therefor

Also Published As

Publication number Publication date
JP2007270893A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4504328B2 (en) Sliding member
JP5175449B2 (en) Sliding member with film
JP5091120B2 (en) Sliding bearing composite material, use and manufacturing method
KR101319723B1 (en) Slide bearing composite material, use and method of production
JP4389026B2 (en) Sliding material and manufacturing method thereof
US10508322B2 (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
CN108570571B (en) Sliding material, method for producing same, sliding member, and bearing device
US20060134447A1 (en) Flame-sprayed copper-aluminum composite material and its production method
US9435376B2 (en) Multi-layered plain bearing
JP2003089831A (en) Copper-based sintered sliding material and multi-layer sintered sliding member
JP5221957B2 (en) Bearing material and method for manufacturing bearing material
JP6454234B2 (en) Multi-layer covering structure of plain bearing and manufacturing method thereof
US8845199B2 (en) Solid bronze bearing with hardness gradient
KR102343107B1 (en) Bronze alloy and sliding member using the bronze alloy
JP2006022896A (en) Double-layered bearing material and its manufacturing method
CN109790598B (en) Sliding member and method for manufacturing same
CN109804095B (en) Sliding material, method for producing same, and sliding member
KR20140020868A (en) Bearing linings
JP7041407B2 (en) Sliding member
JP6754671B2 (en) Overlay alloy and overlay member
JPH04259345A (en) Bearing metal for large-sized engine
JP5981297B2 (en) Manufacturing method of sliding bearing and Sn-based overlay of sliding bearing
WO2011096523A1 (en) Sliding member
JP3754353B2 (en) Sliding member with composite plating film
CN112533710A (en) Sliding member and member for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees