JP2012256544A - Manufacturing method of electrode for secondary battery - Google Patents

Manufacturing method of electrode for secondary battery Download PDF

Info

Publication number
JP2012256544A
JP2012256544A JP2011129518A JP2011129518A JP2012256544A JP 2012256544 A JP2012256544 A JP 2012256544A JP 2011129518 A JP2011129518 A JP 2011129518A JP 2011129518 A JP2011129518 A JP 2011129518A JP 2012256544 A JP2012256544 A JP 2012256544A
Authority
JP
Japan
Prior art keywords
binder
composition
negative electrode
mass
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011129518A
Other languages
Japanese (ja)
Inventor
Tomohiko Ishida
智彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011129518A priority Critical patent/JP2012256544A/en
Publication of JP2012256544A publication Critical patent/JP2012256544A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode capable of realizing improvement of adhesion between a current collector and a mixture layer and preventing peeling at a surface side of the mixture layer.SOLUTION: The manufacturing method provided by the present invention includes: applying a binder solution 120 made by mixing at least one kind of a binder 125 with a predetermined solvent to a surface of an electrode current collector 82; applying a paste type first composition 140 which at least contains an electrode active material 150 and does not contain a binder on the binder solution; applying a paste type second composition 160 which at least contains an electrode active material 150 and at least one kind of a binder 165 on the first composition; and drying the binder solution, the first composition, and the second composition to form an electrode mixture layer.

Description

本発明は、二次電池用の電極を製造する方法に関する。詳しくは、電極活物質と結着材とを含む電極合材層が電極集電体上に保持された構成を有する電極の製造方法に関する。   The present invention relates to a method for manufacturing an electrode for a secondary battery. Specifically, the present invention relates to an electrode manufacturing method having a configuration in which an electrode mixture layer including an electrode active material and a binder is held on an electrode current collector.

リチウムイオン二次電池、ニッケル水素電池その他の二次電池は、例えば、電気を駆動源として利用する車両に搭載される電源、或いはパソコンや携帯端末その他の電気製品等に用いられる電源として重要性が高まっている。特に軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましい。   Lithium-ion secondary batteries, nickel-metal hydride batteries, and other secondary batteries are important as, for example, power sources mounted on vehicles that use electricity as a drive source, or power sources used in personal computers, portable terminals, and other electrical products. It is growing. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferable as a high-output power source mounted on a vehicle.

典型的な構成のリチウムイオン二次電池では、導電性部材(電極集電体)の上にリチウムイオンを可逆的に吸蔵および放出し得る物質(電極活物質)を主体とする電極材料が層状に形成された構成(以下、かかる層状形成物を「電極合材層」という。)の電極を備える。かかる電極は、典型的には、電極活物質と結着材(バインダ)等とを適当な溶媒(例えば水)に分散させて混練したペースト状の組成物(ペースト状組成物にはスラリー状組成物及びインク状組成物が包含される。)を調製し、これを電極集電体上に塗布して乾燥することにより形成されている。   In a typical lithium ion secondary battery, an electrode material mainly composed of a substance (electrode active material) capable of reversibly occluding and releasing lithium ions on a conductive member (electrode current collector) is layered. An electrode having a formed configuration (hereinafter, this layered product is referred to as an “electrode mixture layer”) is provided. Such an electrode is typically a paste-like composition in which an electrode active material and a binder (binder) are dispersed in an appropriate solvent (for example, water) and kneaded (a slurry-like composition is included in the paste-like composition). And an ink-like composition are prepared, and this is applied onto an electrode current collector and dried.

ところで、電極集電体上に塗布されたペースト状の組成物を乾燥して電極合材層を形成する際、組成物の表面から該組成物中の溶媒が蒸発するため、溶媒の対流によって該組成物に含まれる結着材が移動して組成物の表面に結着材が偏在(マイグレーション)してしまう場合がある。この結果、電極集電体と電極合材層において十分な密着力が得られないという問題がある。かかる問題に対応すべく、従来技術として、特許文献1が挙げられる。特許文献1には、集電体上に結着材及び水系分散剤からなるプレコート層を形成したのち、該層上に活物質及び結着材を含むペースト状の組成物を塗布して合材層を形成することにより集電体と合材層との密着力を高めようとする技術が記載されている。その他従来技術として特許文献2〜4が挙げられる。   By the way, when the electrode mixture layer is formed by drying the paste-like composition applied on the electrode current collector, the solvent in the composition evaporates from the surface of the composition. The binder contained in the composition may move and the binder may be unevenly distributed (migrated) on the surface of the composition. As a result, there is a problem that sufficient adhesion cannot be obtained in the electrode current collector and the electrode mixture layer. In order to cope with such a problem, Patent Document 1 is cited as a prior art. In Patent Document 1, a precoat layer composed of a binder and an aqueous dispersant is formed on a current collector, and then a paste-like composition containing an active material and a binder is applied onto the layer to form a composite material. A technique for increasing the adhesion between the current collector and the composite layer by forming a layer is described. Other conventional techniques include Patent Documents 2 to 4.

特開2009−238720号公報JP 2009-238720 A 特開2010−182626号公報JP 2010-182626 A 特開2007−242374号公報JP 2007-242374 A 特開2003−260400号公報JP 2003-260400 A

しかしながら、上記特許文献1に記載の技術は、プレコート層上に塗布する組成物に結着材が含まれているため、集電体の近傍で結着材同士が凝集し合材層の表面側に結着材が不足してしまい、合材層の表面側においてヒビ割れや剥離が発生してしまう虞がある。高出力を得るためには合材層中の結着材量を増やすことなく上記の課題を解決することが要求されている。
そこで、本発明は、上述した課題を解決すべく創出されたものであり、その目的は、電極合材層の全体に亘り結着材を良好に分散させることにより、集電体と合材層との密着力の向上を実現すると共に合材層の表面側の剥離を防止し得る電極の製造方法を提供することである。
However, since the technique described in Patent Document 1 includes a binder in the composition to be applied on the precoat layer, the binders aggregate in the vicinity of the current collector and the surface side of the composite layer In addition, the binder may be insufficient, and cracks and peeling may occur on the surface side of the composite layer. In order to obtain a high output, it is required to solve the above problems without increasing the amount of the binder in the composite layer.
Therefore, the present invention has been created to solve the above-described problems, and the purpose thereof is to disperse the binder well over the entire electrode composite layer, thereby allowing the current collector and the composite layer to be dispersed. It is providing the manufacturing method of the electrode which can prevent the peeling of the surface side of a composite material layer while implement | achieving the improvement of adhesive force.

上記目的を実現すべく、本発明により、電極活物質及び結着材を少なくとも含む電極合材層が電極集電体上に形成された二次電池用電極を製造する方法が提供される。即ちここで開示される二次電池用電極の製造方法は、少なくとも1種の結着材を所定の溶媒に混合してなる結着材溶液を上記電極集電体の表面に塗布すること、上記活物質を少なくとも含み、且つ結着材を含まないペースト状の第1の組成物を上記結着材溶液上に塗布すること、上記電極活物質及び少なくとも1種の結着材を少なくとも含むペースト状の第2の組成物を上記第1の組成物上に塗布すること、上記結着材溶液と上記第1の組成物と上記第2の組成物とを乾燥させて電極合材層を形成すること、を包含する。
なお、本明細書において「結着材溶液」とは、少なくとも1種の結着材を所定の溶媒(典型的には水系溶媒)に溶解させてなる溶液及び少なくとも1種の結着材を所定の溶媒に分散させてなる分散液を包含する用語である。
なお、本明細書において「結着材を含まない」とは、発明の効果を奏する範囲内にて結着材が微量に含有される場合を含む。
In order to achieve the above object, the present invention provides a method for producing an electrode for a secondary battery in which an electrode mixture layer containing at least an electrode active material and a binder is formed on an electrode current collector. That is, in the method for producing an electrode for a secondary battery disclosed herein, a binder solution obtained by mixing at least one binder in a predetermined solvent is applied to the surface of the electrode current collector, Applying a paste-like first composition containing at least an active material and no binder to the binder solution, a paste containing at least the electrode active material and at least one binder The second composition is applied on the first composition, and the binder solution, the first composition, and the second composition are dried to form an electrode mixture layer. It is included.
In the present specification, the “binder solution” refers to a solution obtained by dissolving at least one binder in a predetermined solvent (typically an aqueous solvent) and at least one binder. It is a term including a dispersion liquid dispersed in a solvent.
In the present specification, “not including a binder” includes a case where the binder is contained in a trace amount within a range where the effects of the invention are exhibited.

本発明の二次電池用電極の製造方法では、結着材溶液を電極集電体に塗布し、該結着材溶液が乾燥する前(ウェットな状態にある)に結着材を含まない第1の組成物を塗布し、次いで、上記結着材溶液及び第1の組成物が乾燥する前に少なくとも1種の結着材を含む第2の組成物を該第1の組成物に塗布している。
塗布された結着材溶液と第1の組成物と第2の組成物とは、これら材料が乾燥する過程において相互に混ざり合う。ここで第1の組成物には結着材が含まれていないため、結着材溶液中の結着材及び第2の組成物中の結着材が第1の組成物中に移動(拡散)しても電極集電体付近での結着材同士の凝集の発生が防止され電極合材層と電極集電体との密着強度を十分に確保することができる。さらに、結着材溶液中の結着材及び第2の組成物中の結着材が第1の組成物中に拡散することにより、電極合材層の全体に亘って結着材が良好に分散され得る。これにより、電極合材層における柔軟性(例えば、電極を捲回した際に電極合材層にヒビや割れが発生するのを防止することができる柔軟性)を維持しつつ性能に優れた(例えば低抵抗)電極となり得る。
In the secondary battery electrode manufacturing method of the present invention, the binder solution is applied to the electrode current collector, and the binder solution is not contained before the binder solution is dried (in a wet state). The first composition is applied, and then the second composition containing at least one binder is applied to the first composition before the binder solution and the first composition are dried. ing.
The applied binder solution, the first composition, and the second composition are mixed with each other in the process of drying these materials. Here, since the first composition does not contain a binder, the binder in the binder solution and the binder in the second composition move (diffuse) into the first composition. ), The occurrence of agglomeration of the binders in the vicinity of the electrode current collector is prevented, and sufficient adhesion strength between the electrode mixture layer and the electrode current collector can be secured. Furthermore, the binder in the binder solution and the binder in the second composition diffuse into the first composition, so that the binder can be satisfactorily spread over the entire electrode mixture layer. Can be distributed. Thereby, it was excellent in performance while maintaining the flexibility in the electrode mixture layer (for example, the flexibility capable of preventing the electrode mixture layer from being cracked or cracked when the electrode was wound) ( For example, it can be a low resistance electrode.

ここで開示される製造方法の好適な一態様では、上記電極合材層の固形分全量を100質量%としたときに、該電極合材層に含まれる結着材の全量が該電極合材層の固形分全量の0.3質量%以下となるように該結着材の含有量を調整する。
このような割合の結着材を用いることにより、電極合材層における柔軟性を維持しつつ、電極集電体と電極合材層との間において十分な密着強度を有するとともに、結着材の低減による抵抗の低下を実現し得る負極を形成することができる。好ましい一態様では、上記結着材溶液に含まれる結着材及び上記第2の組成物に含まれる結着材として、スチレンブタジエンゴムを用いる。
In a preferred embodiment of the production method disclosed herein, when the total solid content of the electrode mixture layer is 100% by mass, the total amount of the binder contained in the electrode mixture layer is the electrode mixture. The content of the binder is adjusted so that the total solid content of the layer is 0.3% by mass or less.
By using the binder in such a ratio, while maintaining the flexibility in the electrode mixture layer, it has sufficient adhesion strength between the electrode current collector and the electrode mixture layer, and the binder material A negative electrode capable of realizing a decrease in resistance due to the reduction can be formed. In a preferred embodiment, styrene butadiene rubber is used as the binder contained in the binder solution and the binder contained in the second composition.

ここで開示される製造方法の好適な他の一態様では、上記結着材溶液に含まれる結着材と上記第2の組成物に含まれる結着材とは、相互にガラス転移温度(ガラス転移点)の異なるものを用いていることを特徴とする。
特に好ましい一態様では、上記結着材溶液に含まれる結着材としてガラス転移温度Tgが10℃以上(例えば凡そ10℃〜40℃)の結着材を用いる。また、上記第2の組成物に含まれる結着材としてガラス転移温度Tgが10℃未満(例えば凡そ−50℃〜0℃)の結着材を用いる。
このような組み合わせで、上記結着材溶液用途の結着材と上記第2の組成物用途の結着材とを用いることによって、電極合材層のうち電極集電体付近の合材層は比較的硬く、電極合材層の表面側は比較的柔らかくなり、硬さと柔軟性とのバランスがとれた電極合材層を形成することができる。
In another preferred embodiment of the production method disclosed herein, the binder contained in the binder solution and the binder contained in the second composition are mutually glass transition temperatures (glass It is characterized by using a different transition point.
In a particularly preferred embodiment, a binder having a glass transition temperature Tg of 10 ° C. or higher (for example, about 10 ° C. to 40 ° C.) is used as the binder contained in the binder solution. In addition, as the binder contained in the second composition, a binder having a glass transition temperature Tg of less than 10 ° C. (for example, about −50 ° C. to 0 ° C.) is used.
In such a combination, by using the binder for the binder solution and the binder for the second composition, the composite layer near the electrode current collector in the electrode composite layer is The electrode mixture layer is relatively hard and the surface side of the electrode mixture layer is relatively soft, so that an electrode mixture layer in which a balance between hardness and flexibility can be obtained can be formed.

また、本発明によると、ここで開示されるいずれかの方法により製造された二次電池用電極を用いて構築された二次電池(例えばリチウムイオン二次電池)が提供される。かかる二次電池は、上記二次電池用電極を少なくとも一方の電極(好ましくは負極)に用いて構築されていることから、より良好な電池性能を示すものであり得る。   Moreover, according to this invention, the secondary battery (for example, lithium ion secondary battery) constructed | assembled using the electrode for secondary batteries manufactured by one of the methods disclosed here is provided. Since the secondary battery is constructed using the secondary battery electrode as at least one electrode (preferably a negative electrode), it can exhibit better battery performance.

このような二次電池は、例えば自動車等の車両に搭載される電池として好適である。従って本発明によると、ここで開示されるいずれかの二次電池を備える車両が提供される。特に、軽量で高出力が得られることから、上記二次電池がリチウムイオン二次電池であって、該リチウムイオン二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が好適である。   Such a secondary battery is suitable as a battery mounted on a vehicle such as an automobile. Therefore, according to the present invention, a vehicle including any of the secondary batteries disclosed herein is provided. In particular, since the light weight and high output can be obtained, the secondary battery is a lithium ion secondary battery, and the lithium ion secondary battery is used as a power source (typically, a power source of a hybrid vehicle or an electric vehicle). A vehicle (for example, an automobile) provided as is suitable.

本発明の一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the lithium ion secondary battery which concerns on one Embodiment of this invention. 図1中のII‐II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire in FIG. 本発明の一実施形態に係る電極の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the electrode which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池用電極の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the electrode for secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電極の製造装置の概略構成を模式的に示す説明図である。It is explanatory drawing which shows typically schematic structure of the manufacturing apparatus of the electrode which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電極の製造中間過程を説明するための断面図である。It is sectional drawing for demonstrating the manufacture intermediate process of the electrode which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電極の製造中間過程を説明するための断面図である。It is sectional drawing for demonstrating the manufacture intermediate process of the electrode which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電極の製造中間過程を説明するための断面図である。It is sectional drawing for demonstrating the manufacture intermediate process of the electrode which concerns on one Embodiment of this invention. 初期抵抗(DCIR)と結着材量との関係を示すグラフである。It is a graph which shows the relationship between initial resistance (DCIR) and the amount of binders. 本発明に係る二次電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the secondary battery which concerns on this invention.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識に基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than matters specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここで開示される二次電池用電極を製造する方法の好適な実施形態の一つとして、リチウムイオン二次電池用の負極を製造する方法を例にして詳細に説明するが、本発明の適用対象をかかる種類の二次電池及び電極(負極)に限定することを意図したものではない。本発明は、他の種類の二次電池(例えばリチウムイオン以外の金属イオンを電荷荷体とする二次電池や、リチウムイオンキャパシタ等の電気二重層キャパシタ(物理電池)を包含する。)に適用することができる。   As a preferred embodiment of the method for producing an electrode for a secondary battery disclosed herein, a method for producing a negative electrode for a lithium ion secondary battery will be described in detail as an example. It is not intended to limit the subject to such types of secondary batteries and electrodes (negative electrode). The present invention is applied to other types of secondary batteries (including, for example, secondary batteries using metal ions other than lithium ions as charge carriers, and electric double layer capacitors (physical batteries) such as lithium ion capacitors). can do.

ここで開示されるリチウムイオン二次電池用電極(負極)の製造方法は、図4に示すように、結着材溶液塗布工程(ステップS10)と、第1の組成物塗布工程(ステップS20)と、第2の組成物塗布工程(ステップS30)と、乾燥工程(ステップS40)とを包含する。図5は、かかるリチウムイオン二次電池用電極(負極)の製造方法を具現化した製造装置を示す図である。図5に示すように、本実施形態に係る電極製造装置200は、大まかにいって、供給ロール210、結着材溶液塗布部220、組成物塗布部230、乾燥炉240及び回収ロール250を備えている。負極集電体82は、供給ロール210から供給され所定の経路に沿って走行し得るガイド215に案内されて上記工程を経て回収ロール250で回収される。   As shown in FIG. 4, the manufacturing method of the lithium ion secondary battery electrode (negative electrode) disclosed herein includes a binder solution application step (step S10) and a first composition application step (step S20). And a 2nd composition application | coating process (step S30) and a drying process (step S40). FIG. 5 is a diagram showing a manufacturing apparatus that embodies a method for manufacturing such an electrode (negative electrode) for a lithium ion secondary battery. As shown in FIG. 5, the electrode manufacturing apparatus 200 according to the present embodiment roughly includes a supply roll 210, a binder solution application unit 220, a composition application unit 230, a drying furnace 240, and a collection roll 250. ing. The negative electrode current collector 82 is guided by a guide 215 that is supplied from the supply roll 210 and can travel along a predetermined route, and is collected by the collection roll 250 through the above steps.

まず、結着材溶液塗布工程(S10)について説明する。結着材溶液塗布工程には、少なくとも1種の結着材(好ましくはガラス転移温度Tgが10℃以上の結着材)と所定の溶媒とを混合して結着材溶液を用意すること、及び用意した結着材溶液を負極集電体の表面に塗布することが含まれている。   First, the binder solution application step (S10) will be described. In the binder solution application step, preparing a binder solution by mixing at least one binder (preferably a binder having a glass transition temperature Tg of 10 ° C. or higher) and a predetermined solvent; And applying the prepared binder solution to the surface of the negative electrode current collector.

結着材溶液用途に用いる結着材(バインダ)としては、一般的なリチウムイオン二次電池の負極に使用される結着材と同様のものを適宜採用することができる。例えば、負極合材層を形成するために水系の溶媒を含む組成物を用いる場合には、水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解または分散するポリマー材料としては、例えば、スチレンブタジエンゴム(SBR)が挙げられる。ここでSBRとは、スチレンと1,3‐ブタジエンを含む共重合体のことであり、その共重合様式は特に限定されない。さらに不飽和カルボン酸や不飽和ニトリル化合物を共重合させた変性SBRであってもよい。その他のポリマー材料としては、ポリアクリレート(アクリル酸エステル単独重合体または共重合体)、ポリウレタン、ポリエチレンオキサイド(PEO)、ポリエチレン等が挙げられる。かかる結着材は、一種を単独で用いてもよく、二種以上を組み合わせてもよい。   As the binder (binder) used for the binder solution application, the same binder as that used for the negative electrode of a general lithium ion secondary battery can be appropriately employed. For example, when a composition containing an aqueous solvent is used to form the negative electrode mixture layer, a polymer material that dissolves or disperses in water can be preferably used. Examples of the polymer material dissolved or dispersed in water include styrene butadiene rubber (SBR). Here, SBR is a copolymer containing styrene and 1,3-butadiene, and the copolymerization mode is not particularly limited. Further, it may be a modified SBR obtained by copolymerizing an unsaturated carboxylic acid or an unsaturated nitrile compound. Examples of other polymer materials include polyacrylate (acrylic acid ester homopolymer or copolymer), polyurethane, polyethylene oxide (PEO), polyethylene, and the like. Such binders may be used alone or in combination of two or more.

また、上記結着材のガラス転移温度Tgは、10℃以上(例えば10℃〜40℃)であることが好ましい。このようにガラス転移温度Tgが10℃以上の結着材を用いることにより、負極合材層のうち負極集電体付近の硬さが適度に硬くなる。上記SBRのガラス転移温度Tgは、例えば、スチレン/ブタジエン共重合比を変えること、添加剤を加えること、架橋剤を加えること等によって調整することができる。また、ここで開示される結着材は、JIS K7127に準じて測定された破断伸びが110%以上のものを採用することが好ましい。
なお、ガラス転移温度(Tg:ガラス転移点ともいう。)は、種々の周知技術、例えば一般的な示差走査熱量測定装置(DSC:Difference Scanning Calorimeter)を採用することによって容易に求めることができる。
Moreover, it is preferable that the glass transition temperature Tg of the said binder is 10 degreeC or more (for example, 10 to 40 degreeC). Thus, by using a binder having a glass transition temperature Tg of 10 ° C. or higher, the hardness in the vicinity of the negative electrode current collector in the negative electrode mixture layer is appropriately increased. The glass transition temperature Tg of the SBR can be adjusted, for example, by changing the styrene / butadiene copolymer ratio, adding an additive, or adding a crosslinking agent. Moreover, it is preferable to employ | adopt the thing whose break elongation measured according to JISK7127 is 110% or more as a binder disclosed here.
The glass transition temperature (Tg: also referred to as glass transition point) can be easily obtained by employing various well-known techniques, for example, a general differential scanning calorimeter (DSC).

また、結着材溶液を構成する溶媒は、使用する結着材との組み合わせを考慮して適宜採用することができる。環境負荷の軽減等を考慮すると水系の溶媒を好ましく用いることができる。ここで、水系の溶媒とは、水または水を主体とする混合溶媒(水系溶媒)を用いた組成物を指す概念である。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。   Moreover, the solvent which comprises a binder solution can be suitably employ | adopted considering the combination with the binder to be used. In consideration of reduction of environmental load, an aqueous solvent can be preferably used. Here, the aqueous solvent is a concept indicating a composition using water or a mixed solvent mainly composed of water (aqueous solvent). As the solvent other than water constituting the mixed solvent, one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.

結着材溶液に含まれる上記結着材の含有量は、負極合材層の固形分全量を100質量%としたときに0.05質量%〜2.5質量%(例えば0.05質量%〜2.0質量%、好ましくは0.2質量%〜0.7質量%)の範囲内であり得る。
また、結着材溶液の固形分濃度(不揮発分、即ち結着材成分の割合。)は、凡そ5質量%〜30質量%の範囲内であることが適当であり、例えば8質量%〜20質量%(例えば10質量%)とすることが好ましい。固形分濃度が上記範囲よりも小さすぎると、第1の組成物が結着材溶液上で弾かれてしまい、均一な厚みに塗工できない場合がある。一方、固形分濃度が上記範囲よりも大きすぎると、結着材溶液の取扱性(例えば、該結着材溶液を負極集電体(特に箔状集電体)に塗布する際の塗工性等)が低下しやすくなることがある。
The content of the binder contained in the binder solution is 0.05% by mass to 2.5% by mass (for example, 0.05% by mass) when the total solid content of the negative electrode mixture layer is 100% by mass. ˜2.0% by mass, preferably 0.2% by mass to 0.7% by mass).
The solid content concentration of the binder solution (nonvolatile content, that is, the ratio of the binder component) is suitably in the range of about 5% by mass to 30% by mass, for example, 8% by mass to 20%. It is preferable to set it as the mass% (for example, 10 mass%). If the solid content concentration is too smaller than the above range, the first composition may be repelled on the binder solution and may not be applied to a uniform thickness. On the other hand, when the solid content concentration is too larger than the above range, the handleability of the binder solution (for example, the coating property when the binder solution is applied to the negative electrode current collector (particularly the foil current collector)). Etc.) may be easily reduced.

上記負極集電体としては、従来のリチウムイオン二次電池の負極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅材やニッケル材或いはそれらを主体とする合金材を用いることができる。負極集電体の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。ここで開示される技術は、例えばシート状若しくは箔状の集電体を用いた電極の製造に好ましく適用することができる。   As the negative electrode current collector, a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the negative electrode of a conventional lithium ion secondary battery. For example, a copper material, a nickel material, or an alloy material mainly composed of them can be used. The shape of the negative electrode current collector can vary depending on the shape of the lithium ion secondary battery, and is not particularly limited. The technique disclosed here can be preferably applied to manufacture of an electrode using, for example, a sheet-shaped or foil-shaped current collector.

上記結着材溶液を塗布する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、グラビアコーター、コンマコーター、スリットコーター、ダイコーター等の適当な塗布装置を使用することにより、負極集電体の表面に結着材溶液を塗布することができる。結着材溶液の塗布量は固形分基準で集電体の片面当たり凡そ0.01mg/cm〜0.5mg/cm(例えば0.02mg/cm〜0.3mg/cm)であることが好ましい。
図5に示すように、本実施形態に係る結着材溶液塗布部220はグラビアコーターであって、負極集電体82の表面に結着材溶液120を塗布(塗工)するグラビアロール222と結着材溶液120を貯留する貯留槽225とを備えている。貯留槽225に上記用意(調製)した結着材溶液120を供給して、グラビアロール222が供給ロール210から送り出された長尺状の負極集電体82の表面に該結着材溶液120を塗布する。本工程では、図6に示すように、負極集電体82の表面に少なくとも結着材125を含む結着材溶液120が塗布される。
As a method for applying the binder solution, a technique similar to a conventionally known method can be appropriately employed. For example, the binder solution can be applied to the surface of the negative electrode current collector by using an appropriate application device such as a gravure coater, comma coater, slit coater, or die coater. The coating amount of the binder solution is a per surface approximately 0.01mg / cm 2 ~0.5mg / cm 2 of the current collector (e.g., 0.02mg / cm 2 ~0.3mg / cm 2 ) on a solids basis It is preferable.
As shown in FIG. 5, the binder solution application unit 220 according to the present embodiment is a gravure coater, and a gravure roll 222 that applies (coats) the binder solution 120 to the surface of the negative electrode current collector 82. And a storage tank 225 for storing the binder solution 120. The prepared (prepared) binder solution 120 is supplied to the storage tank 225, and the binder solution 120 is applied to the surface of the long negative electrode current collector 82 from which the gravure roll 222 is fed from the supply roll 210. Apply. In this step, as shown in FIG. 6, a binder solution 120 containing at least a binder 125 is applied to the surface of the negative electrode current collector 82.

次に、第1の組成物塗布工程(S20)について説明する。第1の組成物塗布工程には、負極活物質を少なくとも含み、且つ結着材を(実質的に)含まないペースト状の第1の組成物(以下、単に「第1組成物」とする。)を用意すること、及び用意した第1組成物を上記結着材溶液上に塗布することが含まれている。   Next, the first composition application step (S20) will be described. In the first composition application step, a paste-like first composition (hereinafter simply referred to as “first composition”) containing at least a negative electrode active material and (substantially) no binder is included. ) And applying the prepared first composition onto the binder solution.

ここで開示されるリチウムイオン二次電池の負極に用いられる負極活物質は、本発明の目的を実現し得る性状の負極活物質である限りにおいて、その組成や形状に特に制限はない。例えば、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属複合酸化物(リチウムチタン複合酸化物等)、リチウム遷移金属複合窒化物等が例示される。中でも天然黒鉛(もしくは人造黒鉛)を主成分とする負極活物質(典型的には、実質的に天然黒鉛(もしくは人造黒鉛)からなる負極活物質の使用が好ましい。かかる黒鉛は鱗片状の黒鉛を球形化したものであり得る。例えば、平均粒径が凡そ5μm〜30μmの範囲にある球形化天然黒鉛(もしくは球形化人造黒鉛)を負極活物質として好ましく用いることができる。さらに、該黒鉛粒子の表面にアモルファスカーボン(非晶質炭素)がコートされた炭素質粉末を用いてもよい。   The negative electrode active material used for the negative electrode of the lithium ion secondary battery disclosed here is not particularly limited in its composition and shape as long as it is a negative electrode active material having a property capable of realizing the object of the present invention. Examples thereof include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal composite oxides (lithium titanium composite oxides, etc.), lithium transition metal composite nitrides, and the like. In particular, it is preferable to use a negative electrode active material (typically, a negative electrode active material substantially composed of natural graphite (or artificial graphite), which is mainly composed of natural graphite (or artificial graphite). For example, spheroidized natural graphite (or spheroidized artificial graphite) having an average particle diameter in the range of about 5 μm to 30 μm can be preferably used as the negative electrode active material. Carbonaceous powder having a surface coated with amorphous carbon (amorphous carbon) may be used.

また、ここで開示されるリチウムイオン二次電池の負極は必要に応じて増粘材を含有することができる。かかる増粘材としては、水若しくは溶剤(有機溶媒)に溶解又は分散するポリマー材料を採用し得る。水に溶解する(水溶性の)ポリマー材料としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が挙げられる。第1組成物の混練(調製)の際の作業性および安定性等の観点からCMC等のセルロース誘導体が好ましく使用される。
増粘材の添加量(含有量)は、負極活物質の種類や量に応じて適宜選択すればよく、例えば、負極合材層の固形分全量を100質量%としたときに凡そ0.3質量%〜2質量%(例えば凡そ0.5質量%〜1質量%)とすることができる。
Moreover, the negative electrode of the lithium ion secondary battery disclosed here can contain a thickener as needed. As such a thickener, a polymer material that is dissolved or dispersed in water or a solvent (organic solvent) can be employed. Examples of water-soluble (water-soluble) polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropylmethyl cellulose (HPMC); polyvinyl alcohol ( PVA); and the like. A cellulose derivative such as CMC is preferably used from the viewpoints of workability and stability during kneading (preparation) of the first composition.
The addition amount (content) of the thickener may be appropriately selected according to the type and amount of the negative electrode active material. For example, when the total solid content of the negative electrode mixture layer is 100% by mass, about 0.3% It can be set to mass% to 2 mass% (for example, approximately 0.5 mass% to 1 mass%).

上記負極活物質と増粘材とを溶媒中で混ぜ合せる(混練)操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。上記ペースト状の組成物を調製するにあたっては、先ず、負極活物質と増粘材とを少量の水系の溶媒(例えば水)で固練りし、その後、得られた混練物を適量の溶媒で希釈してもよい。特に限定するものではないが、乾燥効率を向上させるために第1組成物の固形分濃度(不揮発分、即ち負極合材層形成成分の割合。以下「NV」とする。)は、例えば凡そ45質量%以上(典型的には50〜80質量%)であることが好ましい。
図5に示すように、本実施形態に係る組成物塗布部230は2層塗工(塗布)が可能なダイコーターである。該組成物塗布部230のダイ232は、上記第1組成物140を吐出する第1開口部234と、後述する第2組成物160を吐出する第2開口部236とを有している。ダイ232に上記用意した第1組成物140を供給して第1開口部234から第1組成物140を吐出し、負極集電体82の表面に塗布された結着材溶液120上に第1組成物140を塗布する。このように、負極集電体82の表面に塗布された結着材溶液120が乾燥する前に、第1組成物140が重ねて供給される。本工程では、図7に示すように、結着材溶液120が乾燥する前に該結着材溶液120上に少なくとも負極活物質150を含む第1組成物140が塗布される。
The operation of mixing (kneading) the negative electrode active material and the thickening material in a solvent can be performed using, for example, a suitable kneader (planetary mixer, homodisper, clear mix, fill mix, etc.). In preparing the paste-like composition, first, the negative electrode active material and the thickener are kneaded with a small amount of an aqueous solvent (for example, water), and then the obtained kneaded material is diluted with an appropriate amount of solvent. May be. Although not particularly limited, in order to improve the drying efficiency, the solid content concentration of the first composition (non-volatile content, that is, the proportion of the negative electrode mixture layer forming component, hereinafter referred to as “NV”) is about 45, for example. It is preferable that it is mass% or more (typically 50-80 mass%).
As shown in FIG. 5, the composition application unit 230 according to the present embodiment is a die coater capable of two-layer coating (application). The die 232 of the composition application unit 230 has a first opening 234 for discharging the first composition 140 and a second opening 236 for discharging a second composition 160 described later. The first composition 140 prepared above is supplied to the die 232, the first composition 140 is discharged from the first opening 234, and the first composition 140 is applied onto the binder solution 120 applied to the surface of the negative electrode current collector 82. Composition 140 is applied. Thus, before the binder solution 120 applied to the surface of the negative electrode current collector 82 is dried, the first composition 140 is supplied in layers. In this step, as shown in FIG. 7, the first composition 140 including at least the negative electrode active material 150 is applied onto the binder solution 120 before the binder solution 120 is dried.

次に、第2の組成物塗布工程(S30)について説明する。第2の組成物塗布工程には、負極活物質及び少なくとも1種の結着材を少なくとも含むペースト状の第2の組成物(以下、単に「第2組成物」とする。)を用意すること、及び用意した第2組成物を上記第1組成物上に塗布することが含まれている。   Next, a 2nd composition application | coating process (S30) is demonstrated. In the second composition application step, a paste-like second composition (hereinafter simply referred to as “second composition”) including at least a negative electrode active material and at least one binder is prepared. And applying the prepared second composition on the first composition.

ここで開示される第2組成物に含まれる負極活物質としては、第1組成物に使用される負極活物質と同様のものを適宜採用することができる。第1組成物に使用される負極活物質と同じ負極活物質を用いることが好ましい。
また、第2の組成物用途に用いる結着材としては、結着材溶液に使用される結着材と同様のものを適宜採用することもできるが、好ましくは、結着材溶液に含まれる結着材と第2組成物に含まれる結着材とは相互にガラス転移温度の異なるものを用いる。このとき、第2組成物に含まれる結着材のガラス転移温度Tgは、10℃未満(例えば−50℃〜0℃)であることが好ましい。このようにガラス転移温度Tgが10℃未満の結着材を用いることにより、負極合材層のうち表面側の硬さが適度に柔らかくなり負極合材層の柔軟性が向上する。
As a negative electrode active material contained in the 2nd composition disclosed here, the thing similar to the negative electrode active material used for a 1st composition is employable suitably. It is preferable to use the same negative electrode active material as the negative electrode active material used for the first composition.
In addition, as the binder used for the second composition application, the same binder as that used in the binder solution can be appropriately employed, but is preferably included in the binder solution. As the binder and the binder contained in the second composition, those having different glass transition temperatures are used. At this time, the glass transition temperature Tg of the binder contained in the second composition is preferably less than 10 ° C. (for example, −50 ° C. to 0 ° C.). Thus, by using the binder having a glass transition temperature Tg of less than 10 ° C., the hardness of the surface side of the negative electrode mixture layer is appropriately softened, and the flexibility of the negative electrode mixture layer is improved.

第2組成物に含まれる結着材の含有量は、負極合材層の固形分全量を100質量%としたときに0.05質量%〜2.5質量%(例えば0.05質量%〜1質量%、好ましくは0.1質量%〜0.7質量%)の範囲内であり得る。
上述した第1組成物に含まれる結着材と第2組成物に含まれる結着材の合計含有量(全量)は、負極合材層の固形分全量を100質量%としたときに0.1質量%〜5質量%(例えば0.1質量%〜2質量%、好ましくは0.1質量%〜1質量%、より好ましくは0.2質量%〜0.7質量%)の範囲内であることが好ましい。
The content of the binder contained in the second composition is 0.05% by mass to 2.5% by mass (for example, 0.05% by mass to 0.5% by mass) when the total solid content of the negative electrode mixture layer is 100% by mass. 1 mass%, preferably 0.1 mass% to 0.7 mass%).
The total content (total amount) of the binder contained in the first composition and the binder contained in the second composition is 0. 0% when the total solid content of the negative electrode mixture layer is 100% by mass. Within the range of 1% by mass to 5% by mass (for example, 0.1% by mass to 2% by mass, preferably 0.1% by mass to 1% by mass, more preferably 0.2% by mass to 0.7% by mass). Preferably there is.

図5に示すように、ダイ232に上記用意した第2組成物160を供給して第2開口部236から第2組成物160を吐出し、負極集電体82の表面に塗布された第1組成物140上に第2組成物160を塗布する。このように、負極集電体82の表面に塗布された結着材溶液120及び第1組成物140が乾燥する前に、第2組成物160が重ねて供給される。本工程では、図8に示すように、結着材溶液120及び第1組成物140が乾燥する前に、負極活物質150及び結着材165を少なくとも含む第2組成物160が第1組成物140上に塗布される。   As shown in FIG. 5, the first composition 160 prepared above is supplied to the die 232, the second composition 160 is discharged from the second opening 236, and applied to the surface of the negative electrode current collector 82. The second composition 160 is applied on the composition 140. As described above, before the binder solution 120 and the first composition 140 applied to the surface of the negative electrode current collector 82 are dried, the second composition 160 is supplied in an overlapping manner. In this step, as shown in FIG. 8, before the binder solution 120 and the first composition 140 are dried, the second composition 160 containing at least the negative electrode active material 150 and the binder 165 is the first composition. 140 is applied.

なお、本実施形態では第1組成物140及び第2組成物160を塗布するために、2層塗工(塗布)が可能なダイコーターを用いているが、第1組成物140が十分に乾燥する前に第2組成物160を該組成物140上に塗布することができる限り、かかる形態に限定されない。即ち、いわゆる「wet on wet」と称される状態で第1組成物及び第2組成物を塗布することができればよく、例えば、2つのダイコーターを使用して夫々から第1組成物及び第2組成物を塗布するような態様であってもよい。   In this embodiment, a die coater capable of two-layer coating (application) is used to apply the first composition 140 and the second composition 160, but the first composition 140 is sufficiently dried. As long as the 2nd composition 160 can be apply | coated on this composition 140 before doing, it is not limited to this form. That is, it is only necessary that the first composition and the second composition can be applied in a so-called “wet on wet” state. For example, the first composition and the second composition can be applied using two die coaters, respectively. An embodiment in which the composition is applied may be used.

次に、乾燥工程(ステップS40)について説明する。乾燥工程では、負極集電体上に塗布された結着材溶液と第1組成物と第2組成物とを適当な乾燥手段で同時に乾燥させることにより負極合材層を形成することが含まれている。図5に示すように、結着材溶液120、第1組成物140及び第2組成物160が塗布された負極集電体82が乾燥炉240内を通過することによって、これら塗布物を連続して同時に乾燥させることができる。このときの乾燥温度は、例えば、凡そ70℃〜200℃(典型的には凡そ120℃〜150℃)である。乾燥時間は、例えば、凡そ10秒〜120秒(典型的には凡そ20秒〜60秒)である。上記塗布物から溶媒を除去することによって負極合材層90(図3参照)を形成する。その後、必要に応じて圧縮(プレス)する。これにより、負極集電体82と、該負極集電体上に形成された負極合材層90とを備える負極シート(負極)84を作製することができる。圧縮(プレス)方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。   Next, a drying process (step S40) is demonstrated. The drying step includes forming the negative electrode mixture layer by simultaneously drying the binder solution, the first composition, and the second composition applied on the negative electrode current collector by an appropriate drying means. ing. As shown in FIG. 5, the negative electrode current collector 82 to which the binder solution 120, the first composition 140 and the second composition 160 are applied passes through the drying furnace 240, so that these applied substances are continuously provided. Can be dried simultaneously. The drying temperature at this time is, for example, about 70 ° C. to 200 ° C. (typically about 120 ° C. to 150 ° C.). The drying time is, for example, approximately 10 seconds to 120 seconds (typically approximately 20 seconds to 60 seconds). A negative electrode mixture layer 90 (see FIG. 3) is formed by removing the solvent from the coated material. Then, it compresses (presses) as needed. Thereby, the negative electrode sheet (negative electrode) 84 provided with the negative electrode collector 82 and the negative electrode mixture layer 90 formed on this negative electrode collector can be produced. As a compression (press) method, a conventionally known compression method such as a roll press method or a flat plate press method can be employed.

次に、上記の製造方法により作製された負極の構造について説明する。
図3に示すように、本実施形態に係る負極84は、負極集電体82と、該集電体82上に形成された負極合材層90とを備えている。負極合材層90は、負極活物質150及びガラス転移温度Tgが相互に異なる2種類の結着材125,165を含んでいる。上記の製造方法によると、典型的には乾燥工程において、結着材溶液120に含まれている結着材125の多くは負極集電体82の近くに留まるものの一部は第1組成物140に拡散する。また、第2組成物160に含まれている結着材165の多くは負極合材層90の表面側に留まるものの一部は第1組成物140に拡散する。このことにより、負極合材層90において結着材125,165の分散状態が良好となるため負極集電体82と負極合材層90との間において十分な密着力が得られると共に、柔軟性(例えば、電極84を捲回した際に負極合材層90にヒビや割れが生じるのを防止し得る柔軟性)を備えた負極合材層90となり得る。なお、負極合材層90に含まれる結着材が1種類からなる合材層90であっても上記効果を奏し得る。即ち結着材溶液中の結着材と第2組成物中の結着材とが同じ材料であり且つ同じガラス転移温度Tgを有する結着材であってもよい。
Next, the structure of the negative electrode produced by the above production method will be described.
As shown in FIG. 3, the negative electrode 84 according to this embodiment includes a negative electrode current collector 82 and a negative electrode mixture layer 90 formed on the current collector 82. The negative electrode mixture layer 90 includes two types of binders 125 and 165 having different negative electrode active materials 150 and glass transition temperatures Tg. According to the above manufacturing method, typically, in the drying step, most of the binder 125 contained in the binder solution 120 remains near the negative electrode current collector 82, and a part of the binder 125 is part of the first composition 140. To spread. In addition, most of the binder 165 included in the second composition 160 stays on the surface side of the negative electrode mixture layer 90 and part of the binder 165 diffuses into the first composition 140. As a result, since the dispersion state of the binders 125 and 165 becomes good in the negative electrode mixture layer 90, sufficient adhesion can be obtained between the negative electrode current collector 82 and the negative electrode mixture layer 90, and flexibility can be obtained. (For example, when the electrode 84 is wound, the negative electrode composite material layer 90 can be provided with a negative electrode composite material layer 90 having flexibility that can prevent the negative electrode composite material layer 90 from being cracked or cracked). Even if the binder material included in the negative electrode composite material layer 90 is a single material composite material layer 90, the above effect can be obtained. That is, the binder in the binder solution and the binder in the second composition may be the same material and have the same glass transition temperature Tg.

次に、ここで開示されるリチウムイオン二次電池の正極について説明する。ここで開示される正極は、少なくとも正極活物質と導電材と結着材とを含む正極合材層が正極集電体上に形成された構成をしており、上記負極を製造する方法と同様の方法によって作製することができる。   Next, the positive electrode of the lithium ion secondary battery disclosed here will be described. The positive electrode disclosed here has a configuration in which a positive electrode mixture layer including at least a positive electrode active material, a conductive material, and a binder is formed on a positive electrode current collector, and is similar to the method for manufacturing the negative electrode. It can produce by this method.

ここで開示されるリチウムイオン二次電池の正極で用いられる正極活物質としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウム元素と一種または二種以上の遷移金属元素を含むリチウム含有化合物(例えばリチウム遷移金属複合酸化物)が挙げられる。例えば、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(例えばLiCoO)、リチウムマンガン複合酸化物(例えばLiMn)、或いは、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)のような三元系リチウム含有複合酸化物が挙げられる。
また、一般式がLiMPO或いはLiMVO或いはLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素)等で表記されるようなポリアニオン系化合物(例えばLiFePO、LiMnPO、LiFeVO、LiMnVO、LiFeSiO、LiMnSiO、LiCoSiO)を上記正極活物質として用いてもよい。
The positive electrode active material used in the positive electrode of the lithium ion secondary battery disclosed herein is a material that can occlude and release lithium ions, and contains lithium and one or more transition metal elements A compound (for example, lithium transition metal complex oxide) is mentioned. For example, lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt composite oxide (for example, LiCoO 2 ), lithium manganese composite oxide (for example, LiMn 2 O 4 ), or lithium nickel cobalt manganese composite oxide (for example, LiNi 1). / 3 Co 1/3 Mn 1/3 O 2 ), a ternary lithium-containing composite oxide.
In addition, a polyanionic compound (for example, LiFePO 4) whose general formula is represented by LiMPO 4, LiMVO 4, or Li 2 MSiO 4 (wherein M is at least one element of Co, Ni, Mn, and Fe), etc. 4 , LiMnPO 4 , LiFeVO 4 , LiMnVO 4 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 ) may be used as the positive electrode active material.

上記導電材としては、従来この種のリチウムイオン二次電池で用いられているものであればよく、特定の導電材に限定されない。例えば、カーボン粉末やカーボンファイバー等のカーボン材料を用いることができる。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等)、グラファイト粉末等のカーボン粉末を用いることができる。これらのうち一種又は二種以上を併用してもよい。   The conductive material is not limited to a specific conductive material as long as it is conventionally used in this type of lithium ion secondary battery. For example, carbon materials such as carbon powder and carbon fiber can be used. As the carbon powder, various carbon blacks (for example, acetylene black, furnace black, ketjen black, etc.), carbon powders such as graphite powder can be used. Among these, you may use together 1 type, or 2 or more types.

また、上記結着材(バインダ)としては、一般的なリチウムイオン二次電池の正極に使用される結着材と同様のものを適宜採用することができる。水系の溶媒を用いて組成物を調製する場合には、上記負極に使用されるものを適宜採用することができる。また、溶剤系の溶媒を用いて組成物を調製する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等の有機溶媒(非水溶媒)に溶解するポリマー材料を用いることができる。溶剤系の溶媒としては、例えばN−メチルピロリドン(NMP)等が挙げられる。   Further, as the binder (binder), the same binder as that used for the positive electrode of a general lithium ion secondary battery can be appropriately employed. When preparing a composition using an aqueous solvent, what is used for the said negative electrode can be employ | adopted suitably. When preparing a composition using a solvent-based solvent, a polymer material that can be dissolved in an organic solvent (non-aqueous solvent) such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC) can be used. . Examples of the solvent-based solvent include N-methylpyrrolidone (NMP).

上記正極集電体としては、従来のリチウムイオン二次電池の正極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウム材又はアルミニウム材を主体とする合金材を用いることができる。正極集電体の形状は、負極集電体の形状と同様であり得る。   As the positive electrode current collector, a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the positive electrode of a conventional lithium ion secondary battery. For example, an aluminum material or an alloy material mainly composed of an aluminum material can be used. The shape of the positive electrode current collector can be the same as the shape of the negative electrode current collector.

以下、上記製造方法により作製された負極及び正極を用いて構築されるリチウムイオン二次電池の一形態を図面を参照しつつ説明するが、本発明をかかる実施形態に限定することを意図したものではない。即ち、上記製造方法により作製された負極及び正極が採用される限りにおいて、構築されるリチウムイオン二次電池の形状(外形やサイズ)には特に制限はない。以下の実施形態では、捲回電極体および電解液を角型形状の電池ケースに収容した構成のリチウムイオン二次電池を例にして説明する。
なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。
Hereinafter, one embodiment of a lithium ion secondary battery constructed using a negative electrode and a positive electrode produced by the above manufacturing method will be described with reference to the drawings. However, the present invention is intended to be limited to the embodiment. is not. That is, as long as the negative electrode and the positive electrode manufactured by the above manufacturing method are employed, the shape (outer shape and size) of the lithium ion secondary battery to be constructed is not particularly limited. In the following embodiment, a lithium ion secondary battery having a configuration in which a wound electrode body and an electrolytic solution are housed in a rectangular battery case will be described as an example.
In addition, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted. Moreover, the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.

図1は、本実施形態に係るリチウムイオン二次電池(二次電池)10を模式的に示す斜視図である。図2は、図1中のII−II線に沿う縦断面図である。
図1に示すように、本実施形態に係るリチウムイオン二次電池10は、金属製(樹脂製又はラミネートフィルム製も好適である。)の電池ケース15を備える。このケース(外容器)15は、上端が開放された扁平な直方体状のケース本体30と、その開口部20を塞ぐ蓋体25とを備える。溶接等により蓋体25は、ケース本体30の開口部20を封止している。ケース15の上面(すなわち蓋体25)には、捲回電極体50の正極シート(正極)64と電気的に接続する正極端子60および該電極体の負極シート84と電気的に接続する負極端子80が設けられている。また、蓋体25には、従来のリチウムイオン二次電池のケースと同様に、電池異常の際にケース15内部で発生したガスをケース15の外部に排出するための安全弁40が設けられている。ケース15の内部には、正極シート64および負極シート84を計二枚のセパレータシート95とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体50及び電解質(例えば非水電解液)が収容されている。
FIG. 1 is a perspective view schematically showing a lithium ion secondary battery (secondary battery) 10 according to the present embodiment. FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
As shown in FIG. 1, the lithium ion secondary battery 10 according to this embodiment includes a battery case 15 made of metal (a resin or a laminate film is also suitable). The case (outer container) 15 includes a flat cuboid case main body 30 having an open upper end, and a lid body 25 that closes the opening 20. The lid body 25 seals the opening 20 of the case main body 30 by welding or the like. On the upper surface of the case 15 (that is, the lid body 25), a positive electrode terminal 60 electrically connected to the positive electrode sheet (positive electrode) 64 of the wound electrode body 50 and a negative electrode terminal electrically connected to the negative electrode sheet 84 of the electrode body. 80 is provided. In addition, the lid 25 is provided with a safety valve 40 for discharging the gas generated inside the case 15 to the outside of the case 15 when the battery is abnormal, as in the case of the conventional lithium ion secondary battery. . In the case 15, the positive electrode sheet 64 and the negative electrode sheet 84 are laminated together with a total of two separator sheets 95 and wound, and then the obtained wound body is crushed from the side direction and ablated. A flat wound electrode body 50 and an electrolyte (for example, a non-aqueous electrolyte) are accommodated.

上記積層の際には、図2に示すように、正極シート64の正極合材層非形成部分(即ち正極合材層66が形成されずに正極集電体62が露出した部分)と負極シート84の負極合材層非形成部分(即ち負極合材層90が形成されずに負極集電体82が露出した部分)とがセパレータシート95の幅方向の両側からそれぞれはみ出すように、正極シート64と負極シート84とを幅方向にややずらして重ね合わせる。その結果、捲回電極体50の捲回方向に対する横方向において、正極シート64および負極シート84の電極合材層非形成部分がそれぞれ捲回コア部分(すなわち正極シート64の正極合材層形成部分と負極シート84の負極合材層形成部分と二枚のセパレータシート95とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分に正極端子60を接合して、上記扁平形状に形成された捲回電極体50の正極シート64と正極端子60とを電気的に接続する。同様に負極側はみ出し部分に負極端子80を接合して、負極シート84と負極端子80とを電気的に接続する。なお、正負極端子60,80と正負極集電体62,82とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる   At the time of the above lamination, as shown in FIG. 2, the positive electrode mixture layer non-formed portion of the positive electrode sheet 64 (that is, the portion where the positive electrode current collector 62 is exposed without forming the positive electrode mixture layer 66) and the negative electrode sheet The negative electrode composite material layer non-formed portion 84 (that is, the portion where the negative electrode current collector 82 is exposed without forming the negative electrode composite material layer 90) protrudes from both sides in the width direction of the separator sheet 95. And the negative electrode sheet 84 are overlapped with a slight shift in the width direction. As a result, in the lateral direction with respect to the winding direction of the wound electrode body 50, the electrode mixture layer non-forming portions of the positive electrode sheet 64 and the negative electrode sheet 84 are respectively wound core portions (that is, the positive electrode mixture layer forming portion of the positive electrode sheet 64. And a portion where the negative electrode mixture layer forming portion of the negative electrode sheet 84 and the two separator sheets 95 are wound tightly) protrude outward. The positive electrode terminal 60 is joined to the protruding portion on the positive electrode side, and the positive electrode sheet 64 and the positive electrode terminal 60 of the wound electrode body 50 formed in the flat shape are electrically connected. Similarly, the negative electrode terminal 80 is joined to the negative electrode side protruding portion, and the negative electrode sheet 84 and the negative electrode terminal 80 are electrically connected. The positive and negative electrode terminals 60 and 80 and the positive and negative electrode current collectors 62 and 82 can be joined by, for example, ultrasonic welding, resistance welding, or the like.

上記電解質としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒(有機溶媒)に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選択される一種又は二種以上を用いることができる。また、上記支持塩(支持電解質)としては、例えば、LiPF,LiBF等のリチウム塩を用いることができる。さらに上記非水電解液に、ジフルオロリン酸塩(LiPO)やリチウムビスオキサレートボレート(LiBOB)を溶解させてもよい。
また、上記セパレータシートとしては、従来公知のものを特に制限なく使用することができる。例えば、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)等の多孔質ポリオレフィン系樹脂シートが好ましい。
As said electrolyte, the thing similar to the non-aqueous electrolyte conventionally used for a lithium ion secondary battery can be used without limitation. Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent (organic solvent). Examples of the non-aqueous solvent include one or more selected from ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like. Can be used. Further, as the supporting salt (supporting electrolyte), for example, it can be used lithium salts such as LiPF 6, LiBF 4. Further, difluorophosphate (LiPO 2 F 2 ) or lithium bisoxalate borate (LiBOB) may be dissolved in the non-aqueous electrolyte.
Moreover, as said separator sheet, a conventionally well-known thing can be especially used without a restriction | limiting. For example, a porous sheet made of resin (a microporous resin sheet) can be preferably used. Porous polyolefin resin sheets such as polyethylene (PE), polypropylene (PP), and polystyrene (PS) are preferred.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

[負極シートの作製]
<例1>
負極活物質としての平均粒径10μmの天然黒鉛と、増粘材としてのCMCとの質量比が98.8:1となるようにこれら材料を水に分散させ、5L容量の2軸プラネタリ混練機で混練してNVが50質量%の例1に係る第1組成物を調製した。
また、負極活物質としての平均粒径10μmの天然黒鉛と、増粘材としてのCMCと、結着材としてのSBR(ガラス転移温度Tg:−40℃)との質量比が98.8:1:0.1となるようにこれら材料を水に分散させ、5L容量の2軸プラネタリ混練機で混練して固形分濃度(NV)が50質量%の例1に係る第2組成物を調製した。
さらに、結着材としてのSBR(ガラス転移温度Tgは30℃)と水とを混合して、固形分濃度が10質量%となる例1に係る結着材溶液を調製した。
そして、例1に係る結着材溶液を厚さ10μmの負極集電体(銅箔)の両面にグラビアコーターを用いて片面当たり塗布量0.08mg/cmで塗布した後、該結着材溶液が乾燥する前に、ダイコーターを用いて例1に係る第1組成物を該結着材溶液上に片面当たり4mg/cm(固形分基準)となるように塗布した。その後、上記結着材溶液及び上記第1組成物が乾燥する前に、ダイコーターを用いて例1に係る第2組成物を上記第1組成物上に片面当たり4mg/cm(固形分基準)となるように塗布した(3層塗工)。次いで、150℃で20秒乾燥させた後プレスして合材密度が1.5g/cmの負極合材層が負極集電体上に形成された例1に係る負極シートを作製した。最終的に形成された負極合材層において、天然黒鉛とCMCとSBR(Tg:−40℃)とSBR(Tg:30℃)との質量比が98.8:1:0.1:0.1となるように調整した。
[Preparation of negative electrode sheet]
<Example 1>
These materials are dispersed in water so that the mass ratio of natural graphite having an average particle diameter of 10 μm as a negative electrode active material and CMC as a thickener is 98.8: 1, and a 5 L capacity biaxial planetary kneader. To prepare a first composition according to Example 1 having an NV of 50% by mass.
Further, the mass ratio of natural graphite having an average particle diameter of 10 μm as the negative electrode active material, CMC as the thickener, and SBR (glass transition temperature Tg: −40 ° C.) as the binder is 98.8: 1. These materials were dispersed in water so as to be 0.1 and kneaded in a 5 L capacity biaxial planetary kneader to prepare a second composition according to Example 1 having a solid content concentration (NV) of 50 mass%. .
Furthermore, SBR (glass transition temperature Tg is 30 ° C.) as a binder and water were mixed to prepare a binder solution according to Example 1 having a solid content concentration of 10% by mass.
And after apply | coating the binding material solution which concerns on Example 1 on both surfaces of the 10-micrometer-thick negative electrode collector (copper foil) with the application | coating amount 0.08mg / cm < 2 > per single side | surface using a gravure coater, this binding material Before the solution was dried, the first composition according to Example 1 was applied onto the binder solution so as to be 4 mg / cm 2 (solid content basis) on one side using a die coater. Thereafter, before the binder solution and the first composition are dried, the second composition according to Example 1 is applied on the first composition at 4 mg / cm 2 (solid content basis) on the first composition using a die coater. ) (3 layer coating). Next, after drying at 150 ° C. for 20 seconds, pressing was performed to produce a negative electrode sheet according to Example 1 in which a negative electrode mixture layer having a mixture density of 1.5 g / cm 3 was formed on the negative electrode current collector. In the finally formed negative electrode mixture layer, the mass ratio of natural graphite, CMC, SBR (Tg: −40 ° C.), and SBR (Tg: 30 ° C.) is 98.8: 1: 0.1: 0. It adjusted so that it might be set to 1.

<例2>
天然黒鉛とCMCとSBR(Tg:−40℃)との質量比が98.7:1:0.15となるようにこれら材料を水に分散させ、固形分濃度が50%の例2に係る第2組成物を調製した。最終的に形成された負極合材層の固形分全量を100質量%としたときに、0.15質量%のSBR(Tg:30℃)を含む例2に係る結着材溶液を調製した。例2に係る第2組成物及び結着材溶液を用いた他は例1と同様にして、例2に係る負極シートを作製した。
<例3>
天然黒鉛とCMCとSBR(Tg:−40℃)との質量比が98.6:1:0.2となるようにこれら材料を水に分散させ、固形分濃度が50%の例3に係る第2組成物を調製した。最終的に形成された負極合材層の固形分全量を100質量%としたときに、0.2質量%のSBR(Tg:30℃)を含む例3に係る結着材溶液を調製した。例3に係る第2組成物及び結着材溶液を用いた他は例1と同様にして、例3に係る負極シートを作製した。
<例4>
天然黒鉛とCMCとSBR(Tg:−40℃)との質量比が98.4:1:0.3となるようにこれら材料を水に分散させ、固形分濃度が50%の例4に係る第2組成物を調製した。最終的に形成された負極合材層の固形分全量を100質量%としたときに、0.3質量%のSBR(Tg:30℃)を含む例4に係る結着材溶液を調製した。例4に係る第2組成物及び結着材溶液を用いた他は例1と同様にして、例4に係る負極シートを作製した。
<例5>
天然黒鉛とCMCとSBR(Tg:−40℃)との質量比が98.2:1:0.4となるようにこれら材料を水に分散させ、固形分濃度が50%の例5に係る第2組成物を調製した。最終的に形成された負極合材層の固形分全量を100質量%としたときに、0.4質量%のSBR(Tg:30℃)を含む例5に係る結着材溶液を調製した。例5に係る第2組成物及び結着材溶液を用いた他は例1と同様にして、例5に係る負極シートを作製した。
<Example 2>
These materials are dispersed in water so that the mass ratio of natural graphite, CMC, and SBR (Tg: −40 ° C.) is 98.7: 1: 0.15, and the solid content concentration is 50%. A second composition was prepared. A binder solution according to Example 2 containing 0.15% by mass of SBR (Tg: 30 ° C.) when the total solid content of the negative electrode mixture layer finally formed was 100% by mass was prepared. A negative electrode sheet according to Example 2 was produced in the same manner as in Example 1 except that the second composition according to Example 2 and the binder solution were used.
<Example 3>
These materials are dispersed in water so that the mass ratio of natural graphite, CMC, and SBR (Tg: −40 ° C.) is 98.6: 1: 0.2, and the solid content concentration is 50%. A second composition was prepared. A binder solution according to Example 3 containing 0.2% by mass of SBR (Tg: 30 ° C.) when the total solid content of the finally formed negative electrode mixture layer was 100% by mass was prepared. A negative electrode sheet according to Example 3 was produced in the same manner as in Example 1 except that the second composition according to Example 3 and the binder solution were used.
<Example 4>
These materials are dispersed in water so that the mass ratio of natural graphite, CMC, and SBR (Tg: −40 ° C.) is 98.4: 1: 0.3, and the solid content concentration is 50%. A second composition was prepared. A binder solution according to Example 4 containing 0.3% by mass of SBR (Tg: 30 ° C.) when the total solid content of the finally formed negative electrode mixture layer was 100% by mass was prepared. A negative electrode sheet according to Example 4 was produced in the same manner as in Example 1 except that the second composition according to Example 4 and the binder solution were used.
<Example 5>
These materials are dispersed in water so that the mass ratio of natural graphite, CMC, and SBR (Tg: −40 ° C.) is 98.2: 1: 0.4, and the solid content concentration is 50%. A second composition was prepared. A binder solution according to Example 5 containing 0.4% by mass of SBR (Tg: 30 ° C.) when the total solid content of the finally formed negative electrode mixture layer was 100% by mass was prepared. A negative electrode sheet according to Example 5 was produced in the same manner as in Example 1 except that the second composition according to Example 5 and the binder solution were used.

<例6>
負極活物質としての平均粒径10μmの天然黒鉛と、増粘材としてのCMCと、結着材としてのSBR(ガラス転移温度Tg:−10℃)との質量比が98.8:1:0.2となるように秤量し、天然黒鉛とCMCとを水に分散させ、5L容量の2軸プラネタリ混練機で混練してNVが50%の例6に係る負極合材層形成用組成物を調製した。
また、上記SBRと水とを混合して、固形分濃度が10質量%の例6に係る結着材溶液を調製した。
そして、例6に係る結着材溶液を厚さ10μmの負極集電体(銅箔)の両面にグラビアコーターを用いて片面当たり塗布量0.16mg/cmで塗布した(2層塗工)後、該結着材溶液が乾燥する前に、ダイコーターを用いて例6に係る負極合材層形成用組成物を該結着材溶液上に片面当たり8mg/cm2(固形分基準)となるように塗布した。次いで、150℃で20秒乾燥させた後プレスして合材密度が1.5g/cmの負極合材層が負極集電体上に形成された例6に係る負極シートを作製した。
<Example 6>
The mass ratio of natural graphite having an average particle diameter of 10 μm as a negative electrode active material, CMC as a thickener, and SBR (glass transition temperature Tg: −10 ° C.) as a binder is 98.8: 1: 0. The composition for forming a negative electrode mixture layer according to Example 6 is obtained by weighing natural graphite and CMC in water, kneading them with a 5 L capacity biaxial planetary kneader and 50% NV. Prepared.
Further, the SBR and water were mixed to prepare a binder solution according to Example 6 having a solid content concentration of 10% by mass.
Then, the binder solution according to Example 6 was applied to both surfaces of a negative electrode current collector (copper foil) having a thickness of 10 μm using a gravure coater at a coating amount of 0.16 mg / cm 2 per one surface (two-layer coating). Thereafter, before the binder solution is dried, the composition for forming a negative electrode mixture layer according to Example 6 is 8 mg / cm 2 (on a solid basis) per side on the binder solution using a die coater. It was applied as follows. Next, after drying at 150 ° C. for 20 seconds, pressing was performed to produce a negative electrode sheet according to Example 6 in which a negative electrode mixture layer having a mixture density of 1.5 g / cm 3 was formed on the negative electrode current collector.

<例7>
天然黒鉛と、CMCと、SBR(Tg:−10℃)との質量比が98.7:1:0.3となるように秤量し、天然黒鉛とCMCとを水に分散させ、NVが50%の例7に係る負極合材層形成用組成物を調製した。また、上記SBRと水とを混合して、固形分濃度が10質量%の例7に係る結着材溶液を調製した。例7に係る組成物及び結着材溶液を用いた他は例6と同様にして、例7に係る負極シートを作製した。
<例8>
天然黒鉛と、CMCと、SBR(Tg:−10℃)との質量比が98.6:1:0.4となるように秤量し、天然黒鉛とCMCとを水に分散させ、NVが50%の例8に係る負極合材層形成用組成物を調製した。また、上記SBRと水とを混合して、固形分濃度が10質量%の例8に係る結着材溶液を調製した。例8に係る組成物及び結着材溶液を用いた他は例6と同様にして、例8に係る負極シートを作製した。
<例9>
天然黒鉛と、CMCと、SBR(Tg:−10℃)との質量比が98.4:1:0.6となるように秤量し、天然黒鉛とCMCとを水に分散させ、NVが50%の例9に係る負極合材層形成用組成物を調製した。また、上記SBRと水とを混合して、固形分濃度が10質量%の例9に係る結着材溶液を調製した。例9に係る組成物及び結着材溶液を用いた他は例6と同様にして、例9に係る負極シートを作製した。
<例10>
天然黒鉛と、CMCと、SBR(Tg:−10℃)との質量比が98.2:1:0.8となるように秤量し、天然黒鉛とCMCとを水に分散させ、NVが50%の例10に係る負極合材層形成用組成物を調製した。また、上記SBRと水とを混合して、固形分濃度が10質量%の例10に係る結着材溶液を調製した。例10に係る組成物及び結着材溶液を用いた他は例6と同様にして、例10に係る負極シートを作製した。
<Example 7>
The natural graphite, CMC, and SBR (Tg: −10 ° C.) are weighed so that the mass ratio is 98.7: 1: 0.3, and the natural graphite and CMC are dispersed in water. % Of the composition for forming a negative electrode mixture layer according to Example 7 was prepared. Further, the SBR and water were mixed to prepare a binder solution according to Example 7 having a solid content concentration of 10% by mass. A negative electrode sheet according to Example 7 was produced in the same manner as in Example 6 except that the composition according to Example 7 and the binder solution were used.
<Example 8>
The natural graphite, CMC, and SBR (Tg: −10 ° C.) are weighed so that the mass ratio is 98.6: 1: 0.4, and the natural graphite and CMC are dispersed in water. % Of the composition for forming a negative electrode mixture layer according to Example 8 was prepared. Further, the SBR and water were mixed to prepare a binder solution according to Example 8 having a solid content concentration of 10% by mass. A negative electrode sheet according to Example 8 was produced in the same manner as in Example 6 except that the composition according to Example 8 and the binder solution were used.
<Example 9>
The natural graphite, CMC, and SBR (Tg: −10 ° C.) are weighed so that the mass ratio is 98.4: 1: 0.6, and the natural graphite and CMC are dispersed in water. % Of the composition for forming a negative electrode mixture layer according to Example 9 was prepared. Further, the SBR and water were mixed to prepare a binder solution according to Example 9 having a solid content concentration of 10% by mass. A negative electrode sheet according to Example 9 was produced in the same manner as in Example 6 except that the composition according to Example 9 and the binder solution were used.
<Example 10>
The natural graphite, CMC, and SBR (Tg: −10 ° C.) are weighed so that the mass ratio is 98.2: 1: 0.8, and the natural graphite and CMC are dispersed in water. % Of the composition for forming a negative electrode mixture layer according to Example 10 was prepared. Further, the SBR and water were mixed to prepare a binder solution according to Example 10 having a solid content concentration of 10% by mass. A negative electrode sheet according to Example 10 was produced in the same manner as in Example 6 except that the composition according to Example 10 and the binder solution were used.

[リチウムイオン二次電池の構築]
正極活物質としてのLiNi1/3Mn1/3Co1/3と、導電材としてのアセチレンブラック(AB)と、結着材としてのPVDFとの質量比が90:5:5となるように秤量し、これら材料をNMPに分散させてペースト状の正極合材層形成用組成物を調製した。該ペーストを厚さ15μmの正極集電体(アルミニウム箔)上に片面当たり塗布量6mg/cmで塗布し乾燥させた後、プレス処理を行って正極集電体上に正極合材層が形成された正極シートを作製した。
そして、上記作製した正極シート及び例1に係る負極シートを厚さ25μmのセパレータシート(ポリプロピレン/ポリエチレン複合体多孔質膜)を挟んで対向配置させ(積層させ)、これを電解液と共にラミネート型のケース(ラミネートフィルム)に収容することにより例1に係るリチウムイオン二次電池を構築した。電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との体積比3:3:4の混合溶媒に1mol/LのLiPFを溶解させたものを使用した。また、例2から例10に係る負極シートを用いて、上記例1に係るリチウムイオン二次電池と同様にして例2から例10に係るリチウムイオン二次電池を構築した。
[Construction of lithium ion secondary battery]
The mass ratio of LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode active material, acetylene black (AB) as the conductive material, and PVDF as the binder is 90: 5: 5. Thus, these materials were dispersed in NMP to prepare a paste-like composition for forming a positive electrode mixture layer. The paste was applied onto a positive electrode current collector (aluminum foil) having a thickness of 15 μm at a coating amount of 6 mg / cm 2 per side and dried, followed by press treatment to form a positive electrode mixture layer on the positive electrode current collector. A positive electrode sheet was produced.
Then, the prepared positive electrode sheet and the negative electrode sheet according to Example 1 were disposed opposite to each other with a separator sheet (polypropylene / polyethylene composite porous film) having a thickness of 25 μm interposed therebetween, and this was laminated with the electrolyte. The lithium ion secondary battery which concerns on Example 1 was constructed | assembled by accommodating in a case (laminate film). As the electrolytic solution, a solution obtained by dissolving 1 mol / L LiPF 6 in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 3: 4 was used. . Moreover, the lithium ion secondary battery which concerns on Example 2 to Example 10 was constructed | assembled similarly to the lithium ion secondary battery which concerns on the said Example 1 using the negative electrode sheet which concerns on Example 2 to Example 10.

<初期抵抗(DCIR)測定試験>
上記のように作製した例1から例10に係るリチウムイオン二次電池に対して、初期抵抗(DCIR、直流内部抵抗)を算出した。即ち、定電流定電圧(CC‐CV)充電によって各電池をSOC(State of Charge)60%の充電状態に調整した。その後、25℃において、4Cの電流値で10秒間の放電を行い、放電開始から10秒後の電圧降下量から初期抵抗[mΩ]を算出した。測定結果を表1、表2及び図9に示す。
<Initial resistance (DCIR) measurement test>
The initial resistance (DCIR, direct current internal resistance) was calculated for the lithium ion secondary batteries according to Examples 1 to 10 manufactured as described above. That is, each battery was adjusted to a SOC (State of Charge) 60% charge state by constant current constant voltage (CC-CV) charging. Thereafter, discharging was performed at 25 ° C. with a current value of 4 C for 10 seconds, and the initial resistance [mΩ] was calculated from the voltage drop amount 10 seconds after the start of discharge. The measurement results are shown in Table 1, Table 2 and FIG.

Figure 2012256544
Figure 2012256544

Figure 2012256544
Figure 2012256544

表1、表2及び図9に示すように、負極合材層中のSBR(結着材)の合計含有量が0.4質量%以上(0.4質量%〜0.8質量%)のときには、塗工方法による差はほとんどないことが確認された。しかしながら、2層塗工により作製した負極シートを備える二次電池では、負極合材層中のSBRの合計含有量が0.3質量%以下(0.2質量%〜0.3質量%)のときに初期抵抗が大きく上昇していることが確認された。これは負極において負極合材層の柔軟性が低下したことによって負極合材層にヒビや割れが発生したためと考えられる。一方、3層塗工により作製した負極シートを備える二次電池では、負極合材層中のSBRの合計含有量が0.3質量%以下(0.2質量%〜0.3質量%)のときでも十分な柔軟性を備えているため上記のような不具合が確認されず、また、結着材の減少により初期抵抗が低下していることが確認された。   As shown in Table 1, Table 2, and FIG. 9, the total content of SBR (binder) in the negative electrode mixture layer is 0.4 mass% or more (0.4 mass% to 0.8 mass%). At times, it was confirmed that there was almost no difference depending on the coating method. However, in a secondary battery including a negative electrode sheet prepared by two-layer coating, the total content of SBR in the negative electrode mixture layer is 0.3 mass% or less (0.2 mass% to 0.3 mass%). Sometimes it was confirmed that the initial resistance was greatly increased. This is presumably because cracks and cracks occurred in the negative electrode mixture layer due to a decrease in flexibility of the negative electrode mixture layer in the negative electrode. On the other hand, in a secondary battery including a negative electrode sheet produced by three-layer coating, the total content of SBR in the negative electrode mixture layer is 0.3 mass% or less (0.2 mass% to 0.3 mass%). It was confirmed that the above-mentioned problems were not confirmed because of sufficient flexibility even at the time, and that the initial resistance was lowered due to the decrease in the binder.

[負極シートの作製]
<例11>
結着材溶液中のSBRのガラス転移温度Tgが30℃のSBRを用いると共に、第2組成物中のSBRのガラス転移温度Tgが−42℃のSBRを用いた点以外は例3と同様にして、例11に係る負極シートを作製した。
<例12>
第2組成物中のSBRのガラス転移温度Tgが−22℃のSBRを用いた点以外は例11と同様にして、例12に係る負極シートを作製した。
<例13>
第2組成物中のSBRのガラス転移温度Tgが−5℃のSBRを用いた点以外は例11と同様にして、例13に係る負極シートを作製した。
<例14>
第2組成物中のSBRのガラス転移温度Tgが10℃のSBRを用いた点以外は例11と同様にして、例14に係る負極シートを作製した。
<例15>
第2組成物中のSBRのガラス転移温度Tgが30℃のSBRを用いた点以外は例11と同様にして、例15に係る負極シートを作製した。
[Preparation of negative electrode sheet]
<Example 11>
The same as Example 3 except that SBR having a glass transition temperature Tg of SBR in the binder solution of 30 ° C. was used and SBR having a glass transition temperature Tg of SBR in the second composition of −42 ° C. was used. Thus, a negative electrode sheet according to Example 11 was produced.
<Example 12>
A negative electrode sheet according to Example 12 was produced in the same manner as in Example 11 except that SBR having a glass transition temperature Tg of SBR in the second composition of −22 ° C. was used.
<Example 13>
A negative electrode sheet according to Example 13 was produced in the same manner as Example 11 except that SBR having a glass transition temperature Tg of SBR in the second composition of −5 ° C. was used.
<Example 14>
A negative electrode sheet according to Example 14 was produced in the same manner as in Example 11 except that SBR having a glass transition temperature Tg of SBR in the second composition of 10 ° C. was used.
<Example 15>
A negative electrode sheet according to Example 15 was produced in the same manner as in Example 11 except that SBR having a glass transition temperature Tg of SBR in the second composition of 30 ° C. was used.

<例16>
負極合材層形成用組成物中のSBRのガラス転移温度Tgが−42℃のSBRを用いた点以外は例8と同様にして、例16に係る負極シートを作製した。
<例17>
負極合材層形成用組成物中のSBRのガラス転移温度Tgが−22℃のSBRを用いた点以外は例8と同様にして、例17に係る負極シートを作製した。
<例18>
負極合材層形成用組成物中のSBRのガラス転移温度Tgが−5℃のSBRを用いた点以外は例8と同様にして、例18に係る負極シートを作製した。
<例19>
負極合材層形成用組成物中のSBRのガラス転移温度Tgが10℃のSBRを用いた点以外は例8と同様にして、例19に係る負極シートを作製した。
<例20>
負極合材層形成用組成物中のSBRのガラス転移温度Tgが30℃のSBRを用いた点以外は例8と同様にして、例20に係る負極シートを作製した。
<Example 16>
A negative electrode sheet according to Example 16 was produced in the same manner as in Example 8, except that SBR having a glass transition temperature Tg of SBR in the composition for forming a negative electrode mixture layer of −42 ° C. was used.
<Example 17>
A negative electrode sheet according to Example 17 was produced in the same manner as Example 8 except that SBR having a glass transition temperature Tg of SBR in the composition for forming a negative electrode mixture layer of −22 ° C. was used.
<Example 18>
A negative electrode sheet according to Example 18 was produced in the same manner as in Example 8 except that SBR having a glass transition temperature Tg of SBR in the composition for forming a negative electrode mixture layer of −5 ° C. was used.
<Example 19>
A negative electrode sheet according to Example 19 was produced in the same manner as in Example 8, except that SBR having a glass transition temperature Tg of SBR in the composition for forming a negative electrode mixture layer of 10 ° C. was used.
<Example 20>
A negative electrode sheet according to Example 20 was produced in the same manner as in Example 8 except that SBR having a glass transition temperature Tg of 30 ° C. in the composition for forming a negative electrode mixture layer was used.

<耐屈曲性評価試験>
上記のように作製した例11から例20に係る負極シートに対して、JIS K5600‐5‐1に準じて耐屈曲性(柔軟性)評価試験を行った。即ち、円筒形の芯材に各負極シートを巻き付けたときに、負極シートの負極合材層に亀裂が入らない芯材の直径(芯径)の最小値を測定した。測定結果を表3及び表4に示す。
<Bend resistance evaluation test>
The negative electrode sheets according to Example 11 to Example 20 produced as described above were subjected to a bending resistance (flexibility) evaluation test according to JIS K5600-5-1. That is, when each negative electrode sheet was wound around a cylindrical core material, the minimum value of the diameter (core diameter) of the core material that did not crack in the negative electrode mixture layer of the negative electrode sheet was measured. The measurement results are shown in Tables 3 and 4.

Figure 2012256544
Figure 2012256544

Figure 2012256544
Figure 2012256544

表3及び表4に示すように、3層塗工によって作製した負極シートは2層塗工によって作製した負極シートよりも芯材の直径の最小値が小さい、即ち、柔軟性に優れていることが確認された。特に組成物中のSBRのガラス転移温度Tgが−5℃以上のときにその差が顕著に現れていることが確認された。   As shown in Table 3 and Table 4, the negative electrode sheet produced by three-layer coating has a smaller minimum core diameter than the negative electrode sheet produced by two-layer coating, that is, excellent in flexibility. Was confirmed. In particular, it was confirmed that the difference appeared remarkably when the glass transition temperature Tg of SBR in the composition was −5 ° C. or higher.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本発明に係る電極(典型的には負極)を含むリチウムイオン二次電池10は、初期抵抗が低く電池性能に優れることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って本発明は、図10に模式的に示すように、かかるリチウムイオン二次電池10(典型的には当該電池10を複数個直列接続してなる組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料自動車のような電動機を備える自動車)100を提供する。   The lithium ion secondary battery 10 including an electrode (typically a negative electrode) according to the present invention has a low initial resistance and excellent battery performance, and is particularly suitable as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Can be used for Therefore, as schematically shown in FIG. 10, the present invention provides a vehicle (typically, a battery (typically, an assembled battery formed by connecting a plurality of such batteries 10 in series) as a power source. Provides a motor vehicle, particularly a motor vehicle equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel vehicle.

10 リチウムイオン二次電池(二次電池)
15 電池ケース
20 開口部
25 蓋体
30 ケース本体
40 安全弁
50 捲回電極体
60 正極端子
62 正極集電体
64 正極シート(正極)
66 正極合材層
80 負極端子
82 負極集電体
84 負極シート(負極)
90 負極合材層
95 セパレータシート
100 車両(自動車)
120 結着材溶液
125 結着材
140 第1組成物
150 負極活物質
160 第2組成物
165 結着材
200 電極製造装置
210 供給ロール
215 ガイド
220 結着材溶液塗布部
222 グラビアロール
225 貯留槽
230 組成物塗布部
232 ダイ
234 第1開口部
236 第2開口部
240 乾燥炉
250 回収ロール
10 Lithium ion secondary battery (secondary battery)
15 Battery Case 20 Opening 25 Lid 30 Case Body 40 Safety Valve 50 Winding Electrode Body 60 Positive Terminal 62 Positive Electrode Current Collector 64 Positive Electrode Sheet (Positive Electrode)
66 Positive electrode mixture layer 80 Negative electrode terminal 82 Negative electrode current collector 84 Negative electrode sheet (negative electrode)
90 Negative electrode composite material layer 95 Separator sheet 100 Vehicle (automobile)
120 Binder Solution 125 Binder 140 First Composition 150 Negative Electrode Active Material 160 Second Composition 165 Binder 200 Electrode Manufacturing Apparatus 210 Supply Roll 215 Guide 220 Binder Solution Application Unit 222 Gravure Roll 225 Storage Tank 230 Composition application part 232 Die 234 First opening part 236 Second opening part 240 Drying furnace 250 Recovery roll

Claims (5)

電極活物質及び結着材を少なくとも含む電極合材層が電極集電体上に形成された二次電池用電極を製造する方法であって、
少なくとも1種の結着材を所定の溶媒に混合してなる結着材溶液を前記電極集電体の表面に塗布すること、
前記電極活物質を少なくとも含み、且つ結着材を含まないペースト状の第1の組成物を前記結着材溶液上に塗布すること、
前記電極活物質及び少なくとも1種の結着材を少なくとも含むペースト状の第2の組成物を前記第1の組成物上に塗布すること、
前記結着材溶液と前記第1の組成物と前記第2の組成物とを乾燥させて電極合材層を形成すること、
を包含する、二次電池用電極の製造方法。
A method for producing an electrode for a secondary battery in which an electrode mixture layer containing at least an electrode active material and a binder is formed on an electrode current collector,
Applying a binder solution formed by mixing at least one binder into a predetermined solvent to the surface of the electrode current collector;
Applying a paste-like first composition containing at least the electrode active material and not containing a binder onto the binder solution;
Applying a paste-like second composition containing at least the electrode active material and at least one binder onto the first composition;
Drying the binder solution, the first composition and the second composition to form an electrode mixture layer;
The manufacturing method of the electrode for secondary batteries including this.
前記電極合材層の固形分全量を100質量%としたときに、該電極合材層に含まれる結着材の全量が該電極合材層の固形分全量の0.3質量%以下となるように該結着材の含有量を調整する、請求項1に記載の製造方法。   When the total solid content of the electrode composite layer is 100% by mass, the total amount of the binder contained in the electrode composite layer is 0.3% by mass or less of the total solid content of the electrode composite layer. The production method according to claim 1, wherein the content of the binder is adjusted as described above. 前記結着材溶液に含まれる結着材及び前記第2の組成物に含まれる結着材として、スチレンブタジエンゴムを用いる、請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein styrene butadiene rubber is used as the binder contained in the binder solution and the binder contained in the second composition. 前記結着材溶液に含まれる結着材と前記第2の組成物に含まれる結着材とは、相互にガラス転移温度の異なるものを用いており、
ここで前記結着材溶液に含まれる結着材としてガラス転移温度が10℃以上の結着材を用い、前記第2の組成物に含まれる結着材としてガラス転移温度が10℃未満の結着材を用いる、請求項1から3のいずれか一項に記載の製造方法。
The binder contained in the binder solution and the binder contained in the second composition are different in glass transition temperature from each other,
Here, a binder having a glass transition temperature of 10 ° C. or higher is used as the binder contained in the binder solution, and a binder having a glass transition temperature of less than 10 ° C. is used as the binder contained in the second composition. The manufacturing method according to any one of claims 1 to 3, wherein a dressing is used.
請求項1から4のいずれか一項に記載の製造方法により得られた二次電池用電極を備える二次電池。   A secondary battery provided with the electrode for secondary batteries obtained by the manufacturing method as described in any one of Claim 1 to 4.
JP2011129518A 2011-06-09 2011-06-09 Manufacturing method of electrode for secondary battery Withdrawn JP2012256544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129518A JP2012256544A (en) 2011-06-09 2011-06-09 Manufacturing method of electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129518A JP2012256544A (en) 2011-06-09 2011-06-09 Manufacturing method of electrode for secondary battery

Publications (1)

Publication Number Publication Date
JP2012256544A true JP2012256544A (en) 2012-12-27

Family

ID=47527923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129518A Withdrawn JP2012256544A (en) 2011-06-09 2011-06-09 Manufacturing method of electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP2012256544A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027549A (en) * 2014-06-30 2016-02-18 パナソニック株式会社 Negative electrode plate for nonaqueous electrolyte secondary battery and manufacturing method for the same
CN107925058A (en) * 2016-03-29 2018-04-17 株式会社Lg化学 Secondary battery cathode, its manufacture method and include its secondary cell
JP2019029307A (en) * 2017-08-03 2019-02-21 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2020505750A (en) * 2017-08-17 2020-02-20 エルジー・ケム・リミテッド Slot die coater that changes the coating form of electrode active material slurry by the movement of the slot
WO2020110589A1 (en) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027549A (en) * 2014-06-30 2016-02-18 パナソニック株式会社 Negative electrode plate for nonaqueous electrolyte secondary battery and manufacturing method for the same
CN107925058A (en) * 2016-03-29 2018-04-17 株式会社Lg化学 Secondary battery cathode, its manufacture method and include its secondary cell
JP2018530873A (en) * 2016-03-29 2018-10-18 エルジー・ケム・リミテッド Negative electrode for secondary battery, method for producing the same, and secondary battery including the same
CN107925058B (en) * 2016-03-29 2020-11-17 株式会社Lg化学 Negative electrode for secondary battery, method for producing same, and secondary battery comprising same
JP2019029307A (en) * 2017-08-03 2019-02-21 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2020505750A (en) * 2017-08-17 2020-02-20 エルジー・ケム・リミテッド Slot die coater that changes the coating form of electrode active material slurry by the movement of the slot
US11161140B2 (en) 2017-08-17 2021-11-02 Lg Chem, Ltd. Slot die coater for changing coating form of electrode active material slurry through movement of slots
JP7037011B2 (en) 2017-08-17 2022-03-16 エルジー エナジー ソリューション リミテッド Slot die coater that changes the coating form of the electrode active material slurry depending on the movement of the slot
WO2020110589A1 (en) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN113169336A (en) * 2018-11-30 2021-07-23 松下知识产权经营株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2020110589A1 (en) * 2018-11-30 2021-10-14 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN113169336B (en) * 2018-11-30 2024-04-23 松下知识产权经营株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4487220B1 (en) Positive electrode for lithium secondary battery and method for producing the same
JP5167703B2 (en) Battery electrode
JP5229598B2 (en) Lithium secondary battery and manufacturing method thereof
JP5158452B2 (en) Positive electrode for lithium secondary battery and its utilization
JP5761582B2 (en) Secondary battery
JP6587105B2 (en) Secondary battery
JP2013149403A (en) Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof
JP7264062B2 (en) Conductive material paste for electrochemical element, slurry composition for electrochemical element positive electrode and manufacturing method thereof, positive electrode for electrochemical element, and electrochemical element
JP5601361B2 (en) Battery electrode
JP6380808B2 (en) Method for manufacturing electrode for secondary battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
KR20150082593A (en) Nonaqueous electrolyte secondary battery
JP2010282873A (en) Lithium secondary battery, and method of manufacturing the same
JP2013069432A (en) Lithium ion secondary battery and manufacturing method therefor
JP5585834B2 (en) Lithium ion secondary battery
JP2013062089A (en) Lithium ion secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP2012156061A (en) Secondary battery and manufacturing method thereof
JP2013069579A (en) Lithium ion secondary battery and manufacturing method therefor
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
JP5725356B2 (en) Method for manufacturing electrode for secondary battery
JP2021125300A (en) Nonaqueous electrolyte power storage device and method for manufacturing the same
JP2013069431A (en) Lithium ion secondary battery and manufacturing method therefor
JP2013062139A (en) Evaluation method of electrode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902