JP2012241696A - Gas turbine intake air cooling device and method - Google Patents

Gas turbine intake air cooling device and method Download PDF

Info

Publication number
JP2012241696A
JP2012241696A JP2011116247A JP2011116247A JP2012241696A JP 2012241696 A JP2012241696 A JP 2012241696A JP 2011116247 A JP2011116247 A JP 2011116247A JP 2011116247 A JP2011116247 A JP 2011116247A JP 2012241696 A JP2012241696 A JP 2012241696A
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
intake air
gas turbine
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011116247A
Other languages
Japanese (ja)
Other versions
JP5818510B2 (en
Inventor
Hidenori Fukutake
英紀 福武
Masao Ito
正雄 伊東
Kosaku Tsuneyoshi
幸策 恒吉
Toshitada Asanaka
利忠 浅中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba System Technology Corp
Original Assignee
Toshiba Corp
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2011116247A priority Critical patent/JP5818510B2/en
Publication of JP2012241696A publication Critical patent/JP2012241696A/en
Application granted granted Critical
Publication of JP5818510B2 publication Critical patent/JP5818510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost by miniaturizing and simplifying an entire device, even when the device is provided with a plurality of nozzle systems.SOLUTION: A gas turbine intake air cooling device includes: a plurality of nozzle systems 15A to 15D; a spray device 11 for spraying cooling water from the nozzle systems into intake air (A) led to a compressor 3 in gas turbine equipment 1, and cooling the intake air; and a cooling water supply system 12 for supplying the spray device with cooling water. The cooling water supply system is configured to include shutoff valves 21A to 21D, a water supply pump 17, a pressure control valve 19, and a flow rate control valve 20. A plurality of shutoff valves are provided for one water supply pump, and furthermore a plurality of shutoff valves corresponding to a plurality of nozzle systems in the spray device are provided to allow cooling water to be selectively supplied to a plurality of nozzle systems. The water supply pump supplies cooling water toward the shutoff valves while a discharge flow rate is fixed. The pressure control valve controls the pressure of cooling water supplied to the spray device to be a predetermined fixed pressure. The flow rate control valve controls the flow rate of cooling water supplied to the spray device to be a predetermined flow rate according to opening/closing operation of the shutoff valves.

Description

本発明は、ガスタービンの吸気を冷却するガスタービン吸気冷却装置及び方法に関する。   The present invention relates to a gas turbine intake air cooling apparatus and method for cooling intake air of a gas turbine.

ガスタービン設備単体、あるいはガスタービン設備に蒸気タービン設備および排熱回収ボイラを組み合わせたコンバインドサイクルプラントは、気温の上昇によって空気密度が低下することにより、最大発電量が低下してしまう特性がある。   A combined cycle plant in which a gas turbine facility alone or a gas turbine facility is combined with a steam turbine facility and an exhaust heat recovery boiler has a characteristic that the maximum power generation amount decreases due to a decrease in air density due to an increase in temperature.

そこで、最大発電量の低下を防止する手段の一つとして、圧縮機への吸気中に冷却水を噴霧し、冷却水の液滴が蒸発する際の気化熱によって吸気温度を低下させて空気密度を大きくし、吸気の質量流量と燃料の比率によって燃焼器に供給される燃料投入量を大きくして最大発電量を増大させるガスタービン吸気冷却装置がある。   Therefore, as one of the means for preventing the decrease in the maximum power generation amount, the cooling water is sprayed during the intake air to the compressor, and the air temperature is reduced by reducing the intake air temperature by the heat of vaporization when the cooling water droplet evaporates. There is a gas turbine intake air cooling device that increases the maximum power generation amount by increasing the amount of fuel supplied to the combustor according to the ratio of the mass flow rate of the intake air and the fuel.

図4は、従来のガスタービン吸気冷却装置100を示す系統図である。ガスタービン設備101は、流体の流れ方向に沿って吸気室102、圧縮機103、燃焼器104及びガスタービン105が配置され、ガスタービン105に発電機106が連結されて駆動される。   FIG. 4 is a system diagram showing a conventional gas turbine intake air cooling device 100. In the gas turbine equipment 101, an intake chamber 102, a compressor 103, a combustor 104, and a gas turbine 105 are arranged along a fluid flow direction, and a generator 106 is connected to the gas turbine 105 and driven.

ガスタービン吸気冷却装置100は、上記ガスタービン設備101の圧縮機103へ導かれる吸気室102内の吸気に、ノズル系統107A〜107Dから冷却水を噴霧して吸気を冷却する噴霧装置108と、この噴霧装置108へ冷却水タンク112内の冷却水を供給する冷却水供給系109と、を有して構成される。   The gas turbine intake air cooling device 100 includes a spray device 108 that sprays cooling water from the nozzle systems 107A to 107D on the intake air in the intake chamber 102 guided to the compressor 103 of the gas turbine equipment 101 to cool the intake air. And a cooling water supply system 109 for supplying the cooling water in the cooling water tank 112 to the spraying device 108.

冷却水供給系109では、冷却水を圧送するための給水ポンプ110A〜110Dが4台設置され、各給水ポンプ110A〜110Dが4本の給水配管111A〜111Dのそれぞれに配設され、これらの各給水配管111A〜111Dに4本の前記ノズル系統107A〜107Dがそれぞれ独立して接続されている。   In the cooling water supply system 109, four water supply pumps 110A to 110D for pumping the cooling water are installed, and each of the water supply pumps 110A to 110D is disposed in each of the four water supply pipes 111A to 111D. The four nozzle systems 107A to 107D are independently connected to the water supply pipes 111A to 111D, respectively.

各給水ポンプ110A〜110Dの吐出重量は、給水ポンプ110Aが1流量単位に、給水ポンプ110Bが2流量単位に、給水ポンプ110Cが4流量単位に、給水ポンプ110Dが8流量単位にそれぞれ設定されている。このように吐出重量が異なる4台の給水ポンプ110A〜110Dを単独で、又は2台以上を組み合わせて運転させる運転台数制御を実施することで、噴霧装置108へ供給する冷却水の総流量を2進数形式で制御している。   The discharge weight of each of the feed water pumps 110A to 110D is set such that the feed water pump 110A is set to 1 flow rate unit, the feed water pump 110B is set to 2 flow rate units, the feed water pump 110C is set to 4 flow rate units, and the feed water pump 110D is set to 8 flow rate units. Yes. In this way, by controlling the number of operating water pumps 110A to 110D having different discharge weights alone or in combination of two or more, the total flow rate of the cooling water supplied to the spray device 108 is reduced to 2 Control in hexadecimal format.

特開2002−201958号公報JP 2002-201958 A

しかしながら、上述のようなガスタービン吸気冷却装置100では、冷却水供給系109から噴霧装置108へ供給する冷却水の流量の増加に対応して、設置される給水ポンプ110A〜110Dなどの構成機器が増加して、ガスタービン吸気冷却装置100が大型化してしまう。このため、ガスタービン吸気冷却装置100の設置場所に広いスペースが必要になるうえ、設置工事が増大するなどで初期コストが上昇し、更に所要電力等が増加して運用コストも上昇してしまう。   However, in the gas turbine intake air cooling device 100 as described above, components such as the feed water pumps 110 </ b> A to 110 </ b> D that are installed correspond to the increase in the flow rate of the cooling water supplied from the cooling water supply system 109 to the spray device 108. As a result, the gas turbine intake air cooling device 100 increases in size. For this reason, a large space is required in the installation place of the gas turbine intake air cooling device 100, and the initial cost increases due to an increase in installation work, and further, the required power and the like increase, thereby increasing the operation cost.

また、大気条件の変化に応じて噴霧装置108にて噴霧すべき冷却水の流量を変化させる必要があることから、冷却水供給系109から噴霧装置108へ供給する冷却水の流量制御を、上述のように給水ポンプ110A〜110Dの運転台数制御で実施する場合には、大気条件の変化に応じて給水ポンプ110A〜110Dの起動、停止を頻繁に行なわなければならない。この結果、給水ポンプ110A〜110Dでは運転時間のばらつきが大きくなり、これら運転時間が異なる給水ポンプ110A〜110Dの保守管理が煩雑または困難になってしまう。   Further, since it is necessary to change the flow rate of the cooling water to be sprayed by the spraying device 108 in accordance with the change in atmospheric conditions, the flow rate control of the cooling water supplied from the cooling water supply system 109 to the spraying device 108 is described above. Thus, when it implements by operation number control of water supply pump 110A-110D, you have to start and stop water supply pump 110A-110D frequently according to the change of atmospheric conditions. As a result, the operation time varies greatly in the feed water pumps 110A to 110D, and maintenance management of the feed water pumps 110A to 110D having different operation times becomes complicated or difficult.

本発明の目的は、上述の事情を考慮してなされたものであり、複数のノズル系統を備えた場合であっても、装置全体を小型化且つ簡素化してコストを低減できるガスタービン吸気冷却装置及び方法を提供することにある。   An object of the present invention has been made in consideration of the above-mentioned circumstances, and even when a plurality of nozzle systems are provided, a gas turbine intake air cooling apparatus that can reduce the cost by reducing the size and simplification of the entire apparatus. And providing a method.

本発明に係るガスタービン吸気冷却装置は、複数のノズル系統を備え、ガスタービン設備の圧縮機に導かれる吸気に前記ノズル系統から冷却水を噴霧して吸気を冷却する噴霧装置と、この噴霧装置へ冷却水を供給する冷却水供給系と、を有するガスタービン吸気冷却装置であって、前記冷却水供給系は遮断弁、ポンプ、圧力調節手段及び流量調節手段を有して構成され、前記遮断弁は、一つの前記ポンプに対し複数設けられ、更に前記噴霧装置の複数の前記ノズル系統にそれぞれ対応して複数設けられて、複数の前記ノズル系統へ冷却水を選択的に供給可能に構成され、前記ポンプは、吐出流量を一定とした状態で前記遮断弁へ向かって冷却水を供給し、前記圧力調節手段は、前記ポンプの吐出側に設置されて、前記噴霧装置へ供給する冷却水の圧力を所定の一定圧力に調節し、前記流量調節手段は、前記ポンプの吐出側で且つ前記圧力調節手段と前記遮断弁との間に設置され、前記噴霧装置へ供給する冷却水の流量を、前記遮断弁の開閉動作に応じた所定流量に調節するように構成されたことを特徴とするものである。   A gas turbine intake air cooling device according to the present invention includes a plurality of nozzle systems, and a spray device that cools intake air by spraying cooling water from the nozzle system to intake air guided to a compressor of a gas turbine facility, and the spray device A cooling water supply system for supplying cooling water to the gas turbine intake air cooling device, wherein the cooling water supply system includes a shutoff valve, a pump, a pressure adjusting means and a flow rate adjusting means, and the shutoff A plurality of valves are provided for one pump, and a plurality of valves are provided corresponding to the plurality of nozzle systems of the spraying device, respectively, so that cooling water can be selectively supplied to the plurality of nozzle systems. The pump supplies cooling water toward the shutoff valve with a constant discharge flow rate, and the pressure adjusting means is installed on the discharge side of the pump and is supplied to the spraying device. The flow rate adjusting means is installed on the discharge side of the pump and between the pressure adjusting means and the shut-off valve, and controls the flow rate of cooling water supplied to the spraying device. Further, the flow rate is adjusted to a predetermined flow rate according to the opening / closing operation of the shut-off valve.

また、本発明に係るガスタービン吸気冷却方法は、複数のノズル系統を備え、ガスタービン設備の圧縮機に導かれる吸気に前記ノズル系統から冷却水を噴霧して吸気を冷却する噴霧装置と、この噴霧装置へ冷却水を供給する冷却水供給系と、を用いて実施するガスタービン吸気冷却方法であって、前記冷却水供給系では、ポンプが吐出流量を一定とした状態で、一つの前記ポンプに対し複数設けられ且つ複数の前記ノズル系統にそれぞれ対応して複数設けられた遮断弁へ向かって冷却水を供給し、前記遮断弁が、複数の前記ノズル系統のそれぞれへ冷却水を選択的に供給し、前記ポンプの吐出側に設置された流量調節手段が、前記噴霧装置へ供給する冷却水の流量を、前記遮断弁の開閉動作に応じた所定流量に調節することを特徴とするものである。   Further, a gas turbine intake air cooling method according to the present invention includes a spray device that includes a plurality of nozzle systems, and cools intake air by spraying cooling water from the nozzle system to intake air guided to a compressor of a gas turbine facility. And a cooling water supply system for supplying cooling water to the spraying device, wherein the cooling water supply system is configured so that one pump is in a state where the pump has a constant discharge flow rate. Cooling water is supplied to a plurality of shut-off valves provided corresponding to the plurality of nozzle systems, and the shut-off valve selectively supplies cooling water to each of the plurality of nozzle systems. The flow rate adjusting means that is supplied and installed on the discharge side of the pump adjusts the flow rate of the cooling water supplied to the spray device to a predetermined flow rate according to the opening / closing operation of the shutoff valve. A.

本発明に係るガスタービン吸気冷却装置及び方法によれば、噴霧装置が複数のノズル系統を備えた場合であっても、装置の信頼性を損なうことなく、最小限のポンプ台数で噴霧装置へ供給する冷却水の流量を効率良く制御できる。この結果、装置全体を小型化且つ簡素化してコスト(初期コスト及び運用コスト)を低減できる。   According to the gas turbine intake air cooling device and method according to the present invention, even when the spraying device includes a plurality of nozzle systems, the minimum number of pumps is supplied to the spraying device without impairing the reliability of the device. The flow rate of cooling water can be controlled efficiently. As a result, the entire apparatus can be reduced in size and simplified to reduce costs (initial cost and operation cost).

本発明に係るガスタービン吸気冷却装置の第1実施形態の構成を示す系統図。1 is a system diagram showing a configuration of a first embodiment of a gas turbine intake air cooling device according to the present invention. 本発明に係るガスタービン吸気冷却装置の第2実施形態の構成を示す系統図。The system diagram which shows the structure of 2nd Embodiment of the gas turbine intake air cooling device which concerns on this invention. 本発明に係るガスタービン吸気冷却装置の第3実施形態の構成を示す系統図。The system diagram which shows the structure of 3rd Embodiment of the gas turbine inlet-air cooling device which concerns on this invention. 従来のガスタービン吸気冷却装置を示す系統図。The system diagram which shows the conventional gas turbine intake-air-cooling apparatus.

以下、本発明を実施するための実施形態を図面に基づき説明する。但し、本発明は、これらの実施形態に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments.

[A]第1実施形態(図1)
図1は、本発明に係るガスタービン吸気冷却装置の第1実施形態の構成を示す系統図である。この図1に示すガスタービン吸気冷却装置10が適用されるガスタービン設備1は、流体の流れ方向に配置された吸気室2、圧縮機3、燃焼器4及びガスタービン5を有して構成され、このガスタービン5に発電機6が連結されている。
[A] First embodiment (FIG. 1)
FIG. 1 is a system diagram showing a configuration of a first embodiment of a gas turbine intake air cooling device according to the present invention. A gas turbine equipment 1 to which the gas turbine intake air cooling apparatus 10 shown in FIG. 1 is applied includes an intake chamber 2, a compressor 3, a combustor 4, and a gas turbine 5 arranged in a fluid flow direction. A generator 6 is connected to the gas turbine 5.

吸気室2は圧縮機3に接続されており、この圧縮機3に供給される吸込空気(吸気)Aを吸い込む。また、圧縮機3は、吸気室2から導かれた吸気Aを圧縮して燃焼器4へ供給する。この燃焼器4は燃料と、圧縮機3から導入された吸気Aとを燃焼させて燃焼ガスBを生成し、ガスタービン5へ送給する。このガスタービン5は、燃焼ガスBにより回転駆動されて発電機6を回転させ、この発電機6が発電する。ガスタービン5からの排気Cは、浄化処理を施した後に大気中に排出される。   The intake chamber 2 is connected to a compressor 3 and sucks intake air (intake air) A supplied to the compressor 3. The compressor 3 compresses the intake air A introduced from the intake chamber 2 and supplies the compressed air to the combustor 4. The combustor 4 combusts fuel and intake air A introduced from the compressor 3 to generate combustion gas B, and supplies the combustion gas B to the gas turbine 5. The gas turbine 5 is rotated by the combustion gas B to rotate the generator 6, and the generator 6 generates power. Exhaust gas C from the gas turbine 5 is discharged into the atmosphere after being subjected to purification treatment.

さて、ガスタービン吸気冷却装置10は、ガスタービン設備1の圧縮機3へ供給される吸気Aを冷却するものであり、吸気室2内の吸気Aに冷却水を噴霧する噴霧装置11と、この噴霧装置11へ冷却水を供給する冷却水供給系12とを有して構成される。   The gas turbine intake air cooling device 10 cools the intake air A supplied to the compressor 3 of the gas turbine equipment 1. The spray device 11 sprays cooling water on the intake air A in the intake chamber 2, and this A cooling water supply system 12 that supplies cooling water to the spray device 11 is provided.

噴霧装置11は、複数本(本実施形態では4本)の導水管13A〜13Dのそれぞれの先端にノズル14A〜14Dが取り付けられて設けられた、複数系統(本実施形態では4系統)のノズル系統15A〜15Dを有して構成される。これらのノズル系統15A〜15Dの各ノズル14A〜14Dは、ガスタービン設備1の吸気室2内に配置され、この吸気室2内を流れる吸気Aに冷却水を噴霧する。噴霧された冷却水の微細な液滴が気化するとのきの気化熱によって、吸気Aが冷却される。   The spraying device 11 includes a plurality of (four in this embodiment) nozzles provided with nozzles 14A to 14D attached to the tips of a plurality (four in this embodiment) of the water conduits 13A to 13D. It has a system 15A-15D. The nozzles 14 </ b> A to 14 </ b> D of these nozzle systems 15 </ b> A to 15 </ b> D are arranged in the intake chamber 2 of the gas turbine equipment 1, and spray cooling water onto the intake air A flowing in the intake chamber 2. The intake air A is cooled by the heat of vaporization when the fine droplets of the sprayed cooling water are vaporized.

各ノズル系統15A〜15Dのそれぞれのノズル14A〜14Dは、噴霧流量が異なるようにノズル数またはノズル径が構成されている。例えば、ノズル14Aの噴霧流量を1流量単位としたとき、ノズル14Bは2流量単位に、ノズル14Cは4流量単位に、ノズル14Dは8流量単位にそれぞれ設定されている。従って、後に詳説するが、噴霧動作するノズル14A〜14Dの組み合わせによって、吸気室2内に噴霧される冷却水の噴霧流量を、1流量単位から15流量単位の範囲で、1流量単位ごとに変化させることが可能になる。   The nozzles 14A to 14D of the respective nozzle systems 15A to 15D are configured with the number of nozzles or the nozzle diameter so that the spray flow rate is different. For example, when the spray flow rate of the nozzle 14A is set to 1 flow rate unit, the nozzle 14B is set to 2 flow rate units, the nozzle 14C is set to 4 flow rate units, and the nozzle 14D is set to 8 flow rate units. Therefore, as will be described in detail later, the spray flow rate of the cooling water sprayed into the intake chamber 2 is changed in units of 1 flow rate unit to 15 flow rate units by the combination of the nozzles 14A to 14D performing the spray operation. It becomes possible to make it.

噴霧装置11へ冷却水を供給する前記冷却水供給系12は、給水タンク16、給水ポンプ17、アキュムレータ18、圧力調節手段としての圧力調節弁19、流量調節手段としての流量調節弁20、遮断弁21A〜24D、及び制御装置22を有して構成される。   The cooling water supply system 12 for supplying cooling water to the spraying device 11 includes a water supply tank 16, a water supply pump 17, an accumulator 18, a pressure adjustment valve 19 as a pressure adjustment means, a flow rate adjustment valve 20 as a flow rate adjustment means, and a shut-off valve. 21A-24D and the control apparatus 22 are comprised.

給水タンク16は、注水配管23から注水された水を冷却水として貯溜する。この給水タンク16に接続された給水配管24に給水ポンプ17が配設される。給水配管24の下流端側は複数本、本実施形態では4本に分岐され、これらの各分岐部が噴霧装置11のノズル系統15A〜15Dのそれぞれに接続されると共に、各分岐部に遮断弁21A〜21Dのそれぞれが互いに並列に配設される。   The water supply tank 16 stores the water injected from the water injection pipe 23 as cooling water. A water supply pump 17 is disposed in a water supply pipe 24 connected to the water supply tank 16. The downstream end side of the water supply pipe 24 is branched into a plurality of pipes, and in this embodiment, four branches. Each of these branch parts is connected to each of the nozzle systems 15A to 15D of the spray device 11, and a shutoff valve is connected to each branch part. Each of 21A-21D is arrange | positioned mutually in parallel.

給水ポンプ17は単一(1個)であり、給水タンク16に貯溜された冷却水を吸い込んで吐出する。この給水ポンプ17は容積式ポンプであり、例えばポンプケーシング内でプランジャ(共に図示せず)が往復運動することにより冷却水を吐出するプランジャポンプである。プランジャは、駆動モータ25により駆動される。従って、この給水ポンプ17は、吐出圧力が一定であり、更に駆動モータ25の回転数が一定ならば吐出流量も一定になる。本実施形態では、給水ポンプ17は、制御装置22による駆動モータ25の制御によって、吐出流量を一定とした状態で遮断弁21A〜21Dへ向かって冷却水を供給する。   The water supply pump 17 is single (one), and sucks and discharges the cooling water stored in the water supply tank 16. The feed water pump 17 is a positive displacement pump, for example, a plunger pump that discharges cooling water when a plunger (both not shown) reciprocates in a pump casing. The plunger is driven by a drive motor 25. Accordingly, the discharge pressure of the feed water pump 17 is constant, and if the rotation speed of the drive motor 25 is constant, the discharge flow rate is also constant. In the present embodiment, the water supply pump 17 supplies cooling water toward the shutoff valves 21 </ b> A to 21 </ b> D with a constant discharge flow rate under the control of the drive motor 25 by the control device 22.

給水配管24の各分岐部にそれぞれ並列に配設された遮断弁21A〜21Dは、一つの給水ポンプ17に対し複数設けられると共に、噴霧装置11の複数系統(例えば4系統)のノズル系統15A〜15Dにそれぞれ対応して複数個(例えば4個)設けられる。これらの遮断弁21A〜21Dは、全開または全閉動作する仕切弁であり、給水配管24を流れる冷却水を複数系統のノズル系統15A〜15Dへ選択的に供給可能とする。例えば、遮断弁21Aのみを開動作することにより、給水配管24内の冷却水をノズル系統15Aのみへ供給し、また、遮断弁21C及び21Dのみを開動作することにより、給水配管24内の冷却水をノズル系統15C及び15Dのみへ供給する。   A plurality of shut-off valves 21A to 21D arranged in parallel at the respective branch portions of the water supply pipe 24 are provided for one water supply pump 17, and a plurality of (for example, four) nozzle systems 15A to 15a of the spray device 11. A plurality (for example, four) are provided corresponding to 15D. These shutoff valves 21A to 21D are gate valves that are fully opened or fully closed, and can selectively supply the cooling water flowing through the water supply pipe 24 to the plurality of nozzle systems 15A to 15D. For example, by opening only the shutoff valve 21A, the cooling water in the water supply pipe 24 is supplied only to the nozzle system 15A, and by opening only the shutoff valves 21C and 21D, the cooling in the water supply pipe 24 is performed. Water is supplied only to the nozzle systems 15C and 15D.

アキュムレータ18は、給水ポンプ17の作動により生ずる圧力脈動を吸収するために設けられたものであり、給水ポンプ17のポンプケーシングまたは給水配管24の吐出側に設置される。このアキュムレータ18は、給水ポンプ17に可能な限り近接して設置されることが好ましい。   The accumulator 18 is provided to absorb pressure pulsation caused by the operation of the feed water pump 17 and is installed on the discharge casing of the feed water pump 17 or the feed water pipe 24. The accumulator 18 is preferably installed as close as possible to the water supply pump 17.

圧力調節弁19は、全開と全閉との間で弁開度を変更可能に構成され、1次配管26を経て給水配管24における給水ポンプ17の吐出側で且つアキュムレータ18の下流側に設置される。この圧力調節弁19は、制御装置22の制御により弁開度を変更することで、噴霧装置11のノズル系統15A〜15へ供給する冷却水の圧力(即ちノズル前圧力)を所定の一定圧力に調整する。   The pressure control valve 19 is configured to be able to change the valve opening degree between fully open and fully closed, and is installed on the discharge side of the water supply pump 17 in the water supply pipe 24 via the primary pipe 26 and on the downstream side of the accumulator 18. The The pressure control valve 19 changes the valve opening degree under the control of the control device 22 so that the pressure of the cooling water supplied to the nozzle systems 15A to 15 of the spray device 11 (that is, the pre-nozzle pressure) becomes a predetermined constant pressure. adjust.

つまり、ガスタービン設備1における圧縮機3の動翼及び静翼をエロージョンから防止するためには、ノズル系統15A〜15Dから噴霧される冷却水の液滴の粒径を所定値以下に微細化する必要がある。この条件を満たす液滴をノズル系統15A〜15Dのノズル14A〜14Dから噴霧させるために、圧力調節弁19は、給水ポンプ17からのポンプ吐出圧力を、所定の一定圧力のノズル前圧力に調節する。尚、圧力調節弁19の2次配管27は、給水タンク16に大気解放状態で接続される。これにより、圧力調節弁19を通過した余水は給水タンク16に戻され、冷却水として再度利用される。   That is, in order to prevent the moving blades and the stationary blades of the compressor 3 in the gas turbine equipment 1 from erosion, the particle size of the cooling water droplets sprayed from the nozzle systems 15A to 15D is reduced to a predetermined value or less. There is a need. In order to spray droplets that satisfy this condition from the nozzles 14A to 14D of the nozzle systems 15A to 15D, the pressure control valve 19 adjusts the pump discharge pressure from the feed water pump 17 to a predetermined nozzle pre-pressure. . Note that the secondary pipe 27 of the pressure control valve 19 is connected to the water supply tank 16 in an open state. Thereby, the surplus water that has passed through the pressure control valve 19 is returned to the water supply tank 16 and used again as cooling water.

流量調節弁20はバイパスライン28に配設される。このバイパスライン28は、一端28Aが、給水配管24における給水ポンプ17の吐出側で且つ圧力調節弁19と遮断弁21A〜21Dとの間に接続され、他端28Bが、給水タンク16に大気解放状態で接続される。このバイパスライン28に配設された流量調節弁20は、全閉と全開との間で弁開度を段階的に変更して、バイパスライン28内を流れて給水タンク16へ戻る冷却水の流量を調節することにより、給水配管24から噴霧装置11へ供給する冷却水の流量を調節するものである。   The flow control valve 20 is disposed in the bypass line 28. The bypass line 28 has one end 28 </ b> A connected to the discharge side of the water supply pump 17 in the water supply pipe 24 and between the pressure regulating valve 19 and the shutoff valves 21 </ b> A to 21 </ b> D, and the other end 28 </ b> B open to the water supply tank 16. Connected in state. The flow rate adjusting valve 20 disposed in the bypass line 28 changes the valve opening stepwise between fully closed and fully opened, flows through the bypass line 28 and returns to the water supply tank 16. By adjusting the flow rate, the flow rate of the cooling water supplied from the water supply pipe 24 to the spraying device 11 is adjusted.

例えば、給水ポンプ17からの冷却水の吐出流量Qを一定流量としたとき、バイパスライン28へ流れる冷却水の流量を流量調節弁20により流量Q1に調節することによって、噴霧装置11へ供給する冷却水の流量Q2を、Q2=(Q−Q1)に調節する。   For example, when the discharge flow rate Q of the cooling water from the feed water pump 17 is a constant flow rate, the cooling water supplied to the spray device 11 is adjusted by adjusting the flow rate of the cooling water flowing to the bypass line 28 to the flow rate Q1 by the flow rate control valve 20. The water flow rate Q2 is adjusted to Q2 = (Q−Q1).

上述のように流量調節弁20が調節する噴霧装置11へ供給する冷却水の流量Q2は、遮断弁21A〜21Dの開閉動作に応じた所定流量であり、制御装置22により決定される。つまり、制御装置22には、温度センサ30から大気温度が取り込まれ、ガスタービン設備1における吸気室2に設置された湿度センサ31から吸気室湿度が取り込まれ、更に、圧縮機3の吸気入口側に設置された流量センサ32から圧縮機3への吸気流量が取り込まれる。制御装置22は、上述の大気温度、吸気室湿度及び圧縮機3への吸気流量に基づいて、噴霧装置11により吸気室2内に噴霧されるべき冷却水流量、即ち冷却水供給系12から噴霧装置11へ供給する冷却水の流量Q2を演算し決定する。   As described above, the flow rate Q2 of the cooling water supplied to the spray device 11 adjusted by the flow rate control valve 20 is a predetermined flow rate according to the opening / closing operation of the shutoff valves 21A to 21D, and is determined by the control device 22. That is, the atmospheric temperature is taken into the controller 22 from the temperature sensor 30, the intake chamber humidity is taken in from the humidity sensor 31 installed in the intake chamber 2 in the gas turbine equipment 1, and the intake inlet side of the compressor 3. The intake air flow rate to the compressor 3 is taken in from the flow rate sensor 32 installed at. Based on the above-described atmospheric temperature, intake chamber humidity, and intake air flow rate to the compressor 3, the control device 22 controls the flow rate of cooling water to be sprayed into the intake chamber 2 by the spray device 11, that is, sprays from the cooling water supply system 12. The flow rate Q2 of the cooling water supplied to the apparatus 11 is calculated and determined.

制御装置22は、更に、上述のようにして算出した吸気室2内へ噴霧されるべき冷却水流量から噴霧動作させるべきノズル系統15A〜15Dを選定し、この選定されたノズル系統15A〜15Dに対応する遮断弁21A〜21Dを開閉動作させるべく、この遮断弁21A〜21Dの開閉動作を制御する。例えば、表1に示すように、吸気室2内に噴霧されるべき冷却水流量が5流量単位である場合には、ノズル系統15A及び15Cが設定され、これらのノズル系統15A及び15Cに対応する遮断弁21A及び21Cが開動作する。   The control device 22 further selects the nozzle systems 15A to 15D to be sprayed from the coolant flow rate to be sprayed into the intake chamber 2 calculated as described above, and assigns the selected nozzle systems 15A to 15D. In order to open and close the corresponding shutoff valves 21A to 21D, the opening and closing operations of the shutoff valves 21A to 21D are controlled. For example, as shown in Table 1, when the cooling water flow rate to be sprayed into the intake chamber 2 is 5 flow units, the nozzle systems 15A and 15C are set and correspond to these nozzle systems 15A and 15C. The shutoff valves 21A and 21C are opened.

Figure 2012241696
Figure 2012241696

また、制御装置22は、前述のように算出した噴霧装置11へ供給する冷却水の流量Q2と給水ポンプ17の吐出流量Qとを比較して、バイパスライン28へ流す冷却水の流量Q1を算出し、この流量Q1の冷却水をバイパスライン28に流すための流量調節弁20の開度を決定して、この流量調節弁20を制御する。   Further, the control device 22 compares the flow rate Q2 of the cooling water supplied to the spraying device 11 calculated as described above with the discharge flow rate Q of the feed water pump 17, and calculates the flow rate Q1 of the cooling water flowing to the bypass line 28. And the opening degree of the flow control valve 20 for flowing the cooling water of this flow volume Q1 to the bypass line 28 is determined, and this flow control valve 20 is controlled.

上述のような制御装置22の制御によって、流量調節弁20は、給水ポンプ17の吐出流量Qが一定流量に制御された状態で、噴霧装置11へ供給する冷却水の流量Q2を、遮断弁21A〜21の開閉動作に応じた所定流量、即ち遮断弁21A〜21Dの開動作により必要とされる流量に調節する。   Through the control of the control device 22 as described above, the flow rate adjustment valve 20 changes the flow rate Q2 of the cooling water supplied to the spraying device 11 in the state where the discharge flow rate Q of the feed water pump 17 is controlled to a constant flow rate, and the shutoff valve 21A. The flow rate is adjusted to a predetermined flow rate corresponding to the open / close operation of .about.21, that is, the flow rate required by the opening operation of the shutoff valves 21A to 21D.

次に、ガスタービン吸気冷却装置10の作用を説明する。
噴霧装置11へ冷却水を供給する冷却水供給系12では、単一の給水ポンプ17が冷却水の吐出流量を一定とした状態で、流量調節弁20による流量調節によって、複数のノズル系統15A〜15Dにそれぞれ対応して設けられた複数の遮断弁21A〜21Dへ向かって冷却水を供給し、この遮断弁21A〜21Dがノズル系統15A〜15Dへ選択的に冷却水を供給する。例えば、遮断弁21Aを開動作させることでノズル系統15Aへ冷却水を供給し、また、遮断弁21B及び21Cを開動作させることで、ノズル系統15B及び15Cへ冷却水を供給する。
Next, the operation of the gas turbine intake air cooling device 10 will be described.
In the cooling water supply system 12 that supplies the cooling water to the spraying device 11, a plurality of nozzle systems 15 </ b> A to 15 </ b> A to 15 </ b> A by adjusting the flow rate by the flow rate control valve 20 with a single water supply pump 17 maintaining a constant discharge flow rate of the cooling water. Cooling water is supplied to a plurality of cutoff valves 21A to 21D provided corresponding to 15D, and the cutoff valves 21A to 21D selectively supply cooling water to the nozzle systems 15A to 15D. For example, cooling water is supplied to the nozzle system 15A by opening the shutoff valve 21A, and cooling water is supplied to the nozzle systems 15B and 15C by opening the shutoff valves 21B and 21C.

このとき、流量調節弁20が実施する冷却水の流量調節は、複数の遮断弁21A〜21Dの開閉動作に応じた所定流量に調節するものである。つまり、複数の各遮断弁21A〜21Dは、噴霧流量がそれぞれ異なる複数のノズル系統15A〜15Dにそれぞれ対応して設けられたものであるため、流量調節弁20による冷却水の流量調節は、ノズル系統15A〜15Dのそれぞれが必要な噴霧流量に対応したものになる。   At this time, the flow rate adjustment of the cooling water performed by the flow rate adjustment valve 20 is adjusted to a predetermined flow rate according to the opening / closing operations of the plurality of shutoff valves 21A to 21D. That is, since each of the plurality of shut-off valves 21A to 21D is provided corresponding to each of the plurality of nozzle systems 15A to 15D having different spray flow rates, the flow rate adjustment of the cooling water by the flow rate adjustment valve 20 is performed by the nozzles. Each of the systems 15A to 15D corresponds to the necessary spray flow rate.

例えば、遮断弁21Aが開示動作してノズル系統15Aへ冷却水を供給する場合には、このノズル系統15Aのノズル14Aが噴霧する噴霧流量(1流量単位)の冷却水が、流量調節弁20による流量調節によって冷却水供給系12から噴霧装置11へ供給される。また、遮断弁21B及び21Cが開動作し、ノズル系統15B及び15Cへ冷却水を供給する場合には、これらのノズル系統15B及び15Cのそれぞれのノズル14B及び14Cが噴霧する噴霧流量(2流量単位+4流量単位)の冷却水が、流量調節弁20による流量調節によって冷却水供給系12から噴霧装置11へ供給される。   For example, when the shutoff valve 21A operates to supply cooling water to the nozzle system 15A, the cooling water having a spray flow rate (in units of one flow rate) sprayed by the nozzle 14A of the nozzle system 15A is generated by the flow rate control valve 20. It is supplied from the cooling water supply system 12 to the spraying device 11 by adjusting the flow rate. Further, when the shutoff valves 21B and 21C are opened and cooling water is supplied to the nozzle systems 15B and 15C, the spray flow rate (2 flow rate units) sprayed by the nozzles 14B and 14C of the nozzle systems 15B and 15C, respectively. (+4 flow rate unit) of cooling water is supplied from the cooling water supply system 12 to the spraying device 11 by the flow rate adjustment by the flow rate control valve 20.

以上のように構成されたことから、本実施形態によれば、次の効果を奏する。
複数のノズル系統15A〜15Dを備えた噴霧装置11へ冷却水を供給する冷却水供給系12は、単一の給水ポンプ17が吐出流量を一定とし、複数の遮断弁21A〜21Dが、噴霧装置11における複数のノズル系統15A〜15Dのそれぞれへ冷却水を選択的に供給可能とし、流量調節弁20が、噴霧装置11へ供給する冷却水の流量を、遮断弁21A〜21Dの開閉動作に応じた所定流量に調節する。このため、噴霧装置11が複数のノズル系統15A〜15Dを備えた場合であっても、ガスタービン吸気冷却装置10の信頼性を損なうことなく、給水ポンプ17の最小限のポンプ台数で噴霧装置11へ供給する冷却水の流量を効率良く制御できる。この結果、装置全体を小型化且つ簡素化して初期コスト及び運用コストを低減できる。
With the configuration as described above, the present embodiment has the following effects.
In the cooling water supply system 12 for supplying cooling water to the spraying device 11 having a plurality of nozzle systems 15A to 15D, the single water supply pump 17 makes the discharge flow rate constant, and the plurality of shut-off valves 21A to 21D are spraying devices. The cooling water can be selectively supplied to each of the plurality of nozzle systems 15A to 15D in FIG. 11, and the flow rate of the cooling water supplied to the spraying device 11 by the flow rate control valve 20 is changed according to the opening / closing operation of the shutoff valves 21A to 21D. Adjust to the specified flow rate. For this reason, even if the spraying device 11 includes a plurality of nozzle systems 15A to 15D, the spraying device 11 can be made with the minimum number of pumps of the water supply pump 17 without impairing the reliability of the gas turbine intake air cooling device 10. The flow rate of the cooling water supplied to can be controlled efficiently. As a result, the entire apparatus can be reduced in size and simplified, and the initial cost and operation cost can be reduced.

[B]第2実施形態(図2)
図2は、本発明に係るガスタービン吸気冷却装置の第2実施形態の構成を示す系統図である。この第2実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIG. 2)
FIG. 2 is a system diagram showing a configuration of a second embodiment of the gas turbine intake air cooling device according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施形態のガスタービン吸気冷却装置40が前記第1実施形態のガスタービン吸気冷却装置10と異なる点は、冷却水供給系43の流量調節手段が、第1実施形態の流量調節弁20に代えて、複数の開閉弁41A〜41Dと、これらの各開閉弁41A〜41Dに直列接続されたオリフィス42A〜42Dと、を有して構成された点である。   The gas turbine intake air cooling device 40 of the present embodiment is different from the gas turbine intake air cooling device 10 of the first embodiment in that the flow rate adjusting means of the cooling water supply system 43 is replaced with the flow rate adjusting valve 20 of the first embodiment. Thus, the on-off valves 41 </ b> A to 41 </ b> D and the orifices 42 </ b> A to 42 </ b> D connected in series to the on-off valves 41 </ b> A to 41 </ b> D are configured.

開閉弁41A及びオリフィス42Aと、開閉弁41B及びオリフィス42Bと、開閉弁41C及びオリフィス41Cと、開閉弁41D及びオリフィス42Dは、互いに並列状態でバイパスライン28に配設されている。   The on-off valve 41A and the orifice 42A, the on-off valve 41B and the orifice 42B, the on-off valve 41C and the orifice 41C, and the on-off valve 41D and the orifice 42D are disposed in the bypass line 28 in parallel with each other.

開閉弁41A〜41Dは、複数の遮断弁21A〜21Dのそれぞれに対応して複数設けられる。また、これらの開閉弁41A〜41Dは、各遮断弁21A〜21Dの開閉動作に同調して開閉動作するよう制御装置22により制御される。つまり、開動作した遮断弁21A〜21Dに対応する開閉弁41A〜41Dが閉動作し、閉動作した遮断弁21A〜21Dに対応する開閉弁41A〜41Dが開動作する。例えば表2に示すように、噴霧装置11へ5流量単位の冷却水を供給すべく、遮断弁21A及び21Cが開動作し、遮断弁21B及び21Dが閉動作した場合には、開閉弁41A及び41Cが閉動作し、開閉弁41B及び41Dが開動作する。   A plurality of on-off valves 41A to 41D are provided corresponding to each of the plurality of shut-off valves 21A to 21D. The on-off valves 41A to 41D are controlled by the control device 22 so as to open and close in synchronism with the open / close operations of the shut-off valves 21A to 21D. That is, the on-off valves 41A to 41D corresponding to the opened shut-off valves 21A to 21D are closed, and the on-off valves 41A to 41D corresponding to the shut-off valves 21A to 21D are opened. For example, as shown in Table 2, when the shutoff valves 21A and 21C are opened and the shutoff valves 21B and 21D are closed in order to supply cooling water in units of five flow rates to the spraying device 11, the shutoff valves 41A and 41C closes and the on-off valves 41B and 41D open.

Figure 2012241696
Figure 2012241696

前記オリフィス42A〜42Dのそれぞれは、開閉弁41A〜41Dのそれぞれに直列接続され、これらの開閉弁41A〜41D及び遮断弁21A〜21Dを介してそれぞれ対応するノズル系統15A〜15Dと等価な圧力損失を有して構成される。即ち、オリフィス42Aはノズル系統15Aと、オリフィス42Bはノズル系統15Bと、オリフィス42Cはノズル系統15Cと、オリフィス42Dはノズル系統15Dとそれぞれ等価な圧力損失になるように構成されて、それぞれ1流量単位、2流量単位、4流量単位、8流量単位の冷却水を流動させ得るオリフィス径に構成される。   Each of the orifices 42A to 42D is connected in series to each of the on-off valves 41A to 41D, and a pressure loss equivalent to the corresponding nozzle system 15A to 15D via the on-off valves 41A to 41D and the shut-off valves 21A to 21D, respectively. It is comprised. That is, the orifice 42A is configured to have a pressure loss equivalent to the nozzle system 15A, the orifice 42B is equivalent to the nozzle system 15B, the orifice 42C is equivalent to the nozzle system 15C, and the orifice 42D is equivalent to the nozzle system 15D. It is configured to have an orifice diameter that can flow cooling water in units of 2 flow rates, 4 flow rates, and 8 flow rates.

開閉弁41A〜41D及びオリフィス42A〜42Dによって、給水ポンプ17の吐出流量が一定の状態でも、遮断弁21A〜21Dの開閉動作に対応する開閉弁41A〜41Dがそれぞれ閉開動作することで、給水ポンプ17から吐出された冷却水は、開動作した遮断弁21A〜21Dを経て、この開動作した遮断弁21A〜21Dに対応するノズル系統15A〜15Dへ供給される。と同時に、給水ポンプ17から吐出された冷却水は、閉動作した遮断弁21A〜21に同調して開動作した開閉弁41A〜41Dと、この開動作した開閉弁41A〜41Dに接続されたオリフィス42A〜42Dを通って、給水タンク16に戻される。   The on-off valves 41A to 41D and the orifices 42A to 42D close and open the open / close valves 41A to 41D corresponding to the open / close operations of the shutoff valves 21A to 21D even when the discharge flow rate of the water supply pump 17 is constant. The cooling water discharged from the pump 17 is supplied to the nozzle systems 15A to 15D corresponding to the opened shutoff valves 21A to 21D through the opened shutoff valves 21A to 21D. At the same time, the cooling water discharged from the feed water pump 17 opens and closes the shut-off valves 21A to 21D that are closed and opens and closes the open / close valves 41A to 41D and the orifices connected to the open and close valves 41A to 41D. It returns to the water supply tank 16 through 42A-42D.

以上のように構成されたことから、本実施形態のガスタービン吸気冷却装置40によれば、前記第1実施形態の効果と同様な効果を奏するが、特に給水ポンプ17の吐出圧力が高くなって流量調節弁20による流量調節が困難になった場合においても、冷却水供給系43から噴霧装置11へ供給する冷却水の流量を適切に調節することができ、ガスタービン吸気冷却装置40の信頼性を一層向上させることができる。   With the configuration as described above, the gas turbine intake air cooling device 40 of the present embodiment has the same effect as the effect of the first embodiment, but the discharge pressure of the water supply pump 17 is particularly high. Even when the flow rate adjustment by the flow rate control valve 20 becomes difficult, the flow rate of the cooling water supplied from the cooling water supply system 43 to the spraying device 11 can be adjusted appropriately, and the reliability of the gas turbine intake air cooling device 40 is improved. Can be further improved.

[C]第3実施形態(図3)
図3は、本発明に係るガスタービン吸気冷却装置の第3実施形態の構成を示す系統図である。この第3実施形態において、前記第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 3)
FIG. 3 is a system diagram showing the configuration of the third embodiment of the gas turbine intake air cooling device according to the present invention. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

本実施形態のガスタービン吸気冷却装置50が前記第2実施形態のガスタービン吸気冷却装置40と異なる点は、給水ポンプ17と並列に、この給水ポンプ17の吐出側の遮断弁21A〜21Dへ冷却水を供給可能なバックアップ系統51が設置された点である。   The difference between the gas turbine intake air cooling device 50 of the present embodiment and the gas turbine intake air cooling device 40 of the second embodiment is that the gas turbine intake air cooling device 40 is cooled in parallel with the feed water pump 17 to the shut-off valves 21A to 21D on the discharge side of the feed water pump 17. A backup system 51 capable of supplying water is installed.

このバックアップ系統51は、コンバインドサイクルプラントにおける排熱回収ボイラ52へ給水するボイラ給水ポンプ53の下流側からバックアップライン54が分岐され、このバックアップライン54にバックアップ切換弁55が配設されると共に、バックアップライン54が給水ポンプ17の吐出側で、且つ圧力調節弁19と遮断弁21A〜21Dとの間に接続されて構成される。   In this backup system 51, a backup line 54 is branched from a downstream side of a boiler feed pump 53 for supplying water to an exhaust heat recovery boiler 52 in a combined cycle plant. A line 54 is configured to be connected to the discharge side of the water supply pump 17 and between the pressure control valve 19 and the shutoff valves 21A to 21D.

バックアップ切換弁55の開閉動作とバックアップ系統51のボイラ給水ポンプ53の運転は、制御装置22により制御される。つまり、給水ポンプ17の例えば故障時には、制御装置22によりバックアップ切換弁55が開操作され、ボイラ給水ポンプ53の駆動モータ56が駆動されてボイラ給水ポンプ53が運転され、このボイラ給水ポンプ53にて昇圧された水が冷却水として遮断弁21A〜21Dへ供給される。   The control device 22 controls the opening / closing operation of the backup switching valve 55 and the operation of the boiler feed pump 53 of the backup system 51. That is, at the time of failure of the feed water pump 17, for example, the backup switching valve 55 is opened by the control device 22, the drive motor 56 of the boiler feed pump 53 is driven, and the boiler feed pump 53 is operated. The pressurized water is supplied to the shutoff valves 21A to 21D as cooling water.

以上のように構成されたことから、本実施形態によれば、前記第1及び第2実施形態と同様な効果を奏するほか、次の効果を奏する。
給水ポンプ17と並列に、この給水ポンプ17の吐出側の遮断弁21A〜21Dへ冷却水を供給可能なバックアップ系統51が設置されたので、給水ポンプ17に不具合が発生した場合にも、バックアップ系統51からの水を冷却水として遮断弁21A〜21Dへ供給できる。このため、ガスタービン吸気冷却装置50の信頼性をより一層向上させることができる。
Since it was configured as described above, according to the present embodiment, in addition to the same effects as those of the first and second embodiments, the following effects can be obtained.
Since the backup system 51 capable of supplying cooling water to the discharge-side shutoff valves 21A to 21D of the feed water pump 17 is installed in parallel with the feed water pump 17, the backup system can be used even when a malfunction occurs in the feed water pump 17. Water from 51 can be supplied to the shutoff valves 21A to 21D as cooling water. For this reason, the reliability of the gas turbine intake air cooling device 50 can be further improved.

以上、本発明を上記実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で構成要素を種々変形してもよく、また、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this, A component may be variously deformed in the range which does not deviate from the summary, and it covers different embodiment. You may combine a component suitably.

例えば、第3実施形態のバックアップ系統51は、ボイラ給水ポンプ53にて昇圧された水を遮断弁21A〜21Dへ供給するものを述べたが、他の系統のポンプ、または給水ポンプ17のみに並列配置されたバックアップ用のポンプにて昇圧された水を、遮断弁21A〜21Dへ供給してもよい。   For example, the backup system 51 of the third embodiment has been described to supply the water boosted by the boiler feed pump 53 to the shut-off valves 21A to 21D. You may supply the water pressurized by the backup pump arrange | positioned to cutoff valve 21A-21D.

1 ガスタービン設備
2 吸気室
3 圧縮機
10 ガスタービン吸気冷却装置
11 噴霧装置
12 冷却水供給系
15 ノズル系統
16 給水タンク
17 給水ポンプ(ポンプ)
19 圧力調節弁(圧力調節手段)
20 流量調節弁(流量調節手段)
21A〜21D 遮断弁
24 給水配管
26 1次配管
27 2次配管
40 ガスタービン吸気冷却装置
41A〜41D 開閉弁
42A〜42D オリフィス
50 ガスタービン吸気冷却装置
51 バックアップ系統
52 排熱回収ボイラ
53 ボイラ給水ポンプ(他のポンプ)
A 吸気
DESCRIPTION OF SYMBOLS 1 Gas turbine equipment 2 Intake chamber 3 Compressor 10 Gas turbine intake cooling device 11 Spraying device 12 Cooling water supply system 15 Nozzle system 16 Water supply tank 17 Water supply pump (pump)
19 Pressure regulating valve (pressure regulating means)
20 Flow control valve (flow control means)
21A to 21D Shutoff valve 24 Water supply pipe 26 Primary pipe 27 Secondary pipe 40 Gas turbine intake air cooling devices 41A to 41D On-off valves 42A to 42D Orifice 50 Gas turbine intake air cooling device 51 Backup system 52 Waste heat recovery boiler 53 Boiler feed water pump ( Other pumps)
A Inhalation

Claims (8)

複数のノズル系統を備え、ガスタービン設備の圧縮機に導かれる吸気に前記ノズル系統から冷却水を噴霧して吸気を冷却する噴霧装置と、
この噴霧装置へ冷却水を供給する冷却水供給系と、を有するガスタービン吸気冷却装置であって、
前記冷却水供給系は遮断弁、ポンプ、圧力調節手段及び流量調節手段を有して構成され、
前記遮断弁は、一つの前記ポンプに対し複数設けられ、更に前記噴霧装置の複数の前記ノズル系統にそれぞれ対応して複数設けられて、複数の前記ノズル系統へ冷却水を選択的に供給可能に構成され、
前記ポンプは、吐出流量を一定とした状態で前記遮断弁へ向かって冷却水を供給し、
前記圧力調節手段は、前記ポンプの吐出側に設置されて、前記噴霧装置へ供給する冷却水の圧力を所定の一定圧力に調節し、
前記流量調節手段は、前記ポンプの吐出側で且つ前記圧力調節手段と前記遮断弁との間に設置され、前記噴霧装置へ供給する冷却水の流量を、前記遮断弁の開閉動作に応じた所定流量に調節するように構成されたことを特徴とするガスタービン吸気冷却装置。
A spray device that includes a plurality of nozzle systems and cools the intake air by spraying cooling water from the nozzle system to the intake air guided to the compressor of the gas turbine facility;
A cooling water supply system for supplying cooling water to the spray device, and a gas turbine intake air cooling device,
The cooling water supply system includes a shut-off valve, a pump, a pressure adjusting unit, and a flow rate adjusting unit,
A plurality of the shut-off valves are provided for one of the pumps, and a plurality of the shut-off valves are provided corresponding to the plurality of nozzle systems of the spraying device, respectively, so that cooling water can be selectively supplied to the plurality of nozzle systems. Configured,
The pump supplies cooling water toward the shutoff valve with a constant discharge flow rate,
The pressure adjusting means is installed on the discharge side of the pump, and adjusts the pressure of the cooling water supplied to the spraying device to a predetermined constant pressure,
The flow rate adjusting means is installed on the discharge side of the pump and between the pressure adjusting means and the shutoff valve, and the flow rate of the cooling water supplied to the spraying device is predetermined according to the opening / closing operation of the shutoff valve. A gas turbine intake air cooling device configured to adjust to a flow rate.
前記ポンプは、給水タンクに貯留された冷却水を吸い込んで吐出し、
流量調節手段は、前記ポンプの吐出側と前記給水タンクとを接続するバイパスラインに配設されたことを特徴とする請求項1に記載のガスタービン吸気冷却装置。
The pump sucks and discharges the cooling water stored in the water supply tank,
2. The gas turbine intake air cooling device according to claim 1, wherein the flow rate adjusting means is disposed in a bypass line connecting the discharge side of the pump and the water supply tank. 3.
前記流量調節手段は、全閉と全開の間で開度を段階的に変更して冷却水の流量を調節する流量調節弁であることを特徴とする請求項1に記載のガスタービン吸気冷却装置。 2. The gas turbine intake air cooling device according to claim 1, wherein the flow rate adjusting means is a flow rate adjusting valve that adjusts a flow rate of cooling water by changing an opening degree in steps between fully closed and fully opened. . 前記流量調節手段は開閉弁とオリフィスを備えてなり、
前記開閉弁は複数の遮断弁に対応して複数設けられ、各遮断弁の開閉動作に同調して開閉動作し、
前記オリフィスは前記各開閉弁に接続されて複数設けられ、それぞれが対応するノズル系統と等価な圧力損失を有して構成されたことを特徴とする請求項1に記載のガスタービン吸気冷却装置。
The flow rate adjusting means comprises an on-off valve and an orifice,
A plurality of the on-off valves are provided corresponding to a plurality of shut-off valves, and open / close operations are synchronized with the open / close operations of the shut-off valves,
2. The gas turbine intake air cooling device according to claim 1, wherein a plurality of the orifices are provided connected to the on-off valves, each having a pressure loss equivalent to a corresponding nozzle system.
前記ポンプと並列に、他のポンプにて昇圧された水を冷却水として前記ポンプの吐出側の遮断弁へ供給可能なバックアップ系が設置されたことを特徴とする請求項1に記載のガスタービン吸気冷却装置。 The gas turbine according to claim 1, wherein a backup system capable of supplying water boosted by another pump as cooling water to a shut-off valve on a discharge side of the pump is installed in parallel with the pump. Intake cooling system. 前記他のポンプは、コンバインドサイクルプラントにおける排熱回収ボイラへ給水するボイラ給水ポンプであることを特徴とする請求項5に記載のガスタービン吸気冷却装置。 6. The gas turbine intake air cooling device according to claim 5, wherein the other pump is a boiler feed water pump that feeds water to an exhaust heat recovery boiler in a combined cycle plant. 前記圧力調節手段は、全閉と全開の間で開度を段階的に変更可能な圧力調節弁であり、この圧力調節弁の2次側配管が給水タンクに接続されたことを特徴とする請求項2に記載のガスタービン吸気冷却装置。 The pressure adjusting means is a pressure adjusting valve whose opening degree can be changed stepwise between fully closed and fully open, and a secondary side pipe of the pressure adjusting valve is connected to a water supply tank. Item 3. The gas turbine intake air cooling device according to Item 2. 複数のノズル系統を備え、ガスタービン設備の圧縮機に導かれる吸気に前記ノズル系統から冷却水を噴霧して吸気を冷却する噴霧装置と、
この噴霧装置へ冷却水を供給する冷却水供給系と、を用いて実施するガスタービン吸気冷却方法であって、
前記冷却水供給系では、ポンプが吐出流量を一定とした状態で、一つの前記ポンプに対し複数設けられ且つ複数の前記ノズル系統にそれぞれ対応して複数設けられた遮断弁へ向かって冷却水を供給し、
前記遮断弁が、複数の前記ノズル系統のそれぞれへ冷却水を選択的に供給し、
前記ポンプの吐出側に設置された流量調節手段が、前記噴霧装置へ供給する冷却水の流量を、前記遮断弁の開閉動作に応じた所定流量に調節することを特徴とするガスタービン吸気冷却方法。
A spray device that includes a plurality of nozzle systems and cools the intake air by spraying cooling water from the nozzle system to the intake air guided to the compressor of the gas turbine facility;
A cooling water supply system for supplying cooling water to the spray device, and a gas turbine intake air cooling method to be performed using
In the cooling water supply system, with the pump at a constant discharge flow rate, the cooling water is supplied to a plurality of shut-off valves provided for each of the pumps and corresponding to the nozzle systems. Supply
The shutoff valve selectively supplies cooling water to each of the plurality of nozzle systems;
A gas turbine intake air cooling method, wherein flow rate adjusting means installed on the discharge side of the pump adjusts the flow rate of cooling water supplied to the spraying device to a predetermined flow rate according to the opening / closing operation of the shutoff valve. .
JP2011116247A 2011-05-24 2011-05-24 Gas turbine intake air cooling apparatus and method Active JP5818510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011116247A JP5818510B2 (en) 2011-05-24 2011-05-24 Gas turbine intake air cooling apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116247A JP5818510B2 (en) 2011-05-24 2011-05-24 Gas turbine intake air cooling apparatus and method

Publications (2)

Publication Number Publication Date
JP2012241696A true JP2012241696A (en) 2012-12-10
JP5818510B2 JP5818510B2 (en) 2015-11-18

Family

ID=47463659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116247A Active JP5818510B2 (en) 2011-05-24 2011-05-24 Gas turbine intake air cooling apparatus and method

Country Status (1)

Country Link
JP (1) JP5818510B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506270B1 (en) * 2014-05-26 2015-03-27 보평그린(주) By-Pass High Pressure Pump Apparatus for Multiple Spray Nozzle
WO2024038631A1 (en) * 2022-08-17 2024-02-22 三菱重工業株式会社 Shock wave generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025009A1 (en) * 1998-10-23 2000-05-04 Hitachi, Ltd. Gas turbine power generation equipment and air humidifying apparatus
JP2004150409A (en) * 2002-11-01 2004-05-27 Hitachi Ltd Atomization nozzle for one high pressure fluid for increased output of gas turbine
JP2005164081A (en) * 2003-12-01 2005-06-23 Hitachi Ltd Gas turbine system
US20070001026A1 (en) * 2004-01-28 2007-01-04 Alstom Technology Ltd. Conveyor device
JP2007198201A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Gas turbine plant system and method for remodeling gas turbine plant system
JP2010001893A (en) * 2008-06-20 2010-01-07 Gas Turbine Efficiency Sweden Ab Skid structure for power augmentation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025009A1 (en) * 1998-10-23 2000-05-04 Hitachi, Ltd. Gas turbine power generation equipment and air humidifying apparatus
JP2004150409A (en) * 2002-11-01 2004-05-27 Hitachi Ltd Atomization nozzle for one high pressure fluid for increased output of gas turbine
JP2005164081A (en) * 2003-12-01 2005-06-23 Hitachi Ltd Gas turbine system
US20070001026A1 (en) * 2004-01-28 2007-01-04 Alstom Technology Ltd. Conveyor device
JP2007198201A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Gas turbine plant system and method for remodeling gas turbine plant system
JP2010001893A (en) * 2008-06-20 2010-01-07 Gas Turbine Efficiency Sweden Ab Skid structure for power augmentation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506270B1 (en) * 2014-05-26 2015-03-27 보평그린(주) By-Pass High Pressure Pump Apparatus for Multiple Spray Nozzle
WO2024038631A1 (en) * 2022-08-17 2024-02-22 三菱重工業株式会社 Shock wave generation device

Also Published As

Publication number Publication date
JP5818510B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
US7353656B2 (en) Method and apparatus for achieving power augmentation in gas turbines using wet compression
US7353655B2 (en) Method and apparatus for achieving power augmentation in gas turbine using wet compression
JP5400117B2 (en) Skid structure for power augmentation system
KR100735072B1 (en) Electric power-generating and desalination combined plant and operation method of the same
KR101813741B1 (en) Waste heat steam generator
EP2239438B1 (en) Systems and Methods for Controlling Compressor Extraction Cooling
EP1898066B1 (en) High humidity gas turbine system with humidifier bypass
US20110179793A1 (en) Method for operating an internal combustion engine having a steam power plant
US20110052377A1 (en) Gas-turbine inlet-air cooling system
US20090252598A1 (en) Gas turbine inlet temperature suppression during under frequency events and related method
JP5818510B2 (en) Gas turbine intake air cooling apparatus and method
JP2011111944A (en) Intake air cooling device for gas turbine
JP4167989B2 (en) Gas turbine equipment and humidification equipment for gas turbine
JP2015508472A (en) Method for controlling the cooling process of turbine components
RU2563559C1 (en) Combined-cycle power unit with steam-generating hydrogen-oxygen plants
CN205593000U (en) Fuel supply equipment and gas turbine installation
JP2018173025A (en) Fuel gas supply system, ship, and fuel gas supply method
JP2011085102A (en) Apparatus and method for cooling intake air of gas turbine
JP2020076362A (en) Gas turbine system
JP4845932B2 (en) Gas turbine equipment and humidification equipment for gas turbine
JP2001342847A (en) Gas turbine, and gas turbine power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350