JP2012242810A - Optical scanning element - Google Patents

Optical scanning element Download PDF

Info

Publication number
JP2012242810A
JP2012242810A JP2011116290A JP2011116290A JP2012242810A JP 2012242810 A JP2012242810 A JP 2012242810A JP 2011116290 A JP2011116290 A JP 2011116290A JP 2011116290 A JP2011116290 A JP 2011116290A JP 2012242810 A JP2012242810 A JP 2012242810A
Authority
JP
Japan
Prior art keywords
piezoelectric
optical scanning
mirror
scanning element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011116290A
Other languages
Japanese (ja)
Other versions
JP5713444B2 (en
Inventor
Jun Aketo
純 明渡
Saikaku Boku
載赫 朴
Yoshihiro Kawakami
祥広 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokin Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, NEC Tokin Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011116290A priority Critical patent/JP5713444B2/en
Publication of JP2012242810A publication Critical patent/JP2012242810A/en
Application granted granted Critical
Publication of JP5713444B2 publication Critical patent/JP5713444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems that it is effective, in an optical scanning device for torsionally vibrating, by a piezoelectric element, a mirror supported by a torsional beam and scanning light, to enhance a field intensity applied to the piezoelectric element for enlarging a scan angle or achieving a large scan angle at a low voltage and it is required to thin a piezoelectric layer, however, when a piezoelectric plate is thinned to 100 μm or less, the mechanical strength is lowered and, when a lamination structure is adopted by thinning the piezoelectric layer while retaining the mechanical strength, a capacitance increases and a power consumption increases.SOLUTION: The optical scanning element is configured by sticking a unimorph or bimorph piezoelectric element in which a piezoelectric thick film is formed on a substrate, to a mirror frame. A mirror supported by a torsional hinge is formed on the mirror frame.

Description

本発明は、光ビームの走査によりスキャンを行う光スキャナーに関し、特に捻じれ梁に支持されたミラーを捻り振動させ光を走査させるための光走査素子に関する。   The present invention relates to an optical scanner that performs scanning by scanning a light beam, and more particularly to an optical scanning element that scans light by twisting and vibrating a mirror supported by a torsion beam.

近年レーザー光を走査させる光スキャナーはレーザープリンタ、バーコードリーダー、ヘッドマウントディスプレー、プロジェクター等の光学機器、あるいは赤外線カメラ等の光取り入れ装置として用いられている。
光走査素子としては多面ミラーを回転させ光を反射、走査させるポリゴンミラーやミラーを往復走査するガルバノミラー方式などが実用化されている。近年、ミラーをヒンジで支持させた構造でミラーを捻り振動させレーザー光を走査させることで映像を表示するようなレーザー走査型プロジェクターも実用化されている。このようなミラーの捻り振動させ光を走査させる素子としては、シリコンを微細加工しミラーとヒンジを形成させたタイプが報告されている。
In recent years, an optical scanner that scans a laser beam is used as an optical device such as a laser printer, a barcode reader, a head-mounted display, a projector, or a light intake device such as an infrared camera.
As the optical scanning element, a polygon mirror that rotates and reflects a light by rotating a multi-sided mirror, a galvano mirror system that reciprocally scans the mirror, and the like have been put into practical use. In recent years, laser scanning projectors that display images by twisting and vibrating a mirror with a structure in which the mirror is supported by a hinge and scanning laser light have been put into practical use. As such an element for torsional vibration of a mirror and scanning light, a type in which silicon is finely processed to form a mirror and a hinge has been reported.

しかしながらシリコンを微細加工してヒンジでミラーを支持する方式では単結晶シリコンを使用するためミラーサイズを大きくすると耐衝撃性が弱くなりヒンジが破壊しやすいという課題がある。また捻り振動を発生させるための駆動方式としては電磁力、静電力、圧電式などが[非特許文献1]にも報告されているがミラーを形成するフレーム上に微細な配線や異種材料をパターニング形成させる必要があるため工程が複雑になったり、プロセス上の制約があり低コスト化や高特性化が困難であった。
このような課題を解決する方法としてヒンジで支持されたミラーフレームから離れたところに駆動源を配置し、板波によりヒンジで支持されたミラーを捻り振動させ光ビームの大きな走査角を発生させる構造の光走査素子が[特許文献1]に報告されている。
However, since the method of supporting the mirror with a hinge by micro-processing silicon uses single crystal silicon, there is a problem that if the mirror size is increased, the impact resistance becomes weak and the hinge is easily broken. Electromagnetic force, electrostatic force, piezoelectric type, etc. have been reported in [Non-Patent Document 1] as driving methods for generating torsional vibration, but fine wiring and different materials are patterned on the frame forming the mirror. Since it is necessary to form it, the process becomes complicated, and there are restrictions on the process, so it is difficult to reduce the cost and improve the characteristics.
As a method for solving such a problem, a structure in which a drive source is arranged at a position away from a mirror frame supported by a hinge and a mirror supported by the hinge is twisted and vibrated by a plate wave to generate a large scanning angle of the light beam. An optical scanning element is reported in [Patent Document 1].

このような板波を利用した光スキャナーはラム波共鳴型スキャナーと呼ばれている。ラム波共鳴型スキャナーの代表的な構成図面を図1に示す。   Such an optical scanner using a plate wave is called a Lamb wave resonance scanner. A typical configuration drawing of a Lamb wave resonance scanner is shown in FIG.

特開2006−293116号公報JP 2006-293116 A

黒田和男、山本和久、栗村直 編「解説レーザーディスプレー」オプトロニクス社、2010年2月8日、p.216−228、p.254−266Kazuo Kuroda, Kazuhisa Yamamoto, Nao Kurimura, “Commentary Laser Display”, Optronics, February 8, 2010, p. 216-228, p. 254-266

捻り梁に支持されたミラーを圧電素子により捻り振動させ光を走査する光走査装置において、圧電材料の歪みは電界強度の大きさに比例することから走査角を大きくしたり、低電圧で大きい走査角を実現するには圧電素子に加わる電界強度を大きくすることが有効である。
そのような方法として、圧電素子を薄くする、圧電素子を積層構造にする方法がある。
特に光走査素子を用いて映像を表示するピコプロジェクタのようなバッテリー駆動で使用する用途に適用するためには低電圧駆動、低消費電力、低コスト化が要求される。
しかしながら、圧電素子に加わる電界強度を大きくする方法には以下の課題がある。
(1)圧電素子を薄板化する方法では圧電素子の厚さが100μm以下では製造工程で破損・破壊しやすいという課題がある。
(2)また圧電素子の機械強度を維持しつつ電界強度を大きくする手段として総厚を一定にして積層化する方法があるが、静電容量は積層数の2乗に比例して大きくなるため消費電力が大きくなってしまうという課題がある。
(3)また圧電素子のハンドリングによる破損・破壊をさけ、電界強度を大きくする方法としてミラーフレームの基板に直接薄膜、厚膜を形成する方法がある。しかし、圧電薄膜や厚膜を基板上に直接形成する場合、結晶化や、緻密化、残留応力の除去のために600℃以上の温度で熱処理する必要が生じ、熱処理によりミラーやヒンジの機械的物性が変化しやすいなどの課題がある。
In an optical scanning device that scans light by torsionally oscillating a mirror supported by a torsion beam with a piezoelectric element, the distortion of the piezoelectric material is proportional to the magnitude of the electric field strength, so the scanning angle is increased or scanning is performed with a low voltage. In order to realize the corner, it is effective to increase the electric field strength applied to the piezoelectric element.
As such a method, there is a method in which the piezoelectric element is thinned and the piezoelectric element has a laminated structure.
In particular, low voltage drive, low power consumption, and low cost are required for application to battery-driven applications such as pico projectors that display images using optical scanning elements.
However, the method for increasing the electric field strength applied to the piezoelectric element has the following problems.
(1) In the method of thinning the piezoelectric element, there is a problem that the piezoelectric element is easily damaged or destroyed in the manufacturing process when the thickness of the piezoelectric element is 100 μm or less.
(2) As a means for increasing the electric field strength while maintaining the mechanical strength of the piezoelectric element, there is a method of stacking with a constant total thickness. However, the capacitance increases in proportion to the square of the number of stacks. There is a problem that power consumption increases.
(3) Further, there is a method of directly forming a thin film or a thick film on the substrate of the mirror frame as a method of increasing the electric field strength in order to avoid breakage / destruction caused by handling of the piezoelectric element. However, when a piezoelectric thin film or a thick film is directly formed on a substrate, it is necessary to perform heat treatment at a temperature of 600 ° C. or higher for crystallization, densification, and removal of residual stress. There are problems such as physical properties being easily changed.

本発明では、ミラーによる光の走査角度を増加させつつ上記課題を解決し、走査素子の低電圧駆動、低消費電力を実現させる方法を提供することを目的とする。   An object of the present invention is to solve the above problems while increasing the scanning angle of light by a mirror, and to provide a method for realizing low voltage driving and low power consumption of a scanning element.

本発明では上記課題を解決するために、ヒンジで支持されたミラーフレームとは異なる基板に圧電膜を形成させたユニモルフもしくはバイモルフ圧電素子(以下圧電素子)をミラーフレームに接着することにより形成される。   In the present invention, in order to solve the above-mentioned problems, a unimorph or bimorph piezoelectric element (hereinafter referred to as a piezoelectric element) in which a piezoelectric film is formed on a substrate different from a mirror frame supported by a hinge is bonded to the mirror frame. .

上記ユニモルフ/バイモルフ圧電素子に形成される圧電厚膜を構成する結晶粒径に0.2〜1.0μmで構成され、圧電膜の厚さtpは電界強度が1kV/mm以上になるようにすることで、上記課題を解決し、低電圧、低消費電力で大きい光走査角を得ることのできる光走査素子を実現できる。またユニモルフの基板の厚さtsは圧電膜を形成し、熱処理を行った後、残留応力により反り発生しないような構成になることが望ましく、ユニモルフの構成では圧電膜の厚さtpと基板の厚さtsの比tp/tsが1/3〜1/20であり、またミラーフレームの厚さtmはtp/(ts+tm)が1/5〜1/30であることが課題解決上望ましい。   The crystal grain size constituting the piezoelectric thick film formed in the unimorph / bimorph piezoelectric element is 0.2 to 1.0 μm, and the thickness tp of the piezoelectric film is set so that the electric field strength is 1 kV / mm or more. Thus, the above-described problems can be solved, and an optical scanning element that can obtain a large optical scanning angle with low voltage and low power consumption can be realized. Further, it is desirable that the thickness ts of the unimorph substrate is such that the warp does not occur due to the residual stress after the piezoelectric film is formed and heat-treated. In the unimorph configuration, the thickness tp of the piezoelectric film and the thickness of the substrate are desirable. The ratio tp / ts of the thickness ts is 1/3 to 1/20, and the thickness tm of the mirror frame is preferably 1/5 to 1/30 of tp / (ts + tm).

また、圧電膜に使用される材料は高い電界強度でも線形的な特性を示す材料が望ましく、圧電膜はAD法によって形成されることが望ましい。また、AD法を用いることで耐電圧に優れた厚膜が形成できるため、電界強度を大きくする構成が容易に実現できるため、非鉛圧電材料を用いることも可能である。   The material used for the piezoelectric film is preferably a material that exhibits linear characteristics even at high electric field strength, and the piezoelectric film is preferably formed by the AD method. In addition, since a thick film excellent in withstand voltage can be formed by using the AD method, a configuration for increasing the electric field strength can be easily realized, and therefore, a lead-free piezoelectric material can also be used.

本発明は、圧電膜を基板上に形成した圧電材料単体よりも機械強度に優れたユニモルフもしくはバイモルフ圧電素子を光走査用ミラーフレームとは別に形成、配置することが可能であるため生産上圧電素子が破損しにくく、生産性に優れる効果を有する。
また、圧電層を積層することなく薄層化することが可能になり機械強度を上げ、大きい電界強度を印加できる構造ができるため、低電圧で高走査角度が得られる。
基板上に圧電膜を形成したユニモルフもしくはバイモルフの圧電素子を使用するため、圧電セラミック単体よりも外形形状の自由度が大きいため圧電素子からの電気配線実装配線が容易になるため信頼性を向上させる効果を有する。
According to the present invention, a unimorph or bimorph piezoelectric element having a mechanical strength superior to that of a piezoelectric material alone having a piezoelectric film formed on a substrate can be formed and arranged separately from the optical scanning mirror frame. Is less likely to break and has the effect of improving productivity.
In addition, since the piezoelectric layer can be thinned without being laminated, the mechanical strength is increased, and a structure in which a large electric field strength can be applied can be obtained, so that a high scanning angle can be obtained at a low voltage.
Since a unimorph or bimorph piezoelectric element with a piezoelectric film formed on the substrate is used, the degree of freedom of the outer shape is larger than that of the piezoelectric ceramic alone, so that the electrical wiring from the piezoelectric element becomes easier and the reliability is improved. Has an effect.

ラム波共鳴構造光走査素子の基本構造を示す図である。It is a figure which shows the basic structure of a Lamb wave resonance structure optical scanning element. 本発明の光走査素子の基本構成図Basic configuration diagram of optical scanning element of the present invention 熱処理温度と粒径の関係Relationship between heat treatment temperature and particle size AD非鉛系圧電膜を用いた光スキャナーOptical scanner using AD lead-free piezoelectric film AD非鉛系圧電膜を用いた光スキャナーの周波数特性Frequency characteristics of optical scanner using AD lead-free piezoelectric film 非鉛系圧電膜を用いた高速光スキャナーの駆動電圧対走査角度特性Driving voltage vs. scanning angle characteristics of a high-speed optical scanner using a lead-free piezoelectric film

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の光走査素子の基本構成図を図2に示す。ミラーフレームは捻り梁で支持されたミラーとヒンジを支える片持ち梁とそれをさせるフレームが一体となった構造になっている。ミラーに捻り振動を発生させる駆動源として圧電素子がミラーフレーム上に形成される。この圧電素子は基板材5と圧電膜6から構成されている。   FIG. 2 shows a basic configuration diagram of the optical scanning element of the present invention. The mirror frame has a structure in which a mirror supported by a torsion beam, a cantilever beam that supports a hinge, and a frame that allows it to be integrated. A piezoelectric element is formed on the mirror frame as a drive source for generating torsional vibration in the mirror. This piezoelectric element is composed of a substrate material 5 and a piezoelectric film 6.

本実施例ではミラーフレームの素材としてステンレス材を用いた。ステンレスの基本的な物性値を表1に示す。   In this embodiment, a stainless steel material is used as a material for the mirror frame. Table 1 shows the basic physical property values of stainless steel.

板厚100μmのステンレスをエッチングにより図3に示すような外形状に加工しミラーフレームを作製した。実施例の圧電膜6を形成させる基板材として純度99.5%以上のアルミナ、ジルコニア基板、Al:5%、Cr:20%の成分構成の耐熱性ステンレス材を用いて表面に酸化もしくは窒化アルミの皮膜を形成させた基板を用いた。いずれも基板表面の両面に電極としてPtをスパッタで形成し焼き付け処理し圧電素子用基板とした。基板の厚さは20、30、50、100μmとした。また基板に使用するステンレスの外形はミラーフレームのミラーを支持している梁構造以外の外形形状に合わせて作製した。   A mirror frame was manufactured by processing stainless steel having a thickness of 100 μm into an outer shape as shown in FIG. 3 by etching. As a substrate material for forming the piezoelectric film 6 of the embodiment, an alumina or zirconia substrate having a purity of 99.5% or more, a heat-resistant stainless steel material having a composition of Al: 5%, Cr: 20% is used, and the surface is oxidized or aluminum nitride. A substrate on which a film of 1 was formed was used. In either case, Pt was formed on both surfaces of the substrate by sputtering as a electrode and baked to obtain a piezoelectric element substrate. The thickness of the substrate was 20, 30, 50, and 100 μm. The outer shape of the stainless steel used for the substrate was made to match the outer shape other than the beam structure supporting the mirror of the mirror frame.

圧電膜6には代表的な圧電材料であるジルコン酸チタン酸鉛(PZT)材料をAD法により基板上に成膜し、800〜1000℃の温度で熱処理を行い粒径の異なる圧電膜6を作製した。熱処理温度と粒径の関係を図3に示す。一般に、圧電膜を構成する結晶粒子は膜厚に対して多く充填されるほど耐電圧特性は向上するため、印加する電界強度に合わせて粒径と膜厚を調整する必要がある。熱処理後圧電膜6表面にメタルマスクを用いてスパッタ法でAuを蒸着し上部電極7を形成した。上部電極7形成後電極間に100℃で2kV/mm以上になるように電圧を15分印加し分極処理を施し、ユニモルフ型圧電素子を作製した。また、非鉛圧電材料としてチタン酸バリウム(BT)材料を成膜し、1000℃で熱処理し非鉛圧電膜の圧電素子を作製した。   For the piezoelectric film 6, lead zirconate titanate (PZT) material, which is a typical piezoelectric material, is formed on the substrate by the AD method, and heat treatment is performed at a temperature of 800 to 1000 ° C. to form the piezoelectric films 6 having different particle diameters. Produced. The relationship between the heat treatment temperature and the particle size is shown in FIG. In general, the withstand voltage characteristics improve as the crystal grains constituting the piezoelectric film are filled more with respect to the film thickness, and therefore it is necessary to adjust the particle diameter and film thickness in accordance with the applied electric field strength. After the heat treatment, Au was deposited on the surface of the piezoelectric film 6 by a sputtering method using a metal mask to form the upper electrode 7. After the formation of the upper electrode 7, a voltage was applied for 15 minutes between the electrodes at 100 ° C. so as to be 2 kV / mm or more, and a polarization treatment was performed to produce a unimorph type piezoelectric element. Further, a barium titanate (BT) material was formed as a lead-free piezoelectric material, and heat-treated at 1000 ° C. to produce a lead-free piezoelectric film piezoelectric element.

この圧電素子を前記ミラーフレームに接着剤で接着し光走査素子を作製した。この圧電素子に0−20Vの電圧をミラーの捻じれ共振の周波数近傍で印加し周波数をスイープさせ、ミラーを振動させレーザー光を反射させることで走査角度を測定した。
比較例として緻密に焼結させた厚さ100μmの圧電セラミック板(PZT、BT)を同じミラーフレームに貼り付けることで作製し同様の評価を行った。
実施例、及び比較例の試作条件と評価結果のまとめ結果を表2に示す。
This piezoelectric element was bonded to the mirror frame with an adhesive to produce an optical scanning element. A scanning angle was measured by applying a voltage of 0-20 V to this piezoelectric element in the vicinity of the torsional resonance frequency of the mirror, sweeping the frequency, vibrating the mirror, and reflecting the laser beam.
As a comparative example, a densely sintered piezoelectric ceramic plate (PZT, BT) having a thickness of 100 μm was attached to the same mirror frame, and the same evaluation was performed.
Table 2 shows a summary of the experimental conditions and evaluation results of the examples and comparative examples.

表2の実施例に示したように本発明によれば低電圧でより大きな走査角を実現できることが確認された。またユニモルフの外形をミラーフレームの梁構造以外に合わせることで電極配線を面内で引き回すことが可能になり、振動の影響が少ない箇所でワイヤーと接続することができる。   As shown in the examples of Table 2, it was confirmed that according to the present invention, a larger scanning angle can be realized at a low voltage. Further, by matching the outer shape of the unimorph to other than the beam structure of the mirror frame, the electrode wiring can be routed in the plane, and can be connected to the wire at a place where the influence of vibration is small.

図4に非鉛圧電材料としてチタン酸バリウム(BT)材料をAD法で形成した非鉛圧電膜の圧電素子を使用したメタルベース光走査素子を示す。図4に示したように、ラム波共鳴圧電駆動型光走査素子は、1mmφミラー、捻じり梁9、金属のミラーフレーム3と圧電素子で構成されている。   FIG. 4 shows a metal-based optical scanning element using a lead-free piezoelectric film piezoelectric element in which a barium titanate (BT) material is formed as the lead-free piezoelectric material by the AD method. As shown in FIG. 4, the Lamb wave resonance piezoelectric drive type optical scanning element includes a 1 mmφ mirror, a torsion beam 9, a metal mirror frame 3, and a piezoelectric element.

従来の光走査素子試作に関しては、光走査素子の本体として金属のミラーフレームを化学エッチング方法で制作し、バルク型圧電シートを金属フレームの上に銀ペーストを用いて直接貼り付けた。
本発明では、イットリア安定化ジルコニア(YSZ)上に、AD法で非鉛圧電材料としてチタン酸バリウム(BT)材料を形成した非鉛圧電膜の圧電素子による光走査素子への適用可能性検討を行った。即ち、本発明は、ラム波共鳴方式による光走査装置で、ヒンジで支持されたミラーフレームとは異なる基板にAD法で圧電膜を形成させたユニモルフもしくはバイモルフ素子をミラーフレームに接着することにより形成される。
このとき、上記ユニモルフ/バイモルフ素子の圧電厚膜を構成する結晶粒径は0.2〜
1.0μmで緻密に構成されるため非常に高い耐電圧特性を有する。そのため高い駆動電界強度を印加すること可能になり、一般に圧電特性が通常の鉛系圧電材料より劣る非鉛圧電材料で、低電圧、低消費電力で大きい光走査角性能を有する光走査素子を実現できた。
As for a conventional optical scanning device prototype, a metal mirror frame was produced as a main body of the optical scanning device by a chemical etching method, and a bulk type piezoelectric sheet was directly attached to the metal frame using a silver paste.
In the present invention, an applicability study to an optical scanning element using a piezoelectric element of a lead-free piezoelectric film in which a barium titanate (BT) material is formed as a lead-free piezoelectric material by an AD method on yttria-stabilized zirconia (YSZ). went. That is, the present invention is an optical scanning device based on a Lamb wave resonance method, which is formed by adhering a unimorph or bimorph element having a piezoelectric film formed on a substrate different from a mirror frame supported by a hinge by an AD method to the mirror frame. Is done.
At this time, the crystal grain size constituting the piezoelectric thick film of the unimorph / bimorph element is 0.2 to
Since it is densely formed at 1.0 μm, it has very high withstand voltage characteristics. Therefore, it is possible to apply a high driving electric field strength, and it is a lead-free piezoelectric material whose piezoelectric characteristics are generally inferior to ordinary lead-based piezoelectric materials, and realizes an optical scanning element with a large optical scanning angle performance with low voltage and low power consumption. did it.

非鉛圧電膜の圧電素子の試作に関しては、厚さ100μmのイットリア安定化ジルコニア(YSZ)の基板上に、下部電極8用Ptをコートし、その上にAD法で非鉛圧電材料としてチタン酸バリウム(BT、膜厚:12μm)材料を形成した。また、1000℃〜1100℃で2時間程度熱処理を行い、膜厚方向に30Vの電界をかけてポーリングし、最後に、上部電極7として、Au膜を蒸着した。光走査素子の試作には、非鉛圧電材料としてチタン酸バリウム(BT)材料を成膜し、1100℃で熱処理し非鉛圧電膜の圧電素子をミラーフレームで貼り付ける方式を採用した。   Regarding the trial production of a piezoelectric element of a lead-free piezoelectric film, a Pt for the lower electrode 8 is coated on a yttria-stabilized zirconia (YSZ) substrate having a thickness of 100 μm, and a titanic acid is formed as a lead-free piezoelectric material by AD method thereon. Barium (BT, film thickness: 12 μm) material was formed. Further, heat treatment was performed at 1000 ° C. to 1100 ° C. for about 2 hours, poling by applying an electric field of 30 V in the film thickness direction, and finally, an Au film was deposited as the upper electrode 7. In the trial production of the optical scanning element, a method was adopted in which a barium titanate (BT) material was formed as a lead-free piezoelectric material, heat treated at 1100 ° C., and the piezoelectric element of the lead-free piezoelectric film was attached with a mirror frame.

非鉛圧電材料としてチタン酸バリウム(BT)材料をAD法で形成した非鉛圧電膜の圧電素子を用いた光走査素子に関して、駆動電圧30V(0−to−peak)での周波数特性を図5に示す。1mmφのミラーをもつ光スキャナーは、大気中の動作で高速の共振周波数26.681kHzで広い走査角度(58度)を実現した。また、駆動電圧に対する走査角度の特性は、駆動電圧の増加に伴って線形的特性を示す。(図6)。また、図6に示したように駆動電圧に対する走査角度の特性は、駆動電圧の増加に伴って線形的特性を示す。さらに、24V以下で30度以上という携帯型プロジェクター用デバイスの仕様スペックを上回る50度@24Vというデバイス性能を実現し、製品応用可能なレベルであることを確認した。   FIG. 5 shows frequency characteristics at a driving voltage of 30 V (0-to-peak) for an optical scanning element using a piezoelectric element of a lead-free piezoelectric film formed by AD method using a barium titanate (BT) material as a lead-free piezoelectric material. Shown in The optical scanner with a 1 mmφ mirror realized a wide scanning angle (58 degrees) at a high resonance frequency of 26.681 kHz by operation in the atmosphere. Further, the characteristic of the scanning angle with respect to the driving voltage shows a linear characteristic as the driving voltage increases. (FIG. 6). Further, as shown in FIG. 6, the characteristic of the scanning angle with respect to the drive voltage shows a linear characteristic as the drive voltage increases. Furthermore, the device performance of 50 degrees @ 24 V, which exceeds the specification specifications of portable projector devices of 24 degrees or less and 30 degrees or more, was confirmed, and it was confirmed that it was a level applicable to products.

デバイスの観点から見ると、非鉛圧電材料としてチタン酸バリウム(BT)材料をAD法で形成した非鉛圧電膜の圧電素子は、鉛系圧電素子の圧電特性に比べ、約3分の1程度の圧電特性(d31=約100pm/V)でありながらでも、膜厚や成膜プロセスとデバイス構造などの工夫で、光走査素子の製品に適用可能であると考えられる。   From the viewpoint of the device, the piezoelectric element of the lead-free piezoelectric film in which the barium titanate (BT) material as the lead-free piezoelectric material is formed by the AD method is about one third of the piezoelectric characteristics of the lead-based piezoelectric element. Although it has the piezoelectric characteristic (d31 = about 100 pm / V), it is considered that it can be applied to a product of an optical scanning element by a device such as a film thickness, a film forming process and a device structure.

本発明は、光走査素子を利用するプロジェクション、レーザーバーコードリーダーに加え圧電素子を駆動源とする超音波センサ、トランスデューサにも利用することができる。   The present invention can be used for projection using an optical scanning element, a laser bar code reader, an ultrasonic sensor using a piezoelectric element as a driving source, and a transducer.

1…圧電素子、2…ミラー、3…ミラーフレーム、4…配線、5…基板、6…圧電膜、7…上部電極、8…下部電極   DESCRIPTION OF SYMBOLS 1 ... Piezoelectric element, 2 ... Mirror, 3 ... Mirror frame, 4 ... Wiring, 5 ... Substrate, 6 ... Piezoelectric film, 7 ... Upper electrode, 8 ... Lower electrode

Claims (8)

ヒンジで支えられたミラーを振動させ光を走査させる光走査素子において、ヒンジとミラーが形成されているミラーフレームに、圧電膜が基板上に形成されているユニモルフもしくはバイモルフ圧電素子を接着・接合することにより構成された光走査素子。   In an optical scanning element that vibrates a mirror supported by a hinge and scans light, a unimorph or bimorph piezoelectric element having a piezoelectric film formed on a substrate is bonded and bonded to a mirror frame on which the hinge and the mirror are formed. The optical scanning element comprised by this. 前記圧電膜を形成させる基板の曲げ強度もしくは耐力が圧電材料の曲げ強度よりも大きいことを特徴とする請求項1の光走査素子   2. The optical scanning element according to claim 1, wherein the bending strength or proof stress of the substrate on which the piezoelectric film is formed is larger than the bending strength of the piezoelectric material. 前記圧電膜は、平均結晶粒径が膜厚の1/4以下の多結晶から構成されていることを特徴とする請求項2記載の光走査素子   3. The optical scanning element according to claim 2, wherein the piezoelectric film is made of a polycrystal having an average crystal grain size of ¼ or less of a film thickness. 前記圧電膜を形成する基板材料がジルコニア、アルミナであることを特徴とする請求項2記載の光走査素子   3. The optical scanning element according to claim 2, wherein a substrate material for forming the piezoelectric film is zirconia or alumina. 前記圧電膜を形成させる基板材料がAlを3〜5%含有する鋼材からなることを特徴とする請求項3の光走査素子   4. The optical scanning element according to claim 3, wherein the substrate material for forming the piezoelectric film is made of a steel material containing 3 to 5% Al. 前記圧電膜の厚さtpと基板厚さtsの比tp/tsが1/3〜1/20であることを特徴とする請求項1記載の光走査素子   2. The optical scanning element according to claim 1, wherein a ratio tp / ts between the thickness tp of the piezoelectric film and the substrate thickness ts is 1/3 to 1/20. 前記圧電膜の厚さtp、基板の厚さts、ミラーフレームの厚さtmにおいて、tp/(ts+tm)が1/5〜1/30であることを特徴とする請求項1記載の光走査素子。   2. The optical scanning element according to claim 1, wherein tp / (ts + tm) is 1/5 to 1/30 in the thickness tp of the piezoelectric film, the thickness ts of the substrate, and the thickness tm of the mirror frame. . 前記圧電膜が非鉛圧電材料であることを特徴とする請求項1から請求項7に記載の光走査素子。   The optical scanning element according to claim 1, wherein the piezoelectric film is a lead-free piezoelectric material.
JP2011116290A 2011-05-24 2011-05-24 Lamb wave resonance piezoelectric drive type optical scanning device Active JP5713444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011116290A JP5713444B2 (en) 2011-05-24 2011-05-24 Lamb wave resonance piezoelectric drive type optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116290A JP5713444B2 (en) 2011-05-24 2011-05-24 Lamb wave resonance piezoelectric drive type optical scanning device

Publications (2)

Publication Number Publication Date
JP2012242810A true JP2012242810A (en) 2012-12-10
JP5713444B2 JP5713444B2 (en) 2015-05-07

Family

ID=47464544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116290A Active JP5713444B2 (en) 2011-05-24 2011-05-24 Lamb wave resonance piezoelectric drive type optical scanning device

Country Status (1)

Country Link
JP (1) JP5713444B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019244A (en) * 2012-12-25 2013-04-03 大连理工大学 Automatic image measuring and controlling device for spatial embedding loading /exiting unloading of two cavity workpieces
CN103743818A (en) * 2014-01-23 2014-04-23 重庆大学 Flaw diagnosis method based on wave energy flow diagram and flaw diagnosis system implementing method
JP2015176052A (en) * 2014-03-17 2015-10-05 株式会社リコー Optical deflector, optical scanning device, image forming device, and image projection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165385A (en) * 2005-12-09 2007-06-28 Nec Tokin Corp Piezoelectric film lamination structure, and its manufacturing method
JP2010002777A (en) * 2008-06-20 2010-01-07 Canon Electronics Inc Micromirror device, optical scanning device, and image forming apparatus
JP2010118447A (en) * 2008-11-12 2010-05-27 Nec Tokin Corp Piezoelectric film type element
JP2010183067A (en) * 2009-01-07 2010-08-19 Canon Inc Piezoelectric material and piezoelectric element
JP2010239132A (en) * 2009-03-12 2010-10-21 Canon Inc Piezoelectric material, piezoelectric device, and method of producing the piezoelectric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165385A (en) * 2005-12-09 2007-06-28 Nec Tokin Corp Piezoelectric film lamination structure, and its manufacturing method
JP2010002777A (en) * 2008-06-20 2010-01-07 Canon Electronics Inc Micromirror device, optical scanning device, and image forming apparatus
JP2010118447A (en) * 2008-11-12 2010-05-27 Nec Tokin Corp Piezoelectric film type element
JP2010183067A (en) * 2009-01-07 2010-08-19 Canon Inc Piezoelectric material and piezoelectric element
JP2010239132A (en) * 2009-03-12 2010-10-21 Canon Inc Piezoelectric material, piezoelectric device, and method of producing the piezoelectric device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019244A (en) * 2012-12-25 2013-04-03 大连理工大学 Automatic image measuring and controlling device for spatial embedding loading /exiting unloading of two cavity workpieces
CN103743818A (en) * 2014-01-23 2014-04-23 重庆大学 Flaw diagnosis method based on wave energy flow diagram and flaw diagnosis system implementing method
JP2015176052A (en) * 2014-03-17 2015-10-05 株式会社リコー Optical deflector, optical scanning device, image forming device, and image projection device

Also Published As

Publication number Publication date
JP5713444B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5264954B2 (en) Mirror drive apparatus and method
US8879132B2 (en) Mirror driving apparatus, method of driving same and method of manufacturing same
JP7154309B2 (en) Micromirror device and driving method of micromirror device
JP5916668B2 (en) Mirror driving device and driving method thereof
US10281716B2 (en) Mirror driving device and driving method thereof
JP5916667B2 (en) Mirror driving device and driving method thereof
JP6308700B2 (en) Mirror driving device and driving method thereof
JP7237146B2 (en) Micromirror device and driving method of micromirror device
US8928963B2 (en) Light scanning device and display apparatus
JPWO2010035759A1 (en) Optical scanner
JP5713444B2 (en) Lamb wave resonance piezoelectric drive type optical scanning device
JP6464049B2 (en) Laminated structure, piezoelectric element, and method for manufacturing piezoelectric element
JP2018054908A (en) Optical scanning device and manufacturing method therefor
JP3529993B2 (en) Piezoelectric element
US7713366B2 (en) Piezoelectric/electrostrictive film and method for producing the same
Park et al. Fabrication and characterization of optical micro-electro-mechanical system scanning devices using BaTiO3-based lead-free piezoelectric-coated substrate sheet by aerosol deposition
JP6018926B2 (en) Micromirror device and manufacturing method thereof
JP2023162175A (en) Micromirror device
JP2013251373A (en) Piezoelectric actuator, piezoelectric mirror element using the same, and electronic apparatus using the same
JP4620789B1 (en) Optical scanning device
JP2021044418A (en) Piezoelectric actuator and optical scanner
JP5358536B2 (en) Optical scanning element and manufacturing method thereof
JP7209082B2 (en) micromirror device
JP2012073331A (en) Light deflector
JP2005044918A (en) Manufacturing method of piezoelectric/elelctrostrictive element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5713444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250