JP2012524837A5 - - Google Patents

Download PDF

Info

Publication number
JP2012524837A5
JP2012524837A5 JP2012506317A JP2012506317A JP2012524837A5 JP 2012524837 A5 JP2012524837 A5 JP 2012524837A5 JP 2012506317 A JP2012506317 A JP 2012506317A JP 2012506317 A JP2012506317 A JP 2012506317A JP 2012524837 A5 JP2012524837 A5 JP 2012524837A5
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
content
rare earth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012506317A
Other languages
Japanese (ja)
Other versions
JP2012524837A (en
Filing date
Publication date
Priority claimed from CN2009101166357A external-priority patent/CN101525709B/en
Application filed filed Critical
Publication of JP2012524837A publication Critical patent/JP2012524837A/en
Publication of JP2012524837A5 publication Critical patent/JP2012524837A5/ja
Pending legal-status Critical Current

Links

Description

上記目的を達成するために,本発明は以下の技術的解決手段を採用する。すなわち,ケーブル用の高い延伸性を有するアルミニウム合金材料は以下の成分により構成される
Fe:0.30〜0.80wt%,Si:0.03〜0.10wt%,希土類元素(すなわちCe及びLa):0.01〜0.30wt%,及びその他Al及び不可避的不純物。
In order to achieve the above object, the present invention employs the following technical solutions. That is, a highly extensible aluminum alloy material for cables is composed of the following components:
Fe: 0.30 to 0.80 wt%, Si: 0.03 to 0.10 wt%, rare earth elements (ie Ce and La): 0.01 to 0.30 wt%, and other Al and inevitable impurities.

本発明の別の目的は,以下の工程を含む,高い延伸性を有するアルミニウム合金材料の製造方法を提供することである。
1)溶融鋳造
最初に92〜98重量部(pbw)のSi−Fe−Al合金と0.73〜5.26pbwのAl―Fe合金を添加し,710〜750℃に加熱して融解する;次に720〜760℃に加熱し,1〜3pbwの希土類―Al合金及び0.17〜0.67pbwのB−Al合金を添加し,前記希土類―Al合金は,AlとCe及びLaから成る希土類元素との合金であり;次に,0.04〜0.06pbwの精製剤を添加して8〜20分間精製し;次に,前記温度で20〜40分間保持し,その後,鋳造する。
2)半焼鈍(semi-annealing)処理
鋳造によって得たアルミニウム合金を280〜380℃で4〜10時間保持し,その後,取り出して周囲温度まで自然に冷却する。
Another object of the present invention is to provide a method for producing an aluminum alloy material having high extensibility, including the following steps.
1) Melt casting First, 92-98 parts by weight (pbw) of Si-Fe-Al alloy and 0 . It was added Al-Fe alloy of 73 to 5.26 pbw, melted by heating to seven hundred ten to seven hundred and fifty ° C.; then heated to 720-760 ° C., rare earth 1~3Pbw -Al alloy and 0.17 was added 0.67pbw of B-Al alloy, the rare earth -Al alloy is an alloy of rare-earth element consisting of Al and Ce and La; then added refining agent for 0.04~0.06pbw And then purified for 8-20 minutes; then held at said temperature for 20-40 minutes, then cast.
2) Semi-annealing treatment The aluminum alloy obtained by casting is kept at 280-380 ° C. for 4-10 hours, then taken out and naturally cooled to ambient temperature.

本発明で提供されるケーブル用の高い延伸性を有するアルミニウム合金材料は,以下の利点を有する新型のAl−Fe合金材料である。
1)本発明において,Feの含有量は0.30〜0.80%の範囲に制御され,そのため,アルミニウム合金の強度を増加させることが可能となり,アルミニウム合金の耐クリープ性及び熱安定性も向上させることが可能である。従来のECアルミニウム材料と比較した場合,耐クリープ性は300%向上する。また,Feはアルミニウム合金の靱性を向上させることができ,圧縮ねじり加工(compression and twisting process)におけるアルミニウム合金材料の圧縮係数は0.93以上と高くなり得て,これは従来のECアルミニウム材料では達成できない。ECアルミニウム材料で製造された導体と比較して,同じ外径のアルミニウム合金で製造された圧縮導体は,断面積が大きく,導電性及び安定性が高く,生産コストが低い。
2)本発明において,Siの含有量は0.03〜0.10%の範囲に制御され,そのため,アルミニウム合金の強度に対するSiの増強効果が確保される。
3)本発明において,希土類元素は,Siの含有量を減少させることが可能であり,そのため,アルミニウム合金の導電性へのFe及び,特にSiの影響を非常に低レベルまで低下させる;更に,希土類元素の添加により,アルミニウム合金材料の結晶構造を向上させ,それにより,アルミニウム合金材料の処理特性が向上し,アルミニウム合金材料の処理には好適となる。
4)本発明において,希土類元素は,主にCe及びLaであり,これらは3)に記載の性能を充分に獲得することができる。
5)本発明において,元素Bは,Ti,V,Mn,Crなどの不純物元素と反応して化合物を形成することができるが,これらは堆積し,その後,取り除くことができる。したがって,アルミニウム合金の導電性への不純物元素(例えば,Ti,V,Mn,Crなど)の影響も低下させることが可能となり,アルミニウム合金の導電性を向上させることができる。
6)本発明によるアルミニウム合金を製造する場合には,半焼鈍処理によって合金材料が導電化される。したがって,引張ねじり加工(drawing and twisting process)中の導体の構造に対する応力の悪影響を低下させることができる。そのため,導電性は61%IACS(従来のECアルミニウムで製造された導体の導電性の基準は,61%IACSである。)まで,或いはそれ以上になり得る;更に,焼鈍処理は,アルミニウム合金材料の延伸性及び可撓性を大いに向上させることができる。本発明で提供されるアルミニウム合金材料で製造されたケーブルは,銅ケーブルと比較して30%高い延伸性と,25%高い可撓性を有し,曲げ半径は外径の7倍と小さい。一方,銅ケーブルの曲げ半径は外径の15倍である。
The aluminum alloy material having high extensibility for cables provided in the present invention is a new type Al—Fe alloy material having the following advantages.
1) In the present invention, the Fe content is controlled in the range of 0.30 to 0.80 %, so that the strength of the aluminum alloy can be increased, and the creep resistance and thermal stability of the aluminum alloy are also improved. It is possible to improve. When compared with conventional EC aluminum materials, the creep resistance is improved by 300%. In addition, Fe can improve the toughness of aluminum alloy, and the compression coefficient of aluminum alloy material in compression and twisting process can be as high as 0.93 or higher, which is not the case with conventional EC aluminum material. Cannot be achieved. Compared to conductors made of EC aluminum material, compressed conductors made of aluminum alloys of the same outer diameter have a large cross-sectional area, high conductivity and stability, and low production costs.
2) In the present invention, the Si content is controlled in the range of 0.03 to 0.10%, so that the Si enhancement effect on the strength of the aluminum alloy is ensured.
3) In the present invention, rare earth elements can reduce the Si content, thus reducing the influence of Fe and especially Si on the conductivity of aluminum alloys to a very low level; The addition of rare earth elements improves the crystal structure of the aluminum alloy material, thereby improving the processing characteristics of the aluminum alloy material and is suitable for the processing of the aluminum alloy material.
4) In the present invention, rare earth elements are mainly Ce and La, and these can sufficiently achieve the performance described in 3).
5) In the present invention, element B can react with impurity elements such as Ti, V, Mn, and Cr to form a compound, but these can be deposited and then removed. Therefore, the influence of impurity elements (for example, Ti, V, Mn, Cr, etc.) on the conductivity of the aluminum alloy can be reduced, and the conductivity of the aluminum alloy can be improved.
6) When producing an aluminum alloy according to the present invention, the alloy material is made conductive by semi-annealing. Thus, the negative effects of stress on the structure of the conductor during the drawing and twisting process can be reduced. Therefore, the conductivity can be up to 61% IACS (conductivity standard for conductors made of conventional EC aluminum is 61% IACS) or higher; The stretchability and flexibility can be greatly improved. The cable made of the aluminum alloy material provided by the present invention has 30% higher extensibility and 25% higher flexibility than the copper cable, and the bending radius is as small as 7 times the outer diameter. On the other hand, the bending radius of the copper cable is 15 times the outer diameter.

実施例1
I.溶融鋳造処理
1.材料の配合
5100kgのSi−Fa−Al合金のインゴット(0.07%のSi及び0.13%のFeを含有),40.4kgのAl−Fe合金(22%のFeを含有),5.6kgの希土類−Al合金(10%希土類元素を含有),8.8kgのB−Al合金(3.5%のBを含有),及び2.3kgの精製剤(23%のNa3Al・F6+47%のKCl+30%のNaCl)
2.供給方法
材料の供給中に,成分をできる限り均等に分配するために,溶銑炉内に,Si−Fa−Al合金のインゴットと共に,Al−Fe合金をバッチごとに均等に供給する。
3.熱保存処理
液状アルミニウム合金を均熱炉に流し入れる場合,該均熱炉の温度は710〜750℃に制御する;希土類−Al合金及びB−Al合金を液状アルミニウム合金に添加する場合,均熱炉の温度を720〜760℃に上昇させるが,該温度は760℃を越えない。ここで,温度の上昇は希土類−Al合金及びB−Al合金の融解に好適であり,それにより,希土類元素及び元素Bの処理効果を向上させることが可能となる。
4.希土類処理及びホウ化処理
4.1.均熱炉に液状アルミニウム合金が充満する30分前に,3分の1の希土類−Al合金を添加する。
4.2.均熱炉に液状アルミニウム合金が充満する5分前に,残りの3分の2の希土類−Al合金及びB−A合金を添加する。
希土類−Al合金及びB−Al合金を異なる時間帯に添加することで,希土類元素及び元素Bが全面的に機能することが可能となり,効果を高めることができる。
4.3.希土類−Al合金及びB−Al合金の供給位置が,均熱炉内で均等に分布することが可能となる。
5.精製(スラグ除去,ガス除去,攪拌及び除滓)
5.1.均熱炉全体で液状アルミニウム合金の成分を均質にするために,該液状アルミニウム合金を,均熱炉の隅部の位置にあるものも含めて5分間攪拌する。
5.2.均熱炉に液状アルミニウム合金が充満した後,液状アルミニウム合金の底部内で吹込みノズルを動かしながら,2.3kgの精製剤(23%のNaAl・F+47%のKCl+30%のNaCl)の粉末を,高純度窒素ガスで液状アルミニウム合金の底部に3〜5分間吹き込み,ガスによって,含有スラグを該液状アルミニウム合金の表面に沿って均一に上昇させる。浮遊している酸化アルミニウムスラグを炉から完全に除去することで,精製剤がもたらした新たな不純物を,可能な限り減少させることができる。
6.現場で採取した試料の迅速な分析と保持及び熱保存
液状アルミニウム合金のFeの含有量がスラグの除去後の要件を満たす場合,液状アルミニウム合金を20〜40分間保持する。
7.連続鋳造及び圧延処理の制御
7.1.温度制御
7.1.1.鋳造用取鍋の温度:720〜730℃
7.1.2.圧延機へ供給される条片の温度:450〜490℃
7.1.3.アルミニウムロッドの最終圧延温度:約300℃
7.2.連続鋳造機内の冷却水の制御
鋳造ホイールの外部の水量に対する鋳造ホイールの内部の水量:3:2;
2次冷却水の量は,鋳造された条片の温度にあわせて調節する。
7.3.鋳造機の電圧:60〜90V
7.4.圧延機を通過する電流:200〜280A;圧延機の速度:7.5〜8.5m/分
Example 1
I. Melt casting process Material mix 5100 kg Si-Fa-Al alloy ingot (containing 0.07% Si and 0.13% Fe), 40.4 kg Al-Fe alloy (containing 22% Fe), 5. 6 kg rare earth- Al alloy (containing 10% rare earth element), 8.8 kg B-Al alloy (containing 3.5% B), and 2.3 kg refining agent (23% Na 3 Al.F) 6 + 47% KCl + 30% NaCl)
2. Supplying method In order to distribute the components as evenly as possible during the supply of the material, the Al—Fe alloy is supplied evenly in batches together with the Si—Fa—Al alloy ingot in the hot metal furnace.
3. Heat preservation treatment When a liquid aluminum alloy is poured into a soaking furnace, the temperature of the soaking furnace is controlled at 710 to 750 ° C; when a rare earth-Al alloy and a B-Al alloy are added to the liquid aluminum alloy, the soaking furnace Is raised to 720-760 ° C, but the temperature does not exceed 760 ° C. Here, the increase in temperature is suitable for melting of the rare earth-Al alloy and the B-Al alloy, so that the treatment effect of the rare earth element and the element B can be improved.
4). Rare earth treatment and boride treatment 4.1. One-third of the rare earth-Al alloy is added 30 minutes before the soaking furnace is filled with the liquid aluminum alloy.
4.2. 5 minutes before the soaking furnace is filled with the liquid aluminum alloy, the remaining two thirds of the rare earth-Al alloy and the B-A alloy are added.
By adding the rare earth-Al alloy and the B-Al alloy in different time zones, the rare earth element and the element B can function entirely, and the effect can be enhanced.
4.3. The supply positions of the rare earth-Al alloy and the B-Al alloy can be evenly distributed in the soaking furnace.
5. Refinement (slag removal, gas removal, stirring and removal)
5.1. In order to make the components of the liquid aluminum alloy homogeneous throughout the soaking furnace, the liquid aluminum alloy is stirred for 5 minutes, including those at the corners of the soaking furnace.
5.2. After the soaking furnace is filled with the liquid aluminum alloy, 2.3 kg of refining agent (23% Na 3 Al · F 6 + 47% KCl + 30% NaCl) while moving the blowing nozzle in the bottom of the liquid aluminum alloy The powder is blown into the bottom of the liquid aluminum alloy with high-purity nitrogen gas for 3 to 5 minutes, and the contained slag is uniformly raised along the surface of the liquid aluminum alloy by the gas. By completely removing the suspended aluminum oxide slag from the furnace, the new impurities introduced by the refining agent can be reduced as much as possible.
6). Rapid analysis and retention of samples collected on site and thermal storage If the Fe content of the liquid aluminum alloy meets the requirements after removal of the slag, hold the liquid aluminum alloy for 20-40 minutes.
7). Control of continuous casting and rolling process 7.1. Temperature control 7.1.1. Casting ladle temperature: 720-730 ° C
7.1.2. Temperature of strip supplied to rolling mill: 450-490 ° C
7.1.3. Final rolling temperature of aluminum rod: about 300 ° C
7.2. Control of cooling water in the continuous casting machine Water volume inside the casting wheel relative to the water volume outside the casting wheel: 3: 2;
The amount of secondary cooling water is adjusted according to the temperature of the cast strip.
7.3. Casting machine voltage: 60-90V
7.4. Current passing through the rolling mill: 200 to 280 A; Speed of the rolling mill: 7.5 to 8.5 m / min

参考例
I.溶融鋳造処理
1.材料の配合
5110kgのSi−Fa−Al合金のインゴット(0.10%のSi及び0.13%のFeを含有),258kgのAl−Fe合金(23.2%のFeを含有),166.5kgの希土類−Al合金(9.8%の希土類元素を含有),10kgのB−Al合金(3.3%のBを含有),及び2.3kgの精製剤(23%のNa3Al・F6+47%のKCl+30%のNaCl)
2.供給方法
材料の供給中に,成分をできる限り均等に分配するために,溶銑炉内に,Si−Fa−Al合金のインゴットと共に,Al−Fe合金をバッチごとに均等に供給する。
3.熱保存処理
液状アルミニウム合金を均熱炉に流し入れる場合,該均熱炉の温度は710〜750℃に制御する;希土類−Al合金及びB−Al合金を液状アルミニウム合金に添加する場合,均熱炉の温度を720〜760℃に上昇させるが,該温度は760℃を越えない。ここで,温度の上昇は希土類−Al合金及びB−Al合金の融解に好適であり,それにより,希土類元素及び元素Bの処理効果を向上させることが可能となる。
4.希土類処理及びホウ化処理
4.1.均熱炉に液状アルミニウム合金が充満する30分前に,3分の1の希土類−Al合金を添加する。
4.2.均熱炉に液状アルミニウム合金が充満する5分前に,残りの3分の2の希土類−Al合金及びB−A合金を添加する。
希土類−Al合金及びB−Al合金を異なる時間帯に添加することで,希土類元素及び元素Bが全面的に機能することが可能となり,効果を高めることができる。
4.3.希土類−Al合金及びB−Al合金の供給位置が,均熱炉内で均等に分布することが可能となる。
5.精製(スラグ除去,ガス除去,攪拌及び除滓)
5.1.均熱炉全体で液状アルミニウム合金の成分を均質にするために,該液状アルミニウム合金を,均熱炉の隅部の位置にあるものも含めて5分間攪拌する。
5.2.均熱炉に液状アルミニウム合金が充満した後,液状アルミニウム合金の底部内で吹込みノズルを動かしながら,2.3kgの精製剤(23%のNa3Al・F6+47%のKCl+30%のNaCl)の粉末を,高純度窒素ガスで液状アルミニウム合金の底部に3〜5分間吹き込み,ガスによって,含有スラグを該液状アルミニウム合金の表面に沿って均一に上昇させる。浮遊している酸化アルミニウムスラグを炉から完全に除去することで,精製剤がもたらした新たな不純物を,可能な限り減少させることができる。
6.現場で採取した試料の迅速な分析と保持及び熱保存
液状アルミニウム合金のFeの含有量がスラグの除去後の要件を満たす場合,液状アルミニウム合金を20〜40分間保持する。
7.連続鋳造及び圧延処理の制御
7.1.温度制御
7.1.1.鋳造用取鍋の温度:720〜730℃
7.1.2.圧延機へ供給される条片の温度:450〜490℃
7.1.3.アルミニウムロッドの最終圧延温度:約300℃
7.2.連続鋳造機内の冷却水の制御
鋳造ホイールの外部の水量に対する鋳造ホイールの内部の水量:3:2;
2次冷却水の量は,鋳造された条片の温度にあわせて調節する。
7.3.鋳造機の電圧:60〜90V
7.4.圧延機を通過する電流:200〜280A;圧延機の速度:7.5〜8.5m/分
Reference Example I. Melt casting process Material formulation 5110 kg Si-Fa-Al alloy ingot (containing 0.10% Si and 0.13% Fe), 258 kg Al-Fe alloy (containing 23.2% Fe), 166. 5 kg rare earth- Al alloy (containing 9.8% rare earth element), 10 kg B-Al alloy (containing 3.3% B), and 2.3 kg refining agent (23% Na 3 Al. F 6 + 47% KCl + 30% NaCl)
2. Supplying method In order to distribute the components as evenly as possible during the supply of the material, the Al—Fe alloy is supplied evenly in batches together with the Si—Fa—Al alloy ingot in the hot metal furnace.
3. Heat preservation treatment When a liquid aluminum alloy is poured into a soaking furnace, the temperature of the soaking furnace is controlled at 710 to 750 ° C; when a rare earth-Al alloy and a B-Al alloy are added to the liquid aluminum alloy, the soaking furnace Is raised to 720-760 ° C, but the temperature does not exceed 760 ° C. Here, the increase in temperature is suitable for melting of the rare earth-Al alloy and the B-Al alloy, so that the treatment effect of the rare earth element and the element B can be improved.
4). Rare earth treatment and boride treatment 4.1. One-third of the rare earth-Al alloy is added 30 minutes before the soaking furnace is filled with the liquid aluminum alloy.
4.2. 5 minutes before the soaking furnace is filled with the liquid aluminum alloy, the remaining two thirds of the rare earth-Al alloy and the B-A alloy are added.
By adding the rare earth-Al alloy and the B-Al alloy in different time zones, the rare earth element and the element B can function entirely, and the effect can be enhanced.
4.3. The supply positions of the rare earth-Al alloy and the B-Al alloy can be evenly distributed in the soaking furnace.
5. Refinement (slag removal, gas removal, stirring and removal)
5.1. In order to make the components of the liquid aluminum alloy homogeneous throughout the soaking furnace, the liquid aluminum alloy is stirred for 5 minutes, including those at the corners of the soaking furnace.
5.2. After the soaking furnace is filled with liquid aluminum alloy, 2.3 kg of refining agent (23% Na 3 Al · F 6 + 47% KCl + 30% NaCl) while moving the blowing nozzle in the bottom of the liquid aluminum alloy The powder is blown into the bottom of the liquid aluminum alloy with high-purity nitrogen gas for 3 to 5 minutes, and the contained slag is uniformly raised along the surface of the liquid aluminum alloy by the gas. By completely removing the suspended aluminum oxide slag from the furnace, the new impurities introduced by the refining agent can be reduced as much as possible.
6). If the Fe content of the sample collected on-site is quickly analyzed and maintained and the heat-preserving liquid aluminum alloy meets the requirements after slag removal, the liquid aluminum alloy is held for 20-40 minutes.
7). Control of continuous casting and rolling process 7.1. Temperature control 7.1.1. Casting ladle temperature: 720-730 ° C
7.1.2. Temperature of strip supplied to rolling mill: 450-490 ° C
7.1.3. Final rolling temperature of aluminum rod: about 300 ° C
7.2. Control of cooling water in the continuous casting machine Water volume inside the casting wheel relative to the water volume outside the casting wheel: 3: 2;
The amount of secondary cooling water is adjusted according to the temperature of the cast strip.
7.3. Casting machine voltage: 60-90V
7.4. Current passing through the rolling mill: 200 to 280 A; Speed of the rolling mill: 7.5 to 8.5 m / min

実施例
I.溶融鋳造処理
1.材料の配合
5125kgのSi−Fa−Al合金のインゴット(0.12%のSi及び0.12%のFeを含有),107kgのAl−Fe合金(21.9%のFeを含有),118kgの希土類−Al合金(10.1%の希土類元素を含有),14.8kgのB−Al合金(3.0%のBを含有),及び2.8kgの精製剤(23%のNa3Al・F6+47%のKCl+30%のNaCl)
2.供給方法
材料の供給中に,成分をできる限り均等に分配するために,溶銑炉内に,Si−Fa−Al合金のインゴットと共に,Al−Fe合金をバッチごとに均等に供給する。
3.熱保存処理
液状アルミニウム合金を均熱炉に流し入れる場合,該均熱炉の温度は710〜750℃に制御する;希土類−Al合金及びB−Al合金を液状アルミニウム合金に添加する場合,均熱炉の温度を720〜760℃に上昇させるが,該温度は760℃を越えない。ここで,温度の上昇は希土類−Al合金及びB−Al合金の融解に好適であり,それにより,希土類元素及び元素Bの処理効果を向上させることが可能となる。
4.希土類処理及びホウ化処理
4.1.均熱炉に液状アルミニウム合金が充満する30分前に,3分の1の希土類−Al合金を添加する。
4.2.均熱炉に液状アルミニウム合金が充満する5分前に,残りの3分の2の希土類−Al合金及びB−A合金を添加する。
4.3.希土類−Al合金及びB−Al合金の供給位置が,均熱炉内で均等に分布することが可能となる。
5.精製(スラグ除去,ガス除去,攪拌及び除滓)
5.1.均熱炉全体で液状アルミニウム合金の成分を均質にするために,該液状アルミニウム合金を,均熱炉の隅部の位置にあるものも含めて5分間攪拌する。
5.2.均熱炉に液状アルミニウム合金が充満した後,液状アルミニウム合金の底部内で吹込みノズルを動かしながら,2.8kgの精製剤(23%のNa3Al・F6+47%のKCl+30%のNaCl)の粉末を,高純度窒素ガスで液状アルミニウム合金の底部に3〜5分間吹き込み,ガスによって,含有スラグを該液状アルミニウム合金の表面に沿って均一に上昇させる。浮遊している酸化アルミニウムスラグを炉から完全に除去することで,精製剤がもたらした新たな不純物を,可能な限り減少させることができる。
6.現場で採取した試料の迅速な分析と保持及び熱保存
液状アルミニウム合金のFeの含有量がスラグの除去後の要件を満たす場合,液状アルミニウム合金を20〜40分間保持する。
7.連続鋳造及び圧延処理の制御
7.1.温度制御
7.1.1.鋳造用取鍋の温度:720〜730℃
7.1.2.圧延機へ供給される条片の温度:450〜490℃
7.1.3.アルミニウムロッドの最終圧延温度:約300℃
7.2.連続鋳造機内の冷却水の制御
鋳造ホイールの外部の水量に対する鋳造ホイールの内部の水量:3:2;
2次冷却水の量は,鋳造された条片の温度にあわせて調節する。
7.3.鋳造機の電圧:60〜90V
7.4.圧延機を通過する電流:200〜280A;圧延機の速度:7.5〜8.5m/分
Example 2
I. Melt casting process Material formulation 5125 kg Si-Fa-Al alloy ingot (containing 0.12% Si and 0.12% Fe), 107 kg Al-Fe alloy (containing 21.9% Fe), 118 kg Rare earth- Al alloy (containing 10.1% rare earth element), 14.8 kg B-Al alloy (containing 3.0% B), and 2.8 kg refining agent (23% Na 3 Al. F 6 + 47% KCl + 30% NaCl)
2. Supplying method In order to distribute the components as evenly as possible during the supply of the material, the Al—Fe alloy is supplied evenly in batches together with the Si—Fa—Al alloy ingot in the hot metal furnace.
3. When the heat-preserving liquid aluminum alloy is poured into a soaking furnace, the temperature of the soaking furnace is controlled at 710 to 750 ° C .; when adding rare earth-Al alloy and B-Al alloy to the liquid aluminum alloy, the soaking furnace Is raised to 720-760 ° C, but the temperature does not exceed 760 ° C. Here, the increase in temperature is suitable for melting of the rare earth-Al alloy and the B-Al alloy, so that the treatment effect of the rare earth element and the element B can be improved.
4). Rare earth treatment and boride treatment 4.1. One-third of the rare earth-Al alloy is added 30 minutes before the soaking furnace is filled with the liquid aluminum alloy.
4.2. 5 minutes before the soaking furnace is filled with the liquid aluminum alloy, the remaining two thirds of the rare earth-Al alloy and the B-A alloy are added.
4.3. The supply positions of the rare earth-Al alloy and the B-Al alloy can be evenly distributed in the soaking furnace.
5. Refinement (slag removal, gas removal, stirring and removal)
5.1. In order to make the components of the liquid aluminum alloy homogeneous throughout the soaking furnace, the liquid aluminum alloy is stirred for 5 minutes, including those at the corners of the soaking furnace.
5.2. After the soaking furnace is filled with the liquid aluminum alloy, 2.8 kg of refining agent (23% Na 3 Al · F 6 + 47% KCl + 30% NaCl) while moving the blowing nozzle in the bottom of the liquid aluminum alloy The powder is blown into the bottom of the liquid aluminum alloy with high-purity nitrogen gas for 3 to 5 minutes, and the contained slag is uniformly raised along the surface of the liquid aluminum alloy by the gas. By completely removing the suspended aluminum oxide slag from the furnace, the new impurities introduced by the refining agent can be reduced as much as possible.
6). If the Fe content of the sample collected on-site is quickly analyzed and maintained and the heat-preserving liquid aluminum alloy meets the requirements after slag removal, the liquid aluminum alloy is held for 20-40 minutes.
7). Control of continuous casting and rolling process 7.1. Temperature control 7.1.1. Casting ladle temperature: 720-730 ° C
7.1.2. Temperature of strip supplied to rolling mill: 450-490 ° C
7.1.3. Final rolling temperature of aluminum rod: about 300 ° C
7.2. Control of cooling water in the continuous casting machine Water volume inside the casting wheel relative to the water volume outside the casting wheel: 3: 2;
The amount of secondary cooling water is adjusted according to the temperature of the cast strip.
7.3. Casting machine voltage: 60-90V
7.4. Current passing through the rolling mill: 200 to 280 A; Speed of the rolling mill: 7.5 to 8.5 m / min

実施例
I.溶融鋳造処理
1.材料の配合
5005kgのSi−Fa−Al合金のインゴット(0.08%のSi及び0.13%のFeを含有),182kgのAl−Fe合金(21%のFeを含有),90.5kgの希土類−Al合金(9.8%の希土類元素を含有),30kgのB−Al合金(3.5%のBを含有),及び2.0kgの精製剤(23%のNa3Al・F6+47%のKCl+30%のNaCl)
2.供給方法
材料の供給中に,成分をできる限り均等に分配するために,溶銑炉内に,Si−Fa−Al合金のインゴットと共に,Al−Fe合金をバッチごとに均等に供給する。
3.熱保存処理
液状アルミニウム合金を均熱炉に流し入れる場合,該均熱炉の温度は710〜750℃に制御する;希土類−Al合金及びB−Al合金を液状アルミニウム合金に添加する場合,均熱炉の温度を720〜760℃に上昇させるが,該温度は760℃を越えない。ここで,温度の上昇は希土類−Al合金及びB−Al合金の融解に好適であり,それにより,希土類元素及び元素Bの処理効果を向上させることが可能となる。
4.希土類処理及びホウ化処理
4.1.均熱炉に液状アルミニウム合金が充満する30分前に,3分の1の希土類−Al合金を添加する。
4.2.均熱炉に液状アルミニウム合金が充満する5分前に,残りの3分の2の希土類−Al合金及びB−A合金を添加する。
4.3.希土類−Al合金及びB−Al合金の供給位置が,均熱炉内で均等に分布することが可能となる。
5.精製(スラグ除去,ガス除去,攪拌及び除滓)
5.1.均熱炉全体で液状アルミニウム合金の成分を均質にするために,該液状アルミニウム合金を,均熱炉の隅部の位置にあるものも含めて5分間攪拌する。
5.2.均熱炉に液状アルミニウム合金が充満した後,液状アルミニウム合金の底部内で吹込みノズルを動かしながら,2.0kgの精製剤(23%のNa3Al・F6+47%のKCl+30%のNaCl)の粉末を,高純度窒素ガスで液状アルミニウム合金の底部に3〜5分間吹き込み,ガスによって,含有スラグを該液状アルミニウム合金の表面に沿って均一に上昇させる。浮遊している酸化アルミニウムスラグを炉から完全に除去することで,精製剤がもたらした新たな不純物を,可能な限り減少させることができる。
6.現場で採取した試料の迅速な分析と保持及び熱保存
液状アルミニウム合金のFeの含有量がスラグの除去後の要件を満たす場合,液状アルミニウム合金を20〜40分間保持する。
7.連続鋳造及び圧延処理の制御
7.1.温度制御
7.1.1.鋳造用取鍋の温度:720〜730℃
7.1.2.圧延機へ供給される条片の温度:450〜490℃
7.1.3 .アルミニウムロッドの最終圧延温度:約300℃
7.2.連続鋳造機内の冷却水の制御
鋳造ホイールの外部の水量に対する鋳造ホイールの内部の水量:3:2;
2次冷却水の量は,鋳造された条片の温度にあわせて調節する。
7.3.鋳造機の電圧:60〜90V
7.4.圧延機を通過する電流:200〜280A;圧延機の速度:7.5〜8.5m/分
Example 3
I. Melt casting process Material mix 5005 kg Si-Fa-Al alloy ingot (containing 0.08% Si and 0.13% Fe), 182 kg Al-Fe alloy (containing 21% Fe), 90.5 kg Rare earth- Al alloy (containing 9.8% rare earth element), 30 kg B-Al alloy (containing 3.5% B), and 2.0 kg refining agent (23% Na 3 Al · F 6 + 47% KCl + 30% NaCl)
2. Supplying method In order to distribute the components as evenly as possible during the supply of the material, the Al—Fe alloy is supplied evenly in batches together with the Si—Fa—Al alloy ingot in the hot metal furnace.
3. Heat preservation treatment When a liquid aluminum alloy is poured into a soaking furnace, the temperature of the soaking furnace is controlled at 710 to 750 ° C; when a rare earth-Al alloy and a B-Al alloy are added to the liquid aluminum alloy, the soaking furnace Is raised to 720-760 ° C, but the temperature does not exceed 760 ° C. Here, the increase in temperature is suitable for melting of the rare earth-Al alloy and the B-Al alloy, so that the treatment effect of the rare earth element and the element B can be improved.
4). Rare earth treatment and boride treatment 4.1. One-third of the rare earth-Al alloy is added 30 minutes before the soaking furnace is filled with the liquid aluminum alloy.
4.2. 5 minutes before the soaking furnace is filled with the liquid aluminum alloy, the remaining two thirds of the rare earth-Al alloy and the B-A alloy are added.
4.3. The supply positions of the rare earth-Al alloy and the B-Al alloy can be evenly distributed in the soaking furnace.
5. Refinement (slag removal, gas removal, stirring and removal)
5.1. In order to make the components of the liquid aluminum alloy homogeneous throughout the soaking furnace, the liquid aluminum alloy is stirred for 5 minutes, including those at the corners of the soaking furnace.
5.2. After the soaking furnace is filled with the liquid aluminum alloy, 2.0 kg of refining agent (23% Na 3 Al · F 6 + 47% KCl + 30% NaCl) while moving the blowing nozzle in the bottom of the liquid aluminum alloy The powder is blown into the bottom of the liquid aluminum alloy with high-purity nitrogen gas for 3 to 5 minutes, and the contained slag is uniformly raised along the surface of the liquid aluminum alloy by the gas. By completely removing the suspended aluminum oxide slag from the furnace, the new impurities introduced by the refining agent can be reduced as much as possible.
6). If the Fe content of the sample collected on-site is quickly analyzed and maintained and the heat-preserving liquid aluminum alloy meets the requirements after slag removal, the liquid aluminum alloy is held for 20-40 minutes.
7). Control of continuous casting and rolling process 7.1. Temperature control 7.1.1. Casting ladle temperature: 720-730 ° C
7.1.2. Temperature of strip supplied to rolling mill: 450-490 ° C
7.1.3. Final rolling temperature of aluminum rod: about 300 ° C
7.2. Control of cooling water in the continuous casting machine Water volume inside the casting wheel relative to the water volume outside the casting wheel: 3: 2;
The amount of secondary cooling water is adjusted according to the temperature of the cast strip.
7.3. Casting machine voltage: 60-90V
7.4. Current passing through the rolling mill: 200 to 280 A; Speed of the rolling mill: 7.5 to 8.5 m / min

Claims (9)

重量パーセントで測定した以下の成分;
0.30〜0.80%のFeと,
0.03〜0.10%のSiと,
0.01〜0.30%のCe及びLaから成る希土類元素と
残存部分Al及び不可避的不純物と
から成るケーブル用の高い延伸性を有するアルミニウム合金材料。
The following ingredients measured in weight percent;
0.30 to 0.80 % Fe,
0.03-0.10% Si,
A rare-earth element consisting of from 0.01 to 0.30% of Ce and La,
The remaining part is Al and inevitable impurities
An aluminum alloy material having high extensibility for a cable comprising:
重量パーセントで測定された前記アルミニウム合金材料内の不純物の総含有量が0.3%未満である請求項1記載のケーブル用の高い延伸性を有するアルミニウム合金材料。 2. The aluminum alloy material having high extensibility for cables according to claim 1, wherein the total content of impurities in the aluminum alloy material measured by weight percent is less than 0.3%. 重量パーセントで測定された,前記不純物内のCaの含有量が0.02%未満であり,前記不純物内の他の元素の含有量が0.01%未満である請求項2記載のケーブル用の高い延伸性を有するアルミニウム合金材料。   3. The cable for a cable according to claim 2, wherein the content of Ca in the impurity is less than 0.02% and the content of other elements in the impurity is less than 0.01%, measured in weight percent. Aluminum alloy material with high stretchability. 重量パーセントで測定された,Ceの含有量が0.005〜0.20%であり,Laの含有量が0.001〜0.15%である請求項1記載のケーブル用の高い延伸性を有するアルミニウム合金材料。   The high stretchability for a cable according to claim 1, wherein the Ce content is 0.005 to 0.20% and the La content is 0.001 to 0.15%, measured in weight percent. Aluminum alloy material having. 1)溶融鋳造
最初に92〜98重量部(pbw)のSi−Fe−Al合金と0.73〜5.26pbwのAl―Fe合金を添加し,710〜750℃に融解状態まで加熱し;次に720〜760℃に加熱し,1〜3pbwの希土類―Al合金及び0.17〜0.67pbwのB−Al合金を添加し,ここでは,前記希土類―Al合金はAlとCe及びLaから成る希土類元素との合金であり;次に,0.04〜0.06pbwの精製剤を添加し,8〜20分間精製し;次に前記温度で20〜40分間保持し,その後,鋳造する工程と,
2)半焼鈍処理
得られたアルミニウム合金を280〜380℃で4〜10時間保持し,その後,取り出して,周囲温度まで自然に冷却する工程と
を含む請求項1記載のケーブル用の高い延伸性を有するアルミニウム合金材料の製造方法。
1) Melt casting First, 92-98 parts by weight (pbw) of Si-Fe-Al alloy and 0 . It was added 73~5.26 pbw Al-F e alloy of, and heated to a molten state to seven hundred ten to seven hundred and fifty ° C.; then heated to seven hundred and twenty to seven hundred sixty ° C., rare earth 1~3Pbw -Al alloy and 0.17 It was added ~0.67pbw of B-Al alloy, wherein the said rare earth -Al alloy is an alloy of rare-earth element consisting of Al and Ce and La; Next, seminal of 0.04~0.06pbw Adding the formulation and purifying for 8-20 minutes; then holding at said temperature for 20-40 minutes and then casting;
2) Semi-annealing treatment The obtained aluminum alloy is held at 280 to 380 ° C. for 4 to 10 hours, and then taken out and naturally cooled to the ambient temperature. The manufacturing method of the aluminum alloy material which has this.
前記Si−Fe−Al合金内のSiの含有量は0.07〜0.12%であり,前記Si−Fe−Al合金内のFeの含有量は0.12〜0.13%であり,前記Al−Fe合金内のFeの含有量は20〜24%であり,前記B−Al合金内のBの含有量は3〜4%であり,前記希土類−Al合金内のCe及びLaの含有量は9〜11%である請求項5記載のケーブル用の高い延伸性を有するアルミニウム合金材料の製造方法。 The Si content in the Si—Fe—Al alloy is 0.07 to 0.12%, the Fe content in the Si—Fe—Al alloy is 0.12 to 0.13%, a 20-24% content of Fe in the Al-Fe alloy, the content of B in said B-Al alloy is 3-4%, content of Ce and La in the rare earth -Al alloy The method for producing an aluminum alloy material having high extensibility for cables according to claim 5, wherein the amount is 9 to 11%. 前記Si−Fe−Al合金及び前記Al−Fe合金を融解して均熱炉に流し入れ,前記均熱炉に液状のアルミニウム合金が充満する30分前に前記希土類−Al合金の3分の1を添加し,前記均熱炉に前記液状のアルミニウム合金が充満する5分前にB−Al及び前記希土類−Al合金の残り3分の2を添加する請求項5記載のケーブル用の高い延伸性を有するアルミニウム合金材料の製造方法。 The Si-Fe-Al alloy and the Al-Fe alloy are melted and poured into a soaking furnace, and a third of the rare earth-Al alloy is added 30 minutes before the soaking furnace is filled with a liquid aluminum alloy. 6. The high ductility for a cable according to claim 5, wherein B-Al and the remaining two-thirds of the rare earth-Al alloy are added 5 minutes before the soaking furnace is filled with the liquid aluminum alloy. The manufacturing method of the aluminum alloy material which has. 前記精製剤の粉末が23%のNaAl・F+47%のKCl+30%のNaClを含む請求項5記載のケーブル用の高い延伸性を有するアルミニウム合金材料の製造方法。 Method of manufacturing an aluminum alloy material having a high stretchability of the cable according to claim 5, wherein the powder of said purifying agent containing 23% of Na 3 Al · F 6 + 47 % of the KCl + 30% of the NaCl. 前記鋳造工程において,鋳造用取鍋の温度が720〜730℃であり,圧延機に供給された,鋳造された条片の温度が450〜490℃であり,最終圧延の温度が300℃である請求項5記載のケーブル用の高い延伸性を有するアルミニウム合金材料の製造方法。   In the casting process, the temperature of the ladle for casting is 720 to 730 ° C, the temperature of the cast strip supplied to the rolling mill is 450 to 490 ° C, and the temperature of the final rolling is 300 ° C. The manufacturing method of the aluminum alloy material which has the high drawability for the cables of Claim 5.
JP2012506317A 2009-04-24 2010-04-09 Aluminum alloy material having high stretchability for cable and method for producing the same Pending JP2012524837A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2009101166357A CN101525709B (en) 2009-04-24 2009-04-24 High-elongation aluminum alloy material and preparation method thereof
CN200910116635.7 2009-04-24
PCT/CN2010/071654 WO2010121517A1 (en) 2009-04-24 2010-04-09 High-elongation rate aluminum alloy material for cable and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2012524837A JP2012524837A (en) 2012-10-18
JP2012524837A5 true JP2012524837A5 (en) 2014-05-01

Family

ID=41093778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012506317A Pending JP2012524837A (en) 2009-04-24 2010-04-09 Aluminum alloy material having high stretchability for cable and method for producing the same

Country Status (8)

Country Link
US (1) US20120211130A1 (en)
EP (1) EP2468907A4 (en)
JP (1) JP2012524837A (en)
CN (1) CN101525709B (en)
AU (1) AU2010239014B2 (en)
CA (1) CA2773050A1 (en)
RU (1) RU2550063C2 (en)
WO (1) WO2010121517A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525709B (en) * 2009-04-24 2010-08-11 安徽欣意电缆有限公司 High-elongation aluminum alloy material and preparation method thereof
CN101886198A (en) * 2010-07-13 2010-11-17 安徽欣意电缆有限公司 High-conductivity aluminum alloy material for cable and preparation method thereof
CN101937733B (en) * 2010-07-13 2012-04-18 安徽欣意电缆有限公司 Preparation method of civil aluminum alloy wiring
CN101880799A (en) * 2010-07-13 2010-11-10 安徽欣意电缆有限公司 Al-Fe-Zn-Mg rare earth alloy wire and preparation method thereof
CN101914708B (en) * 2010-08-20 2012-12-19 安徽省惠尔电气有限公司 Al-Fe-Cu alloy material and preparation method thereof
CN101948971B (en) * 2010-09-16 2013-02-13 安徽亚南电缆厂 Heat-resistant aluminum-alloy conductor material for cables and manufacture method thereof
CN101974709B (en) * 2010-09-21 2011-12-14 安徽欣意电缆有限公司 Super-soft aluminum alloy conductor and preparation method thereof
CN102021442B (en) * 2010-09-21 2012-08-29 安徽亚南电缆厂 Ultra-fine aluminum alloy wire and preparation method thereof
CN102002614A (en) * 2010-10-08 2011-04-06 黄洋铜业有限公司 Low-impedance aluminum led wire and manufacturing method thereof
CN101962723A (en) * 2010-10-27 2011-02-02 江西南缆集团有限公司 Aluminum alloy material for small-section wire rod and manufacturing method thereof
CN102134693A (en) * 2011-03-15 2011-07-27 安徽欣意电缆有限公司 Annealing method of rare earth-iron-aluminum alloy conductor material for cables
CN102682872B (en) * 2011-03-18 2014-03-26 上海电缆研究所 Semihard aluminum wire, overhead wire and preparation method thereof
CN102146539A (en) * 2011-03-18 2011-08-10 常州鸿泽澜线缆有限公司 Aluminum alloy conductor used for high-voltage cable and preparation method thereof
CN102206776B (en) * 2011-05-25 2012-09-12 登封市银河铝箔有限公司 Honeycomb aluminium foil material
CN102354541B (en) * 2011-06-24 2012-06-20 河北科力特电缆有限公司 High-strength oxidation-resistant aluminium alloy conductive core and production method thereof
CN102262913B (en) * 2011-07-07 2013-05-08 安徽欣意电缆有限公司 Rare earth high-iron aluminum alloy conductor material
CN102347092B (en) * 2011-10-10 2013-02-20 安徽欣意电缆有限公司 Rear earth aluminum alloy material
CN103060647B (en) * 2011-10-24 2014-12-31 贵州华科铝材料工程技术研究有限公司 Ruthenium carbonyl complex modified high-performance aluminum alloy material and preparation method thereof
CN103131903A (en) * 2013-03-12 2013-06-05 江苏广庆电子材料有限公司 Rare earth element containing high-strength and high-conductivity aluminum alloy material and processing method thereof
US9601978B2 (en) * 2013-04-26 2017-03-21 GM Global Technology Operations LLC Aluminum alloy rotor for an electromagnetic device
CN104046862A (en) * 2014-05-20 2014-09-17 南京南车浦镇城轨车辆有限责任公司 A7N01 aluminum alloy containing rare earth elements and preparation method for sheet material of A7N01 aluminum alloy
CN104004946B (en) * 2014-06-06 2016-03-30 江苏大学 690-730MPa superstrength 80-100mm hardening capacity aluminium alloy and preparation method thereof
CN104004947B (en) * 2014-06-06 2016-05-04 江苏大学 High anti intercrystalline corrosion aluminium alloy of 600-650MPa intensity and preparation method thereof
CN104532067A (en) * 2014-12-12 2015-04-22 华北电力大学 Non-heat treatment medium-strength aluminum alloy conductor material and preparation method thereof
CN104805338A (en) * 2015-05-21 2015-07-29 广西友合铝材有限公司 Rare earth aluminium-iron-copper alloy wire and preparation method thereof
CN105296816B (en) * 2015-12-08 2016-09-14 江苏东强股份有限公司 High connductivity aluminum alloy materials and the preparation method of aluminum alloy cable conductor thereof
CN105861894A (en) * 2016-05-20 2016-08-17 淮安和通汽车零部件有限公司 6401A aluminum alloy and preparation method thereof
CN105838942A (en) * 2016-05-20 2016-08-10 淮安和通汽车零部件有限公司 6042 aluminum alloy and preparation method thereof
CN111224108A (en) * 2020-01-19 2020-06-02 上海华峰铝业股份有限公司 Positive current collector of low-resistivity lithium ion battery
KR102474944B1 (en) * 2020-04-08 2022-12-06 주식회사 큐프럼 머티리얼즈 Manufacturing method of wiring film, wiring film and display device using the same
CN113151716B (en) * 2021-03-08 2022-04-12 上海工程技术大学 Al-Fe-Mg-Cu aluminum alloy for cable shielding and preparation method thereof
CN113689970B (en) * 2021-08-23 2023-06-06 安徽中青欣意铝合金电缆有限公司 Anti-bending aluminum alloy cable for electric automobile charging and preparation method thereof
CN114227060A (en) * 2021-12-27 2022-03-25 广东凤铝铝业有限公司 Method for improving welding performance of aluminum profile for new energy automobile
CN115449730B (en) * 2022-09-06 2023-07-07 合肥通用机械研究院有限公司 Method for effectively reducing corrosion rate of low-silicon cast aluminum alloy
CN115595459B (en) * 2022-09-19 2023-09-12 江苏中天科技股份有限公司 Preparation method of high-strength high-conductivity aluminum alloy monofilament and aluminum alloy monofilament
CN115896653B (en) * 2022-12-21 2024-04-02 广东领胜新材料科技有限公司 Continuous casting and rolling device and method for high-strength aluminum alloy round rod

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615371A (en) * 1967-04-08 1971-10-26 Furukawa Electric Co Ltd Aluminum alloy for electric conductor
CH524225A (en) * 1968-05-21 1972-06-15 Southwire Co Aluminum alloy wire or bar
EG10355A (en) * 1970-07-13 1976-05-31 Southwire Co Aluminum alloy used for electrical conductors and other articles and method of making same
ZA741430B (en) * 1974-03-05 1975-02-26 Southwire Co Aluminium alloy wire producs and method of preparation thereof
JPS585254B2 (en) * 1975-02-14 1983-01-29 三菱電線工業株式会社 Soft and strong aluminum alloy for conductive use
JPS5272315A (en) * 1975-12-15 1977-06-16 Sumitomo Electric Ind Ltd Aluminum alloy for conductor
JPS5625950A (en) * 1979-08-08 1981-03-12 Furukawa Electric Co Ltd:The Heat resistant aluminum alloy having high electrical conductivity
JPS5684440A (en) * 1979-12-10 1981-07-09 Dainichi Nippon Cables Ltd Conductive high-strength aluminum alloy
JPS5831071A (en) * 1981-08-18 1983-02-23 Furukawa Electric Co Ltd:The Manufacture of heat resistant al alloy conductor
US4397696A (en) * 1981-12-28 1983-08-09 Aluminum Company Of America Method for producing improved aluminum conductor from direct chill cast ingot
DE3914020A1 (en) * 1989-04-28 1990-10-31 Vaw Ver Aluminium Werke Ag ALUMINUM ROLLING PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
JPH0372048A (en) * 1989-08-11 1991-03-27 Sumitomo Light Metal Ind Ltd Aluminum alloy forming stable gray-colored anodically oxidized film
RU2141389C1 (en) * 1998-06-10 1999-11-20 Локшин Михаил Зеликович Method for making electrical wire of aluminium alloys
JP3604595B2 (en) * 1999-08-27 2004-12-22 三菱アルミニウム株式会社 Aluminum alloy support for PS plate and method of manufacturing
JP3677213B2 (en) * 2000-02-07 2005-07-27 コダックポリクロームグラフィックス株式会社 Aluminum alloy support for PS plate and method for producing the same
DE60102614T2 (en) * 2000-02-07 2005-03-31 Kodak Polychrome Graphics Co. Ltd., Norwalk Aluminum alloy lithographic printing plate and method of making the same
CN100561345C (en) * 2005-05-20 2009-11-18 东北轻合金有限责任公司 The manufacture method of aluminous plate for PS plate substrate for printing
ITMI20060297A1 (en) * 2006-02-17 2007-08-18 Angeli Prodotti S R L CONDUCTOR CABLE FOR ELECTRIC LINES
CN1941222A (en) * 2006-09-07 2007-04-04 上海电缆研究所 Method for producing heat-resisting high-strength aluminium alloy wire
JP2008111142A (en) * 2006-10-27 2008-05-15 Fujifilm Corp Aluminum alloy sheet for planographic printing plate and support for planographic printing plate
RU2344187C2 (en) * 2006-12-28 2009-01-20 Николай Степанович Куприянов Aluminium alloy
CN101525709B (en) * 2009-04-24 2010-08-11 安徽欣意电缆有限公司 High-elongation aluminum alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2012524837A5 (en)
AU2010239014B2 (en) High-elongation rate aluminum alloy material for cable and preparation method thereof
CN102925746B (en) High-performance Cu-Ni-Si system copper alloy, and preparation method and processing method thereof
CN105088033A (en) Aluminium alloy and preparation method thereof
CN104805320A (en) Manufacturing process of aluminum alloy rod for shielding
CN103276261B (en) Preparation method of high-conductivity aluminum alloy
CN101914708B (en) Al-Fe-Cu alloy material and preparation method thereof
CN109439971A (en) A kind of corrosion resistance, high-intensitive aluminium alloy and preparation method thereof
CN104959393A (en) Production method of aluminium alloy hot extrusion bar used for high-quality aviation blade
CN101880799A (en) Al-Fe-Zn-Mg rare earth alloy wire and preparation method thereof
CN108456799A (en) A kind of high-performance copper ferroalloy materials and its electroslag remelting preparation method
CN105063433A (en) High-conductivity heat-resisting aluminum alloy monofilament and preparation method thereof
CN102943193A (en) Grain refinement machining process of hard aluminium alloy cast ingot
CN102864344A (en) Rare-earth aluminum alloy conductor for cable and manufacturing method thereof
CN102965553A (en) Aluminum alloy cast ingot for automotive bumper and production process thereof
CN107447144A (en) A kind of heat-resistant rare earth aluminium alloy and preparation method thereof
CN104928507A (en) Aluminothermic reduction method for preparing aluminum-scandium master alloy in mixed molten salt system
CN108823464B (en) Copper alloy material and preparation method thereof
CN102162054A (en) High-toughness magnesium alloy and preparation method thereof
CN101880806B (en) Heatproof magnesium alloy and preparation method thereof
CN102000808B (en) Magnesium alloy grain refiner and grain refined magnesium alloy and preparation method of thereof
CN103774018B (en) A kind of gas battery anode material and preparation method
CN103820667B (en) Insulating covering agent and Al-Si alloy melt treatment process
JP5607459B2 (en) Copper alloy ingot, method for producing the same, and copper alloy sheet obtained therefrom
CN105296831A (en) High-room-temperature-elongation wrought magnesium alloy and preparation method thereof