JP2012255517A - Lubricating device for rolling bearing - Google Patents

Lubricating device for rolling bearing Download PDF

Info

Publication number
JP2012255517A
JP2012255517A JP2011130003A JP2011130003A JP2012255517A JP 2012255517 A JP2012255517 A JP 2012255517A JP 2011130003 A JP2011130003 A JP 2011130003A JP 2011130003 A JP2011130003 A JP 2011130003A JP 2012255517 A JP2012255517 A JP 2012255517A
Authority
JP
Japan
Prior art keywords
oil
bearing
path
housing
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011130003A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Hayashi
康由 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011130003A priority Critical patent/JP2012255517A/en
Priority to CN201180050495.3A priority patent/CN103180626B/en
Priority to DE112011103515T priority patent/DE112011103515T5/en
Priority to US13/879,718 priority patent/US8979384B2/en
Priority to PCT/JP2011/073056 priority patent/WO2012053366A1/en
Priority to TW100136961A priority patent/TWI598521B/en
Publication of JP2012255517A publication Critical patent/JP2012255517A/en
Priority to US14/340,251 priority patent/US9033582B2/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubricating device for rolling bearings, which prevents an increase in agitation resistance to suppress a rise in bearing temperature, suppresses such a tendency that a pressure in the bearing becomes negative, and permits the supply of a proper amount of lubricating oil into the bearing.SOLUTION: In the lubricating device for rolling bearings, an inner ring extension part 6 extended axially on an inner ring 1 is provided, an outer ring spacer 7 adjacent to the axial end of an outer ring 2 and radially opposed to the inner ring extension part 6 is provided, and an oil feeding and draining mechanism KU is provided over the inner ring extension part 6 and the outer ring spacer 7. Suction ports 23, 24 are provided which are respectively opened to the air on the upper part and the lower part of an axial range where a plurality of rolling bearings BR in a housing Hs of a spindle device SU is arranged. A plurality of suction paths 27 each communicated with the suction ports 23, 24 and the inside of a bearing space of each rolling bearing BR is provided.

Description

この発明は、例えば、立型の工作機械主軸等のスピンドルの支持に用いられる転がり軸受の潤滑装置の構造に関する。   The present invention relates to a structure of a lubricating device for a rolling bearing used for supporting a spindle such as a vertical machine tool spindle.

軸受の冷却と、軸受に対する潤滑油の給排油を行う機構を有する潤滑装置が提案されている(特許文献1)。この潤滑装置では、図14(A)に示すように、内輪端面に接する内輪間座50を設け、外輪端面に接する潤滑油導入部材51を設けている。内輪52のうち前記内輪端面から内輪軌道面に繋がる斜面に円周溝53を設けると共に、前記潤滑油導入部材51にノズル54を設け、このノズル54から前記円周溝53内に軸受冷却媒体を兼ねる潤滑油を吐出するようになっている。同図(A)において、矢印は潤滑油の流れを示す。潤滑油導入部材51に導入された潤滑油を円周溝53内に吐出することで、内輪52を冷却する。潤滑油導入部材51から軸受内に延びる被さり部55と前記斜面との間の隙間から、円周溝53の一部の潤滑油を軸受内に供給する。   There has been proposed a lubricating device having a mechanism for cooling a bearing and supplying and discharging lubricating oil to and from the bearing (Patent Document 1). In this lubricating device, as shown in FIG. 14A, an inner ring spacer 50 is provided in contact with the inner ring end face, and a lubricating oil introducing member 51 is provided in contact with the outer ring end face. A circumferential groove 53 is provided on the slope of the inner ring 52 from the inner ring end face to the inner ring raceway surface, a nozzle 54 is provided in the lubricating oil introduction member 51, and a bearing cooling medium is provided from the nozzle 54 into the circumferential groove 53. It is designed to discharge lubricating oil. In FIG. 2A, the arrow indicates the flow of the lubricating oil. The inner ring 52 is cooled by discharging the lubricating oil introduced into the lubricating oil introducing member 51 into the circumferential groove 53. A part of the lubricating oil in the circumferential groove 53 is supplied into the bearing from the gap between the cover portion 55 extending from the lubricating oil introduction member 51 into the bearing and the inclined surface.

特開2008−240946号公報JP 2008-240946 A

従来の転がり軸受には、次の排油経路I,II(図示せず)が存在する。
・排油経路I:内輪冷却後、軸受外に排出する経路
・排油経路II:軸受内部の潤滑剤として使用され、軸受外に排出する経路
従来、潤滑装置は、各排油経路I,IIに対し、ポンプをそれぞれ使用し、軸受内の油を速やかに排出していた。しかし排油経路IIのポンプの吸引力の影響で軸受内部に潤滑油が多量に流入し、攪拌抵抗が増え軸受温度が上昇する傾向があった。一方、排油経路IIのポンプを使用せず、油を重力、遠心力のみで自然排出しようとすると、排油経路Iのポンプの吸引力の影響で軸受内部が負圧となり、油が軸受内部に十分流入しなくなった。
Conventional rolling bearings have the following oil drain paths I and II (not shown).
・ Oil drainage route I: Route that drains outside the bearing after cooling the inner ring ・ Oil drainage route II: Route that is used as a lubricant inside the bearing and drains outside the bearing On the other hand, each pump was used to quickly drain the oil in the bearing. However, a large amount of lubricating oil flowed into the bearing due to the suction force of the pump in the oil drainage path II, and the agitation resistance increased and the bearing temperature tended to rise. On the other hand, if the oil in the oil drainage path II is not used, and the oil is naturally discharged only by gravity and centrifugal force, the bearing internal pressure becomes negative due to the suction force of the oil in the oil drainage path I, and the oil is inside the bearing. Insufficient to flow into.

そこで、本件出願人は、外輪間座のうち排油口近傍に吸気孔を設けることで、排油をポンプで吸引するとき、排油口に空気が流入することで、軸受内部が負圧になることを解消し、軸受内部に十分な潤滑油を供給する技術を見出している。
しかし、前記吸気孔から軸受内部に空気が流入する際、脈動を生じ、吸気口に潤滑油が漏れてくる場合がある。また、図15に示すように、ハウジングHsに軸方向の吸気経路56を設けた場合、吸気口58から漏れた潤滑油と、空気とが、吸気経路途中の点線内で表記する部分57で干渉し、油の障壁が発生する可能性がある。この油の障壁が発生すると、軸受内に空気が流入できず、スピンドル装置内部の圧力バランスに影響を及ぼす。すなわち、軸受内部が負圧となって、油が軸受内部に十分流入しなくなることがある。
Accordingly, the applicant of the present invention provides an intake hole in the vicinity of the oil drainage port in the outer ring spacer, so that when the oil is sucked with a pump, air flows into the oil drainage port, and the inside of the bearing becomes negative pressure. In order to solve this problem, a technology for supplying sufficient lubricating oil inside the bearing has been found.
However, when air flows into the bearing from the intake hole, pulsation may occur, and lubricating oil may leak into the intake port. Further, as shown in FIG. 15, when the housing Hs is provided with the intake passage 56 in the axial direction, the lubricating oil leaked from the intake port 58 and the air interfere with each other at a portion 57 indicated within a dotted line in the middle of the intake passage. And oil barriers can occur. When this oil barrier is generated, air cannot flow into the bearing, affecting the pressure balance inside the spindle device. That is, the inside of the bearing becomes negative pressure, and oil may not sufficiently flow into the bearing.

この発明の目的は、攪拌抵抗の増加を防止して軸受温度の上昇を抑制すると共に、軸受内部が負圧となることを抑制して軸受内部に適量の潤滑油を供給することができる転がり軸受の潤滑装置を提供することである。   The purpose of this invention is to suppress an increase in the bearing temperature by preventing an increase in stirring resistance, it is possible to supply an appropriate amount of lubricating oil to the bearing to prevent the bearing inside the negative pressure rolling bearing It is to provide a lubrication device.

この発明の転がり軸受の潤滑装置は、立型のスピンドル装置におけるハウジング内に、スピンドルの軸方向に並べて配置されて、それぞれ外輪が前記ハウジングに設置され内輪でスピンドルを支持する複数の転がり軸受と、軸受冷却媒体を兼ねる潤滑油を前記各転がり軸受内に供給すると共に軸受外に排出する給排油機構とを設け、前記内輪に軸方向に延びる内輪延長部を設けると共に、前記外輪の軸方向端に隣接し、または前記外輪の一部として、前記内輪延長部に径方向に対向する外輪間座を設け、これら内輪延長部と外輪間座とにわたって前記給排油機構を設け、前記スピンドル装置のハウジングにおける前記複数の転がり軸受が配置された軸方向範囲の上部と下部とに、それぞれ大気開放する吸気口を設け、この吸気口と前記各転がり軸受の軸受空間内とにそれぞれ連通する複数の吸気路を設けたことを特徴とする。   A rolling bearing lubrication device according to the present invention includes a plurality of rolling bearings arranged in a housing in a vertical spindle device, arranged side by side in the axial direction of the spindle, each having an outer ring installed in the housing and supporting the spindle by the inner ring, An oil supply / discharge mechanism that supplies lubricating oil that also serves as a bearing cooling medium into each of the rolling bearings and discharges the lubricating oil to the outside of the bearing; an inner ring extension extending in the axial direction on the inner ring; and an axial end of the outer ring to a part of an adjacent or the outer ring, said outer ring spacer that faces radially inner ring extension portion is provided, the supply and discharge oil mechanism provided over the inner ring extension portion and the outer ring spacer, the spindle device An intake opening that opens to the atmosphere is provided at an upper portion and a lower portion of an axial range where the plurality of rolling bearings are disposed in the housing, respectively. Characterized in that a plurality of intake passages respectively communicating with the inside bearing space of the bearing.

この構成によると、給排油機構により軸受内に潤滑油を導入することで、軸受を冷却する。軸受内に導入した潤滑油の一部は、軸受内の潤滑油として使用される。また給排油機構により、潤滑油を軸受外に排出する。前記軸受を冷却した潤滑油は、例えば、ポンプを使用して軸受外に排出する。軸受内で潤滑に供された潤滑油は、例えば、潤滑油自体の重力および遠心力により排出する。   According to this configuration, the bearing is cooled by introducing the lubricating oil into the bearing by the supply / discharge oil mechanism. Part of the lubricating oil introduced into the bearing is used as the lubricating oil in the bearing. Also, the lubricating oil is discharged out of the bearing by the oil supply / discharge oil mechanism. The lubricating oil that has cooled the bearing is discharged out of the bearing using, for example, a pump. The lubricating oil used for lubrication in the bearing is discharged, for example, by the gravity and centrifugal force of the lubricating oil itself.

特に、ハウジングの上部と下部とに、それぞれ大気開放する吸気口を設け、この吸気口と前記各転がり軸受の軸受空間内とにそれぞれ連通する複数の吸気路を設けたため、前記ポンプは、軸受を冷却した潤滑油と共にハウジング内の周辺空気も同時に吸引する。複数の吸気路から軸受内部に空気が流入するときに例えば前記ポンプによる脈動を生じ、前記複数の吸気路から軸受内で潤滑に供された潤滑油が漏れた場合、ハウジングの下部の吸気口からこの潤滑油を排出する。このとき、ハウジングの上部の吸気口から複数の吸気路を介して軸受内部に安定して空気を供給する。   In particular, since the intake opening that opens to the atmosphere is provided in the upper part and the lower part of the housing, and a plurality of intake passages that communicate with the intake opening and the bearing space of each of the rolling bearings are provided, the pump includes the bearings. At the same time, ambient air in the housing is sucked together with the cooled lubricating oil. When air flows into the bearing from a plurality of intake passages, for example, pulsation by the pump occurs, and when lubricating oil used for lubrication in the bearing leaks from the plurality of intake passages, This lubricating oil is discharged. At this time, air is stably supplied from the intake port at the top of the housing into the bearing through a plurality of intake passages.

このため、軸受空間内に必要十分な空気を流入させることができ、軸受内部が負圧となることを抑制することができる。これにより軸受内部に適量の潤滑油を供給することができる。複数の吸気路から潤滑油が漏れた場合においても、少なくともハウジングの上部の吸気口から空気を供給できるため、ハウジングの下部において潤滑油と空気とが干渉することがなく油の障壁が生じることを確実に防止し得る。なお、吸気路から潤滑油が漏れない場合には、ハウジングの上部および下部の各吸気口からそれぞれ空気を供給することができる。
軸受内で潤滑に供された潤滑油を、ポンプを用いることなく重力および遠心力により排出することができるので、軸受内部に過度の潤滑油が流入することがなくなる。これにより、攪拌抵抗を低減し、軸受温度の上昇を抑制することができるため、動力損失の低減を図ることができる。また前記のように、軸受内部が負圧となることを抑制して軸受内部に適量の潤滑油を供給できるため、スピンドルの高速化を図ることができる。
For this reason, necessary and sufficient air can be allowed to flow into the bearing space, and negative pressure inside the bearing can be suppressed. As a result, an appropriate amount of lubricating oil can be supplied into the bearing. Even when lubricating oil leaks from a plurality of intake passages, air can be supplied at least from the intake port at the top of the housing, so that there is no interference between the lubricating oil and air at the bottom of the housing, and an oil barrier occurs. It can be surely prevented. In the case where the lubricating oil does not leak from the intake passage, air can be supplied from the intake ports at the upper and lower portions of the housing.
Since the lubricating oil used for lubrication in the bearing can be discharged by gravity and centrifugal force without using a pump, excessive lubricating oil does not flow into the bearing. Thereby, since stirring resistance can be reduced and a rise in bearing temperature can be suppressed, reduction of power loss can be aimed at. Further, as described above, since an appropriate amount of lubricating oil can be supplied to the inside of the bearing while suppressing the negative pressure inside the bearing, the speed of the spindle can be increased.

前記ハウジングには、潤滑油を給排油機構に供給する給油経路と、軸受内で潤滑に供された前記潤滑油である排油をハウジング外に排出する排油経路とが設けられ、前記排油経路は、排油を重力により排出するものであって、この排油経路におけるハウジングの下部に位置する部分には、下方に向かうに従ってハウジングの径方向内側または径方向外側に至るように傾斜状に形成された排油経路傾斜部が設けられるものとしても良い。   The housing is provided with an oil supply path for supplying lubricating oil to the supply / discharge oil mechanism and an oil discharge path for discharging the oil, which is the lubricating oil provided for lubrication in the bearing, to the outside of the housing. The oil path discharges the oil by gravity, and the portion of the oil discharge path located at the lower part of the housing is inclined so as to reach the radially inner side or the radially outer side of the housing as it goes downward. It is good also as what is provided with the oil discharge path | route inclination part formed in this.

立型のスピンドル装置におけるハウジングの下部では、排油経路の一部として、加工の容易性から一般的に水平方向経路が採用されている。排油経路では、軸受内で潤滑に供された排油が重力により排出される。この場合に、重力の向きである鉛直方向に対し、垂直方向の経路である前記水平方向経路では排出効率が悪くなる。この構成によると、排油経路におけるハウジングの下部に位置する部分に、前述の排油経路傾斜部が設けられるため、この排油経路傾斜部に沿って排油が円滑に排出される。   In the lower part of the housing in the vertical spindle apparatus, a horizontal path is generally adopted as part of the oil drainage path for ease of processing. In the oil drainage path, the oil drained for lubrication in the bearing is discharged by gravity. In this case, the discharge efficiency is deteriorated in the horizontal path, which is a vertical path, with respect to the vertical direction, which is the direction of gravity. According to this configuration, the oil drain path inclined portion described above is provided in a portion of the oil drain path positioned at the lower portion of the housing, and therefore, the oil is smoothly discharged along the oil drain path inclined portion.

前記給排油機構は、前記潤滑油を軸受内に供給する給油口と潤滑油を軸受外に排出する排油口とを有し、ハウジングには、各排油口と前記排油経路とを径方向に連通して繋ぐ連通部材がそれぞれ設けられるものとしても良い。この場合、各軸受内で潤滑に供された排油は、それぞれ連通部材を通して排油経路に導かれ重力により排出される。   The oil supply / discharge oil mechanism has an oil supply port for supplying the lubricating oil into the bearing and an oil discharge port for discharging the lubricating oil to the outside of the bearing, and the housing includes each oil discharge port and the oil discharge path. A communicating member that communicates and connects in the radial direction may be provided. In this case, the drained oil provided for lubrication in each bearing is guided to the drained oil path through the communicating member and discharged by gravity.

各連通部材の先端部が排油経路にそれぞれ開口し、且つ、上下の連通部材の先端部の円周方向位置を互いに変えて配設したものとしても良い。この場合、上部の軸受に連通する連通部材の先端部から吐出される排油が、下部の軸受に連通する連通部材の先端部に衝突することを抑えることができる。したがって、吐出された排油の影響で生じる乱流を抑え、排油の排出効率を良くすることができる。   It is good also as what arrange | positioned the front-end | tip part of each communicating member to an oil drain path | route, and changed the circumferential direction position of the front-end | tip part of an upper and lower communicating member mutually. In this case, it is possible to suppress the oil discharged from the tip of the communicating member communicating with the upper bearing from colliding with the tip of the communicating member communicating with the lower bearing. Therefore, it is possible to suppress the turbulent flow caused by the discharged oil discharge and improve the oil discharge efficiency.

各連通部材の先端部が排油経路にそれぞれ開口し、且つ、複数の連通部材の各先端部は、排油経路内への突出量が下方の連通部材の先端部程長く突出するように設けたものとしても良い。この場合にも、上部の軸受に連通する連通部材から吐出された排油の影響で生じる乱流を抑え、排出効率を良くすることができる。
各連通部材の先端部における底面に、連通部材の内径と同径の先端部排油口を設けても良い。この場合、各連通部材の先端部まで導かれた排油を、この先端部の底面から重力により円滑に排出することができる。また、上方の連通部材から吐出される排油が、この連通部材の下方に位置する連通部材から吐出される排油に混じることを回避することが可能となる。したがって、乱流を抑え、排出効率を良くすることができる。
The tip of each communication member opens to the oil discharge path, and the tip of each of the plurality of communication members is provided so that the amount of protrusion into the oil discharge path protrudes longer as the tip of the communication member below. Also good. Also in this case, it is possible to suppress the turbulent flow generated by the influence of the oil discharged from the communication member communicating with the upper bearing, and to improve the discharge efficiency.
You may provide the front-end | tip part oil discharge port of the same diameter as the internal diameter of a communicating member in the bottom face in the front-end | tip part of each communicating member. In this case, the drained oil guided to the tip of each communication member can be smoothly discharged by gravity from the bottom of the tip. In addition, it is possible to avoid the waste oil discharged from the upper communication member from being mixed with the oil discharged from the communication member located below the communication member. Therefore, it is possible to suppress turbulent flow and improve discharge efficiency.

前記連通部材の先端を、上方に向かうに従って排油経路内の対向壁面に近づくように傾斜する傾斜面としても良い。この場合にも、上方の連通部材から吐出される排油が、この連通部材の下方に位置する連通部材から吐出される排油に混じることを回避することが可能となる。したがって、乱流を抑え、排出効率を良くすることができる。   It is good also as an inclined surface which inclines so that the front-end | tip of the said communication member may approach the opposing wall surface in an oil discharge path | route as it goes upwards. Also in this case, it is possible to avoid that the oil discharged from the upper communication member is mixed with the oil discharged from the communication member located below the communication member. Therefore, it is possible to suppress turbulent flow and improve discharge efficiency.

前記ハウジングには、下部の吸気口と各吸気路とを繋ぐ吸気経路が設けられ、この吸気経路のうちハウジングの下部には、下方に向かうに従ってハウジングの径方向内側または径方向外側に至るように傾斜状に形成された吸気経路傾斜部が設けられるものとしても良い。ポンプによる脈動に起因して、軸受内部潤滑油が複数の吸気路を介して吸気経路に流れ込む場合がある。この場合に、重力の向きである鉛直方向に対し、垂直方向の経路である水平方向経路では軸受内部潤滑油の排出効率が悪くなる。この構成によると、吸気経路のうちハウジングの下部に、下方に向かうに従ってハウジングの径方向内側または径方向外側に至るように傾斜状に形成された吸気経路傾斜部が設けられるため、吸気経路傾斜部に沿って軸受内部潤滑油が円滑に排出される。   The housing is provided with an intake passage that connects the lower intake port and each intake passage, and the lower portion of the intake passage in the intake passage extends radially inward or radially outward of the housing as it goes downward. An inclined intake passage inclined portion formed in an inclined shape may be provided. Due to the pulsation caused by the pump, the bearing internal lubricating oil may flow into the intake passage through a plurality of intake passages. In this case, the efficiency of discharging the lubricating oil inside the bearing is deteriorated in the horizontal direction path that is the vertical path with respect to the vertical direction that is the direction of gravity. According to this configuration, the intake path inclined portion is formed at the lower portion of the housing in the intake path so as to be inclined so as to reach the radially inner side or the radially outer side of the housing as it goes downward. As a result, the lubricating oil inside the bearing is smoothly discharged.

前記複数の転がり軸受のうち、各外輪の下面に位置する外輪端面、および、各外輪間座の上面に位置する間座端面のいずれか一方または両方に、前記複数の吸気路を設けたものとしても良い。この場合、例えば、外輪端面または間座端面の円周方向の一部を切欠くことで、吸気路を容易に形成することができる。
この発明のいずれかの転がり軸受の潤滑装置は、工作機械のスピンドルの支持に用いられるものであっても良い。
Among the plurality of rolling bearings, the plurality of intake passages are provided on one or both of the outer ring end surface located on the lower surface of each outer ring and the spacer end surface located on the upper surface of each outer ring spacer. Also good. In this case, for example, the intake passage can be easily formed by cutting out a part of the outer ring end face or the spacer end face in the circumferential direction.
Any of the rolling bearing lubrication devices according to the present invention may be used for supporting a spindle of a machine tool.

この発明の転がり軸受の潤滑装置は、立型のスピンドル装置におけるハウジング内に、スピンドルの軸方向に並べて配置されて、それぞれ外輪が前記ハウジングに設置され内輪でスピンドルを支持する複数の転がり軸受と、軸受冷却媒体を兼ねる潤滑油を前記各転がり軸受内に供給すると共に軸受外に排出する給排油機構とを設け、前記内輪に軸方向に延びる内輪延長部を設けると共に、前記外輪の軸方向端に隣接し、または前記外輪の一部として、前記内輪延長部に径方向に対向する外輪間座を設け、これら内輪延長部と外輪間座とにわたって前記給排油機構を設け、前記スピンドル装置のハウジングにおける前記複数の転がり軸受が配置された軸方向範囲の上部と下部とに、それぞれ大気開放する吸気口を設け、この吸気口と前記各転がり軸受の軸受空間内とにそれぞれ連通する複数の吸気路を設けた。このため、攪拌抵抗の増加を防止して軸受温度の上昇を抑制すると共に、軸受内部が負圧となることを抑制して軸受内部に適量の潤滑油を供給することができる。   A rolling bearing lubrication device according to the present invention includes a plurality of rolling bearings arranged in a housing in a vertical spindle device, arranged side by side in the axial direction of the spindle, each having an outer ring installed in the housing and supporting the spindle by the inner ring, An oil supply / discharge mechanism that supplies lubricating oil that also serves as a bearing cooling medium into each of the rolling bearings and discharges the lubricating oil to the outside of the bearing; an inner ring extension extending in the axial direction on the inner ring; and an axial end of the outer ring to a part of an adjacent or the outer ring, said outer ring spacer that faces radially inner ring extension portion is provided, the supply and discharge oil mechanism provided over the inner ring extension portion and the outer ring spacer, the spindle device An intake opening that opens to the atmosphere is provided at an upper portion and a lower portion of an axial range where the plurality of rolling bearings are disposed in the housing, respectively. Respectively and the bearing space of the bearing provided with a plurality of intake paths communicating. For this reason, it is possible to prevent an increase in the agitation resistance and suppress an increase in the bearing temperature, and suppress a negative pressure inside the bearing and supply an appropriate amount of lubricating oil into the bearing.

この発明の第1の実施形態に係る転がり軸受の潤滑装置の断面図である。It is sectional drawing of the lubricating device of the rolling bearing which concerns on 1st Embodiment of this invention. 同転がり軸受の潤滑装置を含む立型のスピンドル装置の断面図である。It is sectional drawing of the vertical spindle apparatus containing the lubricating device of the rolling bearing. 同スピンドル装置の要部を水平方向に切断して見た断面図である。It is sectional drawing which cut | disconnected the principal part of the same spindle apparatus, and was seen. 図3のC−O−D断面図である。FIG. 4 is a cross-sectional view taken along the line C-O-D in FIG. 3. 図4のスピンドル装置の吸気経路等を部分的に示す断面図である。FIG. 5 is a cross-sectional view partially showing an intake path and the like of the spindle device of FIG. 4. (A)は、同スピンドル装置の上部の吸気口付近を拡大して示す断面図、(B)は、同スピンドル装置の下部の吸気口付近を拡大して示す断面図である。FIG. 4A is an enlarged cross-sectional view showing the vicinity of the upper intake port of the spindle device, and FIG. 4B is an enlarged cross-sectional view showing the vicinity of the lower intake port of the spindle device. 同スピンドル装置の排油経路等を部分的に示す断面図である。It is sectional drawing which shows partially the oil drainage path | route etc. of the same spindle apparatus. (A)は、同スピンドル装置の排油経路の要部を拡大して示す断面図、(B)は、参考提案例に係る排油経路の要部を拡大して示す断面図である。(A) is sectional drawing which expands and shows the principal part of the oil discharge path | route of the spindle apparatus, (B) is sectional drawing which expands and shows the principal part of the oil discharge path | route which concerns on a reference proposal example. この発明の他の実施形態に係るスピンドル装置の排油経路等を部分的に示す断面図である。It is sectional drawing which shows partially the oil drainage path | route etc. of the spindle apparatus which concerns on other embodiment of this invention. (A)は、同スピンドル装置の排油経路の要部を、図9のA−A線で水平方向に切断して見た断面図、(B)は、同スピンドル装置の排油経路の要部を、図9のB−B線で水平方向に切断して見た断面図である。(A) is a cross-sectional view of the main part of the oil drainage path of the spindle device, cut in the horizontal direction along the line AA in FIG. 9, and (B) is the main part of the oil drainage path of the spindle device. FIG. 10 is a cross-sectional view of the portion viewed in the horizontal direction along line BB in FIG. 9. この発明のさらに他の実施形態に係るスピンドル装置の排油経路等を部分的に示す断面図である。It is sectional drawing which shows partially the oil drainage path | route etc. of the spindle apparatus which concerns on further another embodiment of this invention. この発明のさらに他の実施形態に係るスピンドル装置の排油経路の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the oil drainage path | route of the spindle apparatus which concerns on further another embodiment of this invention. この発明のさらに他の実施形態に係るスピンドル装置の排油経路の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the oil drainage path | route of the spindle apparatus which concerns on further another embodiment of this invention. (A)は、従来例の転がり軸受の潤滑装置の給油側の断面図、(B)は同潤滑装置の排油側の断面図である。(A) is sectional drawing by the side of the oil supply of the lubricating device of the rolling bearing of a prior art example, (B) is sectional drawing by the side of the oil drain of the lubricating device. 従来例のスピンドル装置の吸気経路等を部分的に示す断面図である。It is sectional drawing which shows partially the intake route etc. of the spindle apparatus of a prior art example.

この発明の第1の実施形態を図1ないし図8と共に説明する。この実施形態に係る転がり軸受の潤滑装置は、図2に示すように、立型のスピンドル装置SUに用いられる。このスピンドル装置SUは工作機械に応用されるものであり、このスピンドル装置SUにおけるハウジングHs内に、複数の転がり軸受BRがスピンドルShの軸方向に並べて配置される。ハウジングHs内に複数の転がり軸受BRの外輪2がそれぞれ嵌合状態に設置され、複数の内輪1でスピンドルShを支持するようになっている。ハウジングHsと、このハウジングHs内に設置される複数の転がり軸受BRと、後述する複数の給排油機構KUとで転がり軸受装置が構成される。   A first embodiment of the present invention will be described with reference to FIGS. The rolling bearing lubrication device according to this embodiment is used in a vertical spindle device SU as shown in FIG. The spindle device SU is intended to be applied to a machine tool, in the housing Hs in the spindle device SU, a plurality of rolling bearings BR are arranged along the axial direction of the spindle Sh. The outer rings 2 of the plurality of rolling bearings BR are respectively fitted in the housing Hs, and the spindles Sh are supported by the plurality of inner rings 1. A rolling bearing device is constituted by the housing Hs, a plurality of rolling bearings BR installed in the housing Hs, and a plurality of supply / discharge oil mechanisms KU described later.

図1に示すように、転がり軸受の潤滑装置は、転がり軸受BRと、給排油機構KUとを含む。転がり軸受BRは、内外輪1,2と、内外輪1,2の軌道面1a,2a間に介在する複数の転動体3と、これら転動体3を保持するリング状の保持器4とを有する。この転がり軸受BRはアンギュラ玉軸受からなり、転動体3として、鋼球やセラミックス球等からなる玉が適用される。   As shown in FIG. 1, the rolling bearing lubrication device includes a rolling bearing BR and a supply / discharge oil mechanism KU. Rolling bearings BR includes inner and outer rings 1 and 2, the raceway surface 1a of the inner and outer rings 1 and 2, a plurality of rolling elements 3 interposed between 2a, and a ring-shaped cage 4 for holding the rolling elements 3 . This rolling bearing BR is an angular ball bearing, and a ball made of a steel ball, a ceramic ball or the like is applied as the rolling element 3.

内輪1は、内輪本体部5と、内輪延長部6とを有する。内輪本体部5は、軸受としての必要な強度を満たし、且つ、所定の幅寸法に設けられる。前記所定の幅寸法とは、JIS、軸受カタログ等に規定される内輪の幅寸法である。内輪本体部5における外周面の中央部に軌道面1aが形成されている。前記外周面のうち軌道面1aに繋がる軸方向一方側に、カウンタボアとなる斜面1bが形成されている。この斜面1bは、軌道面1a側に向かうに従って大径となるように傾斜する断面形状に形成されている。前記外周面のうち軌道面1aに繋がる軸方向他方側に、平坦な外径面1cが形成されている。この内輪本体部5の内輪背面側または内輪正面側に、内輪延長部6が軸方向一方に延びるように一体に設けられる。
外輪2の軌道面2aの軸方向両側に、外輪内径面2bと、斜面状のカウンタボア2cとがそれぞれ形成されている。前記外輪内径面2bに保持器4が案内されるように構成されている。
The inner ring 1 has an inner ring main body part 5 and an inner ring extension part 6. The inner ring main body 5 satisfies the required strength as a bearing and is provided with a predetermined width dimension. The predetermined width dimension is a width dimension of the inner ring defined in JIS, a bearing catalog or the like. A raceway surface 1 a is formed at the center of the outer peripheral surface of the inner ring main body 5. A slope 1b serving as a counterbore is formed on one side in the axial direction connected to the track surface 1a in the outer peripheral surface. The inclined surface 1b is formed in a cross-sectional shape that is inclined so as to have a larger diameter toward the raceway surface 1a side. A flat outer diameter surface 1c is formed on the other axial side connected to the raceway surface 1a in the outer peripheral surface. An inner ring extension 6 is integrally provided on the inner ring back side or the inner ring front side of the inner ring main body 5 so as to extend in one axial direction.
On the both sides in the axial direction of the raceway surface 2a of the outer ring 2, an outer ring inner surface 2b and an inclined counter bore 2c are formed. The cage 4 is configured to be guided to the outer ring inner surface 2b.

図1に示すように、給排油機構KUは、軸受冷却媒体を兼ねる潤滑油を軸受内に供給すると共に、軸受外に排出する機構である。転がり軸受装置を図2に示す立軸で使用する場合、給排油機構KUを転がり軸受BRの上部に配設する。外輪2の軸方向端に隣接して、外輪2とは別体の外輪間座7を設け、この外輪間座7の内周面を、内輪延長部6の外周面に対向させている。これら内輪延長部6と外輪間座7とにわたって給排油機構KUを設けている。
給排油機構KUは、環状油路8と、給油口9と、排油口10とを有する。これらのうち環状油路8は、図1左側に示すように、内輪側円周溝11と、間座側円周溝12とで成る。内輪側円周溝11は、内輪延長部6の外周面に設けられる断面凹形状の円周溝である。間座側円周溝12は、内輪側円周溝11に対して径方向に対向するように配設される。これら内輪側円周溝11と間座側円周溝12とで断面矩形孔状で環状に連なる環状油路8が形成される。
As shown in FIG. 1, the supply / discharge oil mechanism KU is a mechanism that supplies lubricating oil that also serves as a bearing cooling medium into the bearing and discharges it outside the bearing. When the rolling bearing device is used with the vertical shaft shown in FIG. 2, the oil supply / discharge oil mechanism KU is disposed on the upper part of the rolling bearing BR. An outer ring spacer 7 separate from the outer ring 2 is provided adjacent to the axial end of the outer ring 2, and the inner peripheral surface of the outer ring spacer 7 is opposed to the outer peripheral surface of the inner ring extension 6. An oil supply / discharge oil mechanism KU is provided over the inner ring extension 6 and the outer ring spacer 7.
The oil supply / exhaust mechanism KU includes an annular oil passage 8, an oil supply port 9, and an oil discharge port 10. Of these, the annular oil passage 8 is composed of an inner ring side circumferential groove 11 and a spacer side circumferential groove 12 as shown on the left side of FIG. The inner ring side circumferential groove 11 is a circumferential groove having a concave cross section provided on the outer circumferential surface of the inner ring extension 6. The spacer-side circumferential groove 12 is disposed so as to face the inner ring-side circumferential groove 11 in the radial direction. The inner ring side circumferential groove 11 and the spacer side circumferential groove 12 form an annular oil passage 8 that is continuous in an annular shape with a rectangular cross section.

図1左側に示すように、外輪間座7のうち円周方向の一部に、潤滑油を軸受内に供給する前記給油口9が形成されている。この給油口9は、外輪間座7の外周面から前記環状油路8に径方向に貫通する段付きの貫通孔状に形成されている。すなわち給油口9は、環状油路8の円周方向の一部に連通する連通孔9aと、この連通孔9aに繋がり前記外周面に開口する座繰り孔9bとで成る。座繰り孔9bは、連通孔9aに対し同心で同連通孔9aよりも大径に形成されている。給油口9から環状油路8に供給された潤滑油は、図3に示すように、環状油路8内を、回転側の軌道輪である内輪1の回転方向L1と同一方向に進み、排油口10等から排出される。   As shown on the left side of FIG. 1, the oil supply port 9 for supplying lubricating oil into the bearing is formed in a part of the outer ring spacer 7 in the circumferential direction. The oil supply port 9 is formed in a stepped through hole shape that penetrates from the outer peripheral surface of the outer ring spacer 7 to the annular oil passage 8 in the radial direction. That is, the oil supply port 9 includes a communication hole 9a that communicates with a part of the annular oil passage 8 in the circumferential direction, and a countersink hole 9b that is connected to the communication hole 9a and opens on the outer peripheral surface. The counterbore 9b is concentric with the communication hole 9a and has a larger diameter than the communication hole 9a. Lubricating oil from the oil supply port 9 is supplied to the annular oil passage 8, as shown in FIG. 3, in the annular oil passage 8, the process proceeds in the same direction as the rotation direction L1 of the inner ring 1 is a bearing ring on the rotating side, exhaust It is discharged from the oil mouth 10 or the like.

図3に示すように、外輪間座7のうち、前記給油口9とは位相の異なる円周方向の一部に、潤滑油を軸受外に排出する排油口10が形成されている。排油口10は、図1右側に示すように、外輪間座7の外周面から環状油路8に径方向に貫通する貫通孔状に形成されている。図3に示すように、給油口9に対し、排油口10の位相が所定の位相角度α(この例ではα=270度)となるように設けられている。   As shown in FIG. 3, an oil discharge port 10 that discharges the lubricating oil to the outside of the bearing is formed in a part of the outer ring spacer 7 in the circumferential direction that is different in phase from the oil supply port 9. As shown on the right side of FIG. 1, the oil discharge port 10 is formed in a through hole shape that penetrates the annular oil passage 8 in the radial direction from the outer peripheral surface of the outer ring spacer 7. As shown in FIG. 3, the oil supply port 9 is provided such that the phase of the oil discharge port 10 is a predetermined phase angle α (α = 270 degrees in this example).

図1に示すように、内輪延長部6および外輪間座7には、給油口9から環状油路8に供給された潤滑油の一部を、斜面1bを介して内輪軌道面1aに導く軸受シール部13を設けている。内輪延長部6のうち、内輪側円周溝11を成す断面凹形状の一方側肩部14は、内輪本体部5に一体に繋がっている。外輪間座7のうち環状油路8を成す断面凹形状の一方側肩部15の内周面と、同内周面に径方向すきまを介して対向する内輪延長部6の一方側肩部14の外周面とにより、ラビリンスから成る軸受シール部13を形成している。この軸受シール部13を形成したことで、軸受内への潤滑油の供給量を抑制し得る。
固定側の軌道輪である外輪2には、切欠部から成る排油口16が設けられる。この排油口16は、外輪2のうち外輪間座7とは軸方向逆側の外輪下端面に設けられ、軸受シール部13を経由して軸受内の軌道面1aに供給された潤滑油を軸受外に排出するようになっている。図3に示すように、排油口10は、後述の排油経路20と同位相となる位置に設けられる。
As shown in FIG. 1, the inner ring extension 6 and the outer ring spacer 7 have a bearing for guiding a part of the lubricating oil supplied from the oil supply port 9 to the annular oil passage 8 to the inner ring raceway surface 1a through the inclined surface 1b. A seal portion 13 is provided. Of the inner ring extension 6, the one-side shoulder 14 having a concave cross section forming the inner ring-side circumferential groove 11 is integrally connected to the inner ring main body 5. Of the outer ring spacer 7, the inner peripheral surface of the one-side shoulder 15 having a concave cross section forming the annular oil passage 8, and the one-side shoulder 14 of the inner ring extension 6 facing the inner peripheral surface via a radial clearance. The bearing seal part 13 which consists of a labyrinth is formed by the outer peripheral surface. By forming the bearing seal portion 13, the supply amount of the lubricating oil into the bearing can be suppressed.
The outer ring 2, which is a fixed-side raceway ring, is provided with an oil discharge port 16 composed of a notch. The oil discharge port 16 is provided on the lower end surface of the outer ring 2 on the opposite side of the outer ring spacer 7 in the axial direction of the outer ring 2, and is supplied with lubricating oil supplied to the raceway surface 1 a in the bearing via the bearing seal portion 13. It is designed to be discharged out of the bearing. As shown in FIG. 3, the oil discharge port 10 is provided at a position that is in phase with an oil discharge path 20 described later.

図1に示すように、内輪延長部6および外輪間座7には、軸方向に隣接する軸受内に潤滑油が漏洩することを抑制するラビリンス機構17を設けている。このラビリンス機構17は、給油口9および排油口10に連通し、広部と狭部とが軸方向に連なるものとしている。広部は、内輪延長部6における他方側肩部の外周面に設けられる円周溝18と、この円周溝18に対向する外輪間座7の内周面とを含んで構成される。前記円周溝18は、軸方向に間隔をあけて複数配設される。前記狭部は、内輪延長部6における前記外周面の突出先端部と、この突出先端部に対向する外輪間座7の内周面とを含んで構成される。潤滑油が給油口9から供給されラビリンス機構17に浸入した場合、この潤滑油は、内輪回転による遠心力により円周溝18に沿って漏れ側とは反対方向に移動するため、隣接する軸受内に潤滑油が漏洩することを抑制し得る。なお、内輪延長部6に円周溝18を設ける構成に代えて、外輪間座7における断面凹形状の他方側肩部に、円周溝18を設けても良い。また内輪延長部6および外輪間座7にそれぞれ円周溝18を設けても良い。   As shown in FIG. 1, the inner ring extension 6 and the outer ring spacer 7 are provided with a labyrinth mechanism 17 that suppresses leakage of the lubricating oil into the axially adjacent bearing. The labyrinth mechanism 17 communicates with the oil supply port 9 and the oil discharge port 10, and the wide portion and the narrow portion are continuous in the axial direction. The wide portion includes a circumferential groove 18 provided on the outer circumferential surface of the other shoulder portion of the inner ring extension portion 6 and an inner circumferential surface of the outer ring spacer 7 facing the circumferential groove 18. A plurality of the circumferential grooves 18 are arranged at intervals in the axial direction. The narrow portion includes a projecting tip portion of the outer peripheral surface of the inner ring extension portion 6 and an inner peripheral surface of the outer ring spacer 7 facing the projecting tip portion. When the lubricating oil is supplied from the oil supply port 9 and enters the labyrinth mechanism 17, the lubricating oil moves in the direction opposite to the leakage side along the circumferential groove 18 due to the centrifugal force caused by the inner ring rotation. It is possible to suppress the leakage of the lubricating oil. Instead of providing the circumferential groove 18 in the inner ring extension 6, the circumferential groove 18 may be provided on the other shoulder of the outer ring spacer 7 having a concave cross section. Further, circumferential grooves 18 may be provided in the inner ring extension 6 and the outer ring spacer 7 respectively.

ハウジングHsには、給油経路19と、排油経路20,21と、吸気経路22と、吸気口23,24とが設けられている。
給油経路19および排油経路20について説明する。
図2は、図3のA−O−B断面図である。図2に示すように、ハウジングHsには、潤滑油を給排油機構KUに供給する給油経路19と、軸受を冷却した潤滑油である冷却油をハウジングHs外に排出する排油経路20とが設けられている。給油経路19と、排油経路20とは、ハウジングHsのうち位相の異なる円周方向の一部に設けられている。この例では、図3に示すように、給油経路19に対し、排油経路20の位相が所定の位相角度β(この例ではβ=270度)となるように設けられている。図2に示すように、給油経路19は、給油ポンプ25に配管接続され、排油経路20は、排油ポンプ26にそれぞれ配管接続されている。これら給油ポンプ25、排油ポンプ26は、それぞれハウジングHs外に設置されている。
The housing Hs is provided with an oil supply path 19, oil discharge paths 20 and 21, an intake path 22, and intake ports 23 and 24.
The oil supply path 19 and the oil discharge path 20 will be described.
FIG. 2 is a cross-sectional view taken along line A-O-B in FIG. As shown in FIG. 2, in the housing Hs, an oil supply path 19 that supplies lubricating oil to the supply / discharge oil mechanism KU, and an oil discharge path 20 that discharges cooling oil, which is lubricating oil that has cooled the bearing, out of the housing Hs. Is provided. The oil supply path 19 and the oil discharge path 20 are provided in a part of the housing Hs in the circumferential direction with different phases. In this example, as shown in FIG. 3, the oil supply path 19 is provided so that the phase of the oil discharge path 20 is a predetermined phase angle β (in this example, β = 270 degrees). As shown in FIG. 2, the oil supply path 19 is connected to an oil supply pump 25 by piping, and the oil discharge path 20 is connected to an oil discharge pump 26 by piping. The oil supply pump 25 and the oil discharge pump 26 are respectively installed outside the housing Hs.

図2に示すように、前記給油経路19は、スピンドル軸方向に平行に延びる主たる軸方向経路19aと、この軸方向経路19aと各給油口9とをそれぞれ繋ぐ複数の径方向経路19bと、前記軸方向経路19aの下端に繋がりハウジングHsの下部に設けられる水平方向経路19cおよび軸方向経路19dとを有する。ハウジングHsにおける軸方向経路19dの下端に、例えば、図示外の継手が螺着され、この継手と給油ポンプ25とが配管接続される。この給油ポンプ25を用いて、潤滑油を給油源から給油経路19を介して各給油口9に強制的に圧送するようになっている。   As shown in FIG. 2, the oil supply path 19 includes a main axial path 19a extending parallel to the spindle axial direction, a plurality of radial paths 19b connecting the axial path 19a and the respective oil supply ports 9, respectively, It has the horizontal direction path | route 19c and the axial direction path | route 19d which are connected to the lower end of the axial direction path | route 19a, and are provided in the lower part of the housing Hs. For example, a joint (not shown) is screwed to the lower end of the axial path 19d in the housing Hs, and the joint and the oil supply pump 25 are connected by piping. The oil supply pump 25 is used to forcibly feed the lubricating oil from the oil supply source to each oil supply port 9 via the oil supply path 19.

前記排油経路20は、スピンドル軸方向に平行に延びる軸方向経路20aと、この軸方向経路20aと各排油口10とをそれぞれ繋ぐ複数の径方向経路20bと、前記軸方向経路20aの下端に繋がりハウジングHsの下部に設けられる水平方向経路20cおよび軸方向経路20dとを有する。ハウジングHsにおける軸方向経路20dの下端に、例えば、継手を介して排油ポンプ26が配管接続される。軸受を冷却した潤滑油は、排油ポンプ26を用いて排油経路20を介してハウジングHs外に排出し得る。なお、各径方向経路19b,20bおよび水平方向経路19c,20cを形成するとき、ハウジングHsの外周面側から半径方向内方側に孔をそれぞれ形成した後、ハウジングHsの外周面にて開口した各孔を埋め栓で塞ぐことでこれらの経路を容易に形成し得る。   The oil drainage path 20 includes an axial path 20a extending parallel to the spindle axial direction, a plurality of radial paths 20b connecting the axial path 20a and each oil drain port 10, and a lower end of the axial path 20a. And a horizontal path 20c and an axial path 20d provided in the lower part of the housing Hs. The oil drainage pump 26 is connected to the lower end of the axial path 20d in the housing Hs via, for example, a joint. The lubricating oil that has cooled the bearing can be discharged out of the housing Hs through the oil discharge path 20 using the oil discharge pump 26. Each diametrical path 19b, 20b and the horizontal paths 19c, when forming 20c, after forming respectively a hole in the radially inward from the outer peripheral surface of the housing Hs, and open at the outer peripheral surface of the housing Hs These paths can be easily formed by plugging each hole with a plug.

吸気路27、吸気口23,24、吸気経路22について説明する。
図4は、図3のC−O−D断面図である。図4に示すように、ハウジングHsには、前述の排油ポンプ26(図2)の吸引力の影響で軸受内部が負圧となるのを防ぐ吸気口23,24および吸気経路22が設けられている。後述の吸気口23,24と、各転がり軸受BRの軸受空間内とにそれぞれ連通する複数の吸気路27が、外輪間座7に設けられている。
各吸気路27は、この例では、外輪間座7の上端面のうち、図3に示すように、排油口10との位相が近い「排油口近傍」において、半径方向に延びる溝形状に形成される。このように各吸気路27は、外輪間座7の上端面における円周方向の一部に設けられる。前記「排油口近傍」とは、排油口10の位相中心に対し、±30度内の範囲をいう。なお吸気路27を、外輪下端面における排油口近傍に、半径方向に延びる溝形状に形成しても良い。外輪間座7の上端面および外輪下端面における、円周方向の同位相となる位置で且つ排油口近傍に、吸気路27を設けても良い。
The intake passage 27, the intake ports 23 and 24, and the intake passage 22 will be described.
4 is a cross-sectional view taken along the line C-O-D in FIG. As shown in FIG. 4, the housing Hs is provided with intake ports 23 and 24 and an intake path 22 for preventing negative pressure inside the bearing due to the suction force of the oil discharge pump 26 (FIG. 2). ing. A plurality of intake passages 27 are provided in the outer ring spacer 7 so as to communicate with intake ports 23 and 24, which will be described later, and the bearing space of each rolling bearing BR.
In this example, each intake passage 27 has a groove shape extending in the radial direction in the “near the oil discharge port” in the upper end surface of the outer ring spacer 7 as shown in FIG. Formed. Thus, each intake passage 27 is provided in a part of the circumferential direction on the upper end surface of the outer ring spacer 7. The “near oil outlet” means a range within ± 30 degrees with respect to the phase center of the oil outlet 10. The intake passage 27 may be formed in a groove shape extending in the radial direction in the vicinity of the oil discharge port on the lower end surface of the outer ring. An intake passage 27 may be provided at a position in the same phase in the circumferential direction on the upper end surface of the outer ring spacer 7 and the lower end surface of the outer ring and in the vicinity of the oil discharge port.

前記吸気口23,24は、図5に示すように、ハウジングHsにおける前記複数の転がり軸受BRが配置された軸方向範囲の上部と下部とに、それぞれ大気開放するように設けられている。この明細書において、前記「ハウジングHsにおける前記複数の転がり軸受BRが配置された軸方向範囲の上部」とは、ハウジングHs内で軸方向に並ぶ複数の転がり軸受BRのうち、最上部に位置する転がり軸受BRの内輪上端面よりも少なくとも上方に位置するハウジングHsの部分を指す。「ハウジングHsにおける前記複数の転がり軸受BRが配置された軸方向範囲の下部」とは、ハウジングHs内で軸方向に並ぶ複数の転がり軸受BRのうち、最下部に位置する転がり軸受BRの内輪下端面よりも少なくとも下方に位置するハウジングHsの部分を指す。   The intake port 23 and 24, as shown in FIG. 5, the top and bottom of the axial extent of said plurality of rolling bearings BR are arranged in the housing Hs, respectively provided so as to atmosphere. In this specification, the “upper part of the axial range in which the plurality of rolling bearings BR are arranged in the housing Hs” is positioned at the top of the plurality of rolling bearings BR arranged in the axial direction in the housing Hs. The portion of the housing Hs positioned at least above the upper end surface of the inner ring of the rolling bearing BR is indicated. The “lower part of the axial range in which the plurality of rolling bearings BR are arranged in the housing Hs” means the lower part of the inner ring of the rolling bearing BR located at the lowermost part among the plurality of rolling bearings BR arranged in the axial direction in the housing Hs. The portion of the housing Hs located at least below the end surface is indicated.

図6(A)に示すように、上部の吸気口23は、ハウジングHsと、このハウジングHsの上端を塞ぐ上蓋28との境界部のうち、円周方向の一部がこの円周方向に沿って長孔状に形成されて成る。吸気経路22は、スピンドル軸方向に平行に延びる主経路22aと、この主経路22aと各吸気路27とをそれぞれ繋ぐ複数の副経路22bと、吸気経路傾斜部22cとを有する。吸気経路22の主経路22aに、前記上部の吸気口23が連通されている。図6(B)に示すように、吸気経路22のうちハウジングHsの下部には、下方に向かうに従ってハウジングHsの径方向内側に至るように傾斜状に形成された吸気経路傾斜部22cが設けられる。吸気経路22のうちの吸気経路傾斜部22cに、前記下部の吸気口24が連通されている。図4に示すように、ハウジングHsにおける下部の吸気口24は、油タンク29に配管接続されるうえ、大気開放される。   As shown in FIG. 6 (A), the upper portion of the intake port 23, of the boundary between the upper lid 28 for closing a housing Hs, the upper end of the housing Hs, a part of the circumferential direction along the circumferential direction It is formed in the shape of a long hole. Intake path 22 includes a main path 22a extending parallel to the spindle axis, and a plurality of sub-paths 22b connecting the main path 22a and the respective intake passages 27, respectively, an intake path inclined portion 22c. The upper intake port 23 communicates with the main path 22 a of the intake path 22. As shown in FIG. 6B, an intake path inclined portion 22c formed in an inclined shape so as to reach the inside in the radial direction of the housing Hs as it goes downward is provided in the lower portion of the housing Hs in the intake path 22. . The lower intake port 24 communicates with the intake path inclined portion 22 c of the intake path 22. As shown in FIG. 4, the lower intake port 24 in the housing Hs is connected to the oil tank 29 by piping and opened to the atmosphere.

排油経路21について説明する。
図4に示すように、排油経路21は、排油を、ポンプ等の駆動源を用いることなく重力により排出するものである。この排油経路21と、ハウジングHsのうち吸気経路22とは位相の異なる円周方向の一部に設けられている。この例では、図3に示すように、吸気経路22に対し、排油経路21の位相が所定の位相角度γ(この例ではγ=150度)となるように設けられている。
図7に示すように、排油経路21は、軸方向経路21aと、排油経路傾斜部20bと、軸方向経路21cとを有する。軸方向経路21aはスピンドル軸方向に平行に延びる。軸方向経路21aと各排油口16とをそれぞれ繋ぎ、径方向に延びる円筒部材から成る複数の連通部材30が設けられている。各連通部材30としてプラグ等が用いられる。
The oil discharge path 21 will be described.
As shown in FIG. 4, the oil discharge path 21 discharges oil by gravity without using a drive source such as a pump. The oil discharge path 21 and the intake path 22 in the housing Hs are provided in a part of the circumferential direction with different phases. In this example, as shown in FIG. 3, the phase of the oil discharge passage 21 is set to be a predetermined phase angle γ (γ = 150 degrees in this example) with respect to the intake passage 22.
As shown in FIG. 7, the oil drainage path 21 includes an axial path 21a, an oil drainage path inclined portion 20b, and an axial path 21c. The axial path 21a extends parallel to the spindle axis direction. A plurality of communication members 30 each including a cylindrical member extending in the radial direction are provided to connect the axial path 21a and each oil discharge port 16 respectively. A plug or the like is used as each communication member 30.

図8(A)は、このスピンドル装置SUの排油経路21の要部を拡大して示す断面図、同図8(B)は、参考提案例に係る排油経路の要部を拡大して示す断面図である。
図8(A)に示すように、ハウジングHsの下部には、下方に向かうに従ってハウジングHsの径方向内側に至るように傾斜状に形成された排油経路傾斜部21bが設けられる。ハウジングHsにおける軸方向経路21aの下端に、順次、排油経路傾斜部21b、軸方向経路21cが繋がる。図4に示すように、ハウジングHsにおける軸方向経路21cの下端が油タンク29に配管接続される。
ここで立型のスピンドル装置SUにおけるハウジングHsの下部では、排油経路の一部として、加工の容易性から一般的に図8(B)に示す水平方向経路31が採用されている。排油経路では、軸受内で潤滑に供された排油が重力により排出される。この場合に、重力の向きである鉛直方向に対し、垂直方向の経路である前記水平方向経路31では排出効率が悪くなる。
本実施形態に係る図8(A)に示す排油経路21では、排油が重力により排油経路傾斜部21bに沿って円滑に排出される。
FIG. 8A is a cross-sectional view showing an enlarged main part of the oil drainage path 21 of the spindle device SU, and FIG. 8B is an enlarged main part of the oil drainage path according to the reference proposal example. It is sectional drawing shown.
As shown in FIG. 8A, an oil drain path inclined portion 21b that is formed in an inclined shape so as to reach the inside in the radial direction of the housing Hs as it goes downward is provided at the lower portion of the housing Hs. The oil drain path inclined portion 21b and the axial path 21c are sequentially connected to the lower end of the axial path 21a in the housing Hs. As shown in FIG. 4, the lower end of the axial path 21 c in the housing Hs is connected to the oil tank 29 by piping.
Here, in the lower part of the housing Hs in the vertical spindle device SU, a horizontal path 31 shown in FIG. 8B is generally adopted as a part of the oil drain path for ease of processing. In the oil drainage path, the oil drained for lubrication in the bearing is discharged by gravity. In this case, the discharge efficiency is poor in the horizontal path 31 which is a vertical path with respect to the vertical direction which is the direction of gravity.
In the oil discharge path 21 shown in FIG. 8A according to the present embodiment, the oil is smoothly discharged along the oil discharge path inclined portion 21b by gravity.

作用効果について説明する。
給油ポンプ25を駆動し、潤滑油を給油源から給油経路19を介して各給油口9に強制的に圧送する。これにより潤滑油を、軸受内の環状油路8に導入する。これにより軸受の特に内輪1を冷却する。導入された潤滑油の一部は、軸受シール部13を経由して、軌道面1a等に供給される。また給排油機構KUの排油口10から、潤滑油を軸受外に排出する。軸受を冷却した潤滑油すなわち冷却油は、排油ポンプ26を使用して各排油口10から軸受外に排出し、順次、径方向経路20b、軸方向経路20a、水平方向経路20c、および軸方向経路20dを介してハウジングHs外に排出する。
The effect will be described.
The oil supply pump 25 is driven, and the lubricating oil is forcibly pumped from the oil supply source to each oil supply port 9 via the oil supply path 19. As a result, the lubricating oil is introduced into the annular oil passage 8 in the bearing. Thereby, the inner ring 1 of the bearing is cooled. Part of the introduced lubricating oil is supplied to the raceway surface 1 a and the like via the bearing seal portion 13. Further, the lubricating oil is discharged out of the bearing from the oil discharge port 10 of the supply / discharge oil mechanism KU. Lubricating oil that cools the bearing, that is, cooling oil, is discharged out of the bearing from each oil discharge port 10 using the oil discharge pump 26, and sequentially, the radial path 20b, the axial path 20a, the horizontal path 20c, and the shaft It is discharged out of the housing Hs via the direction path 20d.

排油ポンプ26は、冷却油と共にハウジングHs内の周辺空気も同時に吸引するが、外輪間座7の上端面のうち、排油口近傍に吸気路27を設けたため、排油口10に空気が流れ込み、排油を円滑にすると同時にハウジングHs内部の圧力分布変動を抑える。特に、ハウジングHsの上部と下部とに、それぞれ大気開放する吸気口23,24を設け、この吸気口23,24と前記各転がり軸受の軸受空間内とにそれぞれ連通する複数の吸気路27を設けたため、排油ポンプ26は、冷却油と共にハウジングHs内の周辺空気も同時に吸引する。複数の吸気路27から軸受内部に空気が流入するときに例えば排油ポンプ26による脈動を生じ、前記複数の吸気路27から軸受内部潤滑油が漏れた場合、この軸受内部潤滑油は、吸気経路22の各副経路22b、主経路22a、吸気経路傾斜部22cを経由してハウジングHs外に排出し油タンク29に戻す。吸気経路22のうちハウジングHsの下部に、下方に向かうに従ってハウジングHsの径方向内側に至るように傾斜状に形成された吸気経路傾斜部22cが設けられるため、吸気経路傾斜部22cに沿って軸受内部潤滑油が円滑に排出される。このとき、ハウジングHsの上部の吸気口23から複数の吸気路27を介して軸受内部に安定して空気を供給する。   Scavenge pump 26 is sucking ambient air within the housing Hs with cooling oil at the same time, among the upper end surface of the outer ring spacer 7, due to the provision of the air intake passage 27 in the vicinity of the oil discharge port, the air in the oil outlet 10 Flowing and draining oil are made smooth, and at the same time, fluctuation in pressure distribution inside the housing Hs is suppressed. In particular, the upper and lower portions of the housing Hs are respectively provided with air inlets 23 and 24 that open to the atmosphere, and a plurality of air intake passages 27 that communicate with the air inlets 23 and 24 and in the bearing space of each of the rolling bearings are provided. Therefore, the oil discharge pump 26 simultaneously sucks the ambient air in the housing Hs together with the cooling oil. When air flows into the bearing from the plurality of intake passages 27, for example, when pulsation is generated by the oil discharge pump 26 and the bearing internal lubricant leaks from the plurality of intake passages 27, 22 is discharged out of the housing Hs via the sub-paths 22b, the main path 22a, and the intake path inclined portion 22c, and returned to the oil tank 29. The intake path 22 is provided with an intake path inclined portion 22c that is inclined at the lower portion of the housing Hs so as to reach the inside in the radial direction of the housing Hs as it goes downward. The internal lubricating oil is discharged smoothly. At this time, air is stably supplied from the intake port 23 at the top of the housing Hs to the inside of the bearing through the plurality of intake passages 27.

このため、軸受空間内に必要十分な空気を流入させることができ、軸受内部が負圧となることを抑制することができる。これにより軸受内部に適量の潤滑油を供給することができる。複数の吸気路27から軸受内部潤滑油が漏れた場合においても、少なくともハウジングHsの上部の吸気口23から空気を供給できるため、ハウジングHsの下部において軸受内部潤滑油と空気とが干渉することがなく油の障壁が生じることを確実に防止し得る。なお、吸気路27から軸受内部潤滑油が漏れない場合には、ハウジングHsの上部および下部の各吸気口23,24からそれぞれ空気を供給することができる。   For this reason, necessary and sufficient air can be allowed to flow into the bearing space, and negative pressure inside the bearing can be suppressed. As a result, an appropriate amount of lubricating oil can be supplied into the bearing. Even when the bearing internal lubricating oil leaks from the plurality of intake passages 27, air can be supplied at least from the air inlet 23 at the upper part of the housing Hs, so that the bearing internal lubricating oil and the air may interfere with each other at the lower part of the housing Hs. Without any oil barrier. If the bearing internal lubricant does not leak from the intake passage 27, air can be supplied from the upper and lower intake ports 23, 24 of the housing Hs.

軸受内部潤滑油を、ポンプを用いることなく重力および遠心力により排出することができるので、軸受内部に過度の潤滑油が流入することがなくなる。排油経路21では、軸受内部潤滑油が重力により排出される。この構成によると、排油経路21のうちハウジングHsの下部に、下方に向かうに従ってハウジングHsの径方向内側に至るように傾斜状に形成された排油経路傾斜部21bが設けられるため、排油経路傾斜部21bに沿って排油が円滑に排出される。
前述のように、軸受内部に過度の潤滑油が流入しないようにできることで攪拌抵抗を低減し、軸受温度の上昇を抑制することができるため、動力損失の低減を図ることができる。また前記のように、軸受内部が負圧となることを抑制して軸受内部に適量の潤滑油を供給できるため、スピンドルShの高速化を図ることができる。
Since the bearing internal lubricating oil can be discharged by gravity and centrifugal force without using a pump, excessive lubricating oil does not flow into the bearing. In the oil discharge path 21, the bearing internal lubricating oil is discharged by gravity. According to this configuration, the oil drain passage 21 is provided with the oil drain passage inclined portion 21b formed in an inclined shape so as to reach the inside in the radial direction of the housing Hs as it goes downward in the oil drain passage 21. Oil drainage is smoothly discharged along the path inclined portion 21b.
As described above, since excessive lubricating oil can be prevented from flowing into the bearing, the agitation resistance can be reduced and the increase in bearing temperature can be suppressed, so that power loss can be reduced. Further, as described above, since an appropriate amount of lubricating oil can be supplied into the bearing while suppressing negative pressure inside the bearing, the speed of the spindle Sh can be increased.

他の実施形態について図9、図10と共に説明する。
図9はこの発明の他の実施形態に係るスピンドル装置の排油経路等を部分的に示す断面図である。図10(A)は上部の軸受の排油口16での断面図(図9のA−A線断面図)、図10(B)が前記軸受の下部に隣接する軸受の排油口16での断面図(図9のB−B線断面図)である。各連通部材30の先端部が排油経路21にそれぞれ開口し、且つ、上下の連通部材30,30の先端部の円周方向位置を互いに変えて配設しても良い。この例では、上下の隣接する軸受の排油口16と、排油経路21の軸方向経路21aとの連結部分を径方向に角度α1(例えばα1=30度)を設けて連通させている。
この場合、上部の軸受に連通する連通部材30の先端部から吐出される排油が、下部の軸受に連通する連通部材30の先端部に衝突することを抑えることができる。したがって、吐出された排油の影響で生じる乱流を抑え、排油の排出効率を良くすることができる。
Another embodiment will be described with reference to FIGS.
FIG. 9 is a sectional view partially showing an oil drainage path and the like of a spindle device according to another embodiment of the present invention. FIG. 10A is a cross-sectional view at the oil drain port 16 of the upper bearing (cross-sectional view taken along line AA in FIG. 9), and FIG. 10B is a oil drain port 16 of the bearing adjacent to the lower portion of the bearing. It is sectional drawing (BB sectional drawing of FIG. 9). The front end portions of the respective communication members 30 may be opened in the oil drainage path 21, and the circumferential positions of the front end portions of the upper and lower communication members 30, 30 may be changed from each other. In this example, the connecting portion between the oil drain port 16 of the upper and lower adjacent bearings and the axial path 21a of the oil drain path 21 is communicated with an angle α1 (for example, α1 = 30 degrees) in the radial direction.
In this case, it is possible to prevent the oil discharged from the tip of the communication member 30 communicating with the upper bearing from colliding with the tip of the communication member 30 communicating with the lower bearing. Therefore, it is possible to suppress the turbulent flow caused by the discharged oil discharge and improve the oil discharge efficiency.

図11に示すように、各連通部材30の先端部30aが、排油経路21の軸方向経路21aにそれぞれ開口し、且つ、複数の連通部材30の各先端部30aは、軸方向経路21a内への突出量が下方の連通部材30の先端部30a程長く突出するように設けても良い。このように各連通部材30の突出量L2を変えることにより、上部の軸受に連通する連通部材30から吐出された排油の影響で生じる乱流を抑え、排出効率を良くすることができる。   As shown in FIG. 11, the tip portions 30a of the communication members 30 open to the axial direction passages 21a of the oil drainage passages 21, respectively, and the tip portions 30a of the plurality of communication members 30 are within the axial direction passages 21a. You may provide so that the protrusion amount may protrude so long as the front-end | tip part 30a of the communication member 30 below. Thus, by changing the protruding amount L2 of the communicating member 30 to suppress the turbulence caused by the effect of the discharge oil discharged from the communication member 30 which communicates with the upper portion of the bearing, it is possible to improve the discharge efficiency.

図12は、図11の構成に加えて、各連通部材30の先端部30aにおける底面に、連通部材30の内径と同径の先端部排油口30aaを設けたものである。この場合、各連通部材30の先端部30aまで導かれた排油を、この先端部30aの底面の先端部排油口30aaから重力により円滑に排出することができる。また、上方の連通部材30から吐出される排油が、この連通部材30の下方に位置する連通部材30から吐出される排油に混じることを回避することが可能となる。したがって、乱流を抑え、排出効率を良くすることができる。   In addition to the configuration of FIG. 11, FIG. 12 is provided with a front end oil outlet 30 aa having the same diameter as the inner diameter of the communication member 30 on the bottom surface of the front end 30 a of each communication member 30. In this case, the drained oil guided to the leading end 30a of each communication member 30 can be smoothly discharged by gravity from the leading end drain outlet 30aa on the bottom surface of the leading end 30a. In addition, it is possible to avoid that the oil discharged from the upper communication member 30 is mixed with the oil discharged from the communication member 30 located below the communication member 30. Therefore, it is possible to suppress turbulent flow and improve discharge efficiency.

図13に示すように、図11の構成に加えて、連通部材30の先端を、上方に向かうに従って排油経路21内の対向壁面に近づくように傾斜する傾斜面30bとしても良い。この場合にも、上方の連通部材30から吐出される排油が、この連通部材30の下方に位置する連通部材30から吐出される排油に混じることを回避することが可能となる。したがって、乱流を抑え、排出効率を良くすることができる。   As shown in FIG. 13, in addition to the configuration of FIG. 11, the tip of the communication member 30 may be an inclined surface 30 b that is inclined so as to approach the opposing wall surface in the oil drainage path 21 as it goes upward. Also in this case, it is possible to avoid that the oil discharged from the upper communication member 30 is mixed with the oil discharged from the communication member 30 located below the communication member 30. Therefore, it is possible to suppress turbulent flow and improve discharge efficiency.

排油経路21に連通する各連通部材30のうち、最上部の連通部材30を省略しても良い。
この転がり軸受の潤滑装置を、工作機械以外の装置、ロボット等に適用することも可能である。
各実施形態では、外輪2の軸方向端に隣接して外輪間座7を設けているが、外輪間座7を外輪2の一部として外輪2に一体に設けても良い。
実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Of the communication members 30 communicating with the oil drainage path 21, the uppermost communication member 30 may be omitted.
The rolling bearing lubrication device can be applied to devices other than machine tools, robots, and the like.
In each embodiment, the outer ring spacer 7 is provided adjacent to the axial end of the outer ring 2, but the outer ring spacer 7 may be provided integrally with the outer ring 2 as a part of the outer ring 2.
Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

1…内輪
2…外輪
6…内輪延長部
7…外輪間座
9…給油口
16…排油口
19…給油経路
21…排油経路
21b…排油経路傾斜部
22…吸気経路
22c…吸気経路傾斜部
23,24…吸気口
27…吸気路
30…連通部材
30a…先端部
30aa…先端部排油口
30b…傾斜面
BR…転がり軸受
Hs…ハウジング
KU…給排油機構
Sh…スピンドル
SU…スピンドル装置
DESCRIPTION OF SYMBOLS 1 ... Inner ring 2 ... Outer ring 6 ... Inner ring extension part 7 ... Outer ring spacer 9 ... Refueling port 16 ... Drainage port 19 ... Refueling path 21 ... Drainage path 21b ... Drainage path inclination part 22 ... Intake path 22c ... Intake path inclination Portions 23, 24 ... Intake port 27 ... Intake passage 30 ... Communication member 30a ... End portion 30aa ... End portion oil outlet 30b ... Inclined surface BR ... Rolling bearing Hs ... Housing KU ... Supply / discharge oil mechanism Sh ... Spindle SU ... Spindle device

Claims (10)

立型のスピンドル装置におけるハウジング内に、スピンドルの軸方向に並べて配置されて、それぞれ外輪が前記ハウジングに設置され内輪でスピンドルを支持する複数の転がり軸受と、軸受冷却媒体を兼ねる潤滑油を前記各転がり軸受内に供給すると共に軸受外に排出する給排油機構とを設け、
前記内輪に軸方向に延びる内輪延長部を設けると共に、前記外輪の軸方向端に隣接し、または前記外輪の一部として、前記内輪延長部に径方向に対向する外輪間座を設け、これら内輪延長部と外輪間座とにわたって前記給排油機構を設け、
前記スピンドル装置のハウジングにおける前記複数の転がり軸受が配置された軸方向範囲の上部と下部とに、それぞれ大気開放する吸気口を設け、この吸気口と前記各転がり軸受の軸受空間内とにそれぞれ連通する複数の吸気路を設けたことを特徴とする転がり軸受の潤滑装置。
A plurality of rolling bearings that are arranged in the axial direction of the spindle in the housing of the vertical spindle apparatus, each having an outer ring installed in the housing and supporting the spindle by the inner ring, and lubricating oil that also serves as a bearing cooling medium are A supply / discharge oil supply mechanism for supplying into the rolling bearing and discharging out of the bearing,
The inner ring is provided with an inner ring extension that extends in the axial direction, and an outer ring spacer that is adjacent to the axial end of the outer ring or that is part of the outer ring and that is radially opposed to the inner ring extension is provided. The oil supply / drainage mechanism is provided across the extension and the outer ring spacer,
An intake port that opens to the atmosphere is provided at each of an upper portion and a lower portion of the axial range where the plurality of rolling bearings are disposed in the housing of the spindle device, and communicates with the intake port and the bearing space of each rolling bearing. A rolling bearing lubrication device comprising a plurality of intake passages.
請求項1において、前記ハウジングには、潤滑油を給排油機構に供給する給油経路と、軸受内で潤滑に供された前記潤滑油である排油をハウジング外に排出する排油経路とが設けられ、前記排油経路は、排油を重力により排出するものであって、この排油経路におけるハウジングの下部に位置する部分には、下方に向かうに従ってハウジングの径方向内側または径方向外側に至るように傾斜状に形成された排油経路傾斜部が設けられる転がり軸受の潤滑装置。   In claim 1, the housing, and the oil discharge passage for discharging lubricating oil and oil path for supplying the supply and discharge oil mechanism, the oil discharge is the lubricating oil used to lubricate in the bearing outside housing The oil drainage path is provided for discharging the oil drained by gravity, and a portion of the oil drainage path located at the lower part of the housing is arranged on a radially inner side or a radially outer side of the housing as it goes downward. A lubrication device for a rolling bearing provided with an oil drain path inclined portion formed so as to be inclined. 請求項2において、前記給排油機構は、前記潤滑油を軸受内に供給する給油口と潤滑油を軸受外に排出する排油口とを有し、ハウジングには、各排油口と前記排油経路とを径方向に連通して繋ぐ連通部材がそれぞれ設けられる転がり軸受の潤滑装置。   3. The oil supply and discharge mechanism according to claim 2, wherein the supply and discharge oil mechanism has an oil supply port that supplies the lubricating oil into the bearing, and an oil discharge port that discharges the lubricating oil to the outside of the bearing. A rolling bearing lubrication device provided with a communication member that communicates with an oil discharge path in a radial direction. 請求項3において、各連通部材の先端部が排油経路にそれぞれ開口し、且つ、上下の連通部材の先端部の円周方向位置を互いに変えて配設した転がり軸受の潤滑装置。   4. The lubricating device for a rolling bearing according to claim 3, wherein the front end portions of the respective communication members are respectively opened in the oil drainage passage, and the circumferential positions of the front end portions of the upper and lower communication members are mutually changed. 請求項3または請求項4において、各連通部材の先端部が排油経路にそれぞれ開口し、且つ、複数の連通部材の各先端部は、排油経路内への突出量が下方の連通部材の先端部程長く突出するように設けた転がり軸受の潤滑装置。   In Claim 3 or Claim 4, the front-end | tip part of each communicating member is each opened to an oil drainage path | route, and each front-end | tip part of a some communicating member is the amount of protrusion of a communicating member below in an oil draining path | route. A lubrication device for a rolling bearing provided so that the tip portion protrudes longer. 請求項4または請求項5において、各連通部材の先端部における底面に、連通部材の内径と同径の先端部排油口を設けた転がり軸受の潤滑装置。   6. The rolling bearing lubrication device according to claim 4 or 5, wherein a front end oil discharge port having the same diameter as the inner diameter of the communication member is provided on a bottom surface of the front end portion of each communication member. 請求項4ないし請求項6のいずれか1項において、前記連通部材の先端を、上方に向かうに従って排油経路内の対向壁面に近づくように傾斜する傾斜面とした転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 4 to 6, wherein a tip of the communication member is an inclined surface that is inclined so as to approach an opposing wall surface in the oil drainage path as it goes upward. 請求項1ないし請求項7のいずれか1項において、前記ハウジングには、下部の吸気口と各吸気路とを繋ぐ吸気経路が設けられ、この吸気経路のうちハウジングの下部には、下方に向かうに従ってハウジングの径方向内側または径方向外側に至るように傾斜状に形成された吸気経路傾斜部が設けられる転がり軸受の潤滑装置。   In any one of claims 1 to 7, in the housing, an intake passage connecting the lower portion of the intake port and the intake passage is provided in the lower portion of the housing of the intake path, downward The rolling bearing lubrication device is provided with an intake path inclined portion formed in an inclined shape so as to reach the radially inner side or the radially outer side of the housing. 請求項1ないし請求項8のいずれか1項において、前記複数の転がり軸受のうち、各外輪の下面に位置する外輪端面、および、各外輪間座の上面に位置する間座端面のいずれか一方または両方に、前記複数の吸気路を設けた転がり軸受の潤滑装置。   In any one of claims 1 to 8, among the plurality of rolling bearings, the outer ring end surface positioned on the lower surface of each outer ring, and any of the spacer end face positioned on the upper surface of the outer ring spacer Meanwhile Or a lubricating device for a rolling bearing provided with the plurality of intake passages on both sides. 請求項1ないし請求項9のいずれか1項において、工作機械のスピンドルの支持に用いられるものである転がり軸受の潤滑装置。   The rolling bearing lubrication device according to any one of claims 1 to 9, which is used for supporting a spindle of a machine tool.
JP2011130003A 2010-10-19 2011-06-10 Lubricating device for rolling bearing Withdrawn JP2012255517A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011130003A JP2012255517A (en) 2011-06-10 2011-06-10 Lubricating device for rolling bearing
CN201180050495.3A CN103180626B (en) 2010-10-19 2011-10-06 Rolling bearing
DE112011103515T DE112011103515T5 (en) 2010-10-19 2011-10-06 ball-bearing
US13/879,718 US8979384B2 (en) 2010-10-19 2011-10-06 Rolling bearing device
PCT/JP2011/073056 WO2012053366A1 (en) 2010-10-19 2011-10-06 Roller bearing
TW100136961A TWI598521B (en) 2010-10-19 2011-10-12 Rolling bearing assembly, rolling bearing device and lubricating device for rolling bearing assembly
US14/340,251 US9033582B2 (en) 2010-10-19 2014-07-24 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130003A JP2012255517A (en) 2011-06-10 2011-06-10 Lubricating device for rolling bearing

Publications (1)

Publication Number Publication Date
JP2012255517A true JP2012255517A (en) 2012-12-27

Family

ID=47527255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130003A Withdrawn JP2012255517A (en) 2010-10-19 2011-06-10 Lubricating device for rolling bearing

Country Status (1)

Country Link
JP (1) JP2012255517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958005B2 (en) * 2015-10-13 2018-05-01 Shimadzu Corporation Oil-lubricated bearing device and vacuum pump
CN114505888A (en) * 2022-02-26 2022-05-17 刘其霖 SCARA high-speed parallel manipulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958005B2 (en) * 2015-10-13 2018-05-01 Shimadzu Corporation Oil-lubricated bearing device and vacuum pump
CN114505888A (en) * 2022-02-26 2022-05-17 刘其霖 SCARA high-speed parallel manipulator

Similar Documents

Publication Publication Date Title
WO2012053366A1 (en) Roller bearing
US9777607B2 (en) Lubricating oil passage structure for bearing
JP4930290B2 (en) Tilting pad type journal bearing
CN105605101B (en) Rolling bearing
JP5816061B2 (en) Rolling bearing lubrication system
WO2013042552A1 (en) Roller bearing device
KR20170073666A (en) Journal bearing and rotary machine
JP2008175311A (en) Retainer for rolling bearing
CN108884860B (en) Bearing device and rotary machine
JP2015086705A (en) Turbocharger oil drain structure
JP2012255517A (en) Lubricating device for rolling bearing
CN108431384B (en) Turbocharger
JP2012087864A (en) Roller bearing
KR102096732B1 (en) Journal bearing and rolling machine
CN108700116B (en) Radial bearing and rotary machine
CN110293415A (en) A kind of electro spindle pipe-line layout system
JP2008082496A (en) Lubricating device of roll bearing
US10514058B2 (en) Bearing device and rotary machine
US20220260150A1 (en) Vehicle drivetrain lubrication system
JP2010090981A (en) Lubricating structure of angular contact ball bearing
JP5852379B2 (en) Spindle device
JP2008082495A (en) Lubricating device of rolling bearing
US8556517B1 (en) Bushing for oil film bearing
JP2018168953A (en) Holder for rolling bearing and rolling bearing with outer ring oil supply hole
JP5739293B2 (en) Rolling bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902