JP2012249342A - Motor driving system and method - Google Patents

Motor driving system and method Download PDF

Info

Publication number
JP2012249342A
JP2012249342A JP2011116478A JP2011116478A JP2012249342A JP 2012249342 A JP2012249342 A JP 2012249342A JP 2011116478 A JP2011116478 A JP 2011116478A JP 2011116478 A JP2011116478 A JP 2011116478A JP 2012249342 A JP2012249342 A JP 2012249342A
Authority
JP
Japan
Prior art keywords
shaft
generator
electric motor
motor
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011116478A
Other languages
Japanese (ja)
Inventor
Hirokazu Nagura
寛和 名倉
Koichiro Nagata
浩一郎 永田
Yuta Ito
雄太 伊藤
Yoshitoshi Akita
佳稔 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011116478A priority Critical patent/JP2012249342A/en
Priority to CN2012101598742A priority patent/CN102801373A/en
Publication of JP2012249342A publication Critical patent/JP2012249342A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor driving system capable of restraining a resonance phenomenon in which axial torsional vibration occurs to a power generator, the vibration is transmitted to an inverter for driving a motor as a power generator terminal voltage change to change a motor terminal voltage and vibrate a motor shaft, and the vibration further vibrates a power generator shaft, without depending on a special control.SOLUTION: A motor driving system comprises a prime mover, a power generator for generating power by driving the prime mover, a converter for converting the power generated by the power generator into power with a desired frequency, a motor driven by the power supplied from the converter, and a driven device driven by the motor. A value of an axis resonance frequency of the power generator shaft transmitting a driving force of the prime mover to the power generator is made different from that of an axis resonance frequency of the motor shaft transmitting a driving force of the motor to the driven device.

Description

本発明は、原動機および発電機を接続する発電機軸と、電動機および被駆動装置を接続する電動機軸の軸ねじれ振動による共振現象を防止するのに最適な電動機駆動システムおよび方法に関するものである。   The present invention relates to a motor drive system and method optimal for preventing a resonance phenomenon caused by shaft torsional vibration of a generator shaft connecting a prime mover and a generator, and a motor shaft connecting a motor and a driven device.

近年、省エネルギーの観点から、発電機の発電電力を電力変換器で可変周波数に変換して圧縮機,ファン,ブロワー等の回転負荷を電動機駆動する技術が多く用いられるようになってきた。例えば、これまで蒸気タービンやガスタービンで直接駆動していたシステムを電動機と電力変換装置で可変速駆動する電動化が行われてきており、システムによっては、電源設備としてタービン発電機を設置し、ここで得られた電気エネルギーを電力変換装置と電動機で再び機械エネルギーに変換して可変速駆動する場合がある。しかし、システムの構成や制御条件によっては、タービン発電機軸に軸ねじり振動が発生し、発電機軸を破損する可能性がある。   In recent years, from the viewpoint of energy saving, a technique for driving a rotary load such as a compressor, a fan, or a blower by an electric motor by converting electric power generated by a generator into a variable frequency by using a power converter has been widely used. For example, a system that has been directly driven by a steam turbine or a gas turbine until now has been electrified to be driven at a variable speed by an electric motor and a power converter, and depending on the system, a turbine generator is installed as a power supply facility. There is a case where the electric energy obtained here is converted into mechanical energy again by a power converter and an electric motor and driven at a variable speed. However, depending on the system configuration and control conditions, shaft torsional vibration may occur on the turbine generator shaft, possibly causing damage to the generator shaft.

タービン発電機間の軸ねじれ振動に関しては、直流送電系統において多数検討されており、例えば特開2000−224896号公報に、タービン発電機が直流送電系統の直流変換所近辺に連系されている場合、直流変換所で行われる電力制御の条件によっては、直流送電系統とタービン発電機とが干渉して、タービン発電機の軸が振動することが示されている。また、軸ねじれ振動は発電機の回転子に作用するトルクの状態に関係し、振動現象を直流送電系統の直流変換所の母線電圧の周波数変動から検出し、制御角を変化させて軸ねじれ振動を抑制する技術が示されている。   A large number of studies on shaft torsional vibration between turbine generators have been made in a DC power transmission system. For example, Japanese Patent Application Laid-Open No. 2000-224896 discloses a case where a turbine generator is linked to the vicinity of a DC converter station of a DC power transmission system. It has been shown that depending on the conditions of power control performed at the DC converter station, the shaft of the turbine generator vibrates due to interference between the DC power transmission system and the turbine generator. Also, shaft torsional vibration is related to the state of torque acting on the generator rotor, and the vibration phenomenon is detected from the frequency fluctuation of the bus voltage of the DC converter station of the DC power transmission system, and the control angle is changed to change the shaft torsional vibration. Technology to suppress this is shown.

また、直流送電系統以外でも、例えば特開平11−27993号公報に、エンジンと発電機の組合せ等で構成される発電装置を電源とする電力変換装置および電源システムにおいて、発電装置の共振周波数成分を検出し、共振周波数除去回路により発電装置の振動成分を打ち消すことで、発電装置の機械系の共振周波数と干渉して振動が持続・増加するのを抑制する電力変換装置の制御技術が示されている。   In addition to the DC power transmission system, for example, in Japanese Patent Application Laid-Open No. 11-27993, in a power conversion device and a power supply system using a power generation device constituted by a combination of an engine and a generator as a power source, the resonance frequency component of the power generation device is set. A control technology for a power converter that detects and suppresses vibration persistence and increase by interfering with the resonance frequency of the mechanical system of the power generator by detecting and canceling the vibration component of the power generator by the resonance frequency elimination circuit is shown. Yes.

特開2000−224896号公報JP 2000-224896 A 特開平11−27993号公報JP-A-11-27993

前記発明では、発電機軸に軸ねじれ振動が発生し、発電機端子電圧変動として、この振動が電動機駆動用インバータに伝わって電動機端子電圧を変動および電動機軸を振動させ、この振動がさらに発電機軸を振動させるという共振現象を、前記制御角を変化させる制御や前記発電装置の振動成分を打ち消す制御を用いて、前記振動を抑制しなければならず、前記制御を行っているシステムの精度や、前記システムに係る制御装置の誤作動,故障等した場合等における共振現象の抑制効果の信頼性に欠けるという問題点があり、前記システム等による特別な制御に依存することなく前記振動を抑制することが可能な電動機駆動システムおよび方法を提供することが課題である。   In the above invention, the shaft torsional vibration is generated in the generator shaft, and this vibration is transmitted to the motor drive inverter as the generator terminal voltage fluctuation, causing the motor terminal voltage to fluctuate and vibrate the motor shaft. The vibration phenomenon must be suppressed by using the control to change the control angle and the control to cancel the vibration component of the power generation device, the vibration must be suppressed, the accuracy of the system performing the control, There is a problem that the suppression effect of the resonance phenomenon in the case of malfunction or failure of the control device related to the system is lacking in reliability, and the vibration can be suppressed without depending on the special control by the system or the like. It is an object to provide a possible motor drive system and method.

上記課題を解決するために、本発明では、原動機と、前記原動機の駆動により発電する発電機と、前記発電機で発電された電力を所望の周波数の電力に変換する変換器と、前記変換器から供給される電力により駆動される電動機と、前記電動機により駆動される被駆動装置から構成された電動機駆動システムにおいて、前記原動機の駆動力を前記発電機に伝える発電機軸の軸共振周波数と、前記電動機の駆動力を前記被駆動装置に伝える電動機軸の軸共振周波数とを異なる値にすることを特徴とする。   In order to solve the above problems, in the present invention, a prime mover, a generator that generates electric power by driving the prime mover, a converter that converts electric power generated by the generator into electric power of a desired frequency, and the converter An electric motor driven by the electric power supplied from the electric motor and a driven system driven by the electric motor. The shaft resonance frequency of the motor shaft that transmits the driving force of the motor to the driven device is set to a different value.

本発明により、特別な制御に依存することなく、発電機軸および電動機軸の共振周波数が一致または近似した場合における軸ねじれ振動の共振現象を抑制するという効果を奏する。   According to the present invention, there is an effect of suppressing the resonance phenomenon of shaft torsional vibration when the resonance frequencies of the generator shaft and the motor shaft match or approximate without depending on special control.

本発明の実施形態1による電動機駆動装置またはシステムの構成。The structure of the electric motor drive device or system by Embodiment 1 of this invention. タービン発電機の振動系を示す2マスモデルブロック図。The 2 mass model block diagram which shows the vibration system of a turbine generator. 電気系減衰係数Deの算出モデル図。Calculating model diagram of an electrical system damping coefficient D e. 共振比hと電気系減衰係数の関係。Relationship between resonance ratio h and electrical damping coefficient. 軸共振周波数可変構造の電動機または発電機。Electric motor or generator with variable shaft resonance frequency structure. 汎用性を高めた軸共振周波数可変構造の電動機または発電機。An electric motor or generator with a variable shaft resonance frequency structure with improved versatility. 本発明の実施形態2による電動機駆動装置またはシステムの構成。The structure of the electric motor drive device or system by Embodiment 2 of this invention. 本発明の実施形態3による電動機駆動装置またはシステムの構成。The structure of the electric motor drive device or system by Embodiment 3 of this invention. 軸交換可能な電動機または発電機。A shaft-replaceable motor or generator. 軸長可変構造の電動機または発電機。Motor or generator with variable shaft length structure. 駆動軸上に回転体を装着した電動機または発電機。An electric motor or generator with a rotating body mounted on the drive shaft.

以下、図面を用いて発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings.

〔実施形態1〕
図1は、本発明の全体構成図である。ガスタービン1と、前記ガスタービン1の機械エネルギーを電気エネルギーに変換する発電機2は発電機軸3で結合される。慣性回転体19は前記発電機2と一体になって回転することで、発電機軸3の軸ねじれ共振周波数を変更するための慣性回転体19であり、発電機軸3に比べて高剛性な発電機軸18で発電機2に結合される。燃料制御装置14は前記ガスタービン1の回転力と回転数を制御し、変圧器4は前記発電機2の出力電圧を系統電圧へ変換し、変圧器5は系統電圧を電力変換器の入力電圧に変換し、変圧器4と変圧器5は系統6を介して接続される。電力変換器7は前記変圧器5から出力される電力を所望の電力に変換し、三相受電交流を整流するダイオードブリッジ整流回路からなるコンバータ15と、前記コンバータ出力を平滑する平滑コンデンサ17と、前記平滑コンデンサ電圧を三相交流に変換するインバータ16より構成される。電動機8は前記電力変換器が出力する電力で駆動され、被駆動装置9は前記電動機8によって駆動される。また、電動機8と被駆動装置9は電動機軸10で結合される。慣性回転体21は前記電動機8と一体になって回転することで、電動機軸10の軸ねじれ共振周波数を変更し、電動機軸10に比べて高剛性な電動機軸20で電動機8に結合される。そして、電力変換器制御装置11は前記電動機8の出力トルクや速度が所望の特性を満たすように前記電力変換器7を操作する。電力変換器出力電流検出器(以下、電流検出器12と記す)は、前記電力変換器7の出力電流を検出し出力する、電力変換器出力電圧検出器(以下、電圧検出器13と記す)は、前記電力変換器7の出力電圧を検出する。前記電流検出器12,電圧検出器13の出力信号は、電力変換器制御装置11に入力され、電力変換器制御装置11は、各種演算処理を行い、前記電力変換器7を操作する信号を出力する。
Embodiment 1
FIG. 1 is an overall configuration diagram of the present invention. A gas turbine 1 and a generator 2 that converts mechanical energy of the gas turbine 1 into electric energy are coupled by a generator shaft 3. The inertial rotator 19 is an inertial rotator 19 for changing the shaft torsional resonance frequency of the generator shaft 3 by rotating integrally with the generator 2, and the generator shaft has a higher rigidity than the generator shaft 3. 18 is coupled to the generator 2. The fuel control device 14 controls the rotational force and the rotational speed of the gas turbine 1, the transformer 4 converts the output voltage of the generator 2 into a system voltage, and the transformer 5 converts the system voltage into the input voltage of the power converter. The transformer 4 and the transformer 5 are connected via the system 6. The power converter 7 converts the power output from the transformer 5 into desired power, a converter 15 including a diode bridge rectifier circuit that rectifies the three-phase received AC, a smoothing capacitor 17 that smoothes the converter output, The inverter 16 converts the smoothing capacitor voltage into a three-phase alternating current. The electric motor 8 is driven by the electric power output from the power converter, and the driven device 9 is driven by the electric motor 8. Further, the electric motor 8 and the driven device 9 are coupled by the electric motor shaft 10. The inertial rotating body 21 rotates integrally with the electric motor 8 to change the shaft torsional resonance frequency of the electric motor shaft 10 and is coupled to the electric motor 8 by the electric motor shaft 20 having higher rigidity than the electric motor shaft 10. Then, the power converter control device 11 operates the power converter 7 so that the output torque and speed of the electric motor 8 satisfy desired characteristics. The power converter output current detector (hereinafter referred to as current detector 12) detects and outputs the output current of the power converter 7, and outputs a power converter output voltage detector (hereinafter referred to as voltage detector 13). Detects the output voltage of the power converter 7. Output signals of the current detector 12 and the voltage detector 13 are input to a power converter control device 11, which performs various arithmetic processes and outputs a signal for operating the power converter 7. To do.

ここで、電源側振動に関する関係式について説明する。図2はタービンと発電機間の軸ねじり振動を2マス系で表現したものであり、τGはタービントルク、τLは発電機負荷トルク、τsは軸ねじりトルク、ω1はタービン速度、ω2は発電機速度、Kはバネ定数、Dmは機械系の減衰係数、Deは電気系の減衰係数であり、単位は何れも定格点での正規化量p.u.である。また、Ta1はタービンの慣性モーメント、Ta2は発電機の慣性モーメントであり、単位は何れも秒である。図2において、Deは発電機の速度増加を減ずるトルクが、発電機に接続される負荷(制御装置含む)により、電気的に生じる程度を表現している。図2から得られる2次振動系の状態方程式より、系の特性方程式は(1)式となる。 Here, the relational expression regarding the power source side vibration will be described. Fig. 2 shows the torsional vibration between the turbine and the generator in a two-mass system, where τ G is the turbine torque, τ L is the generator load torque, τ s is the shaft torsion torque, ω 1 is the turbine speed, omega 2 the generator speed, K is the spring constant, D m is the attenuation coefficient of the mechanical system, D e is the attenuation coefficient of the electrical system, the unit is both a normalization amount p.u. at the rated point. T a1 is the moment of inertia of the turbine, T a2 is the moment of inertia of the generator, and each unit is seconds. In FIG. 2, D e is the torque to reduce the speed increase of the generator, the load connected to the generator (including the controller), expresses the degree to which the electrically generated. From the state equation of the secondary vibration system obtained from FIG. 2, the characteristic equation of the system is Equation (1).

Figure 2012249342
Figure 2012249342

ここで、(1)式の第4項目をゼロと置き、(2)式に示す2次式に近似すると(3),(4)式の関係が成り立つ。   Here, when the fourth item of the equation (1) is set to zero and approximated to the quadratic equation shown in the equation (2), the relationship of the equations (3) and (4) is established.

Figure 2012249342
Figure 2012249342

Figure 2012249342
Figure 2012249342

Figure 2012249342
Figure 2012249342

但し、(3),(4)式において、nを(5)式で定義する慣性モーメント比、Taを(6)式を満たす定格速度までの加速時間とする。 However, (3), (4) In the equation, the moment of inertia ratio that defines the n in (5), the acceleration time to rated speed that satisfies the T a (6) below.

Figure 2012249342
Figure 2012249342

Figure 2012249342
Figure 2012249342

(3),(4)式より、2次系の減衰係数ζおよび2次系の固有振動角周波数ωnは、それぞれ(7),(8)式で表され、電気系減衰係数Deによりシステムの振動特性(ζ,ωn)が変化することが分かる。 From equations (3) and (4), the secondary system damping coefficient ζ and the secondary system natural vibration angular frequency ω n are expressed by formulas (7) and (8), respectively, and are expressed by the electrical system damping coefficient De. It can be seen that the vibration characteristics (ζ, ω n ) of the system change.

Figure 2012249342
Figure 2012249342

Figure 2012249342
Figure 2012249342

次に、電気系減衰係数の算出部30について図3を用いて説明する。図3において、破線で囲んだブロックは、図2の電気系減衰係数の算出部30に対応している。図3および以下の説明において、発電機出力および発電機負荷の有効電力をP、発電機速度をω2、発電機端子電圧をV、発電機負荷トルクをτLとし、その定格点での値をそれぞれP0,ω20,V0,τL0とし、その定格点からの変化分をそれぞれΔP,Δω2,ΔV,ΔτLとする。一方、発電機端子電圧Vは定格点近傍において界磁一定と仮定すれば発電機速度ω2に比例することから、その変換ゲインは、V0/ω20となる。これが発電機端子電圧の算出部40に対応し、(9)式で記述できる。 Next, the electric system attenuation coefficient calculation unit 30 will be described with reference to FIG. In FIG. 3, the block surrounded by a broken line corresponds to the electric system attenuation coefficient calculation unit 30 in FIG. 2. In FIG. 3 and the following description, the generator output and generator load active power is P, the generator speed is ω 2 , the generator terminal voltage is V, and the generator load torque is τ L. Are P 0 , ω 20 , V 0 , and τ L0 , respectively, and the changes from the rated points are ΔP, Δω 2 , ΔV, and Δτ L , respectively. On the other hand, since the generator terminal voltage V is proportional to the generator speed ω 2 assuming that the field is constant near the rated point, the conversion gain is V 0 / ω 20 . This corresponds to the generator terminal voltage calculation unit 40 and can be described by equation (9).

Figure 2012249342
Figure 2012249342

(9)式右辺が、V0+ΔVに対応することから、(10)式が成立する。 Since the right side of the equation (9) corresponds to V 0 + ΔV, the equation (10) is established.

Figure 2012249342
Figure 2012249342

また、負荷有効電力の算出部41は、負荷特性から発電機端子電圧Vに対する負荷有効電力Pを出力する。一方、発電機負荷トルクτLと発電機出力Pと、発電機速度をω2には(11)式の関係があり、発電機負荷トルクの算出部42に対応する。 The load active power calculation unit 41 outputs the load active power P with respect to the generator terminal voltage V from the load characteristics. On the other hand, the generator load torque τ L , the generator output P, and the generator speed ω 2 have the relationship of equation (11), which corresponds to the generator load torque calculator 42.

Figure 2012249342
Figure 2012249342

(11)式右辺が、τL0+ΔτLに対応することから、(12)式が成立する。 Since the right side of the equation (11) corresponds to τ L0 + Δτ L , the equation (12) is established.

Figure 2012249342
よって、電気系の減衰係数Deは、(12)式の変形により(13)式で表現できる。
Figure 2012249342
Therefore, the damping coefficient D e of the electrical system can be expressed by equation (13) by the deformation of equation (12).

Figure 2012249342
Figure 2012249342

ここで一例として、負荷有効電力の算出部41において負荷が抵抗値R[p.u.]の抵抗負荷の場合を仮定する。   Here, as an example, it is assumed that the load is a resistance load having a resistance value R [pu] in the load active power calculation unit 41.

このとき、P=V2/R,P0=V0 2/Rの関係が成立する。よって、この2式からRを消去して、Pについて解くと(14)式が得られる。 At this time, the relationship of P = V 2 / R and P 0 = V 0 2 / R is established. Therefore, when R is eliminated from these two equations and P is solved, equation (14) is obtained.

Figure 2012249342
Figure 2012249342

(14)式右辺が、P0+ΔPに対応することから、(15)式が成立する。 Since the right side of the equation (14) corresponds to P 0 + ΔP, the equation (15) is established.

Figure 2012249342
Figure 2012249342

さらに(10)式,(15)式を(13)式に代入すると、(16)式が得られる。   Further, when Expressions (10) and (15) are substituted into Expression (13), Expression (16) is obtained.

Figure 2012249342
Figure 2012249342

正規化単位では、定格値は1である。よって、(16)式右辺に、P0=ω20=τL0=1を代入すると、De=1となる。すなわち、発電機に抵抗負荷を接続すると、電気系の減衰係数Deは1になる。これに対して、例えば発電機に対して定電力負荷(ΔP=0)を接続した例を考えると、(13)式にΔP=0を代入してDe=−1となる。この場合、ネガティブダンピングとなり、発電機速度変動(振動)を助長する向きに発電機トルクが発生する。特に、機械系の減衰係数Dmが小さい場合には、前記2次系の減衰係数ζが0以下となり、発散系になることが示される。 In the normalization unit, the rated value is 1. Therefore, if P 0 = ω 20 = τ L0 = 1 is substituted into the right side of the equation (16), D e = 1. That is, when connecting a resistive load to the generator, the damping coefficient D e of the electrical system will be 1. On the other hand, for example, considering an example in which a constant power load (ΔP = 0) is connected to the generator, ΔP = 0 is substituted into the equation (13), and D e = −1. In this case, negative damping occurs, and generator torque is generated in a direction that promotes generator speed fluctuation (vibration). In particular, when the mechanical system damping coefficient D m is small, the secondary system damping coefficient ζ is 0 or less, indicating that the system is divergent.

以上は、発電機に対して、抵抗負荷または、定電力負荷を接続した場合であったが、実際のシステムでは、図1のように、変圧器,電力変換器,電動機,機械軸,被駆動装置等の特性によって電気系の減衰係数Deが決定付けられる。とりわけ、ガスタービン1および発電機2の慣性モーメントと発電機軸3のバネ定数により決まる発電機側の軸共振周波数fn[Hz]と、電動機8および電動機8で駆動される被駆動装置の慣性モーメントと電動機軸10のバネ定数により決まる電動機側の軸共振周波数fr[Hz]の関係によって電気系の減衰係数Deは大きく左右される。例えば、図4は図1に示したシステムに関する電気系の減衰係数Deを縦軸に、(17)式で定義するfnとfrの共振比hを横軸に、fnをパラメータに選んだグラフである。 The above is the case where a resistive load or a constant power load is connected to the generator, but in an actual system, as shown in FIG. 1, a transformer, a power converter, an electric motor, a mechanical shaft, and a driven damping coefficient D e of the electrical system is dictated by the characteristics of the device. In particular, the axial resonance frequency fn [Hz] on the generator side determined by the moment of inertia of the gas turbine 1 and the generator 2 and the spring constant of the generator shaft 3, the moment of inertia of the motor 8 and the driven device driven by the motor 8 damping coefficient D e of the electrical system by the relationship of the axis resonant frequency fr of the motor side which is determined by the spring constant [Hz] of the motor shaft 10 is greatly influenced. For example, FIG. 4 is a graph in which the electrical attenuation coefficient De for the system shown in FIG. 1 is plotted on the vertical axis, the resonance ratio h of fn and fr defined by equation (17) is plotted on the horizontal axis, and fn is selected as a parameter. It is.

Figure 2012249342
Figure 2012249342

図4のグラフから、h=1近傍、即ち、fn=frにおいて、Deが極小値をとることが分かる。また、共振比hをh≦0.9または、h≧1.1の範囲に選べば、実用上十分広範囲(2.5Hzから20Hz)のfnに関して、抵抗負荷以上のDeを確保できることが分かる。そこで、以下では、h≒1となった場合に、h≦0.9または、h≧1.1に変更する具体的手段を提示する。共振比hを構成するfrは、2慣性近似の場合、(18)式で表すことができる。(18)式において、JMは電動機8の慣性モーメント、JLは被駆動装置9の慣性モーメント、KFは電動機軸10のバネ定数である。よって、(18)式における等価的なJMを増大することにより、frを低下し、h≒1を回避することが可能である。これを実現するために、本実施形態では、電動機8を図5に示す両軸構造とし、被駆動対象と反対側の軸に、慣性回転体を装着可能な構造とした。図5に示すような電動機筺体50,電動機軸51,軸共振周波数変更用の慣性回転体52,電動機軸53からなる軸共振周波数可変構造の例から説明する。このとき、発電機側の軸共振周波数fn=10[Hz]に対して、電動機側の軸共振周波数fr=10[Hz](JM=105[kg・m2],JL=640[kg・m2],KF=356110[N・m/rad])の場合を考える。この場合、慣性モーメントが30[kg・m2]の慣性回転体52を電動機軸53に装着することで、fr=9[Hz]に変更できることが(18)式より明らかである。 From the graph of FIG. 4, h = 1 neighborhood, i.e., the fn = fr, D e is seen to take a minimum value. Further, the resonance ratio h h ≦ 0.9 or, if you choose the range of h ≧ 1.1, with respect to fn of practically sufficient wide range (20 Hz from 2.5 Hz), it can be seen that ensures resistance load more D e . Therefore, in the following, specific means for changing to h ≦ 0.9 or h ≧ 1.1 when h≈1 will be presented. Fr constituting the resonance ratio h can be expressed by the equation (18) in the case of two-inertia approximation. In the equation (18), JM is the moment of inertia of the motor 8, JL is the moment of inertia of the driven device 9, and KF is the spring constant of the motor shaft 10. Therefore, by increasing the equivalent JM in the equation (18), it is possible to reduce fr and avoid h≈1. In order to realize this, in the present embodiment, the electric motor 8 has a double-shaft structure shown in FIG. 5 and a structure in which an inertia rotating body can be attached to the shaft opposite to the driven object. An example of a variable shaft resonance frequency structure including the motor housing 50, the motor shaft 51, the inertia rotating body 52 for changing the shaft resonance frequency, and the motor shaft 53 as shown in FIG. At this time, with respect to the axial resonance frequency fn = 10 [Hz] on the generator side, the axial resonance frequency fr = 10 [Hz] on the electric motor side (JM = 105 [kg · m 2 ], JL = 640 [kg · m] 2 ], KF = 356110 [N · m / rad]). In this case, it is apparent from the equation (18) that fr = 9 [Hz] can be changed by mounting the inertia rotating body 52 having an inertia moment of 30 [kg · m 2 ] on the motor shaft 53.

Figure 2012249342
Figure 2012249342

以上は、h≦0.9に変更するための電動機軸に対する操作であるが、図5と同様の構造を発電機軸側に持たせることで、h≧1.1に変更することも可能である。例えば、fnは、2慣性近似の場合、(19)式で表すことができる。(19)式において、Ta1はタービン1の慣性モーメント、Ta2は発電機2の慣性モーメント、Kは発電機軸3のバネ定数である。よって、(19)式における等価的なTa2を増大することにより、fnを低下し、h≧1.1への変更ができる。 The above is the operation on the motor shaft for changing to h ≦ 0.9, but it is also possible to change to h ≧ 1.1 by giving the generator shaft side the same structure as in FIG. . For example, fn can be expressed by equation (19) in the case of 2-inertia approximation. In the equation (19), T a1 is the moment of inertia of the turbine 1, T a2 is the moment of inertia of the generator 2, and K is the spring constant of the generator shaft 3. Therefore, by increasing the equivalent T a2 in the equation (19), fn can be decreased and changed to h ≧ 1.1.

Figure 2012249342
Figure 2012249342

ところで、図1に示したシステム構築に際して、fnとfrは設計段階で既知であるとは限らず、据え付け現場で初めてfn=frに気付く場合もある。この場合、慣性回転体18,21の慣性モーメントは事前に決定できない。また、実施形態2のように、前記共振比hを、きめ細かく正確に設定したい場合がある。そこで、図6に示すように、複数枚の慣性回転体52,54等を装着可能な構造とすることで、共振比hを現場において、きめ細かく設定可能とした。   By the way, when the system shown in FIG. 1 is constructed, fn and fr are not always known at the design stage, and fn = fr may be noticed for the first time at the installation site. In this case, the moment of inertia of the inertial rotating bodies 18 and 21 cannot be determined in advance. Further, as in the second embodiment, there is a case where the resonance ratio h is desired to be set finely and accurately. Therefore, as shown in FIG. 6, the resonance ratio h can be set finely in the field by adopting a structure in which a plurality of inertial rotating bodies 52, 54, etc. can be mounted.

〔実施形態2〕
実施形態1では、発電機と電動機が各々1台ずつ接続されていた。しかし、更に大規模なプラントに該当する本実施形態では、図7に示すように、発電機2がi台、電動機8がj台あり、それらが共通の系統に接続された構成となる。但し、図7において、符号の説明は図1の場合と共通である。この場合、発電機iの軸共振周波数をfn(i)、電動機jの軸共振周波数をfr(j)とするとき、h(i,j)=fr(j)/fn(i)で定義する共振比h(i,j)の全ての組合せについて、h(i,j)≦0.9または、h(i,j)≧1.1を満足させることで、如何なる運転状態においても、電気系減衰係数の算出部30であるDeを1以上とし、システムの安定性を確保している。一例として、発電機3台,電動機3台を共通系統に接続したシステムを考える。具体的には、各発電機軸の共振周波数がfn(1)=10[Hz],fn(2)=8[Hz],fn(3)=11[Hz]、各電動機軸の共振周波数が、fr(1)=10[Hz],fr(2)=8[Hz],fr(3)=9[Hz]の場合には、fn(1)=fr(1)=10[Hz],fn(2)=fr(2)=8[Hz]となり、h(1,1)=h(2,2)=1となる。このような場合、実施形態1で示した手段により、fr(1)を10[Hz]から9[Hz]に変更し、fr(2)を8[Hz]から7.2[Hz]に変更することで、システム全体の安定性を確保することができる。
[Embodiment 2]
In the first embodiment, one generator and one motor are connected to each other. However, in this embodiment corresponding to a larger-scale plant, as shown in FIG. 7, there are i generators 2 and j motors 8, and these are connected to a common system. However, in FIG. 7, the reference numerals are the same as those in FIG. In this case, when the axial resonance frequency of the generator i is fn (i) and the axial resonance frequency of the motor j is fr (j), h (i, j) = fr (j) / fn (i) is defined. By satisfying h (i, j) ≦ 0.9 or h (i, j) ≧ 1.1 for all combinations of resonance ratios h (i, j), the electric system can be used in any operating state. the D e is a calculation unit 30 of the damping coefficient is 1 or more, and ensure the stability of the system. As an example, consider a system in which three generators and three motors are connected to a common system. Specifically, the resonance frequency of each generator shaft is fn (1) = 10 [Hz], fn (2) = 8 [Hz], fn (3) = 11 [Hz], and the resonance frequency of each motor shaft is When fr (1) = 10 [Hz], fr (2) = 8 [Hz], and fr (3) = 9 [Hz], fn (1) = fr (1) = 10 [Hz], fn (2) = fr (2) = 8 [Hz], and h (1,1) = h (2,2) = 1. In such a case, fr (1) is changed from 10 [Hz] to 9 [Hz] and fr (2) is changed from 8 [Hz] to 7.2 [Hz] by the means described in the first embodiment. By doing so, the stability of the entire system can be ensured.

〔実施形態3〕
前記実施形態1,2を実施するに際しては、発電機軸および電動機軸の共振周波数fn,frを正確に推定する手段が必要となる。そこで、本実施形態では、電動機8および発電機2に対して、M系列信号または、ホワイトノイズ等の広帯域周波数の加振トルク印加手段を提供する。図8において、加振トルクの印加先を発電機または電動機に切り替えるスイッチである切換えスイッチ100または101を備え、A側接点を選択すると発電機側に加振トルクが印加され、B側接点を選択すると、電動機側に加振トルクが印加される仕組みとなっている。また、切換えスイッチ100と101は物理的に連動する構造としてもよい。一方、電力変換器制御装置11は、PWM出力を含む電流制御器102,電流偏差演算器104,M系列信号もしくは、ホワイトノイズ等の信号発生源103,発電機制御用定数107,電動機制御用定数106,発電機/電動機の制御モード切換えスイッチ105で構成される。なお、発電機制御用定数107、および、電動機制御用定数106には、発電機または電動機に固有の巻線インダクタンス,巻線抵抗,誘起電圧定数,電気定格値等が含まれる。本構成を用いれば、発電機の軸共振周波数を推定したい場合には、前記切換えスイッチ100,101をA接点側に倒した上で、制御モード切換えスイッチ105で発電機制御用定数を選択すれば、発電機軸が加振される。この状態で、別途発電機軸に取り付けた速度検出器または、加速度センサの信号を読み取り、FFT解析すれば、発電機軸の共振周波数fnを知ることができる。切換えスイッチ100,101、および制御モード切換えスイッチ105を変更すれば、同様にして、電動機軸の共振周波数frも知ることができる。
[Embodiment 3]
In carrying out the first and second embodiments, means for accurately estimating the resonance frequencies fn and fr of the generator shaft and the motor shaft are required. Therefore, in the present embodiment, an excitation torque applying means having a broadband frequency such as an M-sequence signal or white noise is provided to the motor 8 and the generator 2. In FIG. 8, a changeover switch 100 or 101 is provided which switches the application destination of the excitation torque to the generator or the motor. When the A side contact is selected, the excitation torque is applied to the generator side and the B side contact is selected. Then, the excitation torque is applied to the motor side. Further, the changeover switches 100 and 101 may be structured to be physically linked. On the other hand, the power converter control device 11 includes a current controller 102 including a PWM output, a current deviation calculator 104, an M-sequence signal or signal source 103 such as white noise, a generator control constant 107, and a motor control constant 106. , A control mode changeover switch 105 for the generator / motor. The generator control constant 107 and the motor control constant 106 include a winding inductance, a winding resistance, an induced voltage constant, an electrical rating value, etc. specific to the generator or the motor. If this configuration is used, when it is desired to estimate the axial resonance frequency of the generator, the control switches 100 and 101 are brought down to the A contact side, and then the generator control constant is selected by the control mode changeover switch 105. The generator shaft is vibrated. In this state, the resonance frequency fn of the generator shaft can be known by reading the signal of the speed detector or acceleration sensor separately attached to the generator shaft and performing FFT analysis. If the changeover switches 100 and 101 and the control mode changeover switch 105 are changed, the resonance frequency fr of the motor shaft can be similarly known.

〔実施形態4〕
実施形態1では、電動機8または、発電機2の軸に、慣性回転体を装着することで、軸共振周波数を変化させていた。本実施形態では、図9に示す構成により、電動機と被駆動装置を接続する電動機軸56を交換可能とすることで、軸自体のバネ定数を変化させ、軸共振周波数を変化させる。具体的には、図9に示すように、軸共振周波数可変構造の電動機は、電動機筐体50と、電動機軸51と、被駆動装置58と、電動機と被駆動装置を接続する電動機軸56と、電動機軸51と電動機軸56を接続するカップリング55と、電動機軸56と被駆動装置58を接続するカップリング57を備えるとき、電動機軸56として、素材のヤング率や、軸直径の異なる物を、予め複数本準備しておき、交換することで、軸共振周波数を変化される。この操作により、電動機軸側の軸共振周波数と、発電機軸側の軸共振周波数が異なる値となる様に、調整を行う。
[Embodiment 4]
In the first embodiment, the shaft resonance frequency is changed by attaching an inertial rotating body to the shaft of the electric motor 8 or the generator 2. In the present embodiment, the configuration shown in FIG. 9 allows the motor shaft 56 connecting the motor and the driven device to be exchanged, thereby changing the spring constant of the shaft itself and changing the shaft resonance frequency. Specifically, as shown in FIG. 9, the motor having a variable shaft resonance frequency structure includes an electric motor casing 50, an electric motor shaft 51, a driven device 58, and an electric motor shaft 56 that connects the electric motor and the driven device. When the motor 55 includes a coupling 55 that connects the motor shaft 51 and the motor shaft 56, and a coupling 57 that connects the motor shaft 56 and the driven device 58, the motor shaft 56 has different Young's modulus and shaft diameter. The shaft resonance frequency is changed by preparing a plurality of these in advance and exchanging them. By this operation, adjustment is performed so that the shaft resonance frequency on the motor shaft side and the shaft resonance frequency on the generator shaft side become different values.

以上の具体例では、電動機側の駆動軸を交換可能とする例を示したが、同様に、発電機側の駆動軸を交換可能とするシステムを構成しても良い。   In the above specific examples, the example in which the drive shaft on the electric motor side can be replaced has been shown. Similarly, a system in which the drive shaft on the generator side can be replaced may be configured.

〔実施形態5〕
実施形態4では、電動機と被駆動装置を接続する電動機軸56の軸径や、素材のヤング率を変化させることで、軸共振周波数を変化させていた。これに対して、本実施形態5では、図10に示す構成により、電動機と被駆動装置を接続する電動機軸56の軸長を変化させることで、駆動軸のバネ定数を変化させ、軸共振周波数を変化させる。具体的には、図10に示すように、電動機筐体50の床面に水平レール59を設置し、電動機軸56として用いる、軸長の異なる他の駆動軸を、予め複数個準備しておき、前記水平レール59で調整して、前記他の駆動軸に交換することで、軸共振周波数を変化させる。軸長変化に伴う被駆動装置58と電動機筐体50との距離の変化には、電動機筐体50を被駆動装置58に対してレール上で前後させて固定することで対応可能とする。以上の具体例では、電動機側の駆動軸を交換可能とする例を示したが、同様に、発電機を水平レール上に置いて、発電機側の駆動軸を交換可能とするシステムを構成しても良い。
[Embodiment 5]
In the fourth embodiment, the shaft resonance frequency is changed by changing the shaft diameter of the motor shaft 56 that connects the motor and the driven device and the Young's modulus of the material. On the other hand, in the fifth embodiment, the spring constant of the drive shaft is changed by changing the axial length of the electric motor shaft 56 that connects the electric motor and the driven device with the configuration shown in FIG. To change. Specifically, as shown in FIG. 10, a horizontal rail 59 is installed on the floor surface of the motor housing 50, and a plurality of other drive shafts having different shaft lengths to be used as the motor shaft 56 are prepared in advance. The shaft resonance frequency is changed by adjusting with the horizontal rail 59 and exchanging with the other drive shaft. The change in the distance between the driven device 58 and the motor housing 50 due to the change in the axial length can be dealt with by fixing the motor housing 50 back and forth on the rail to the driven device 58. In the above specific examples, the example in which the drive shaft on the electric motor side can be replaced has been shown. Similarly, a system in which the generator is placed on a horizontal rail and the drive shaft on the generator side can be replaced is configured. May be.

〔実施形態6〕
実施形態1では、電動機8を両軸構造とし、被駆動対象と反対側の軸に、慣性回転体を装着することで軸共振周波数を変化させていた。これに対して、本実施形態6では、図11に示す構成により、駆動対象側の軸上に慣性回転体を装着することで、電動機の慣性モーメントを変化させ、軸共振周波数を変化させる。具体的には、図11において、電動機軸56上に装着する慣性回転体60として、慣性モーメントの異なる物を、予め複数個準備しておき、交換することで、軸共振周波数を変化させる。
[Embodiment 6]
In Embodiment 1, the electric motor 8 has a double-shaft structure, and the axial resonance frequency is changed by mounting an inertial rotating body on the shaft opposite to the driven object. On the other hand, in the sixth embodiment, with the configuration shown in FIG. 11, by mounting an inertia rotating body on the drive target side shaft, the moment of inertia of the motor is changed and the shaft resonance frequency is changed. Specifically, in FIG. 11, as the inertial rotating body 60 to be mounted on the motor shaft 56, a plurality of objects having different moments of inertia are prepared in advance and replaced to change the shaft resonance frequency.

1 ガスタービン
2 発電機
3,18 発電機軸
4,5 変圧器
6 系統
7 電力変換器
8 電動機
9,58 被駆動装置
10,20,51,53,56 電動機軸
11 電力変換器制御装置
12 電力変換器出力電流検出器
13 電力変換器出力電圧検出器
14 燃料制御装置
15 コンバータ
16 インバータ
17 平滑コンデンサ
19,21,52,54,60 慣性回転体
30 電気系減衰係数の算出部
40 発電機端子電圧の算出部
41 負荷有効電力の算出部
42 発電機負荷トルクの算出部
50 電動機筺体
55,57 カップリング
59 水平レール
100,101 切換えスイッチ
102 電流制御器
103 信号発生源
104 電流偏差演算器
105 制御モード切換えスイッチ
106 電動機制御用定数
107 発電機制御用定数
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Generator 3,18 Generator shaft 4,5 Transformer 6 System 7 Power converter 8 Electric motor 9,58 Driven device 10,20,51,53,56 Motor shaft 11 Power converter controller 12 Power conversion Output current detector 13 power converter output voltage detector 14 fuel control device 15 converter 16 inverter 17 smoothing capacitors 19, 21, 52, 54, 60 inertial rotating body 30 calculating unit 40 for electric system damping coefficient of generator terminal voltage Calculation unit 41 Load active power calculation unit 42 Generator load torque calculation unit 50 Motor housing 55, 57 Coupling 59 Horizontal rail 100, 101 Changeover switch 102 Current controller 103 Signal generation source 104 Current deviation calculator 105 Control mode switching Switch 106 Constant for motor control 107 Constant for generator control

Claims (12)

原動機と、前記原動機の駆動により発電する発電機と、前記発電機で発電された電力を所望の周波数の電力に変換する変換器と、前記変換器から供給される電力により駆動される電動機と、前記電動機により駆動される被駆動装置から構成された電動機駆動システムにおいて、
前記原動機の駆動力を前記発電機に伝える発電機軸の軸共振周波数と、前記電動機の駆動力を前記被駆動装置に伝える電動機軸の軸共振周波数とを異なる値にすることを特徴とする電動機駆動システム。
A motor, a generator that generates electric power by driving the motor, a converter that converts electric power generated by the generator into electric power of a desired frequency, and an electric motor that is driven by electric power supplied from the converter; In an electric motor drive system composed of a driven device driven by the electric motor,
An electric motor drive characterized in that the axial resonance frequency of the generator shaft that transmits the driving force of the prime mover to the generator and the axial resonance frequency of the electric motor shaft that transmits the driving force of the electric motor to the driven device have different values. system.
請求項1において、前記発電機軸の軸共振周波数を前記電動機軸の軸共振周波数で除算した値が0.9以下または1.1以上の値を取ることを特徴とする電動機駆動システム。   2. The motor drive system according to claim 1, wherein a value obtained by dividing the shaft resonance frequency of the generator shaft by the shaft resonance frequency of the motor shaft takes a value of 0.9 or less or 1.1 or more. 請求項1または2において、前記電動機軸の長さを調節し、前記電動機軸の軸共振周波数を変更することを特徴とする電動機駆動システム。   3. The electric motor drive system according to claim 1, wherein a length of the electric motor shaft is adjusted to change an axial resonance frequency of the electric motor shaft. 請求項1または2において、前記発電機軸の長さを調節し、前記発電機軸の軸共振周波数を変更することを特徴とする電動機駆動システム。   3. The electric motor drive system according to claim 1, wherein a length of the generator shaft is adjusted to change a shaft resonance frequency of the generator shaft. 請求項1または2において、前記電動機軸に単数または複数の慣性回転体を装着し、前記電動機軸の軸共振周波数を変更することを特徴とする電動機駆動システム。   3. The motor drive system according to claim 1 or 2, wherein one or a plurality of inertial rotating bodies are attached to the motor shaft, and the shaft resonance frequency of the motor shaft is changed. 請求項1または2において、前記発電機軸に単数または複数の慣性回転体を装着し、前記発電機軸の軸共振周波数を変更することを特徴とする電動機駆動システム。   3. The electric motor drive system according to claim 1, wherein a single or a plurality of inertial rotating bodies are attached to the generator shaft, and an axial resonance frequency of the generator shaft is changed. 請求項1または2において、前記電動機軸の材質または軸直径を変更することで、前記電動機軸の軸共振周波数を変更することを特徴とする電動機駆動システム。   3. The electric motor drive system according to claim 1, wherein a shaft resonance frequency of the electric motor shaft is changed by changing a material or a shaft diameter of the electric motor shaft. 請求項1または2において、前記発電機軸の材質または軸直径を変更することで、前記発電機軸の軸共振周波数を変更することを特徴とする電動機駆動システム。   3. The motor drive system according to claim 1, wherein the shaft resonance frequency of the generator shaft is changed by changing a material or a shaft diameter of the generator shaft. 請求項1乃至8において、前記発電機軸または電動機軸の軸共振周波数を推定する電力変換器制御装置を備えることを特徴とする電動機駆動システム。   9. The motor drive system according to claim 1, further comprising a power converter control device that estimates an axial resonance frequency of the generator shaft or the motor shaft. 請求項9において、前記電力変換器制御装置は、前記発電機軸または電動機軸に対して、M系列信号またはホワイトノイズを含む広帯域周波数の加振トルクを印加し、前記発電機軸または電動機軸の軸共振周波数を推定することを特徴とする電動機駆動システム。   The power converter control device according to claim 9, wherein the power converter control device applies an excitation torque having a broadband frequency including an M-sequence signal or white noise to the generator shaft or the motor shaft, and the shaft resonance of the generator shaft or the motor shaft. An electric motor drive system characterized by estimating a frequency. 請求項9または10において、前記電力変換器制御装置は、前記インバータに電流指令を行う電流制御器と、前記電流指令を行うための電流信号を発生させる信号発生源と、前記インバータの出力電流と前記電流信号の偏差を演算する偏差演算器とを備えることを特徴とする電動機駆動システム。   The power converter control device according to claim 9, wherein the power converter control device includes a current controller that issues a current command to the inverter, a signal generation source that generates a current signal for performing the current command, and an output current of the inverter. An electric motor drive system comprising: a deviation calculator that calculates a deviation of the current signal. 原動機の駆動力を発電機軸を介して発電機に伝えて前記発電機に発電させる工程と、前記発電機で発電された電力を変換器によって所望の周波数の電力に変換する工程と、前記変換器から供給される電力により電動機を駆動させる工程と、前記電動機の駆動力を前記発電機軸の軸共振周波数とは異なる値の軸共振周波数を持つ電動機軸を介して被駆動装置に伝えて前記被駆動装置を駆動させる工程からなる電動機駆動方法。   Transmitting a driving force of a prime mover to a generator via a generator shaft and causing the generator to generate power; converting power generated by the generator into power of a desired frequency by a converter; and the converter Driving the electric motor with electric power supplied from the motor, and transmitting the driving force of the electric motor to the driven device via an electric motor shaft having an axial resonance frequency different from the axial resonance frequency of the generator shaft. An electric motor driving method comprising a step of driving an apparatus.
JP2011116478A 2011-05-25 2011-05-25 Motor driving system and method Pending JP2012249342A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011116478A JP2012249342A (en) 2011-05-25 2011-05-25 Motor driving system and method
CN2012101598742A CN102801373A (en) 2011-05-25 2012-05-22 Motor driving system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116478A JP2012249342A (en) 2011-05-25 2011-05-25 Motor driving system and method

Publications (1)

Publication Number Publication Date
JP2012249342A true JP2012249342A (en) 2012-12-13

Family

ID=47200364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116478A Pending JP2012249342A (en) 2011-05-25 2011-05-25 Motor driving system and method

Country Status (2)

Country Link
JP (1) JP2012249342A (en)
CN (1) CN102801373A (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284704A (en) * 1992-03-31 1993-10-29 Toshiba Corp Brushless rotating electric machine
JPH06253564A (en) * 1993-02-25 1994-09-09 Ckd Corp Constant value setting method for motor resonance frequency damping filter
JPH07129034A (en) * 1993-09-10 1995-05-19 Konica Corp Photoreceptor driving device and method for controlling the same
JPH07152429A (en) * 1993-11-29 1995-06-16 Mitsubishi Heavy Ind Ltd Parameter identifying device
JPH0837800A (en) * 1994-07-26 1996-02-06 Shinko Electric Co Ltd Stable poser supply equipment of power system for closed circuit
JPH08124287A (en) * 1994-10-28 1996-05-17 Internatl Business Mach Corp <Ibm> Assembly structure of disk drive,disk drive and assembly method of disk drive
JPH10288191A (en) * 1997-04-16 1998-10-27 Daikin Ind Ltd Pump
JP2000152555A (en) * 1998-11-05 2000-05-30 Toshiba Fa Syst Eng Corp Power generator
JP2001045779A (en) * 1999-08-02 2001-02-16 Meidensha Corp Variable speed device
JP2001134139A (en) * 1999-11-09 2001-05-18 Ricoh Co Ltd Rotary driving device and image reader
JP2003111354A (en) * 2001-10-02 2003-04-11 Hitachi Ltd Ac generator with vacuum pump
JP2004114713A (en) * 2002-09-24 2004-04-15 Jatco Ltd Driving device for vehicle
JP2005312261A (en) * 2004-04-26 2005-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Method for discriminating combination stability of power generating facility and power converter method for determining combination stability of the power generating facility and power converter
JP2006315662A (en) * 2005-04-12 2006-11-24 Nissan Motor Co Ltd Hybrid drive device for vehicle
JP2007185014A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Control parameter calculation method and calculation program for motor controller, and that motor controller
JP2010283904A (en) * 2009-06-02 2010-12-16 Hitachi Ltd Power conversion apparatus, power conversion system and method for controlling the power conversion apparatus
JP2010283905A (en) * 2009-06-02 2010-12-16 Hitachi Ltd Power conversion apparatus, power conversion system and method for controlling the power conversion apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273560B2 (en) * 1999-03-23 2009-06-03 パナソニック株式会社 Motor control device
US7173399B2 (en) * 2005-04-19 2007-02-06 General Electric Company Integrated torsional mode damping system and method
FI121644B (en) * 2008-03-03 2011-02-15 Waertsilae Finland Oy Vibration damping arrangement
US8384338B2 (en) * 2009-01-30 2013-02-26 Eaton Corporation System and method for determining stator winding resistance in an AC motor using motor drives

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284704A (en) * 1992-03-31 1993-10-29 Toshiba Corp Brushless rotating electric machine
JPH06253564A (en) * 1993-02-25 1994-09-09 Ckd Corp Constant value setting method for motor resonance frequency damping filter
JPH07129034A (en) * 1993-09-10 1995-05-19 Konica Corp Photoreceptor driving device and method for controlling the same
JPH07152429A (en) * 1993-11-29 1995-06-16 Mitsubishi Heavy Ind Ltd Parameter identifying device
JPH0837800A (en) * 1994-07-26 1996-02-06 Shinko Electric Co Ltd Stable poser supply equipment of power system for closed circuit
JPH08124287A (en) * 1994-10-28 1996-05-17 Internatl Business Mach Corp <Ibm> Assembly structure of disk drive,disk drive and assembly method of disk drive
JPH10288191A (en) * 1997-04-16 1998-10-27 Daikin Ind Ltd Pump
JP2000152555A (en) * 1998-11-05 2000-05-30 Toshiba Fa Syst Eng Corp Power generator
JP2001045779A (en) * 1999-08-02 2001-02-16 Meidensha Corp Variable speed device
JP2001134139A (en) * 1999-11-09 2001-05-18 Ricoh Co Ltd Rotary driving device and image reader
JP2003111354A (en) * 2001-10-02 2003-04-11 Hitachi Ltd Ac generator with vacuum pump
JP2004114713A (en) * 2002-09-24 2004-04-15 Jatco Ltd Driving device for vehicle
JP2005312261A (en) * 2004-04-26 2005-11-04 Toshiba Mitsubishi-Electric Industrial System Corp Method for discriminating combination stability of power generating facility and power converter method for determining combination stability of the power generating facility and power converter
JP2006315662A (en) * 2005-04-12 2006-11-24 Nissan Motor Co Ltd Hybrid drive device for vehicle
JP2007185014A (en) * 2006-01-05 2007-07-19 Matsushita Electric Ind Co Ltd Control parameter calculation method and calculation program for motor controller, and that motor controller
JP2010283904A (en) * 2009-06-02 2010-12-16 Hitachi Ltd Power conversion apparatus, power conversion system and method for controlling the power conversion apparatus
JP2010283905A (en) * 2009-06-02 2010-12-16 Hitachi Ltd Power conversion apparatus, power conversion system and method for controlling the power conversion apparatus

Also Published As

Publication number Publication date
CN102801373A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
EP2020744B1 (en) Active damping for synchronous generator torsional oscillations
CN101164225B (en) Integrated torsional mode damping system and method
EP3048333A1 (en) Method and system for damping torsional oscillations
CN103016274A (en) Method and system for resonance dampening in wind turbines
US9543852B2 (en) Method and system for controlling a DC link voltage of a power converter connecting an electric generator of a wind turbine with a power grid
EP3454469B1 (en) Torque ripple reduction for a generator and wind turbine including the same
EP2346160A2 (en) Motor drive load damping
EP2073375A1 (en) Apparatus for avoiding torque components at critical frequencies in machine drive systems
JP5393238B2 (en) Electric motor drive system, electric motor control device, and electric motor drive method
JP2013527737A (en) Rectifier and inverter based torsional mode damping system and method
CN102906991B (en) Without transducer torsion mode damping system and method
JP2015116092A (en) Electric vehicle
US20150022132A1 (en) Method for operating an electrical machine
CN102835023B (en) Based on torsional mode damping system and the method for rectifier
KR101716250B1 (en) Drivetrain testing system
JP6632633B2 (en) Controller for asynchronous machine and method of operating asynchronous machine
CN110703030A (en) Electromagnetic compatibility testing system for motor in on-load working state
US8684338B2 (en) Active control of torsional vibration from an engine driven generator set
JP2012249342A (en) Motor driving system and method
KR20200007971A (en) Wind turbines with gearless generators and generator filters
US20230017735A1 (en) Method, an Arrangement and a Frequency Converter for Controlling Vibration of an Electric Machine
US20210351730A1 (en) Active damping of mechanical drivetrain oscillations using generator voltage regulator
Wolff et al. Identification and Resolution of a One-Times Slip Frequency Synchronous Motor Field Start Up Problem
KR20150047355A (en) Energy harvester and wireless sensor device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203