JP5393238B2 - Electric motor drive system, electric motor control device, and electric motor drive method - Google Patents

Electric motor drive system, electric motor control device, and electric motor drive method Download PDF

Info

Publication number
JP5393238B2
JP5393238B2 JP2009108648A JP2009108648A JP5393238B2 JP 5393238 B2 JP5393238 B2 JP 5393238B2 JP 2009108648 A JP2009108648 A JP 2009108648A JP 2009108648 A JP2009108648 A JP 2009108648A JP 5393238 B2 JP5393238 B2 JP 5393238B2
Authority
JP
Japan
Prior art keywords
motor
torque
electric motor
value
vibration component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009108648A
Other languages
Japanese (ja)
Other versions
JP2010259275A (en
Inventor
浩一郎 永田
敏男 片山
治郎 根本
佳敏 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009108648A priority Critical patent/JP5393238B2/en
Priority to CN2010101688345A priority patent/CN101877569B/en
Publication of JP2010259275A publication Critical patent/JP2010259275A/en
Application granted granted Critical
Publication of JP5393238B2 publication Critical patent/JP5393238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、電動機駆動システム,電動機制御装置及び電動機の駆動方法に係り、特に、電動機に接続された回転機器の軸(シャフト)の振動を低減することに好適な電動機駆動システム,電動機制御装置及び電動機の駆動方法に関する。   The present invention relates to an electric motor drive system, an electric motor control device, and an electric motor drive method, and in particular, an electric motor drive system, an electric motor control device, and an electric motor drive system suitable for reducing vibration of a shaft of a rotating device connected to the electric motor. The present invention relates to a method for driving an electric motor.

電力変換器で電動機を可変速駆動し、減速ギア,増速ギアなどを介してファン,ポンプ,圧縮機などの回転機器を運転する電動機駆動システムにおいては、電動機と回転機器間の軸(シャフト)に特定周波数の振動成分が発生する場合がある。この振動周波数は機器に固有のものであり、電力変換器駆動では、この固有周波数の振動が機械に悪影響を与えないように制御することが必要である。   In an electric motor drive system that drives a rotating device such as a fan, pump, compressor, etc. via a reduction gear, an increasing gear, etc., by driving the electric motor at a variable speed with a power converter, a shaft (shaft) between the electric motor and the rotating device In some cases, a vibration component having a specific frequency is generated. This vibration frequency is unique to the device, and it is necessary for the power converter drive to control the vibration of this natural frequency so as not to adversely affect the machine.

このため、振動が大きくなる特定周波数での運転時間を短く(スキップ)するように、電力変換器の出力周波数を制御する技術が知られている。また、特定周波数近傍での駆動において、上記振動成分を打ち消すため、例えば、特開2000−41400号公報や特開平4−319715号公報に記載されているように、速度変動やトルク変動成分を推定し、それらの脈動を打ち消すための逆電動機トルクをかけるように、電力変換器を制御する技術が知られている。   For this reason, a technique for controlling the output frequency of the power converter so as to shorten (skip) the operation time at a specific frequency at which vibrations increase is known. Further, in order to cancel the vibration component when driving near a specific frequency, for example, as described in Japanese Patent Application Laid-Open No. 2000-41400 and Japanese Patent Application Laid-Open No. 4-319715, speed fluctuation and torque fluctuation components are estimated. And the technique which controls a power converter so that the reverse motor torque for canceling those pulsations may be applied is known.

特開2000−41400号公報JP 2000-41400 A 特開平4−319715号公報JP-A-4-319715

しかしながら、従来技術においては、速度推定や軸振動トルクの推定には、電動機や機械系の情報が不可欠である。これらの定数を事前に入手、もしくは測定する必要があり、それらの値が実値と違っていた場合、逆に振動を助長させるようなトルクが発生する可能性がある。また、上記推定には制御演算が複雑になり、制御遅れが顕著となった場合には、振動を助長させるようなトルクが発生する可能性がある。   However, in the prior art, information on the electric motor and the mechanical system is indispensable for speed estimation and shaft vibration torque estimation. It is necessary to obtain or measure these constants in advance, and if these values are different from the actual values, there is a possibility of generating torque that promotes vibration. Further, when the control is complicated in the above estimation and the control delay becomes remarkable, there is a possibility that a torque that promotes vibration may be generated.

本発明では、上記問題点に鑑み、適切に振動成分の抑制が可能な電動機駆動システム,電動機制御装置及び電動機の駆動方法を提供することにある。   In view of the above problems, an object of the present invention is to provide an electric motor drive system, an electric motor control device, and an electric motor drive method capable of appropriately suppressing vibration components.

上記目的を達成するために、本発明では、前記電動機で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、前記電動機の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度よりも大きくも且つ180度よりも小さく進むよう電動機を駆動するための電圧を制御する構成とした。 In order to achieve the above object, in the present invention, the phase of the vibration component included in the motor torque or the motor torque current generated in the motor is the phase of the vibration component of the same frequency included in the electrical angular frequency of the motor. On the other hand, the voltage for driving the electric motor is controlled so as to advance larger than 90 degrees and smaller than 180 degrees .

より具体的には、電動機の電流値90度以上進むようにする場合、上記電力変換器の出力電圧を補正する出力電圧補正手段を設けた。また、上記出力電圧補正手段は、90度以上進ませるための電圧指令補正値を演算するトルク進み電圧補正値演算部と、該電圧補正値を用いて、電圧指令値を補正する補正部によって構成される。また、上記トルク進み電圧補正値演算部は、比例部、もしくは比例部×一次遅れ部、もしくは(比例部−微分部)、もしくは比例部×一次遅れ部×不完全微分部、もしくは(比例部−微分部)×不完全微分部で構成されても良い。   More specifically, output voltage correction means for correcting the output voltage of the power converter is provided when the current value of the motor is advanced by 90 degrees or more. The output voltage correction means includes a torque advance voltage correction value calculation unit that calculates a voltage command correction value for advancing 90 degrees or more, and a correction unit that corrects the voltage command value using the voltage correction value. Is done. Further, the torque advance voltage correction value calculation unit is a proportional unit, or a proportional unit × first-order lag unit, or (proportional unit-differential unit), or a proportional unit × first-order lag unit × incomplete differential unit, or (proportional unit− (Differentiating part) × incomplete differentiation part.

本発明によれば、適切に振動成分の抑制が可能となる。具体的な例に係る発明では、電力変換器で電動機を可変速駆動し、減速ギア,増速ギアなどを介してファン,ポンプ,圧縮機などの回転機器を運転する電動機駆動システムにおいて、電動機と回転機器間の軸(シャフト)に発生する特定周波数の振動成分を、詳細な電動機や機械定数を必要とせず、簡単な制御系で実現することができる。   According to the present invention, vibration components can be appropriately suppressed. In an invention according to a specific example, in an electric motor drive system in which a motor is driven at a variable speed by a power converter and a rotating device such as a fan, a pump, or a compressor is operated via a reduction gear, an increase gear, etc., A vibration component having a specific frequency generated on the shaft (shaft) between the rotating devices can be realized with a simple control system without requiring a detailed electric motor or a mechanical constant.

実施例1の電動機駆動システムの構成図である。It is a block diagram of the electric motor drive system of Example 1. 本発明の動作に係わり、90度以上位相をずらす効果について示した図である。It is a figure showing the effect which shifts a phase 90 degrees or more in connection with operation | movement of this invention. 実施例1において、トルク進み電圧補正演算部11を含む系のブロック図である。2 is a block diagram of a system including a torque advance voltage correction calculation unit 11 in Embodiment 1. FIG. 実施例1において、−ωr(電動機の回転角周波数)からIq(トルク電流)の伝達ブロックを示す。In Example 1, the transmission block of Iq (torque current) from -ωr (rotational angular frequency of the electric motor) is shown. 実施例1において、−ωr(電動機の回転角周波数)からIq(トルク電流)の位相差を示す図である。In Example 1, it is a figure which shows the phase difference of Iq (torque current) from -omegar (rotational angular frequency of an electric motor). 電気角周波数ωrと電動機のトルクτeもしくはトルク電流IqFBとの位相関係を示す図である。It is a figure which shows the phase relationship of electrical angular frequency (omega) r and the torque (tau) e or torque current IqFB of an electric motor. 実施例2の電動機駆動システムの構成図である。It is a block diagram of the electric motor drive system of Example 2.

以下本発明の詳細について図面を用いながら説明する。   The details of the present invention will be described below with reference to the drawings.

本実施例の電動機駆動システムについて、図1を用いて説明する。図1は本実施例を含む、電動機駆動システムの全体構成を示す。   The motor drive system of the present embodiment will be described with reference to FIG. FIG. 1 shows the overall configuration of an electric motor drive system including this embodiment.

図1では、交流電源1により電力変換器2に電力が供給される。電力変換器2で電動機3を可変速駆動しトルク伝達部4を介して負荷器5を運転する。電力変換器2は電流検出部6による電流値を基に、制御部10により制御される。電力変換器2の出力電圧により電動機3が駆動される。電動機の回転トルクはトルク伝達部4の機械軸,ギア(減速ギア,増速ギア等)などを介し負荷器5に伝達される。負荷器5は、例えばファン,ポンプ,圧縮機などの回転機器などである。制御部10では、本発明に係わる制御ブロックについて示しており、以下に詳細を説明する。   In FIG. 1, power is supplied to the power converter 2 by the AC power source 1. The electric motor 3 is driven at a variable speed by the power converter 2 and the loader 5 is operated via the torque transmission unit 4. The power converter 2 is controlled by the control unit 10 based on the current value from the current detection unit 6. The electric motor 3 is driven by the output voltage of the power converter 2. The rotational torque of the electric motor is transmitted to the loader 5 through the mechanical shaft of the torque transmission unit 4 and gears (deceleration gear, speed-up gear, etc.). The loader 5 is, for example, a rotating device such as a fan, a pump, or a compressor. The control unit 10 shows a control block according to the present invention and will be described in detail below.

座標変換部12では、電流検出部6からの交流電流信号をd(磁束軸),q(トルク軸)方向の直流量に座標変換する。この、d,q座標系を用いて行うベクトル制御が本制御のベースとなっている。ベクトル制御は一般的であるため、詳しい内容は割愛する。座標変換に用いる位相θは周波数指令ω1*を用い、位相演算部15で演算する。電圧指令演算部14では、励磁電流指令Id*,トルク電流指令Iq*,周波数指令ω1*を基に、直流電圧指令Vd*,Vq*を演算する。尚、電圧指令演算部14では、電流指令のみでなく、トルク指令なども用いる事もある(図では省略)。トルク進み電圧補正値演算部11では、トルク電流指令Iq*,トルク電流検出値IqFBを基に、q軸電圧補正値ΔVq*を演算する。演算されたΔVq*は、電圧指令演算部14の出力であるVq*を補正する。電圧指令演算部14で作られた直流電圧指令Vd*,Vq*は、座標変換部13で交流電圧指令に変換される。交流電圧指令はPWMゲートパルス生成部16で電力変換器2のスイッチング素子を制御するゲートパルスに変換され、電力変換器2に送られる。尚、位相演算部15では、2種類のθを出力しているが、これは、交流出力電圧に座標変換するための座標変換部13で用いるθと、交流電流検出値を座標変換する座標変換部12で用いるθを各々出しているためである。これらは検出や演算の遅れなどを考慮して各々決められる。 The coordinate conversion unit 12 performs coordinate conversion of the alternating current signal from the current detection unit 6 into a direct current amount in the d (flux axis) and q (torque axis) directions. This vector control using the d, q coordinate system is the basis of this control. Since vector control is common, the detailed contents are omitted. The phase θ used for coordinate transformation is calculated by the phase calculation unit 15 using the frequency command ω1 * . The voltage command calculation unit 14 calculates DC voltage commands Vd * and Vq * based on the excitation current command Id * , the torque current command Iq * , and the frequency command ω1 * . The voltage command calculation unit 14 may use not only a current command but also a torque command (not shown in the figure). The torque advance voltage correction value calculation unit 11 calculates a q-axis voltage correction value ΔVq * based on the torque current command Iq * and the torque current detection value IqFB. The calculated ΔVq * corrects Vq * that is the output of the voltage command calculation unit 14. The DC voltage commands Vd * and Vq * created by the voltage command calculation unit 14 are converted into an AC voltage command by the coordinate conversion unit 13. The AC voltage command is converted into a gate pulse for controlling the switching element of the power converter 2 by the PWM gate pulse generator 16 and sent to the power converter 2. The phase calculation unit 15 outputs two types of θ, which are θ used in the coordinate conversion unit 13 for coordinate conversion to AC output voltage and coordinate conversion for coordinate conversion of the AC current detection value. This is because each θ used in the section 12 is output. These are determined in consideration of detection and calculation delays.

トルク進み電圧補正演算部11では、電動機の回転角周波数ωrに含まれる振動成分に対し、トルク電流IqFBもしくは電動機トルクτeに含まれる振動成分が90度以上進むように、ΔVq*を設定する。90度以上進ませることで、機械系の振動を抑制することができる。この理由については図2を用いて説明する。図2(a)は電動機角周波数ωrから電動機トルクτeまでの振動に寄与するループである。図中の記号については、各々、rσは電動機一次及び二次抵抗の一次側換算した合成成分、Lσは電動機漏れインダクタンスの一次及び二次成分の一次側換算した合成成分、Pは極数、Mは相互インダクタンス、L2は電動機相互インダクタンスと漏れ二次インダクタンスの和、Φ2dは電動機d軸の二次磁束,JMは電動機慣性モーメント,sは微分演算子を示す。図2(a)では、電動機に印加されるq軸電圧成分Vqと電動機の誘起電圧emfとの差分相当の電位差に電動機のインピーダンス成分rσ+Lσ・sを介し、トルク電流Iqが流れる。次に、Iqが電動機トルクτeを発生させ、機械側からのトルクτsと、電動機慣性モーメントJMによって、電動機の回転角周波数ωrが決まる。次に、τeに含まれる振動成分がωrに含まれる振動成分に対し90度以上または90度以内進んだ場合の等価ループを図2(b−1),図2(b−2)に各々記す。90度以上、以内の位相のずれを比例ゲインβ,時定数αの一次遅れを用いて各々表す。これらを等価変換すると、図2(c−1),図2(c−2)のようになる。ここで、τeの位相が90度以上進んでいる場合は、図2(c−1)で電気的減衰係数に相当するK″が正となり、減衰されるが、90度以内進みの場合、図2(c−2)では、減衰係数に相当するK″が負となり、振動が増加する。よって、ωrに含まれる振動成分に対し、τe(もしくはトルク電流Iq)に含まれる振動成分が90度以上進むように制御する事で、機械系のトルクτsの振動を抑制することができる。 The torque advance voltage correction calculation unit 11 sets ΔVq * so that the vibration component included in the torque current IqFB or the motor torque τe advances by 90 degrees or more with respect to the vibration component included in the rotational angular frequency ωr of the motor. By advancing 90 degrees or more, vibration of the mechanical system can be suppressed. The reason for this will be described with reference to FIG. FIG. 2A is a loop that contributes to vibration from the motor angular frequency ωr to the motor torque τe. Regarding the symbols in the figure, rσ is a combined component converted to the primary side of the motor primary and secondary resistance, Lσ is a combined component converted to the primary side of the primary and secondary components of the motor leakage inductance, P is the number of poles, M Is the mutual inductance, L2 is the sum of the motor mutual inductance and the leakage secondary inductance, Φ2d is the secondary magnetic flux of the motor d-axis, JM is the motor inertia moment, and s is the differential operator. In FIG. 2A, a torque current Iq flows through a potential difference corresponding to the difference between the q-axis voltage component Vq applied to the motor and the induced voltage emf of the motor via the impedance component rσ + Lσ · s of the motor. Next, Iq generates the motor torque τe, and the rotational angular frequency ωr of the motor is determined by the torque τs from the machine side and the motor inertia moment JM. Next, an equivalent loop in the case where the vibration component included in τe advances 90 degrees or more or within 90 degrees with respect to the vibration component included in ωr is shown in FIGS. 2 (b-1) and 2 (b-2), respectively. . A phase shift within 90 degrees or more is represented by using a proportional gain β and a first-order lag of a time constant α. When these are equivalently converted, they are as shown in FIGS. 2 (c-1) and 2 (c-2). Here, when the phase of τe has advanced by 90 degrees or more, K ″ corresponding to the electrical attenuation coefficient becomes positive in FIG. 2C-1 and is attenuated. In 2 (c-2), K ″ corresponding to the damping coefficient becomes negative and vibration increases. Therefore, by controlling the vibration component included in τe (or torque current Iq) to be 90 degrees or more with respect to the vibration component included in ωr, the vibration of the mechanical torque τs can be suppressed.

次に、トルク進み電圧補正演算部11の設定方法について述べる。図3にトルク進み電圧補正演算部11を含む系のブロック図、図4に、−ωrからIqの伝達ブロックを示す。前述の様にωrに対するIqFBの位相∠IqFB/ωrを90度以上進み(本図の場合、∠Iq/−ωrを90度以内遅れ)にすれば、振動は低減できる。図4の伝達関数Gは数1のようになる。トルク進み電圧補正演算部11のゲインはKとした。   Next, a setting method of the torque advance voltage correction calculation unit 11 will be described. FIG. 3 is a block diagram of a system including the torque advance voltage correction calculation unit 11, and FIG. 4 shows a transmission block from −ωr to Iq. As described above, if the phase / IqFB / ωr of IqFB with respect to ωr is advanced 90 degrees or more (in this case, ∠Iq / −ωr is delayed within 90 degrees), the vibration can be reduced. The transfer function G in FIG. The gain of the torque advance voltage correction calculation unit 11 is K.

G=A/((rσ+K)+Lσ・s) (尚、A=P/2×M/L2×Φ2d)…(数1)     G = A / ((rσ + K) + Lσ · s) (where A = P / 2 × M / L2 × Φ2d) (Equation 1)

ゲインGは数2のように表され、Kを大きくすることで小さくなる。   The gain G is expressed as in Equation 2, and decreases as K increases.

|G(jω)|=A/√((rσ+K)+Lσ・ω) …(数2)     | G (jω) | = A / √ ((rσ + K) + Lσ · ω) (Expression 2)

また、−ωrからIqFBまでの位相差を数3に表す。   Further, the phase difference from −ωr to IqFB is expressed by Equation 3.

∠G(jω)=−tan-1(ω・Tσ′) (Tσ′≡Lσ/(rσ+K)) …(数3) ∠G (jω) = − tan −1 (ω · Tσ ′) (Tσ′≡Lσ / (rσ + K)) (Equation 3)

数3では、時定数Tσ′が数3の様になる。電動機電流の変動時定数であるTσ(=Lσ/rσ)に対し、Tσ′(=Lσ/(rσ+K))はKの分だけ小さくなる。これは、Kを大きくすることで−ωrからIqFBまでの遅れが小さくなることを示す。言い換えれば、Kを大きくすることで、ωrからIqFBまでの遅れが大きくなり(図5参照)、抑振効果が期待できる。   In Equation 3, the time constant Tσ ′ becomes as in Equation 3. Tσ ′ (= Lσ / (rσ + K)) becomes smaller by K as compared to Tσ (= Lσ / rσ) which is a fluctuation time constant of the motor current. This indicates that the delay from −ωr to IqFB is reduced by increasing K. In other words, by increasing K, the delay from ωr to IqFB increases (see FIG. 5), and a suppression effect can be expected.

このように、トルク進み電圧補正演算部11では、電動機3で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、電動機3の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度以上進むような、比例成分Kを設定するのである。なお、比例成分Kを大きくすると、システム全体が不安定になることより、機械系のトルクτsの振動の振幅が予め決められた所定以上となった場合に90度以上進ませるような比例成分Kを設定し、それ以外では、比例成分Kを90度以上進ませるような値よりも小さく設定しても良い。   Thus, in the torque advance voltage correction calculation unit 11, the phase of the vibration component included in the motor torque or the motor torque current generated in the motor 3 is the phase of the vibration component of the same frequency included in the electrical angular frequency of the motor 3. On the other hand, the proportional component K is set so as to advance 90 degrees or more. If the proportional component K is increased, the entire system becomes unstable, and therefore the proportional component K is advanced 90 degrees or more when the amplitude of vibration of the mechanical torque τs exceeds a predetermined value. Otherwise, it may be set smaller than a value that causes the proportional component K to advance 90 degrees or more.

具体的な動作について図6を用いて説明する。図6(a)において、電動機3の電気角周波数ωrを一定値である例えば60Hzに制御したいと仮定する。しかしながら、減速ギア,増速ギアなどを介して負荷器5を運転しているので、これらの影響を受けて、電動機3と負荷器5の軸(シャフト)に振動が発生し、電動機3の電気角周波数ωrは周期的(周期T)に振幅60Hz±αの間で振動する。すなわち、図6(a)において、周期Tで振幅αの振動成分を持つのである。これに対して、図6(b)では、電動機のトルクτeもしくはトルク電流IqFBにおいて、電動機3の電気角周波数ωrの振動成分と同一周波数(周期T)の成分を持ち、かつ、電気角周波数ωrの振動成分よりも90度以上進ませるようにするのである。   A specific operation will be described with reference to FIG. In FIG. 6A, it is assumed that the electrical angular frequency ωr of the motor 3 is to be controlled to a constant value, for example, 60 Hz. However, since the loader 5 is operated via the reduction gear, the speed increase gear, etc., vibrations are generated in the motor 3 and the shaft of the loader 5 due to these influences, and the electric power of the motor 3 is The angular frequency ωr oscillates periodically (period T) with an amplitude of 60 Hz ± α. That is, in FIG. 6A, it has a vibration component with an amplitude α at a period T. On the other hand, in FIG. 6B, the torque τe or torque current IqFB of the motor has a component having the same frequency (cycle T) as the vibration component of the electrical angular frequency ωr of the motor 3, and the electrical angular frequency ωr. It is made to advance more than 90 degrees from the vibration component.

以上より、本実施例では、電動機回転角周波数の振動成分に対し、トルク電流もしくはトルクの振動成分の位相を90度以上進めることで、振動の減衰係数を大きくすることができる。また、制御には詳細な機械系の定数は用いておらず、簡易に制御系を設定することが可能である。   As described above, in this embodiment, the vibration damping coefficient can be increased by advancing the phase of the torque current or the vibration component of the torque by 90 degrees or more with respect to the vibration component of the motor rotation angular frequency. Further, detailed mechanical system constants are not used for the control, and the control system can be easily set.

次に、本発明の第2の実施例について、第1の実施例と異なる点について説明する。第1の実施例では、トルク進み電圧補正演算部11において、ゲインKを上げた際、数2の系全体のゲイン|G|が下がるため、振動に対して感度が下がる場合がある。そこで、本実施例では、系全体のゲイン|G|を下げずに、位相のみを進める方法として、ゲインKを数4のような形にする。すなわち、トルク進み電圧補正演算部11において、電動機3で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、電動機3の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度以上進むようなK2,Lσ′等を設定するのである。   Next, a difference between the second embodiment of the present invention and the first embodiment will be described. In the first embodiment, when the gain lead K is increased in the torque advance voltage correction calculation unit 11, the gain | G | of the entire system of Formula 2 is lowered, so that sensitivity to vibration may be lowered. Therefore, in this embodiment, the gain K is expressed as shown in Equation 4 as a method of advancing only the phase without reducing the gain | G | of the entire system. That is, in the torque advance voltage correction calculation unit 11, the phase of the vibration component included in the motor torque generated in the motor 3 or the motor torque current is the same as the phase of the vibration component of the same frequency included in the electrical angular frequency of the motor 3. K2, Lσ ′, etc. that advance 90 degrees or more are set.

K→K2−Lσ′・s …(数4)     K → K2−Lσ ′ · s (Equation 4)

これにより、数1,数2,数3は数5,数6,数7のようになる。   As a result, Equation 1, Equation 2, and Equation 3 become Equation 5, Equation 6, and Equation 7, respectively.

G=A/((rσ+K2)+(Lσ−Lσ′)・s) …(数5)
|G(jω)|=A/√((rσ+K2)+(Lσ−Lσ′)・ω) …(数6)
∠G(jω)=−tan-1(ω・Tσ″)
(Tσ″≡(Lσ−Lσ′)/(rσ+K2)) …(数7)
G = A / ((rσ + K2) + (Lσ−Lσ ′) · s) (Expression 5)
| G (jω) | = A / √ ((rσ + K2) + (Lσ−Lσ ′) · ω) (Expression 6)
∠G (jω) = − tan −1 (ω · Tσ ″)
(Tσ ″ ≡ (Lσ−Lσ ′) / (rσ + K2)) (Expression 7)

このため、Lσ′を調整することにより、K2を大きくしても、Lσ′をLσに近づけることで、ゲインは変えずに位相のみを進めることができる。   For this reason, even if K2 is increased by adjusting Lσ ′, only the phase can be advanced without changing the gain by bringing Lσ ′ closer to Lσ.

換言すれば、トルク進み電圧補正演算部11において、K2を第1の実施例におけるKよりも小さな値としつつ、電動機3で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、電動機3の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度以上進むようなLσ′を設定しておくのである。ここで、K2−Lσ′・sを実現する場合、sは微分を行っても良いし、もしくは以下のように一次遅れを用いて得ることができる。   In other words, in the torque advance voltage correction calculation unit 11, the phase of the vibration component included in the motor torque generated by the motor 3 or the motor torque current is set so that K2 is smaller than K in the first embodiment. Lσ ′ is set so as to advance 90 degrees or more with respect to the phase of the vibration component of the same frequency included in the electrical angular frequency of the electric motor 3. Here, when K2−Lσ ′ · s is realized, s may be differentiated or obtained using a first-order lag as follows.

1/(K2+Lσ′・s)−>(K2−j・ω・Lσ′)/(K22+Lσ′2・ω2)
−>(K2−Lσ′・s)/(K22+Lσ′2・ω2)
=>K2−Lσ′・s=(K22+Lσ′2・ω2)/(K2+Lσ′・s) …(数8)
1 / (K2 + Lσ ′ · s) −> (K2−j · ω · Lσ ′) / (K2 2 + Lσ ′ 2 · ω 2 )
-> (K2−Lσ ′ · s) / (K2 2 + Lσ ′ 2 · ω 2 )
=> K2−Lσ ′ · s = (K2 2 + Lσ ′ 2 · ω 2 ) / (K2 + Lσ ′ · s) (Equation 8)

以上より、トルク進み電圧補正演算部11のゲインは実施例1のように、比例系Kで設定すればωrの振動成分に対し、Iqの振動成分の位相を90度以上進めることは可能であるが、更に数8のように、比例系×一時遅れ系で設定することで、ゲインを下げずに位相をずらすことになりより効果的である。また、数8の様にではなく、数4のように直接、比例系−微分系でゲインを設定しても良い。また、本ゲインにより、機械系の固有振動数よりも低周波数(数Hz)の振動成分が生じた場合は、低周波数カット用の不完全微分系をさらに加えても良い。また、本実施例では、トルク電流検出値とトルク電流指令値を用いているが、トルク検出値とトルク指令値を用いても同様の効果を得ることができる。   As described above, if the gain of the torque advance voltage correction calculation unit 11 is set by the proportional system K as in the first embodiment, the phase of the vibration component of Iq can be advanced by 90 degrees or more with respect to the vibration component of ωr. However, by setting the proportional system × temporary delay system as shown in Equation 8, the phase is shifted without lowering the gain, which is more effective. Further, the gain may be set directly in the proportional system-differential system as in Expression 4 instead of as in Expression 8. Further, when a vibration component having a frequency (several Hz) lower than the natural frequency of the mechanical system is generated by this gain, an incomplete differential system for low frequency cut may be further added. In this embodiment, the torque current detection value and the torque current command value are used, but the same effect can be obtained even if the torque detection value and the torque command value are used.

尚、回転角周波数の振動成分とトルク電流もしくはトルクの振動成分がきれいな正弦波になっていない場合、波形を積分して得られる平均値と波形の交差する点をゼロ点として、その位相差を見れば、トルク電流もしくはトルクの振動波形が、回転角周波数の振動波形に対し、90度以上遅れているかどうかの判断は可能である。もしくは、回転電気角周波数の振動波形の最大値ピーク間を180度とし、同様に、トルク電流もしくはトルクの振動周波数の振動波形の最大値ピーク間を180度とし、上記トルク電流もしくはトルクの振動波形の最大値ピークの、上記電気角周波数の振動波形から得られた最大値ピークに対する進み角を見てもよい。   If the vibration component of the rotational angular frequency and the torque current or the vibration component of the torque are not clean sine waves, the average value obtained by integrating the waveform and the point where the waveform intersects is taken as the zero point, and the phase difference is calculated. If it sees, it can be judged whether the torque current or the vibration waveform of a torque is over 90 degree | times with respect to the vibration waveform of a rotation angular frequency. Alternatively, the maximum value peak of the vibration waveform of the rotating electrical angular frequency is 180 degrees, and similarly, the maximum value peak of the vibration waveform of the torque current or the vibration frequency of the torque is 180 degrees. The advance angle of the maximum value peak with respect to the maximum value peak obtained from the vibration waveform of the electrical angular frequency may be seen.

以上より、本実施例では、電動機回転角周波数の振動成分に対し、トルク電流もしくはトルクの振動成分の位相を90度以上進めることで、振動の減衰係数を大きくすることができる。この際、第1の実施例に比べ、系全体のゲインを下げることがないため、より効果的である。また、制御には機械系の定数は用いておらず、電動機の抵抗とインダクタンスの成分がわかれば良く、簡易に制御系を設定することが可能である。   As described above, in this embodiment, the vibration damping coefficient can be increased by advancing the phase of the torque current or the vibration component of the torque by 90 degrees or more with respect to the vibration component of the motor rotation angular frequency. In this case, compared with the first embodiment, the gain of the entire system is not lowered, which is more effective. In addition, mechanical system constants are not used for the control, and it is only necessary to know the resistance and inductance components of the motor, and the control system can be easily set.

次に、本発明の第3の実施例について、第1及び第2の実施例と異なる点について説明する。図7では、直流電圧指令を補正していたのに対し、本実施例では、交流電圧指令を補正する。交流電流指令値演算部23では、直流電流指令Id*,Iq*を、位相演算部15からの位相θを用いて、座標変換等により3相交流電流指令値に変換する。トルク進み交流電圧補正値演算部22では、上記の交流電流指令値と、電流検出部6で検出された交流電流検出値を用い、例えば、各相(U,V,W)の指令値と検出値の差分を基に、実施例1,実施例2と同様に、比例系,比例系×一次遅れ系,(比例系−微分系)、及び各々に不完全微分系をかけたもので、各々各相の交流電圧補正値を演算する。また、本実施例の交流電圧補正と、図1の直流電圧補正の両方を行っても良い。 Next, a difference between the third embodiment of the present invention and the first and second embodiments will be described. In FIG. 7, the DC voltage command is corrected. In this embodiment, the AC voltage command is corrected. The alternating current command value calculation unit 23 converts the direct current commands Id * and Iq * into a three-phase alternating current command value by coordinate conversion or the like using the phase θ from the phase calculation unit 15. The torque advance AC voltage correction value calculation unit 22 uses the above-described AC current command value and the AC current detection value detected by the current detection unit 6, for example, the command value and detection of each phase (U, V, W). Based on the difference of values, in the same manner as in the first and second embodiments, the proportional system, the proportional system × first-order lag system, (proportional system-differential system), and each obtained by multiplying the incomplete differential system, The AC voltage correction value for each phase is calculated. Moreover, you may perform both AC voltage correction of a present Example, and DC voltage correction of FIG.

以上より、本実施例では、交流成分の補正を行うことで、第1及び第2の実施例と同様、電動機回転角周波数の振動成分に対し、トルク電流もしくはトルクの振動成分の位相を90度以上進めることにより、簡易に機械系の振動成分を減衰させることができる。   As described above, in this embodiment, by correcting the alternating current component, the phase of the torque current or the vibration component of the torque is 90 degrees with respect to the vibration component of the motor rotation angular frequency, as in the first and second embodiments. By proceeding as described above, the vibration component of the mechanical system can be easily damped.

1 交流電源
2 電力変換器
3 電動機
4 トルク伝達部
5 負荷器
6 電流検出部
10 制御部
11 トルク進み電圧補正値演算部
12,13 座標変換部
14 電圧指令演算部
15 位相演算部
16 PWMゲートパルス生成部
21 交流電圧補正部
22 トルク進み交流電圧補正値演算部
23 交流電流指令値演算部
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Power converter 3 Electric motor 4 Torque transmission part 5 Load device 6 Current detection part 10 Control part 11 Torque advance voltage correction value calculation part 12, 13 Coordinate conversion part 14 Voltage command calculation part 15 Phase calculation part 16 PWM gate pulse Generation unit 21 AC voltage correction unit 22 Torque advance AC voltage correction value calculation unit 23 AC current command value calculation unit

Claims (9)

電動機の電流値に応じて前記電動機を駆動するための電圧を制御する電力変換器を有する電動機駆動システムにおいて、前記電力変換器は、前記電動機を駆動するための電圧を制御するものであって、前記電動機のトルク電流値を検出する手段と、一時遅れ部あるいは微分部を含んだループ系で前記トルク電流値を処理することで、前記電動機で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、前記電動機の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度よりも大きくも且つ180度よりも小さく進むように前記電力変換器にパルス信号を出力する制御部を有することを特徴とする、電動機駆動システム。
In a motor drive system having a power converter that controls a voltage for driving the motor according to a current value of the motor, the power converter controls a voltage for driving the motor, The motor torque generated by the motor or vibration included in the motor torque current by processing the torque current value in a loop system including a means for detecting the torque current value of the motor and a temporary delay portion or a differentiation portion. Control that outputs a pulse signal to the power converter so that the phase of the component advances more than 90 degrees and less than 180 degrees with respect to the phase of the vibration component of the same frequency included in the electrical angular frequency of the electric motor The motor drive system characterized by having a part .
電動機の電流値に応じて前記電動機を駆動するための電圧を制御する電力変換器を有する電動機駆動システムにおいて、前記電動機を駆動するための電圧指令を演算する電圧指令演算手段と、前記電力変換器は、前記電動機を駆動するための電圧を制御するものであって、前記電動機のトルク電流値を検出する手段と、一時遅れ部あるいは微分部を含んだループ系で前記トルク電流値を処理することで、前記電動機で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、前記電動機の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度よりも大きくも且つ180度よりも小さく進むように前記電力変換器にパルス信号を出力するように前記電圧指令を補正する出力電圧補正手段を設けたことを特徴とする、電動機駆動システム。
In a motor drive system having a power converter for controlling a voltage for driving the motor according to a current value of the motor, a voltage command calculation means for calculating a voltage command for driving the motor, and the power converter Controls the voltage for driving the motor, and processes the torque current value by means of a loop system including a means for detecting the torque current value of the motor and a temporary delay part or a differentiation part. in the phase of the vibration component included in the electric motor torque or motor torque current is generated by the electric motor, to the phase of the oscillating component of the same frequency in electrical angular frequency of the motor, and also greater than 90 degrees 180 Patent in that a output voltage correction means for correcting the voltage command to output a pulse signal to the power converter to advance less than degrees To, electric motor drive system.
請求項2において、前記出力電圧補正手段が、前記電動機の検出電流と電流指令値の差分を演算する差分演算部と、該差分値を用いて前記電動機で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、前記電動機の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度よりも大きくも且つ180度よりも小さく進ませるための電圧指令補正値を演算するトルク進み電圧補正値演算部と、該電圧補正値を用いて、電圧指令値を補正する補正部によって構成されることを特徴とする、電動機駆動システム。
The output voltage correction means according to claim 2, wherein the output voltage correction means calculates a difference between the detected current of the motor and a current command value, and uses the difference value to generate a motor torque or a motor torque current generated in the motor. A voltage command correction value for causing the phase of the vibration component included to be larger than 90 degrees and smaller than 180 degrees relative to the phase of the vibration component of the same frequency included in the electrical angular frequency of the motor is calculated. An electric motor drive system comprising: a torque advance voltage correction value calculation unit; and a correction unit that corrects a voltage command value using the voltage correction value.
請求項1又は2において、前記ループ系は、比例,比例と一次遅れ,比例と微分,比例と一次遅れと不完全微分、もしくは比例と微分と不完全微分、のいずれかを含んで構成されることを特徴とする、電動機駆動システム。
3. The loop system according to claim 1 , wherein the loop system includes any one of proportionality, proportionality and primary delay, proportionality and differentiation, proportionality and primary delay and incomplete differentiation, or proportionality, differentiation and incomplete differentiation. An electric motor drive system characterized by that.
請求項1又は2において、前記ループ系は、演算として、比例、もしくは比例×一次遅れ,比例−微分,比例×一次遅れ×不完全微分、もしくは、比例−微分×不完全微分、のいずれかを含んで構成されることを特徴とする、電動機駆動システム。
The loop system according to claim 1 , wherein the loop system calculates, as an operation, either proportional or proportional × first-order lag, proportional-derivative, proportional × first-order lag × incomplete differentiation, or proportional-derivative × incomplete differentiation. An electric motor drive system characterized by comprising.
請求項1から4のいずれかにおいて、前記電気角周波数の振動成分の波形の平均値と該振動成分の波形の交点をゼロ点とし、前記トルク電流もしくはトルクの振動周波数の振動成分の波形の平均値と該振動成分の波形の交点をゼロ点とした場合、上記トルク電流もしくはトルクの振動成分の波形から得られたゼロ点が、前記電気角周波数の振動成分の波形から得られたゼロ点に対し、90度以上進んでいることを特徴とする、電動機駆動システム。
5. The average of the waveform of the vibration component of the torque current or the vibration frequency of the torque according to claim 1, wherein an intersection between the average value of the vibration component of the electrical angular frequency and the waveform of the vibration component is a zero point. When the intersection of the value and the vibration component waveform is defined as a zero point, the zero point obtained from the torque current or the vibration component waveform of the torque is the zero point obtained from the vibration component waveform of the electrical angular frequency. On the other hand, the motor drive system is characterized by being advanced 90 degrees or more.
請求項1から5のいずれかにおいて、前記電気角周波数の振動成分の波形の最大値ピークと次の最小値ピーク間の位相を180度とし、前記トルク電流もしくはトルクの振動周波数の振動成分の波形の最大値ピークと次の最小値ピーク間の位相を180度とすることを特徴とする、電動機駆動システム。
6. The waveform of the vibration component of the torque current or the vibration frequency of the torque according to claim 1, wherein a phase between the maximum value peak of the vibration component waveform of the electrical angular frequency and the next minimum value peak is 180 degrees. An electric motor drive system characterized in that a phase between a maximum value peak and a next minimum value peak is 180 degrees.
電動機の電流値に応じて電動機を駆動するための電圧を制御する電動機制御装置において、前記電動機は電力変換器によって駆動するための電圧が制御されるものであり、前記電動機のトルク電流値を検出する手段と、一時遅れ部あるいは微分部を含んだループ系で前記トルク電流値を処理することで、前記電動機で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、前記電動機の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度よりも大きくも且つ180度よりも小さく進むように前記電力変換器にパルス信号を出力することを特徴とする、電動機制御装置。
In the motor control device for controlling the voltage for driving the motor according to the current value of the motor, the voltage for driving the motor is controlled by a power converter, and the torque current value of the motor is detected. And the torque current value is processed by a loop system including a temporary delay part or a differential part, so that the motor torque generated by the motor or the phase of the vibration component included in the motor torque current is An electric motor control device that outputs a pulse signal to the power converter so as to advance more than 90 degrees and less than 180 degrees with respect to the phase of the vibration component of the same frequency included in the electrical angular frequency .
電動機の電流値を入力し、前記電流値に基づいて電動機を駆動するための電圧値を演算し、前記電圧値に基づいて前記電動機を制御する電動機の駆動方法であって、前記電動機のトルク電流値を検出し、一時遅れ部あるいは微分部を含んだループ系で前記トルク電流値を処理することで、前記電動機で発生される電動機トルクもしくは電動機トルク電流に含まれる振動成分の位相が、前記電動機の電気角周波数に含まれる同一周波数の振動成分の位相に対し、90度よりも大きくも且つ180度よりも小さく進むように前記電力変換器にパルス信号を出力する電動機の駆動方法。 An electric motor drive method for inputting a current value of an electric motor, calculating a voltage value for driving the electric motor based on the current value, and controlling the electric motor based on the voltage value, the torque current of the electric motor By detecting the value and processing the torque current value in a loop system including a temporary delay part or a differential part, the motor torque generated by the motor or the phase of the vibration component contained in the motor torque current is A driving method for an electric motor that outputs a pulse signal to the power converter so that the phase of the vibration component of the same frequency included in the electrical angular frequency is larger than 90 degrees and smaller than 180 degrees .
JP2009108648A 2009-04-28 2009-04-28 Electric motor drive system, electric motor control device, and electric motor drive method Active JP5393238B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009108648A JP5393238B2 (en) 2009-04-28 2009-04-28 Electric motor drive system, electric motor control device, and electric motor drive method
CN2010101688345A CN101877569B (en) 2009-04-28 2010-04-27 Motor drive system, motor control device and motor drive method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108648A JP5393238B2 (en) 2009-04-28 2009-04-28 Electric motor drive system, electric motor control device, and electric motor drive method

Publications (2)

Publication Number Publication Date
JP2010259275A JP2010259275A (en) 2010-11-11
JP5393238B2 true JP5393238B2 (en) 2014-01-22

Family

ID=43020048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108648A Active JP5393238B2 (en) 2009-04-28 2009-04-28 Electric motor drive system, electric motor control device, and electric motor drive method

Country Status (2)

Country Link
JP (1) JP5393238B2 (en)
CN (1) CN101877569B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856438B2 (en) * 2011-11-01 2016-02-09 株式会社日立製作所 Power converter
FR2983012B1 (en) * 2011-11-22 2015-01-16 Renault Sas METHOD FOR CONTROLLING A MOTOR POWERTRAIN AND CORRESPONDING CONTROL SYSTEM
DE102012203426B4 (en) * 2012-03-05 2013-10-10 Siemens Aktiengesellschaft Avoidance of continuous operation in frequency converter-excited torsional resonances of a compressor train
CN103780185A (en) * 2012-10-19 2014-05-07 浙江盾安人工环境股份有限公司 Compressor torque control method and torque control device
JP6046446B2 (en) * 2012-10-26 2016-12-14 日立アプライアンス株式会社 Vector control device, motor control device using the same, and air conditioner
JP5673727B2 (en) * 2013-04-26 2015-02-18 株式会社明電舎 Torque command generator
DE102018106837A1 (en) * 2017-03-22 2018-09-27 Steering Solutions Ip Holding Corporation VIBRATION-INDUCED DESIGNATION FOR SYNCHRONOUS PERMANENT MAGNETIC MACHINES
WO2019141346A1 (en) 2018-01-16 2019-07-25 Abb Schweiz Ag A method for controlling a synchronous double stator electric machine
CN115425895B (en) * 2022-11-07 2023-01-31 成都希望电子研究所有限公司 Method for identifying mutual inductance parameter of asynchronous motor under load

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319715A (en) * 1991-04-19 1992-11-10 Meidensha Corp Controller for suppressing axially torsional vibration
JPH11206199A (en) * 1998-01-20 1999-07-30 Meidensha Corp Controlling device of induction motor
JP2000041400A (en) * 1998-07-22 2000-02-08 Matsushita Electric Ind Co Ltd Controller for induction motor for compressor
JP4186750B2 (en) * 2003-08-19 2008-11-26 三菱電機株式会社 Motor control device
JP4342450B2 (en) * 2005-01-06 2009-10-14 三洋電機株式会社 Motor control device and motor drive system having the same
JP2006271116A (en) * 2005-03-24 2006-10-05 Yaskawa Electric Corp Servo controller and method of extracting maximum gain of servo controller
JP5007924B2 (en) * 2006-09-25 2012-08-22 株式会社安川電機 Electric motor control device and vibration suppression method thereof
JP4476314B2 (en) * 2007-08-10 2010-06-09 三洋電機株式会社 Motor control device and compressor
JP2009303435A (en) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd Motor controller

Also Published As

Publication number Publication date
CN101877569A (en) 2010-11-03
CN101877569B (en) 2013-04-10
JP2010259275A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5393238B2 (en) Electric motor drive system, electric motor control device, and electric motor drive method
JP4685509B2 (en) AC motor drive control device and drive control method
JP5130716B2 (en) Motor control device and electric power steering device
JP4033030B2 (en) Electric power steering device
TWI282209B (en) Controller for synchronous motor, electric appliance and module
JPWO2009040884A1 (en) Electric motor control device
US9350284B2 (en) Power conversion device
WO2015019495A1 (en) Motor drive system and motor control device
JP5330652B2 (en) Permanent magnet motor control device
JP5033662B2 (en) Electric motor drive system
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
CN115004537A (en) Motor drive device, outdoor unit of air conditioner using same, and motor drive control method
JP2010105763A (en) Power converter and elevator using the same
JP6809958B2 (en) Electric motor control device
JP2019083672A (en) Inverter, and drive control method for motor
JP2013027133A (en) Control device
JP5510156B2 (en) Rotating machine control device
JP4945307B2 (en) Twin drive control device and torsional vibration suppression method
JP2006197718A (en) Controller for motor
JP4860408B2 (en) Electric motor control device
JP2007143276A (en) Rotor angle estimating method and controller of dc brushless motor
JP5862690B2 (en) Control device for motor drive device and motor drive system
JP6027486B2 (en) Electric motor control device
JP2008306801A (en) Controller of permanent magnet motor
JP5862691B2 (en) Control device for motor drive device and motor drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R151 Written notification of patent or utility model registration

Ref document number: 5393238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350