JP2012250880A - Graphene, electric storage device and electric equipment - Google Patents

Graphene, electric storage device and electric equipment Download PDF

Info

Publication number
JP2012250880A
JP2012250880A JP2011125484A JP2011125484A JP2012250880A JP 2012250880 A JP2012250880 A JP 2012250880A JP 2011125484 A JP2011125484 A JP 2011125484A JP 2011125484 A JP2011125484 A JP 2011125484A JP 2012250880 A JP2012250880 A JP 2012250880A
Authority
JP
Japan
Prior art keywords
graphene
defect
active material
lithium ions
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011125484A
Other languages
Japanese (ja)
Other versions
JP2012250880A5 (en
Inventor
Takuya Hirohashi
拓也 廣橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2011125484A priority Critical patent/JP2012250880A/en
Publication of JP2012250880A publication Critical patent/JP2012250880A/en
Publication of JP2012250880A5 publication Critical patent/JP2012250880A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide lithium ion-permeable graphene which can be used in electric equipment.SOLUTION: The preferred graphene has a defect formed by bonding of a carbon atom to an oxygen atom and the number density of the defect is 0.0001-0.1. Since the graphene has the defect at the number density, the oxygen concentration of the graphene is 0.3-30 atomic%. Since such graphene is highly permeable to lithium ions, even when the surface of an electrode or an active material is coated with the graphene, migration of lithium ions is not hindered. While the graphene can inhibit the reaction of the electrode or the active material with an electrolyte.

Description

本発明は、リチウムイオン二次電池用の材料等、リチウムの透過性および導電性に優れたグラフェンあるいは複数層のグラフェンに関する。グラフェンとは、sp結合を有する1原子層の炭素分子のシートである。 The present invention relates to graphene or multi-layer graphene excellent in lithium permeability and conductivity, such as a material for a lithium ion secondary battery. Graphene is a sheet of one atomic layer of carbon molecules having sp 2 bonds.

グラフェンは高い導電率や移動度という優れた電気特性、柔軟性や機械的強度という物理的特性のためにさまざまな製品に応用することが試みられている(特許文献1乃至特許文献3参照)。また、グラフェンをリチウムイオン二次電池に応用する技術も提案されている(特許文献4)。 Graphene has been tried to be applied to various products because of its excellent electrical properties such as high conductivity and mobility, and physical properties such as flexibility and mechanical strength (see Patent Documents 1 to 3). A technique for applying graphene to a lithium ion secondary battery has also been proposed (Patent Document 4).

米国特許公開第2011/0070146号公報US Patent Publication No. 2011/0070146 米国特許公開第2009/0110627号公報US Patent Publication No. 2009/0110627 米国特許公開第2007/0131915号公報US Patent Publication No. 2007/0131915 米国特許公開第2010/0081057号公報US Patent Publication No. 2010/0081057

グラフェンは高い導電率を持つことは知られているが、イオンを透過させる能力については不明な部分もある。本発明の一態様は、この問題を解決するためになされたもので、リチウムを透過させる能力と導電性を併せ持つグラフェンを有する電気機器を提供することを目的とする。そのほかに、本発明の一態様は、充放電特性の優れた蓄電装置を提供することを目的とする。あるいは、信頼性や長期あるいは繰り返しの使用にも耐える電気機器を提供することを目的とする。本発明は上記の課題のいずれかを解決する。 Graphene is known to have a high conductivity, but there is an unknown part about the ability to transmit ions. One embodiment of the present invention has been made to solve this problem, and an object of the present invention is to provide an electric device including graphene that has both lithium permeability and conductivity. In addition, an object of one embodiment of the present invention is to provide a power storage device with excellent charge / discharge characteristics. Alternatively, it is an object of the present invention to provide an electrical device that can withstand reliability and long-term or repeated use. The present invention solves any of the above problems.

本発明の一態様は、炭素原子と結合する酸素原子を有する欠陥の数密度が0.0001以上0.1以下(0.01%以上10%以下)であるグラフェンである。また、本発明の一態様は、酸素の濃度が0.3原子%以上30原子%以下であるグラフェンである。また、本発明の一態様は、上記のグラフェンを有する蓄電装置である。また、本発明の一態様は、上記のグラフェンを有する電気機器である。また、本発明の一態様は、上記のグラフェンで表面を被覆された電極や活物質である。 One embodiment of the present invention is graphene in which the number density of defects each having an oxygen atom bonded to a carbon atom is 0.0001 to 0.1 (0.01% to 10%). Another embodiment of the present invention is graphene in which the oxygen concentration is greater than or equal to 0.3 atomic% and less than or equal to 30 atomic%. Another embodiment of the present invention is a power storage device including the above graphene. Another embodiment of the present invention is an electrical device including the above graphene. Another embodiment of the present invention is an electrode or an active material whose surface is coated with the above graphene.

一般にリチウムイオンはグラフェンを透過することができない。また、グラフェン中の炭素原子が1個抜けただけの状態(図1(A))でも、グラフェンを透過することは困難である。第一原理計算によると、図2に曲線Aで示すように、グラフェンの欠陥のポテンシャルは、グラフェン(の欠陥)とリチウムイオンの距離が0.2nm近辺で極小となるが、さらに小さくなると増加に転じる。グラフェンの欠陥にリチウムイオンが達するには3電子ボルト弱のエネルギーが必要となるため、現実的には、グラフェンから炭素が抜けただけの欠陥ではリチウムイオンは透過できない。 In general, lithium ions cannot penetrate graphene. Further, even when one carbon atom in graphene is missing (FIG. 1A), it is difficult to penetrate graphene. According to the first-principles calculation, as indicated by the curve A in FIG. 2, the potential of the graphene defect becomes minimum when the distance between the graphene (defect) and the lithium ion is around 0.2 nm, but increases as the distance further decreases. Turn. In order for lithium ions to reach the defects in graphene, an energy of slightly less than 3 electron volts is required. Therefore, in reality, lithium ions cannot permeate through defects in which carbon is removed from graphene.

これに対し、図1(B)のように炭素原子1個を抜き、さらに、その最近接の炭素原子3個を酸素原子3個に置換した欠陥では、図2に曲線Bで示すように、グラフェンの欠陥のポテンシャルの最大値は0電子ボルトであるため、この欠陥をリチウムイオンが通過することは容易となる。 On the other hand, in a defect in which one carbon atom is removed as shown in FIG. 1B and the three closest carbon atoms are replaced with three oxygen atoms, as shown by curve B in FIG. Since the maximum potential of the defect of graphene is 0 eV, it is easy for lithium ions to pass through this defect.

したがって、リチウムイオンがこのような欠陥を有するグラフェンを透過するのに要する時間は、主として、グラフェン面内にあるリチウムイオンが欠陥に到達する時間によって決定される。 Therefore, the time required for the lithium ions to pass through the graphene having such a defect is mainly determined by the time for the lithium ions in the graphene surface to reach the defect.

図3(A)に示すように、リチウムイオン103はグラフェン102の面内を移動し、欠陥104に到達すると、グラフェン102に接する電極101(蓄電装置であれば活物質)が負の電位の場合は下のグラフェンに移動する(電極101が正の電位の場合は上のグラフェンに移動する)。 As shown in FIG. 3A, when the lithium ions 103 move in the plane of the graphene 102 and reach the defect 104, the electrode 101 (active material in the case of a power storage device) in contact with the graphene 102 has a negative potential. Moves to the lower graphene (when the electrode 101 has a positive potential, it moves to the upper graphene).

欠陥104を有するグラフェン102を移動するリチウムイオンが、面積aの欠陥104に到達するまでの時間は図3(B)のモデルをもとに以下のように算出される。時刻T=0において点Pにあるリチウムイオンは、時刻T=tにおいて、図3(B)の円105の中に存在する。ここで、円105の半径rは次式で表される。ここで、Dはリチウムイオンの拡散係数である。 The time until the lithium ions moving through the graphene 102 having the defect 104 reaches the defect 104 having the area a is calculated as follows based on the model shown in FIG. The lithium ion at the point P at time T = 0 exists in the circle 105 in FIG. 3B at time T = t. Here, the radius r of the circle 105 is expressed by the following equation. Here, D is a diffusion coefficient of lithium ions.

グラフェン102の単位面積あたりの欠陥104の数(欠陥の数密度)を1/Sとすると、リチウムイオンは次式を満たす時間tごとに1回、欠陥104に出会う可能性がある。 When the number of defects 104 per unit area of the graphene 102 (number density of defects) is 1 / S, lithium ions may encounter the defect 104 once every time t 0 satisfying the following formula.

欠陥104に到達した全てのリチウムイオンが欠陥104を透過すると、時刻T=tにリチウムイオンが欠陥104に到達する確率はa/Sであり、時刻T=tにリチウムイオンが欠陥104に到達していない確率は次式で表される。 When all of the lithium ions that have reached the defect 104 is transmitted through the defect 104, the probability that the lithium ions reach the defect 104 at time T = t 0 is a / S, arriving lithium ions to the defect 104 at time T = t The probability of not doing is expressed by the following equation.

よって、時刻T=tにリチウムイオンがグラフェン102にない(欠陥104を透過している)確率は次式のようになる。 Therefore, the probability that lithium ions are not in the graphene 102 (transmitting the defect 104) at time T = t is as follows.

欠陥104の数密度が十分に小さい場合には、次式のように近似できる。 When the number density of the defects 104 is sufficiently small, it can be approximated by the following equation.

上記において、時刻T=tにリチウムイオンがグラフェン102にない(欠陥104を透過している)とすれば、P(t)=1である。したがって、tは次式で表される。 In the above, if lithium ions are not present in the graphene 102 at time T = t 1 (permeate the defect 104), P (t 1 ) = 1. Therefore, t 1 is represented by the following equation.

グラフェン面でのリチウムイオンの拡散係数Dは、1×10−11cm/sであり、また、aは炭素原子1個分の面積である。上記のことより、1枚のグラフェンを透過するのに要する時間は、欠陥の数密度に依存し、図4(A)のようになる。また、1枚のグラフェンを透過するのに要する時間は、酸素濃度に依存し、図4(B)のようになる。例えば、10枚のグラフェンが重なった状態で、欠陥の数密度が0.1%であれば、1つのリチウムイオンがこのグラフェンの層を透過する時間はおよそ20秒である。 The diffusion coefficient D of lithium ions on the graphene surface is 1 × 10 −11 cm 2 / s, and a is the area of one carbon atom. From the above, the time required to pass through one graphene depends on the number density of defects and is as shown in FIG. Further, the time required to pass through one graphene depends on the oxygen concentration and is as shown in FIG. For example, if ten graphenes are overlapped and the number density of defects is 0.1%, the time for one lithium ion to pass through the graphene layer is about 20 seconds.

当然のことながら、欠陥の数密度が多ければリチウムイオンが欠陥に到達する時間は短くなる。一方、このような欠陥を有するグラフェンは、機械的安定性に欠けることがあるため、欠陥の数密度あるいは酸素濃度には上記の上限がある。 Naturally, the higher the number density of defects, the shorter the time for lithium ions to reach the defects. On the other hand, since graphene having such defects may lack mechanical stability, the number density of defects or the oxygen concentration has the above upper limit.

1次元方向の引っ張りや圧縮に対する機械的強度は、1次元方向でのC原子サイトに対する欠陥の割合によって決まると考えられる。グラフェンの1次元方向の強度の67%を確保するには、1次元方向でのC原子サイトに対する欠陥の割合を1/3にすれば良い。つまり、欠陥の炭素原子サイトに対する面密度としては1/9、つまりおおよそ10%以下にすればよい。 The mechanical strength against pulling or compression in the one-dimensional direction is considered to be determined by the ratio of defects to the C atom sites in the one-dimensional direction. In order to secure 67% of the strength of graphene in the one-dimensional direction, the ratio of defects to C atom sites in the one-dimensional direction may be reduced to 1/3. In other words, the area density of defects to the carbon atom sites may be 1/9, that is, approximately 10% or less.

上記のように欠陥を有するグラフェンを1層もしくは複数層、電極あるいは活物質表面に形成すると、リチウムイオンの移動はほとんど妨げられない。一方で、電極あるいは活物質表面と電解液やその他の物質との電気反応が抑制される。 When the graphene having defects as described above is formed on one or more layers, the electrode, or the active material surface, the movement of lithium ions is hardly hindered. On the other hand, the electrical reaction between the electrode or active material surface and the electrolytic solution or other substances is suppressed.

グラフェンの欠陥を説明する図である。It is a figure explaining the defect of a graphene. 欠陥のポテンシャルを説明する図である。It is a figure explaining the potential of a defect. リチウムイオンの移動を説明する図である。It is a figure explaining the movement of lithium ion. リチウムイオンがグラフェンを透過するのに要する時間を説明する図である。It is a figure explaining time required for lithium ion to permeate | transmit graphene. コイン型の二次電池の構造を説明する図である。It is a figure explaining the structure of a coin-type secondary battery.

以下、実施の形態について説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments will be described. However, the embodiments can be implemented in many different modes, and it is easily understood by those skilled in the art that the modes and details can be variously changed without departing from the spirit and scope thereof. . Therefore, the present invention should not be construed as being limited to the description of the following embodiments.

(実施の形態1)
本実施の形態では、シリコン粒子の表面に1枚以上50枚以下のグラフェンの層よりなるカーボン膜を形成する例について説明する。最初に、グラファイトを酸化して、酸化グラファイトを作製し、これに超音波振動を加えることで酸化グラフェンを得る。詳細は特許文献2を参照すればよい。また、市販の酸化グラフェンを利用してもよい。
(Embodiment 1)
In this embodiment, an example in which a carbon film including one to 50 graphene layers is formed on the surface of silicon particles will be described. First, graphite is oxidized to produce graphite oxide, and graphene oxide is obtained by applying ultrasonic vibration thereto. For details, Patent Document 2 may be referred to. Further, commercially available graphene oxide may be used.

次に、酸化グラフェンとシリコン粒子を混合する。酸化グラフェンの割合は、全体の1重量%乃至15重量%、好ましくは1重量%乃至5重量%とするとよい。さらに、真空中あるいは不活性ガス(窒素あるいは希ガス等)中等の還元性の雰囲気で150℃、好ましくは200℃以上の温度で加熱する。加熱する温度が高いほど、酸化グラフェンがよく還元され、純度の高い(すなわち、炭素以外の元素の濃度の低い)グラフェンが得られる。なお、酸化グラフェンは150℃で還元されることがわかっている。 Next, graphene oxide and silicon particles are mixed. The proportion of graphene oxide is 1% to 15% by weight, preferably 1% to 5% by weight. Furthermore, heating is performed at a temperature of 150 ° C., preferably 200 ° C. or higher, in a reducing atmosphere such as in vacuum or in an inert gas (such as nitrogen or rare gas). The higher the heating temperature is, the better the graphene oxide is reduced and the higher the purity of the graphene (that is, the lower the concentration of elements other than carbon). Note that graphene oxide is known to be reduced at 150 ° C.

なお、得られるグラフェンの電子伝導性を高めるためには、高温での処理が好ましい。例えば、加熱温度100℃(1時間)では多層グラフェンの抵抗率は240MΩcm程度であるが、加熱温度200℃(1時間)では4kΩcmとなり、300℃(1時間)では2.8Ωcmとなる。 In addition, in order to improve the electronic conductivity of the graphene obtained, the process at high temperature is preferable. For example, the resistivity of multilayer graphene is about 240 MΩcm at a heating temperature of 100 ° C. (1 hour), but is 4 kΩcm at a heating temperature of 200 ° C. (1 hour), and 2.8 Ωcm at 300 ° C. (1 hour).

このようにしてシリコン粒子の表面に形成された酸化グラフェンは還元され、グラフェンの層よりなるカーボン膜となる。その際、隣接するグラフェン同士が結合し、より巨大な網目状あるはシート状のネットワークを形成する。このようにして形成されたカーボン膜は、上記で説明したような数密度の欠陥があるため、リチウムイオンが透過する。 The graphene oxide formed on the surface of the silicon particles in this way is reduced to become a carbon film made of a graphene layer. At that time, adjacent graphenes are combined to form a larger network or sheet network. Since the carbon film formed in this manner has the number density defects as described above, lithium ions are transmitted therethrough.

以上の処理を経たシリコン粒子を適切な溶媒(水やクロロホルムやN,N−dimethylformamide(DMF)やN−methylpyrrolidone(NMP)等の極性溶媒が好ましい)に分散させスラリーを得る。このスラリーを用いて二次電池を作製できる。 The silicon particles subjected to the above treatment are dispersed in a suitable solvent (polar solvent such as water, chloroform, N, N-dimethylformamide (DMF) or N-methylpyrrolidone (NMP) is preferable) to obtain a slurry. A secondary battery can be produced using this slurry.

図5はコイン型の二次電池の構造を示す模式図である。図5に示すように、コイン型の二次電池は、負極204、正極232、セパレータ210、電解液(図示せず)、筐体206および筐体244を有する。このほかにはリング状絶縁体220、スペーサー240およびワッシャー242を有する。 FIG. 5 is a schematic diagram showing the structure of a coin-type secondary battery. As shown in FIG. 5, the coin-type secondary battery includes a negative electrode 204, a positive electrode 232, a separator 210, an electrolytic solution (not shown), a housing 206, and a housing 244. In addition, a ring-shaped insulator 220, a spacer 240, and a washer 242 are provided.

負極204は、負極集電体200上に負極活物質層202を有する。負極集電体200としては、例えば銅を用いるとよい。負極活物質としては、上記スラリー単独、あるいはバインダーで混合したものを負極活物質層202として用いるとよい。 The negative electrode 204 has a negative electrode active material layer 202 on a negative electrode current collector 200. As the negative electrode current collector 200, for example, copper may be used. As the negative electrode active material, the above slurry alone or a mixture with a binder may be used as the negative electrode active material layer 202.

正極集電体228の材料としては、アルミニウムを用いるとよい。正極活物質層230は、正極活物質の粒子をバインダーや導電助剤ともに混合したスラリーを正極集電体228上に塗布して、乾燥させたものを用いればよい。 As a material of the positive electrode current collector 228, aluminum is preferably used. The positive electrode active material layer 230 may be formed by applying a slurry obtained by mixing particles of a positive electrode active material together with a binder and a conductive additive on the positive electrode current collector 228 and drying the slurry.

正極活物質の材料としては、コバルト酸リチウム、リン酸鉄リチウム、リン酸マンガンリチウム、珪酸マンガンリチウム、珪酸鉄リチウム等を用いることができるが、これに限らない。活物質粒子の粒径は20nm乃至100nmとするとよい。また、焼成時にグルコース等の炭水化物を混合して、正極活物質粒子にカーボンがコーティングされるようにしてもよい。この処理により導電性が高まる。 As a material of the positive electrode active material, lithium cobaltate, lithium iron phosphate, lithium manganese phosphate, lithium manganese silicate, lithium iron silicate, and the like can be used, but not limited thereto. The particle diameter of the active material particles is preferably 20 nm to 100 nm. In addition, carbohydrates such as glucose may be mixed during firing so that the positive electrode active material particles are coated with carbon. This treatment increases the conductivity.

電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒にLiPFを溶解させたものを用いるとよいが、これに限られない。 As an electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) may be used, but is not limited thereto.

セパレータ210には、空孔が設けられた絶縁体(例えば、ポリプロピレン)を用いてもよいが、リチウムイオンを透過させる固体電解質を用いてもよい。 The separator 210 may be an insulator (for example, polypropylene) provided with holes, but may be a solid electrolyte that allows lithium ions to pass therethrough.

筐体206、筐体244、スペーサー240およびワッシャー242は、金属(例えば、ステンレス)製のものを用いるとよい。筐体206および筐体244は、負極204および正極232を外部と電気的に接続する機能を有している。 The housing 206, the housing 244, the spacer 240, and the washer 242 may be made of metal (for example, stainless steel). The housing 206 and the housing 244 have a function of electrically connecting the negative electrode 204 and the positive electrode 232 to the outside.

これら負極204、正極232およびセパレータ210を電解液に含浸させ、図5に示すように、筐体206を下にして負極204、セパレータ210、リング状絶縁体220、正極232、スペーサー240、ワッシャー242、筐体244をこの順で積層し、筐体206と筐体244とを圧着してコイン型の二次電池を作製する。 The negative electrode 204, the positive electrode 232, and the separator 210 are impregnated in an electrolytic solution, and the negative electrode 204, the separator 210, the ring-shaped insulator 220, the positive electrode 232, the spacer 240, the washer 242 are disposed with the housing 206 facing downward as shown in FIG. The casings 244 are stacked in this order, and the casing 206 and the casing 244 are pressure-bonded to produce a coin-type secondary battery.

(実施の形態2)
本実施の形態では、集電体上に形成されたシリコン活物質層の表面に1枚以上50枚以下のグラフェンの層よりなるカーボン膜を形成する例について説明する。最初に、酸化グラフェンを水やNMP等の溶媒に分散させる。溶媒は極性溶媒であることが好ましい。グラフェンの濃度は1リットル当たり0.1g乃至10gとすればよい。
(Embodiment 2)
In this embodiment, an example in which a carbon film including one or more and 50 or less graphene layers is formed on the surface of a silicon active material layer formed over a current collector will be described. First, graphene oxide is dispersed in a solvent such as water or NMP. The solvent is preferably a polar solvent. The concentration of graphene may be 0.1 to 10 g per liter.

この溶液にシリコン活物質層を集電体ごと浸漬し、これを引き上げた後、乾燥させる。さらに、真空中あるいは不活性ガス(窒素あるいは希ガス等)中等の還元性の雰囲気で200℃以上の温度で加熱する。以上の工程により、シリコン活物質層表面に1枚以上50枚以下のグラフェンの層よりなるカーボン膜を形成することができる。このようにして形成されたカーボン膜は、上記で説明したような数密度の欠陥があるため、リチウムイオンが透過する。 The silicon active material layer is immersed in this solution together with the current collector, and is pulled up and then dried. Further, heating is performed at a temperature of 200 ° C. or higher in a reducing atmosphere such as in vacuum or in an inert gas (such as nitrogen or a rare gas). Through the above steps, a carbon film including one or more and 50 or less graphene layers can be formed on the surface of the silicon active material layer. Since the carbon film formed in this manner has the number density defects as described above, lithium ions are transmitted therethrough.

なお、このようにして一度、カーボン膜を形成した後、もう一度、同じ処理を繰り返して、さらに同様に1枚以上50枚以下のグラフェンの層よりなるカーボン膜を形成してもよい。同じことを3回以上繰り返してもよい。このように多層のカーボン膜を形成するとカーボン膜の強度が高くなる。 In addition, after forming a carbon film once in this way, the same treatment may be repeated once again to form a carbon film composed of one or more and 50 or less graphene layers. The same may be repeated three or more times. When a multilayer carbon film is formed in this way, the strength of the carbon film increases.

なお、一度に厚いカーボン膜を形成する場合には、カーボン膜のsp結合の向きに乱雑さが生じ、カーボン膜の強度が厚さに比例しなくなるが、このように何度かに分けてカーボン膜を形成する場合には、カーボン膜のsp結合が概略シリコンの表面と平行であるため、厚くするほどカーボン膜の強度が増す。 When a thick carbon film is formed at once, the direction of sp 2 bonds in the carbon film becomes messy, and the strength of the carbon film is not proportional to the thickness. In the case of forming a carbon film, since the sp 2 bond of the carbon film is substantially parallel to the surface of silicon, the strength of the carbon film increases as the thickness increases.

(実施の形態3)
本実施の形態では、集電体上に形成されたシリコン活物質層の表面に1枚以上50枚以下のグラフェンの層よりなるカーボン膜を形成する別の例について説明する。実施の形態2と同様に、酸化グラフェンを水やNMP等の溶媒に分散させる。グラフェンの濃度は1リットル当たり0.1g乃至10gとすればよい。
(Embodiment 3)
In this embodiment, another example in which a carbon film including one to 50 graphene layers is formed on the surface of a silicon active material layer formed over a current collector will be described. Similarly to Embodiment Mode 2, graphene oxide is dispersed in a solvent such as water or NMP. The concentration of graphene may be 0.1 to 10 g per liter.

酸化グラフェンを分散させた溶液にシリコン活物質層が形成された集電体を入れ、これを正極とする。また、溶液に負極となる導電体を入れ、正極と負極の間に適切な電圧(例えば、5V乃至20V)を加える。酸化グラフェンは、ある大きさのグラフェンシートの端の一部がカルボキシル基(−COOH)で終端されているため、水等の溶液中では、カルボキシル基から水素イオンが離脱し、酸化グラフェン自体は負に帯電する。そのため、陽極に引き寄せられ、付着する。なお、この際、電圧は一定でなくてもよい。正極と負極の間を流れる電荷量を測定することで、シリコン活物質層に付着した酸化グラフェンの層の厚さを見積もることができる。 A current collector in which a silicon active material layer is formed is placed in a solution in which graphene oxide is dispersed, and this is used as a positive electrode. In addition, a conductor to be a negative electrode is put in the solution, and an appropriate voltage (for example, 5 V to 20 V) is applied between the positive electrode and the negative electrode. In graphene oxide, a part of the end of a certain size graphene sheet is terminated with a carboxyl group (-COOH), so in a solution such as water, hydrogen ions are released from the carboxyl group, and the graphene oxide itself is negative. Is charged. Therefore, it attracts and adheres to the anode. At this time, the voltage may not be constant. By measuring the amount of charge flowing between the positive electrode and the negative electrode, the thickness of the graphene oxide layer attached to the silicon active material layer can be estimated.

必要な厚さの酸化グラフェンが得られたら、集電体を溶液から引き上げ、乾燥させる。さらに、真空中あるいは不活性ガス(窒素あるいは希ガス等)中等の還元性の雰囲気で200℃以上の温度で加熱する。このようにしてシリコン活物質の表面に形成された酸化グラフェンは還元され、グラフェンとなる。その際、隣接するグラフェン同士が結合し、より巨大な網目状あるはシート状のネットワークを形成する。 When the required thickness of graphene oxide is obtained, the current collector is pulled out of the solution and dried. Further, heating is performed at a temperature of 200 ° C. or higher in a reducing atmosphere such as in vacuum or in an inert gas (such as nitrogen or a rare gas). Thus, the graphene oxide formed on the surface of the silicon active material is reduced to become graphene. At that time, adjacent graphenes are combined to form a larger network or sheet network.

上記のように形成されたグラフェンは、シリコン活物質に凹凸があっても、その凹部にも凸部にもほぼ均一な厚さで形成される。このようにして、シリコン活物質層の表面に1枚以上50枚以下のグラフェンの層よりなるカーボン膜を形成することができる。このようにして形成されたカーボン膜は、上記で説明したような数密度の欠陥があるため、リチウムイオンが透過する。 The graphene formed as described above is formed with a substantially uniform thickness in both the concave and convex portions even if the silicon active material has irregularities. In this manner, a carbon film composed of 1 to 50 graphene layers can be formed on the surface of the silicon active material layer. Since the carbon film formed in this manner has the number density defects as described above, lithium ions are transmitted therethrough.

なお、このようにカーボン膜を形成した後に、本実施の形態の方法によるカーボン膜の形成や、実施の形態2の方法によるカーボン膜の形成を1回以上おこなってもよい。 In addition, after forming the carbon film in this way, the formation of the carbon film by the method of the present embodiment or the formation of the carbon film by the method of the second embodiment may be performed one or more times.

101 電極
102 グラフェン
103 リチウムイオン
104 欠陥
105 円
200 負極集電体
202 負極活物質層
204 負極
206 筐体
210 セパレータ
220 リング状絶縁体
228 正極集電体
230 正極活物質層
232 正極
240 スペーサー
242 ワッシャー
244 筐体
101 Electrode 102 Graphene 103 Lithium ion 104 Defect 105 Circle 200 Negative electrode current collector 202 Negative electrode active material layer 204 Negative electrode 206 Case 210 Separator 220 Ring insulator 228 Positive electrode current collector 230 Positive electrode active material layer 232 Positive electrode 240 Spacer 242 Washer 244 Enclosure

Claims (4)

炭素原子と結合する酸素原子を有する欠陥の数密度が0.0001以上0.1以下であるグラフェン。 Graphene in which the number density of defects having an oxygen atom bonded to a carbon atom is 0.0001 or more and 0.1 or less. 酸素濃度が0.3原子%以上30原子%以下であるグラフェン。 Graphene having an oxygen concentration of 0.3 atomic% to 30 atomic%. 請求項1あるいは請求項2記載のグラフェンを有する蓄電装置。 A power storage device comprising the graphene according to claim 1. 請求項1あるいは請求項2記載のグラフェンを有する電気機器。 An electric device having the graphene according to claim 1.
JP2011125484A 2011-06-03 2011-06-03 Graphene, electric storage device and electric equipment Withdrawn JP2012250880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125484A JP2012250880A (en) 2011-06-03 2011-06-03 Graphene, electric storage device and electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125484A JP2012250880A (en) 2011-06-03 2011-06-03 Graphene, electric storage device and electric equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015183514A Division JP2016027576A (en) 2015-09-17 2015-09-17 Power storage device and electric device

Publications (2)

Publication Number Publication Date
JP2012250880A true JP2012250880A (en) 2012-12-20
JP2012250880A5 JP2012250880A5 (en) 2014-06-19

Family

ID=47524052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125484A Withdrawn JP2012250880A (en) 2011-06-03 2011-06-03 Graphene, electric storage device and electric equipment

Country Status (1)

Country Link
JP (1) JP2012250880A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112337A1 (en) * 2013-01-15 2014-07-24 学校法人 芝浦工業大学 Dielectric material and electrochemical element using same
JP2014197551A (en) * 2013-03-04 2014-10-16 積水化学工業株式会社 Particulate-flake graphite composite, negative electrode material for lithium ion secondary battery and production method therefor and lithium ion secondary battery
JP2016013958A (en) * 2013-12-02 2016-01-28 株式会社半導体エネルギー研究所 Element and manufacturing method of film
CN109004192A (en) * 2018-07-16 2018-12-14 郑州大学 Combination electrode, the battery and preparation method thereof of graphene/graphene oxide cladding
CN114188532A (en) * 2021-11-09 2022-03-15 中国石油大学(北京) Graphene negative electrode material and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321225A (en) * 1997-05-20 1998-12-04 Hitachi Ltd Lithium secondary battery, and portable electric equipment, electronic equipment, electric vehicle and power storing device using this lithium semiconductor battery
JP2000090932A (en) * 1998-09-17 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
JP2010275186A (en) * 2009-05-26 2010-12-09 Belenos Clean Power Holding Ag Stable dispersion of single and multiple graphene layers in solution
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
US20110121240A1 (en) * 2009-11-23 2011-05-26 Khalil Amine Coated electroactive materials
JP2012099468A (en) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd Positive electrode active material, and accumulator
JP2012527396A (en) * 2009-05-22 2012-11-08 ウィリアム・マーシュ・ライス・ユニバーシティ Highly oxidized graphene oxides and methods for their production
JP2012528463A (en) * 2009-05-27 2012-11-12 アンプリウス、インコーポレイテッド Core-shell type high-capacity nanowires used for battery electrodes
JP2014505002A (en) * 2010-12-10 2014-02-27 東レ株式会社 Graphene powder, method for producing graphene powder, and electrochemical device for lithium secondary battery containing graphene powder
JP2014518835A (en) * 2011-05-12 2014-08-07 ノースウェスタン ユニバーシティ Graphene materials with randomly distributed two-dimensional structural defects

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321225A (en) * 1997-05-20 1998-12-04 Hitachi Ltd Lithium secondary battery, and portable electric equipment, electronic equipment, electric vehicle and power storing device using this lithium semiconductor battery
JP2000090932A (en) * 1998-09-17 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
JP2012527396A (en) * 2009-05-22 2012-11-08 ウィリアム・マーシュ・ライス・ユニバーシティ Highly oxidized graphene oxides and methods for their production
JP2010275186A (en) * 2009-05-26 2010-12-09 Belenos Clean Power Holding Ag Stable dispersion of single and multiple graphene layers in solution
JP2012528463A (en) * 2009-05-27 2012-11-12 アンプリウス、インコーポレイテッド Core-shell type high-capacity nanowires used for battery electrodes
US20110121240A1 (en) * 2009-11-23 2011-05-26 Khalil Amine Coated electroactive materials
JP2012099468A (en) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd Positive electrode active material, and accumulator
JP2014505002A (en) * 2010-12-10 2014-02-27 東レ株式会社 Graphene powder, method for producing graphene powder, and electrochemical device for lithium secondary battery containing graphene powder
JP2014518835A (en) * 2011-05-12 2014-08-07 ノースウェスタン ユニバーシティ Graphene materials with randomly distributed two-dimensional structural defects

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. PAN ET AL.: "Li Storage Properties of Disordered Graphene Nanosheets", CHEM. MATER., JPN6015006763, pages 21 - 3136, ISSN: 0003011472 *
H. LIU ET AL.: "Chemical doping of graphene", JOURNAL OF MATERIALS CHEMISTRY, JPN6014045189, pages 21 - 3335, ISSN: 0002926832 *
H. XIANG ET AL.: "Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability", CARBON, JPN6015006761, pages 49 - 1787, ISSN: 0003011469 *
X. ZHAO ET AL.: "In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries", ADV. ENERGY MATER., JPN6015006766, pages 1 - 1079, ISSN: 0003011470 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112337A1 (en) * 2013-01-15 2014-07-24 学校法人 芝浦工業大学 Dielectric material and electrochemical element using same
JPWO2014112337A1 (en) * 2013-01-15 2017-01-19 学校法人 芝浦工業大学 Dielectric material and electrochemical device using the same
JP2014197551A (en) * 2013-03-04 2014-10-16 積水化学工業株式会社 Particulate-flake graphite composite, negative electrode material for lithium ion secondary battery and production method therefor and lithium ion secondary battery
JP2016013958A (en) * 2013-12-02 2016-01-28 株式会社半導体エネルギー研究所 Element and manufacturing method of film
US10187985B2 (en) 2013-12-02 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Element and formation method of film
CN109004192A (en) * 2018-07-16 2018-12-14 郑州大学 Combination electrode, the battery and preparation method thereof of graphene/graphene oxide cladding
CN109004192B (en) * 2018-07-16 2021-06-04 郑州大学 Graphene/graphene oxide coated composite electrode, battery and preparation method of composite electrode
CN114188532A (en) * 2021-11-09 2022-03-15 中国石油大学(北京) Graphene negative electrode material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR102188467B1 (en) Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
JP6456994B2 (en) Method for producing two-dimensional carbon film for electrode conductive material
US10770720B2 (en) Composite negative electrode material and method for preparing composite negative electrode material, negative electrode plate of lithium ion secondary battery, and lithium ion secondary battery
TWI469428B (en) Current collector, electrochemical cell electrode and electrochemical cell
Shen et al. Highly‐safe and ultra‐stable all‐flexible gel polymer lithium ion batteries aiming for scalable applications
KR101978726B1 (en) Power storage device and method of manufacturing the same
CN104934610B (en) A kind of lithium ion battery self-supporting flexible composite electrode material preparation method
US10608276B2 (en) Carbon material, anode material and spacer additive for lithium ion battery
JP2016031922A (en) Battery electrode doubling as current collector, and battery having the same
JP2012250880A (en) Graphene, electric storage device and electric equipment
JP6916815B2 (en) Electrodes for secondary batteries, secondary batteries, and their manufacturing methods
JP2013200961A (en) All solid lithium ion secondary battery and manufacturing method thereof
Obraztsov et al. Graphene Acid for Lithium‐Ion Batteries—Carboxylation Boosts Storage Capacity in Graphene
JP2009193803A (en) All-solid lithium secondary battery
JP2020155223A (en) Positive electrode material for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
CN109216654A (en) A kind of lithium ion battery of multilayer cathode pole piece and its preparation method and application
JP2009238576A (en) All-solid battery, manufacturing method of all-solid battery, and electron conductivity imparting method
Jang et al. Enhancing rate capability of graphite anodes for lithium-ion batteries by pore-structuring
CN109888171A (en) The processing method of battery anode slice
JP2016027576A (en) Power storage device and electric device
JP2015115233A (en) Negative electrode for magnesium ion secondary battery and magnesium ion secondary battery
TW201222949A (en) Electrode composite material of lithium ion battery, method for making the same, and battery
Zhu et al. Multi-chain hydrophobic polymer protective layer with high elasticity for stable lithium metal anode
Sharma et al. A lightweight and metal-free current collector for battery anode applications
JP2015216008A (en) Positive electrode for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150623

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150917