JP2012237746A - Method for manufacturing electrostatic capacity sensor sheet, and electrostatic capacity sensor sheet - Google Patents

Method for manufacturing electrostatic capacity sensor sheet, and electrostatic capacity sensor sheet Download PDF

Info

Publication number
JP2012237746A
JP2012237746A JP2012093534A JP2012093534A JP2012237746A JP 2012237746 A JP2012237746 A JP 2012237746A JP 2012093534 A JP2012093534 A JP 2012093534A JP 2012093534 A JP2012093534 A JP 2012093534A JP 2012237746 A JP2012237746 A JP 2012237746A
Authority
JP
Japan
Prior art keywords
detection electrode
binder resin
sensor sheet
base material
pattern layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012093534A
Other languages
Japanese (ja)
Other versions
JP5730240B2 (en
Inventor
Rei Shimada
怜 島田
Hiroto Komatsu
博登 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2012093534A priority Critical patent/JP5730240B2/en
Priority to CN201280020265.7A priority patent/CN103492992B/en
Priority to PCT/JP2012/060748 priority patent/WO2012147659A1/en
Priority to US14/112,176 priority patent/US9541578B2/en
Priority to KR1020137027024A priority patent/KR101592661B1/en
Publication of JP2012237746A publication Critical patent/JP2012237746A/en
Application granted granted Critical
Publication of JP5730240B2 publication Critical patent/JP5730240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49162Manufacturing circuit on or in base by using wire as conductive path

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrostatic capacity sensor sheet in which it is possible to enhance conduction in at least connecting sections between routing lines and detection electrodes in a pattern layer, and an electrostatic capacity sensor sheet.SOLUTION: In the electrostatic capacity sensor sheet, an electrically conductive X-pattern layer 10 and Y-pattern layer 20 are formed on first and second base materials 1 and 1A that adhere in an opposing manner, the electrostatic capacity sensor sheet detecting the change in electrostatic capacity when a finger comes near the resulting X-detection electrode 11 and Y-detection electrode 21. The end section of the surface of each of the X-detection electrode 11 and the Y-detection electrode 21, which is connected to at least a routing line 12 and 22, is subjected to surface etching treatment, whereby a binder resin at the protruding section of a silver nanowire, which partially protrudes from the X-detection electrode 11 or the Y-detection electrode 21, is removed. The protruding section of the silver nanowire from which the binder resin has been removed is brought into contact with a connecting section 13 or 23 between the X-detection electrode 11 or the Y-detection electrode 21 and the routing line 12 or 22.

Description

本発明は、例えばオーディオ機器や自動車搭載機器等の操作に使用される静電容量センサシートの製造方法及び静電容量センサシートに関するものである。   The present invention relates to a method for manufacturing a capacitance sensor sheet used for operations of audio devices, automobile mounted devices, and the like, and a capacitance sensor sheet, for example.

従来における静電容量センサシートは、図示しないが、対向して粘着する第一、第二の基材を備え、第一の基材に導電性のXパターン層が、第二の基材に導電性のYパターン層がそれぞれ形成され、自動車搭載機器に操作手段として設置されており、Xパターン層やYパターン層の選択された箇所に導体であるユーザの指が近接した場合に、静電容量の変化を検出して制御装置に出力することにより、自動車搭載機器の操作に資するよう機能する(特許文献1、2、3、4、5参照)。   Although the conventional capacitance sensor sheet is not shown, it includes first and second substrates that adhere to each other, and a conductive X pattern layer is conductive on the first substrate and conductive on the second substrate. When a Y finger layer as a conductor is close to a selected portion of the X pattern layer or the Y pattern layer, the electrostatic capacity is formed. By detecting this change and outputting it to the control device, it functions to contribute to the operation of the on-vehicle equipment (see Patent Documents 1, 2, 3, 4, and 5).

第一、第二の基材は、絶縁性を有する基材層と、この基材層の表面に積層される銀ナノワイヤ含有のバインダ樹脂層とを備え、絶縁性の粘着シートにより粘着固定されている。第一、第二の基材は、それぞれ基材層の後部周縁に細長いテール部が突出形成され、このテール部が制御装置に接続される。   The first and second base materials each include an insulating base material layer and a silver nanowire-containing binder resin layer laminated on the surface of the base material layer, and are adhesively fixed by an insulating adhesive sheet. Yes. Each of the first and second substrates has an elongated tail portion protruding from the rear periphery of the substrate layer, and this tail portion is connected to the control device.

第一の基材のバインダ樹脂層は、基材層の表面に、銀ナノワイヤの分散したバインダ樹脂溶液が塗布されて乾燥硬化することにより形成され、Xパターン層の一部として形成される。また、第二の基材のバインダ樹脂層は、基材層の表面に、銀ナノワイヤの分散したバインダ樹脂溶液が塗布されて乾燥硬化することにより形成され、Yパターン層の一部に形成される。   The binder resin layer of the first base material is formed by applying a binder resin solution in which silver nanowires are dispersed on the surface of the base material layer, followed by drying and curing, and is formed as a part of the X pattern layer. The binder resin layer of the second substrate is formed by applying a binder resin solution in which silver nanowires are dispersed to the surface of the substrate layer and drying and curing it, and is formed on a part of the Y pattern layer. .

Xパターン層は、第一の基材の基材層の表面Y方向に一列に並ぶ複数のX検出電極が所定の間隔でX方向に配列され、表面Y方向に並んだ複数のX検出電極のうち、末端のX検出電極の表面に、導電性を有する引き回しラインが電気的に重ねて接続されており、この引き回しラインが第一の基材のテール部に伸長形成されて制御装置に電気的に導通接続される。   The X pattern layer includes a plurality of X detection electrodes arranged in a row at a predetermined interval in the X direction and arranged in a row in the surface Y direction of the base material layer of the first base material. Among them, a conductive lead line is electrically overlapped and connected to the surface of the terminal X detection electrode, and this lead line is formed to extend on the tail portion of the first base material to be electrically connected to the control device. Conductive connection is established.

各X検出電極は、略ダイヤモンドパターンに形成され、ユーザの指が近接した場合に、静電容量の変化を検出するよう機能する。このようなXパターン層は、第一の基材のバインダ樹脂層がエッチング加工されることにより複数のX検出電極が形成されるとともに、第一の基材の基材層表面に銀ペーストが印刷され、乾燥硬化することで複数本の引き回しラインが形成される。   Each X detection electrode is formed in a substantially diamond pattern, and functions to detect a change in capacitance when a user's finger approaches. In such an X pattern layer, a plurality of X detection electrodes are formed by etching the binder resin layer of the first base material, and a silver paste is printed on the surface of the base material layer of the first base material. A plurality of lead lines are formed by drying and curing.

Yパターン層は、第二の基材の基材層の表面X方向に一列に並ぶ複数のY検出電極が所定の間隔でY方向に配列され、表面X方向に並んだ複数のY検出電極のうち、末端のY検出電極の表面に、導電性の引き回しラインが電気的に重ねて接続されており、この引き回しラインがスルーホールを経由してテール部に伸長形成され、制御装置に電気的に導通接続される。   In the Y pattern layer, a plurality of Y detection electrodes arranged in a line in the surface X direction of the base material layer of the second base material are arranged in the Y direction at a predetermined interval, and a plurality of Y detection electrodes arranged in the surface X direction are arranged. Among them, a conductive lead line is electrically overlapped and connected to the surface of the Y detection electrode at the end, and this lead line is formed to extend to the tail portion through the through hole, and is electrically connected to the control device. Conductive connection.

各Y検出電極は、略ダイヤモンドパターンに形成され、ユーザの指が近接した場合に、静電容量の変化を検出する。このようなYパターン層は、Xパターン層同様、第二の基材のバインダ樹脂層がエッチング加工されることにより複数のY検出電極が形成されるとともに、第二の基材の基材層表面に銀ペーストが印刷され、乾燥硬化することで複数本の引き回しラインが形成される。   Each Y detection electrode is formed in a substantially diamond pattern, and detects a change in capacitance when a user's finger approaches. Like the X pattern layer, such a Y pattern layer has a plurality of Y detection electrodes formed by etching the binder resin layer of the second base material, and the surface of the base material layer of the second base material. A silver paste is printed on and dried and cured to form a plurality of lead lines.

特開2010‐86385号公報JP 2010-86385 A 特開2010‐49618号公報JP 2010-49618 A 特開2010‐44968号公報JP 2010-44968 A 特開2010‐140859号公報JP 2010-140859 A 特表2006‐513557号公報JP-T-2006-513557

従来における静電容量センサシートは、以上のように構成され、バインダ樹脂層に分散した銀ナノワイヤを電気的な導通に利用しているが、バインダ樹脂層の厚いオーバーコートにより、バインダ樹脂層から銀ナノワイヤが十分に突出して露出しなかったり、銀ナノワイヤの表面にバインダ樹脂層のバインダ樹脂が少なからず付着して絶縁性の皮膜を形成する場合がある。この場合にバインダ樹脂層を用いてX検出電極やY検出電極を単に加工すると、末端のX検出電極やY検出電極と引き回しラインとの接続部における導通性が悪化し、十分な導電性を確保することができないという問題が生じる。   The conventional capacitance sensor sheet is configured as described above, and uses silver nanowires dispersed in the binder resin layer for electrical conduction. However, the thick overcoat of the binder resin layer causes the silver resin from the binder resin layer to be silver. In some cases, the nanowires protrude sufficiently and are not exposed, or the binder resin of the binder resin layer adheres to the surface of the silver nanowires to form an insulating film. In this case, if the X detection electrode or Y detection electrode is simply processed using the binder resin layer, the conductivity at the connection between the terminal X detection electrode or Y detection electrode and the lead line deteriorates, and sufficient conductivity is ensured. The problem of not being able to do arises.

本発明は上記に鑑みなされたもので、パターン層の少なくとも検出電極と引き回しラインとの接続部における導通性を向上させることのできる静電容量センサシートの製造方法及び静電容量センサシートを提供することを目的としている。   The present invention has been made in view of the above, and provides a method for manufacturing a capacitance sensor sheet and a capacitance sensor sheet that can improve the electrical conductivity in at least a connection portion between a detection electrode and a routing line of a pattern layer. The purpose is that.

本発明においては上記課題を解決するため、絶縁性を有する基材層に導電性ナノワイヤ含有のバインダ樹脂層が形成され、このバインダ樹脂層の表面から導電性ナノワイヤが部分的に突出する基材を使用することにより、静電容量センサシートを製造する静電容量センサシートの製造方法であって、
基材のバインダ樹脂層を加工して導電性を有するパターン層の複数の検出電極を形成する際、バインダ樹脂層の表面、あるいは複数の検出電極の少なくとも一部の検出電極の表面端部を表面エッチング加工処理することにより、検出電極から部分的に突出した導電性ナノワイヤの突出部におけるバインダ樹脂を除去し、
基材の基材層に導電材料を塗布して乾燥硬化させることにより、導電性を有するパターン層の引き回しラインを形成し、
パターン層の少なくとも一部の検出電極の表面端部と引き回しラインとを接続するとともに、この接続部には、バインダ樹脂が除去された導電性ナノワイヤの突出部を接触させることを特徴としている。
In the present invention, in order to solve the above-mentioned problems, a binder resin layer containing conductive nanowires is formed on a base material layer having insulating properties, and a base material from which conductive nanowires partially protrude from the surface of the binder resin layer is formed. A capacitance sensor sheet manufacturing method for manufacturing a capacitance sensor sheet by using,
When forming the plurality of detection electrodes of the conductive pattern layer by processing the binder resin layer of the base material, the surface of the binder resin layer or at least a part of the surface of the plurality of detection electrodes is the surface. Etching process removes the binder resin in the protruding part of the conductive nanowire partially protruding from the detection electrode,
By applying a conductive material to the base material layer of the base material and drying and curing it, a wiring line of the pattern layer having conductivity is formed,
At least a part of the surface of the detection electrode of the pattern layer is connected to the routing line, and a protruding portion of the conductive nanowire from which the binder resin is removed is brought into contact with the connection portion.

なお、表面エッチング加工処理を、ドライエッチング法とウェットエッチング法のいずれかの方法で施すことができる。
また、表面エッチング加工処理を、プラズマ処理法、紫外線処理法、又はコロナ処理法で施すことができる。
The surface etching process can be performed by either a dry etching method or a wet etching method.
The surface etching processing can be performed by a plasma processing method, an ultraviolet processing method, or a corona processing method.

また、パターン層の全ての検出電極の表面を表面エッチング加工処理することもできる。
また、引き回しラインと接続される検出電極の表面を表面エッチング加工処理することが可能である。
Further, the surface of all the detection electrodes in the pattern layer can be subjected to surface etching processing.
Further, the surface of the detection electrode connected to the routing line can be subjected to surface etching processing.

また、本発明においては上記課題を解決するため、絶縁性を有する基材層に導電性のパターン層を形成し、このパターン層の検出電極に導体が接近した場合に静電容量の変化を検出するものであって、
パターン層は、基材層に配列される複数の検出電極と、基材層に形成されて複数の検出電極に接続される引き回しラインとを含み、複数の検出電極を、基材層に導電性ナノワイヤ含有のバインダ樹脂層を形成してその表面から導電性ナノワイヤを部分的に突出させ、このバインダ樹脂層を加工することにより形成し、
パターン層の少なくとも引き回しラインと接続される検出電極の表面端部を表面エッチング加工処理することにより、この検出電極から部分的に突出した導電性ナノワイヤの突出部におけるバインダ樹脂を除去し、このバインダ樹脂が除去された導電性ナノワイヤの突出部を検出電極と引き回しラインとの接続部に接触させるようにしたことを特徴としている。
Further, in the present invention, in order to solve the above problems, a conductive pattern layer is formed on an insulating base material layer, and a change in capacitance is detected when a conductor approaches the detection electrode of this pattern layer. To do,
The pattern layer includes a plurality of detection electrodes arranged on the base material layer and a lead line formed on the base material layer and connected to the plurality of detection electrodes, and the plurality of detection electrodes are electrically connected to the base material layer. Forming a binder resin layer containing nanowires, partially projecting conductive nanowires from the surface, and processing this binder resin layer,
The binder resin in the protruding portion of the conductive nanowire partially protruding from the detection electrode is removed by subjecting at least the surface end portion of the detection electrode connected to the drawing line of the pattern layer to surface etching, and this binder resin The protruding portion of the conductive nanowire from which the metal is removed is brought into contact with the connection portion between the detection electrode and the routing line.

なお、表面エッチング加工処理を、ドライエッチング法とウェットエッチング法のいずれかの方法で施すことができる。
また、表面エッチング加工処理を、プラズマ処理法、紫外線処理法、又はコロナ処理法で施すことができる。
The surface etching process can be performed by either a dry etching method or a wet etching method.
The surface etching processing can be performed by a plasma processing method, an ultraviolet processing method, or a corona processing method.

また、パターン層の全ての検出電極の表面を表面エッチング加工処理することもできる。
また、引き回しラインと接続される検出電極の表面を表面エッチング加工処理することが可能である。
Further, the surface of all the detection electrodes in the pattern layer can be subjected to surface etching processing.
Further, the surface of the detection electrode connected to the routing line can be subjected to surface etching processing.

さらに、基材層を対向して粘着される一対の基材層とし、一方の基材層にXパターン層を形成してその複数のX検出電極をX方向に配列するとともに、他方の基材層にYパターン層を形成してその複数のY検出電極をY方向に配列し、Xパターン層の複数のX検出電極のうち、少なくとも引き回しラインに重ねて接続される末端のX検出電極の表面端部を表面エッチング加工処理し、Yパターン層の複数のY検出電極のうち、少なくとも引き回しラインに重ねて接続される末端のY検出電極の表面端部を表面エッチング加工処理することも可能である。   Furthermore, the base material layer is made to be a pair of base material layers that are adhered to face each other, an X pattern layer is formed on one base material layer, the plurality of X detection electrodes are arranged in the X direction, and the other base material A Y pattern layer is formed on the layer, the plurality of Y detection electrodes are arranged in the Y direction, and at least the surface of the terminal X detection electrode connected to be overlapped with at least the routing line among the plurality of X detection electrodes of the X pattern layer It is also possible to subject the end portion to a surface etching process, and among the plurality of Y detection electrodes of the Y pattern layer, at least the surface end portion of the terminal Y detection electrode connected to be overlapped with the routing line can be subjected to a surface etching process. .

ここで、特許請求の範囲における基材や基材層は、一枚でも良いし、複数枚でも良い。バインダ樹脂層は、複数の検出電極に加工される前後に表面の少なくとも一部が表面エッチング加工処理される。また、パターン層は、少なくとも引き回しラインと接続される検出電極の表面端部が表面エッチング加工処理されれば良く、引き回しラインと接続される検出電極の表面やその周縁部、全検出電極の表面やその周縁部が表面エッチング加工処理されても良い。   Here, the substrate and the substrate layer in the claims may be one sheet or a plurality of sheets. At least part of the surface of the binder resin layer is subjected to surface etching processing before and after being processed into a plurality of detection electrodes. Further, the pattern layer only needs to be subjected to surface etching processing on the surface end portion of the detection electrode connected to the routing line, the surface of the detection electrode connected to the routing line and its peripheral portion, the surface of all the detection electrodes, The peripheral edge portion may be subjected to surface etching processing.

検出電極の表面端部とは、表面における端を意味し、表面に直交する面の端、いわゆるエッジを意味しない。検出電極は、スペースを効率的に利用できるダイヤモンドパターンが好ましいが、平面円形や矩形、多角形等を特に排除するものではない。さらに、表面エッチング加工処理を実現する方法には、各種のドライエッチング法やウェットエッチング法が該当する。   The surface end portion of the detection electrode means an end on the surface, and does not mean an end of a surface orthogonal to the surface, that is, a so-called edge. The detection electrode is preferably a diamond pattern that can efficiently use space, but does not particularly exclude a planar circle, rectangle, polygon, or the like. Further, various dry etching methods and wet etching methods correspond to the method for realizing the surface etching processing.

本発明によれば、少なくとも引き回しラインと接続される検出電極表面の端部が表面エッチング加工処理されることにより、この検出電極から部分的に突出した導電性ナノワイヤは、突出部に付着した絶縁性のバインダ樹脂が除去されて導電性が確保され、検出電極と引き回しラインとの接続部に補助電極として電気的に接触する。したがって、検出電極と引き回しラインとの接続部における導通性が向上する。   According to the present invention, the conductive nanowire partially protruding from the detection electrode is subjected to surface etching processing at least on the end portion of the detection electrode surface connected to the routing line, so that the insulating nanowire attached to the protrusion is insulated. The binder resin is removed, conductivity is ensured, and the connecting portion between the detection electrode and the routing line is electrically contacted as an auxiliary electrode. Therefore, the continuity at the connection portion between the detection electrode and the routing line is improved.

本発明によれば、検出電極から突出した導電性ナノワイヤの突出部におけるバインダ樹脂を除去するので、パターン層の少なくとも検出電極と引き回しラインとの接続部における導通性を向上させることができるという効果がある。   According to the present invention, since the binder resin in the protruding portion of the conductive nanowire protruding from the detection electrode is removed, it is possible to improve the conductivity at the connection portion between at least the detection electrode and the routing line of the pattern layer. is there.

また、請求項2又は7記載の発明によれば、表面エッチング加工にドライエッチング法を採用すれば、エッチング液の排出やマスキング作業の手間を省くことで作業性を向上させることができ、検出電極の微細加工も期待できる。また、ウェットエッチング法を採用すれば、ドライエッチング法に比べて選択比が大きいので、経済性を高めることができる。   According to the second or seventh aspect of the present invention, if a dry etching method is employed for the surface etching process, the workability can be improved by eliminating the trouble of draining the etching solution and masking work. Can be expected. If the wet etching method is adopted, the selectivity is higher than that of the dry etching method, so that the economy can be improved.

また、請求項3又は8記載の発明によれば、表面エッチング加工を、プラズマ処理法、紫外線処理法、又はコロナ処理法で処理するので、検出電極の不要な損傷を防止し、作業の迅速化を図ることができる。また、プラズマ処理法で処理すれば、検出電極表面の活性効果を高めることができ、微細な処理が容易となり、精密なクリーニングも可能となる。   According to the invention of claim 3 or 8, since the surface etching process is performed by a plasma treatment method, an ultraviolet treatment method, or a corona treatment method, unnecessary damage to the detection electrode is prevented, and the operation speed is increased. Can be achieved. Further, if the plasma processing method is used, the activation effect on the surface of the detection electrode can be enhanced, the fine processing is facilitated, and precise cleaning is possible.

また、紫外線処理法で処理すれば、紫外線照射装置の構成が他の装置に比べ、相対的に簡易なので、維持管理が容易となり、しかも、検出電極が熱による悪影響を受けるのを防ぐことが可能となる。さらに、コロナ処理法で処理すれば、クリーン性や接着性の向上が期待できる。   In addition, if the UV treatment method is used, the construction of the UV irradiation device is relatively simple compared to other devices, making maintenance and management easier and preventing the detection electrode from being adversely affected by heat. It becomes. Furthermore, if it processes by a corona treatment method, the improvement of clean property and adhesiveness can be anticipated.

また、請求項4又は9記載の発明によれば、全検出電極の表面を表面エッチング加工処理するので、レジストやマスキングを省略して作業の簡素化や迅速化を図ることができ、しかも、工程を新たに追加する必要もない。
さらに、請求項5又は10記載の発明によれば、引き回しラインと接続される検出電極の表面を表面エッチング加工処理するので、導電性ナノワイヤの露出を防止することができ、導電性ナノワイヤの腐食防止が期待できる。
Further, according to the invention of claim 4 or 9, since the surface of all detection electrodes is subjected to surface etching processing, it is possible to simplify and speed up the operation by omitting resist and masking, There is no need to add a new one.
Furthermore, according to the invention of claim 5 or 10, since the surface of the detection electrode connected to the routing line is subjected to surface etching processing, exposure of the conductive nanowire can be prevented, and corrosion of the conductive nanowire can be prevented. Can be expected.

本発明に係る静電容量センサシートの実施形態を模式的に示す平面説明図である。It is a plane explanatory view showing typically an embodiment of a capacitance sensor sheet concerning the present invention. 本発明に係る静電容量センサシートの実施形態における第一、第二の基材を模式的に示す説明図である。It is explanatory drawing which shows typically the 1st, 2nd base material in embodiment of the electrostatic capacitance sensor sheet | seat which concerns on this invention. 本発明に係る静電容量センサシートの製造方法及び静電容量センサシートの実施形態におけるバインダ樹脂層、X検出電極、Y検出電極から一部突出した銀ナノワイヤの突出部を模式的に示す要部説明図である。The main part which shows typically the protrusion part of the silver nanowire which protruded partially from the binder resin layer in the embodiment of the manufacturing method of the electrostatic capacity sensor sheet concerning this invention, and the binder resin layer, X detection electrode, and Y detection electrode It is explanatory drawing. 図3の銀ナノワイヤの突出部におけるバインダ樹脂を除去した状態を模式的に示す要部説明図である。It is principal part explanatory drawing which shows typically the state which removed the binder resin in the protrusion part of the silver nanowire of FIG. 本発明に係る静電容量センサシートの実施形態を模式的に示す断面説明図である。It is a section explanatory view showing typically an embodiment of a capacitance sensor sheet concerning the present invention. 本発明に係る静電容量センサシートの実施形態におけるYパターン層を模式的に示す部分平面説明図である。It is a partial plane explanatory view showing typically the Y pattern layer in the embodiment of the capacitance sensor sheet according to the present invention. 本発明に係る静電容量センサシートの実施形態におけるXパターン層を模式的に示す部分平面説明図である。It is a partial plane explanatory view showing typically the X pattern layer in the embodiment of the capacitance sensor sheet according to the present invention. 本発明に係る静電容量センサシートの実施形態における末端のX検出電極と引き回しラインとの接続部を模式的に示す説明図である。It is explanatory drawing which shows typically the connection part of the X detection electrode of a terminal in the embodiment of the electrostatic capacitance sensor sheet | seat which concerns on this invention, and a drawing line.

以下、図面を参照して本発明の実施形態を説明すると、本実施形態における静電容量センサシートは、図1ないし図8に示すように、対向して粘着する第一、第二の基材1・1Aに導電性のXパターン層10とYパターン層20とを形成し、これらのX検出電極11やY検出電極21に指が接近した場合に静電容量の変化を検出するセンサシートであり、Xパターン層10とYパターン層20の少なくとも引き回しライン12・22と接続されるX検出電極11とY検出電極21とを表面エッチング加工処理することにより、X検出電極11やY検出電極21から突出した銀ナノワイヤ4のバインダ樹脂7を除去し、この銀ナノワイヤ4をX検出電極11又はY検出電極21と引き回しライン12・22との接続部13・23に接触させるようにしている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 8, the capacitance sensor sheet according to the present embodiment is a first and second base material that adheres to each other. A sensor sheet for detecting changes in capacitance when a conductive X pattern layer 10 and a Y pattern layer 20 are formed on 1 · 1A and a finger approaches these X detection electrode 11 and Y detection electrode 21 Yes, the X detection electrode 11 and the Y detection electrode 21 are processed by subjecting the X detection electrode 11 and the Y detection electrode 21 connected to at least the routing lines 12 and 22 of the X pattern layer 10 and the Y pattern layer 20 to surface etching processing. The binder resin 7 of the silver nanowire 4 protruding from the surface is removed, and the silver nanowire 4 is routed around the X detection electrode 11 or the Y detection electrode 21 and brought into contact with the connection portions 13 and 23 of the lines 12 and 22. It has to.

第一、第二の基材1・1Aは、図1、図2、図5に示すように、絶縁性を有する基材層2と、この基材層2の表面に積層されるバインダ樹脂層3とを備え、このバインダ樹脂層3から導電性で低抵抗の銀ナノワイヤ4が突出しており、絶縁性の粘着シート5により重ねて粘着固定される。   As shown in FIGS. 1, 2 and 5, the first and second base materials 1 and 1A are made of an insulating base material layer 2 and a binder resin layer laminated on the surface of the base material layer 2. 3, conductive and low-resistance silver nanowires 4 protrude from the binder resin layer 3, and are stuck and fixed by an insulating adhesive sheet 5.

第一の基材1は、第二の基材1Aの下方に位置して対向し、基材層2の後部周縁から細長いテール部6が突出形成されており、このテール部6が制御装置に電気コネクタを介して着脱自在に接続される。第二の基材1Aは、第二の基材1の上方に位置し、基材層2の後部周縁から細長いテール部6が突出形成されており、このテール部6が制御装置に電気コネクタを介して着脱自在に接続される。   The first base material 1 is positioned below and opposed to the second base material 1A, and an elongated tail portion 6 is formed so as to protrude from the rear periphery of the base material layer 2. The tail portion 6 serves as a control device. It is detachably connected via an electrical connector. The second base material 1A is located above the second base material 1 and has an elongated tail portion 6 protruding from the rear periphery of the base material layer 2. The tail portion 6 provides an electrical connector to the control device. It is detachably connected via.

各基材層2は、図2や図3等に示すように、例えば耐熱性や強度に優れるポリエチレンテレフタレートやポリカーボネート製の透明フィルム等により、横長の平面矩形に形成される。   As shown in FIGS. 2 and 3, each base material layer 2 is formed in a horizontally long planar rectangle by, for example, polyethylene terephthalate having excellent heat resistance and strength, a transparent film made of polycarbonate, or the like.

バインダ樹脂層3は、例えばアクリル樹脂、エポキシ樹脂、ポリイミド樹脂等からなり、基材層2の表面に多数の銀ナノワイヤ4を含浸したバインダ樹脂溶液が塗布されて乾燥硬化することにより積層形成され、基材層2に銀ナノワイヤ4を固定するよう機能する。銀ナノワイヤ4は、図3に示すように、乾燥硬化したバインダ樹脂層3の表面から不規則、かつ部分的に一部突出し、この突出部にバインダ樹脂層3のバインダ樹脂7が絶縁性の被膜として付着する。このようなバインダ樹脂層3は、静電容量センサシートの製造時にレーザ加工等がされることにより、Xパターン層10あるいはYパターン層20の一部を形成する。   The binder resin layer 3 is made of, for example, an acrylic resin, an epoxy resin, a polyimide resin, and the like, and is formed by laminating a binder resin solution impregnated with a large number of silver nanowires 4 on the surface of the base layer 2 and drying and curing it. It functions to fix the silver nanowire 4 to the base material layer 2. As shown in FIG. 3, the silver nanowire 4 irregularly and partially protrudes from the surface of the dried and cured binder resin layer 3, and the binder resin 7 of the binder resin layer 3 is insulatively coated on the protruding portion. Adhere as. Such a binder resin layer 3 forms a part of the X pattern layer 10 or the Y pattern layer 20 by laser processing or the like during the production of the capacitance sensor sheet.

バインダ樹脂層3の積層形成は、導電性極細繊維である銀ナノワイヤ4が分散したバインダ樹脂溶液の塗布が主ではあるが、特に限定されるものではない。例えば、基材層2の全表面に、銀ナノワイヤ4含有の分散液をコーティングして乾燥させ、基材層2の全表面に、銀ナノワイヤ4のネットワークを仮固定した後、この銀ナノワイヤ4を保護するため、銀ナノワイヤ4上に液状の透明絶縁基体原料、具体的には、アクリル樹脂等のバインダ樹脂を塗布し、バインダ樹脂を加熱したり、紫外線や電子線を照射等して硬化させることにより、銀ナノワイヤ4がネットワーク化したバインダ樹脂層3を積層形成することもできる。   The lamination formation of the binder resin layer 3 is mainly performed by applying a binder resin solution in which silver nanowires 4 which are conductive ultrafine fibers are dispersed, but is not particularly limited. For example, a dispersion containing silver nanowires 4 is coated on the entire surface of the base material layer 2 and dried, and a network of silver nanowires 4 is temporarily fixed on the entire surface of the base material layer 2. In order to protect, a liquid transparent insulating base material, specifically, a binder resin such as an acrylic resin is applied on the silver nanowire 4, and the binder resin is heated or cured by irradiation with ultraviolet rays or an electron beam. Thus, the binder resin layer 3 in which the silver nanowires 4 are networked can be laminated.

粘着シート5は、透明であることが好ましく、例えばポリエチレンテレフタレートやアクリル樹脂製の透明な基材シートの表裏両面にアクリル樹脂等の透明な粘着材を備えた両面テープ、あるいは基材を有しない(基材レス)粘着テープ等が使用され、相対向する第一、第二の基材1・1Aの基材層2に挟持された状態でこれらを粘着固定する。   The pressure-sensitive adhesive sheet 5 is preferably transparent. For example, the pressure-sensitive adhesive sheet 5 does not have a double-sided tape or a base material provided with a transparent pressure-sensitive adhesive material such as acrylic resin on both the front and back surfaces of a transparent base sheet made of polyethylene terephthalate or acrylic resin ( Substrate-less) Adhesive tape or the like is used, and these are adhesively fixed in a state of being sandwiched between the opposing base material layers 2 of the first and second base materials 1 and 1A.

Xパターン層10は、図1、図5、図7に示すように、Y方向に並ぶ複数のX検出電極11と、この複数のX検出電極11用の引き回しライン12とを備えて形成される。複数のX検出電極11は、第一の基材1の基材層2表面Y方向に一列に並べられるとともに、所定の間隔でX方向に配列される。この複数のX検出電極11の大部分は平面視で略ダイヤモンドパターンの薄膜に形成され、列の両末端に位置する残部のX検出電極11がそれぞれ平面視で略半ダイヤモンドパターンの薄膜に形成される。   As shown in FIGS. 1, 5, and 7, the X pattern layer 10 is formed by including a plurality of X detection electrodes 11 arranged in the Y direction, and lead lines 12 for the plurality of X detection electrodes 11. . The plurality of X detection electrodes 11 are arranged in a row in the surface Y direction of the surface of the base material layer 2 of the first base material 1 and are arranged in the X direction at predetermined intervals. Most of the plurality of X detection electrodes 11 are formed in a thin film having a substantially diamond pattern in plan view, and the remaining X detection electrodes 11 located at both ends of the row are formed in a thin film having a substantially half diamond pattern in plan view. The

表面Y方向に並んだ複数のX検出電極11のうち、列の末端のX検出電極11の表面端部には、導電性を有する細長い低抵抗の引き回しライン12の端部が電気的に重ねて接続され、この引き回しライン12が第一の基材1のテール部6に伸長形成されて制御装置に電気的に導通接続される。   Of the plurality of X detection electrodes 11 arranged in the surface Y direction, the end of the X detection electrode 11 at the end of the column is electrically overlapped with the end of a conductive and elongated low-resistance lead line 12. The lead line 12 is extended to the tail portion 6 of the first base 1 and is electrically connected to the control device.

このようなXパターン層10は、第一の基材1におけるバインダ樹脂層3の加工により導電性を有する複数のX検出電極11が形成されるとともに、第一の基材1の基材層2表面に銀ペースト等の導電材料がスクリーン印刷やグラビア印刷され、乾燥硬化することで複数本の引き回しライン12が形成される。   In such an X pattern layer 10, a plurality of X detection electrodes 11 having conductivity are formed by processing the binder resin layer 3 in the first substrate 1, and the substrate layer 2 of the first substrate 1. A conductive material such as silver paste is screen-printed or gravure-printed on the surface, and dried and hardened to form a plurality of lead lines 12.

この場合、複数のX検出電極11のうち、少なくとも引き回しライン12の端部と接続される末端のX検出電極11の表面端部は、引き回しライン12との良好な導通性を確保する観点から表面エッチング加工処理される。この表面エッチング加工処理としては、例えばプラズマ処理法、紫外線処理法、コロナ処理法、レーザ処理法、ブラスト処理法等からなるドライエッチング法とウェットエッチング法とがあげられる。   In this case, among the plurality of X detection electrodes 11, at least the surface end portion of the terminal X detection electrode 11 connected to the end portion of the routing line 12 is a surface from the viewpoint of ensuring good conductivity with the routing line 12. Etching is processed. Examples of the surface etching processing include a dry etching method and a wet etching method including a plasma processing method, an ultraviolet processing method, a corona processing method, a laser processing method, a blast processing method, and the like.

ドライエッチング法とウェットエッチング法とは、いずれの処理方法でも良いが、ウェットエッチング法の場合、エッチング液の排出処理やマスキングが必要になるので、ドライエッチング法の採用が好ましい。このドライエッチング法の中では、不要な損傷を防止し、作業の迅速化を図る観点から、プラズマ処理法、紫外線処理法、コロナ処理法が好適である。   Either of the dry etching method and the wet etching method may be used, but in the case of the wet etching method, it is preferable to employ the dry etching method because an etching solution discharge process and masking are required. Among the dry etching methods, a plasma treatment method, an ultraviolet treatment method, and a corona treatment method are preferable from the viewpoint of preventing unnecessary damage and speeding up the operation.

表面エッチング加工処理にドライエッチング法のプラズマ処理法が採用される場合、ダイレクトプラズマと反応性イオンエッチングのいずれでも効果が期待できる。但し、反応性イオンエッチングによれば、処理条件(処理時間)の範囲を広く設定することが可能となる。   When the plasma processing method of the dry etching method is adopted for the surface etching processing, the effect can be expected by either direct plasma or reactive ion etching. However, according to reactive ion etching, it is possible to set a wide range of processing conditions (processing time).

プラズマ処理の出力は、0.01〜0.5W/cmの範囲が好ましい。これは、処理出力が0.01W/cm未満の場合には、表面エッチング加工の効果が認められず、逆に0.5W/cmを超える場合には、バインダ樹脂層3の銀ナノワイヤ4がダメージを受けて抵抗値が著しく上昇するからである。ここで、W/cmは、処理装置の電極の単位面積当たりの出力である。 The output of the plasma treatment, the range of 0.01~0.5W / cm 2 is preferred. When the processing output is less than 0.01 W / cm 2 , the effect of the surface etching process is not recognized. Conversely, when the processing output exceeds 0.5 W / cm 2 , the silver nanowire 4 of the binder resin layer 3 is used. This is because the resistance value increases significantly due to damage. Here, W / cm 2 is the output per unit area of the electrode of the processing apparatus.

プラズマ処理法の処理は、ダイレクトプラズマの場合には30秒〜5分の処理時間、反応性イオンエッチングの場合には30秒〜10分の処理時間で行われることが好ましい。これは、これよりも早い場合には、表面エッチング加工の十分な効果を得ることができず、逆に遅い場合には、バインダ樹脂層3の銀ナノワイヤ4がダメージを受けて抵抗値が著しく上昇するからである。また、プラズマ処理の処理ガスには、酸素、アルゴン、酸素とアルゴンとの混合系、その他が使用される。これらの中では、銀ナノワイヤ4の酸化のおそれを排除できるアルゴンガスの採用が最適である。   The plasma processing method is preferably performed in a processing time of 30 seconds to 5 minutes in the case of direct plasma, and in a processing time of 30 seconds to 10 minutes in the case of reactive ion etching. If this is earlier than this, sufficient effect of the surface etching process cannot be obtained. Conversely, if it is slower, the silver nanowire 4 of the binder resin layer 3 is damaged and the resistance value is significantly increased. Because it does. Further, oxygen, argon, a mixed system of oxygen and argon, or the like is used as a processing gas for plasma processing. Among these, the use of argon gas that can eliminate the risk of oxidation of the silver nanowire 4 is optimal.

紫外線処理法が採用される場合、紫外線照射に使用する光源は、高圧水銀ランプ(波長365nm)ではエネルギが低く、バインダ樹脂層3のオーバーコートの表面エッチング加工処理には適さないので、低圧水銀ランプ(例えば、波長185nmや254nm等)を使用することが好ましい。   When the ultraviolet ray treatment method is adopted, the light source used for ultraviolet ray irradiation has low energy in the high pressure mercury lamp (wavelength 365 nm), and is not suitable for the surface etching processing of the overcoat of the binder resin layer 3. It is preferable to use (for example, a wavelength of 185 nm or 254 nm).

紫外線の照度は、10〜300mW/cmの範囲が良い。これは、紫外線の照度が10mW/cm未満の場合には、効果が認められず、逆に紫外線の照度が300mW/cmを超える場合には、バインダ樹脂層3の銀ナノワイヤ4がダメージを受けて抵抗値が著しく上昇したり、基材層2やオーバーコート層が変色(黄変)するおそれがあるからである。 The illuminance of ultraviolet rays is preferably in the range of 10 to 300 mW / cm 2 . This is because the effect is not observed when the illuminance of ultraviolet rays is less than 10 mW / cm 2 , and conversely, when the illuminance of ultraviolet rays exceeds 300 mW / cm 2 , the silver nanowires 4 of the binder resin layer 3 are damaged. This is because there is a possibility that the resistance value is remarkably increased and the base material layer 2 and the overcoat layer are discolored (yellowed).

コロナ処理法が採用される場合、処理装置の電極から銀ナノワイヤ4までの距離は1〜10mmの範囲が望ましい。これは、係る距離が1mm未満の場合には、銀ナノワイヤ4が損傷して抵抗値が大幅に上昇し、逆に10mmを超える場合には、十分な効果が期待できないという理由に基づく。また、処理出力は0.2〜20W/cmの範囲が良い。これは、処理出力が0.2W/cm未満の場合には、効果が期待できず、逆に20W/cmを超える場合には、銀ナノワイヤ4が損傷して抵抗値が大幅に上昇するという理由に基づく。W/cmは、電極の単位長さ当たりの出力である。   When the corona treatment method is employed, the distance from the electrode of the treatment apparatus to the silver nanowire 4 is preferably in the range of 1 to 10 mm. This is based on the reason that when the distance is less than 1 mm, the silver nanowire 4 is damaged and the resistance value is significantly increased. Conversely, when the distance exceeds 10 mm, a sufficient effect cannot be expected. The processing output is preferably in the range of 0.2 to 20 W / cm. This is because the effect cannot be expected when the processing output is less than 0.2 W / cm, and conversely, when it exceeds 20 W / cm, the silver nanowire 4 is damaged and the resistance value is significantly increased. based on. W / cm is the output per unit length of the electrode.

コロナ処理に際しては、Xパターン層10を相対的に移動させて複数のX検出電極11に処理を列毎に施すが、この処理は、0.1〜20m/minの速度で行われることが望ましい。これは、これよりも早い場合には、十分な効果が得られず、逆に遅い場合には、銀ナノワイヤ4がダメージを受けて抵抗値が大幅に上昇するからである。   In the corona treatment, the X pattern layer 10 is relatively moved to perform the treatment on the plurality of X detection electrodes 11 for each column, and this treatment is desirably performed at a speed of 0.1 to 20 m / min. . This is because if it is earlier than this, a sufficient effect cannot be obtained, and if it is later, the silver nanowire 4 is damaged and the resistance value is significantly increased.

表面エッチング加工処理として、ウェットエッチング法が採用される場合、バインダ樹脂の成分が水溶性であれば、エッチング液として、水や水溶液を使用することが好ましい。これに対し、バインダ樹脂の成分が非水溶性であれば、バインダ樹脂の溶解度パラメータが近似する有機溶液を用い、材質や厚みに応じ、濃度、浸漬温度、浸漬時間を適宜調整すれば良い。ウェットエッチング法には、ディッピング法、スプレー法、スピン法があるが、最も簡便なディッピング法の採用が最適である。   When the wet etching method is employed as the surface etching processing, it is preferable to use water or an aqueous solution as the etching solution if the binder resin component is water-soluble. On the other hand, if the binder resin component is water-insoluble, an organic solution whose binder resin solubility parameter approximates may be used, and the concentration, immersion temperature, and immersion time may be appropriately adjusted according to the material and thickness. The wet etching method includes a dipping method, a spray method, and a spin method, and the most convenient dipping method is optimal.

このような表面エッチング加工処理により、末端のX検出電極11の表面端部から部分的に突出した銀ナノワイヤ4は、突出範囲が増大し、突出部に付着した絶縁性のバインダ樹脂7が除去されて導電性が確保され、末端のX検出電極11と引き回しライン12との接続部13に補助電極として電気的に接触する(図8参照)。   By such surface etching processing, the silver nanowire 4 partially protruding from the surface end portion of the terminal X detection electrode 11 has an increased protruding range, and the insulating binder resin 7 attached to the protruding portion is removed. Thus, the conductivity is ensured, and the terminal X detection electrode 11 and the connecting portion 13 between the routing line 12 are electrically contacted as an auxiliary electrode (see FIG. 8).

Yパターン層20は、図1、図5、図6に示すように、X方向に並ぶ複数のY検出電極21と、この複数のY検出電極21用の引き回しライン22とを備えて形成される。複数のY検出電極21は、第一の基材1表面に対向する第二の基材1Aの表面X方向に一列に並べられるとともに、所定の間隔でY方向に配列される。この複数のY検出電極21の大部分は平面視で略ダイヤモンドパターンの薄膜に形成され、列の末端に位置する残部のY検出電極21が平面視で略半ダイヤモンドパターンの薄膜に形成される。   As shown in FIGS. 1, 5, and 6, the Y pattern layer 20 is formed to include a plurality of Y detection electrodes 21 arranged in the X direction, and lead lines 22 for the plurality of Y detection electrodes 21. . The plurality of Y detection electrodes 21 are arranged in a line in the surface X direction of the second base material 1A facing the surface of the first base material 1, and are arranged in the Y direction at predetermined intervals. Most of the plurality of Y detection electrodes 21 are formed in a thin film having a substantially diamond pattern in a plan view, and the remaining Y detection electrodes 21 located at the ends of the columns are formed in a thin film having a substantially half diamond pattern in a plan view.

X方向に並んだ複数のY検出電極21のうち、末端のY検出電極21の表面端部には、導電性の細長い低抵抗の引き回しライン22が電気的に重ねて接続される。この引き回しライン22は、第二の基材1Aにおける基材層2の表面からスルーホールを経由して裏面である上面に露出する。露出した引き回しライン22は、テール部6に伸長形成されて制御装置に電気的に導通接続される。   Among the plurality of Y detection electrodes 21 arranged in the X direction, a conductive elongated low resistance lead line 22 is electrically overlapped and connected to the surface end portion of the terminal Y detection electrode 21. The routing line 22 is exposed from the surface of the base material layer 2 in the second base material 1A to the upper surface, which is the back surface, through a through hole. The exposed routing line 22 is formed in the tail portion 6 so as to be electrically connected to the control device.

このようなYパターン層20は、第二の基材1Aにおけるバインダ樹脂層3の加工により導電性を有する複数のY検出電極21が形成されるとともに、第二の基材1Aの基材層2表面に銀ペースト等の導電材料がスクリーン印刷やグラビア印刷され、乾燥硬化することで複数本の引き回しライン22が形成される。   In such a Y pattern layer 20, a plurality of Y detection electrodes 21 having conductivity are formed by processing the binder resin layer 3 in the second substrate 1A, and the substrate layer 2 of the second substrate 1A. A conductive material such as silver paste is screen-printed or gravure-printed on the surface, and dried and hardened to form a plurality of lead lines 22.

この場合、複数のY検出電極21のうち、少なくとも引き回しライン22の端部と接続される末端のY検出電極21の表面端部は、末端のX検出電極11と同様、引き回しライン22との良好な導通性を確保する観点から表面エッチング加工処理される。この表面エッチング加工処理により、末端のY検出電極21の表面端部から部分的に突出した銀ナノワイヤ4は、突出範囲が増大し、突出部に付着したバインダ樹脂7が除去されて導電性が確保され、末端のY検出電極21と引き回しライン22との接続部23に補助電極として電気的に接触する。   In this case, among the plurality of Y detection electrodes 21, at least the surface end portion of the terminal Y detection electrode 21 connected to the end portion of the routing line 22 is in good condition with the routing line 22 as in the terminal X detection electrode 11. The surface etching processing is performed from the viewpoint of ensuring proper electrical conductivity. As a result of this surface etching processing, the silver nanowire 4 partially protruding from the end of the surface of the terminal Y detection electrode 21 has an increased protruding range, and the binder resin 7 attached to the protruding portion is removed to ensure conductivity. Then, the terminal Y detection electrode 21 and the connection line 23 between the routing line 22 are electrically contacted as an auxiliary electrode.

上記構成において、静電容量センサシートを製造する場合には、先ず、第一の基材1を得るため、所定の大きさの基材層2を用意し、この基材層2の全表面に、銀ナノワイヤ4が分散したバインダ樹脂溶液をコータにより塗布して乾燥硬化させることにより、バインダ樹脂層3を積層形成するとともに、このバインダ樹脂層3の表面から銀ナノワイヤ4の一部を不規則に突出させ、第一の基材1を製造する。   In the above configuration, when producing a capacitance sensor sheet, first, in order to obtain the first base material 1, a base material layer 2 having a predetermined size is prepared, and the entire surface of the base material layer 2 is prepared. The binder resin solution in which the silver nanowires 4 are dispersed is applied by a coater and dried and cured, thereby forming a binder resin layer 3 and forming a part of the silver nanowires 4 irregularly from the surface of the binder resin layer 3. The first substrate 1 is manufactured by projecting.

バインダ樹脂溶液は、例えば所定の溶剤にバインダ樹脂7を溶解させ、多数の銀ナノワイヤ4を均一に分散させることにより調製することができる。第二の基材1Aについても、第一の基材1と同様の作業を繰り返して製造する。   The binder resin solution can be prepared, for example, by dissolving the binder resin 7 in a predetermined solvent and uniformly dispersing a large number of silver nanowires 4. The second base 1A is also manufactured by repeating the same operation as the first base 1.

次いで、第一の基材1のバインダ樹脂層3を加工してXパターン層10の複数のX検出電極11を形成し、末端のX検出電極11の表面端部にプラズマ処理等の表面エッチング加工処理を施して削り(例えば、10nm程度削る)、表面端部から部分的に突出した銀ナノワイヤ4の突出部からバインダ樹脂7を除去する。この際、末端のX検出電極11の表面端部以外については、マスキングを要するが、マスキング作業の手間を省き、作業性を向上させたい場合には、複数のX検出電極11の全表面に表面エッチング加工処理を施しても良い。   Next, the binder resin layer 3 of the first substrate 1 is processed to form a plurality of X detection electrodes 11 of the X pattern layer 10, and surface etching processing such as plasma treatment is performed on the surface end portion of the terminal X detection electrode 11. The binder resin 7 is removed from the projecting portions of the silver nanowires 4 partially projecting from the surface end by shaving (for example, shaving by about 10 nm). At this time, masking is required for portions other than the end of the surface of the X detection electrode 11 at the end. However, if it is desired to improve the workability by omitting the masking work, the surface is applied to the entire surface of the plurality of X detection electrodes 11. Etching processing may be performed.

こうしてバインダ樹脂7を除去したら、第一の基材1の基材層2表面に銀ペースト等を印刷して引き回しライン12を形成し、この引き回しライン12の端部を末端のX検出電極11の表面端部に重ねて接続するとともに、この接続部13に末端のX検出電極11の表面から部分的に突出した銀ナノワイヤ4の突出部を接触させる。   When the binder resin 7 is removed in this way, a silver paste or the like is printed on the surface of the base material layer 2 of the first base material 1 to form a lead line 12, and the end of the lead line 12 is connected to the terminal X detection electrode 11. While connecting to the surface end portion, the protruding portion of the silver nanowire 4 partially protruding from the surface of the terminal X detection electrode 11 is brought into contact with the connecting portion 13.

また、上記と同様に、第二の基材1Aのバインダ樹脂層3を加工してYパターン層20の複数のY検出電極21を形成し、末端のY検出電極21の表面端部に表面エッチング加工処理を施して削り(例えば、10nm程度削る)、表面から部分的に突出した銀ナノワイヤ4の突出部からバインダ樹脂7を除去する。この際、Xパターン層10と同様にマスキング作業の手間を省き、作業性を向上させるため、複数のY検出電極21の全表面に表面エッチング加工処理を施しても良い。   Similarly to the above, the binder resin layer 3 of the second substrate 1A is processed to form a plurality of Y detection electrodes 21 of the Y pattern layer 20, and surface etching is performed on the surface edge of the terminal Y detection electrode 21. The binder resin 7 is removed from the projecting portion of the silver nanowire 4 partially projecting from the surface by shaving by processing (for example, shaving by about 10 nm). At this time, similarly to the X pattern layer 10, in order to save the labor of the masking operation and improve the workability, the entire surface of the plurality of Y detection electrodes 21 may be subjected to surface etching processing.

バインダ樹脂7を除去したら、第二の基材1Aの基材層2表面に銀ペースト等を印刷して引き回しライン22を形成し、この引き回しライン22の端部を末端のY検出電極21の表面端部に重ねて接続するとともに、この接続部23に末端のY検出電極21の表面から部分的に突出した銀ナノワイヤ4の突出部を接触させる。   After the binder resin 7 is removed, a silver paste or the like is printed on the surface of the base material layer 2 of the second base material 1A to form a lead line 22, and the end of this lead line 22 is the surface of the terminal Y detection electrode 21. While connecting to the end portion, the protruding portion of the silver nanowire 4 partially protruding from the surface of the terminal Y detection electrode 21 is brought into contact with the connecting portion 23.

このようにして第一、第二の基材1・1Aの基材層2にXパターン層10とYパターン層20とを形成したら、これら第一、第二の基材1・1Aのパターン面を対向させて粘着性の粘着シート5で粘着固定し、第一、第二の基材1・1Aのうち、少なくとも第二の基材1Aの露出した上面に透明の保護カバー30を積層粘着した後、これらに回転可能なローラを圧接摺動して密着させ、所定の大きさにカットすれば、静電容量センサシートを製造することができる。   When the X pattern layer 10 and the Y pattern layer 20 are thus formed on the base material layer 2 of the first and second base materials 1 and 1A, the pattern surfaces of the first and second base materials 1 and 1A are formed. Are adhered and fixed with an adhesive sheet 5 and a transparent protective cover 30 is laminated and adhered to at least the exposed upper surface of the first and second substrates 1 and 1A. Thereafter, a capacitive roller sheet can be manufactured by pressing and sliding a roller that can rotate to these, and cutting them into a predetermined size.

このような静電容量センサシートは、例えば自動車搭載機器に操作手段として設置され、選択されたXパターン層10のX検出電極11あるいはYパターン層20のY検出電極21にユーザの指が近接して対向すると、ユーザの指との間の静電容量が変化するので、この静電容量の変化を検出して制御装置に出力し、自動車搭載機器の操作に資することとなる。   Such a capacitance sensor sheet is installed, for example, as an operation means in an automobile-mounted device, and a user's finger approaches the selected X detection electrode 11 of the X pattern layer 10 or the Y detection electrode 21 of the Y pattern layer 20. Since the capacitance with the user's finger changes, the change in the capacitance is detected and output to the control device, which contributes to the operation of the on-vehicle equipment.

上記によれば、低抵抗の銀ナノワイヤ4の露出範囲や数が増大して補助電極として機能し、この銀ナノワイヤ4が導通性に資するので、末端のX検出電極11やY検出電極21と引き回しライン12・22との接続部13・23における導通性が悪化したり、接触抵抗値の増大や不安定化を招くおそれが全くない。   According to the above, the exposed range and number of the low-resistance silver nanowires 4 are increased and function as auxiliary electrodes, and the silver nanowires 4 contribute to conductivity, so that they are routed around the terminal X detection electrode 11 and the Y detection electrode 21. There is no possibility that the continuity at the connecting portions 13 and 23 with the lines 12 and 22 is deteriorated or that the contact resistance value is increased or unstable.

また、バインダ樹脂溶液の体積を減少させて銀ナノワイヤ4の突出部を露出等させるのではなく、バインダ樹脂層3の表面を表面エッチング加工処理して少なくとも銀ナノワイヤ4に付着したバインダ樹脂7を除去するので、銀ナノワイヤ4の導電性を確実に確保することができる。また、微細な銀ナノワイヤ4を使用するので、例え静電容量センサシートに透明性が求められる場合にも、何ら悪影響を与えることがない。さらに、バインダ樹脂層3の表面にプローブを接触させれば、抵抗値の測定も実に容易である。   Further, instead of reducing the volume of the binder resin solution to expose the protruding portions of the silver nanowires 4, the surface of the binder resin layer 3 is subjected to surface etching processing to remove at least the binder resin 7 attached to the silver nanowires 4. Therefore, the conductivity of the silver nanowire 4 can be reliably ensured. Moreover, since the fine silver nanowire 4 is used, even when transparency is required for the capacitance sensor sheet, no adverse effect is caused. Furthermore, if the probe is brought into contact with the surface of the binder resin layer 3, the resistance value can be easily measured.

なお、上記実施形態ではバインダ樹脂層3の加工後にXパターン層10やYパターン層20に表面エッチング加工処理を施したが、何らこれに限定されるものではない。例えば、バインダ樹脂層3を加工する前に、バインダ樹脂層3の表面に表面エッチング加工処理を施し、その後、バインダ樹脂層3を加工してXパターン層10やYパターン層20を形成しても良い。   In the above embodiment, the surface etching processing is performed on the X pattern layer 10 and the Y pattern layer 20 after processing the binder resin layer 3, but the present invention is not limited to this. For example, the surface of the binder resin layer 3 is subjected to a surface etching process before the binder resin layer 3 is processed, and then the X pattern layer 10 or the Y pattern layer 20 is formed by processing the binder resin layer 3. good.

また、上記実施形態では複数のX検出電極11やY検出電極21を単に示したが、複数のX検出電極11間のクリアランスやY検出電極21間のクリアランスを同形のダミーX電極とダミーY電極とでそれぞれ埋めるようにすれば、エッチングの加工面積を大幅に縮小することができる。この場合、バインダ樹脂7を広範囲に亘って除去する必要が全くなく、製造作業の迅速化や簡素化を図ることができ、しかも、材料等の無駄を削減することができる。   In the above-described embodiment, the plurality of X detection electrodes 11 and the Y detection electrodes 21 are simply shown. However, the clearance between the plurality of X detection electrodes 11 and the clearance between the Y detection electrodes 21 are the same shape. If each of them is filled, the processing area of etching can be greatly reduced. In this case, it is not necessary to remove the binder resin 7 over a wide range, the manufacturing operation can be speeded up and simplified, and waste of materials and the like can be reduced.

また、必要に応じ、末端のX検出電極11の表面やその周縁部を表面エッチング加工処理しても良いし、全てのX検出電極11の表面やその周縁部を表面エッチング加工処理しても良い。さらに、末端のY検出電極21の表面やその周縁部を表面エッチング加工処理しても良いし、全てのY検出電極21の表面やその周縁部を表面エッチング加工処理することもできる。   Further, if necessary, the surface of the terminal X detection electrode 11 and its peripheral portion may be subjected to surface etching processing, or the surface of all the X detection electrodes 11 and its peripheral portion may be subjected to surface etching processing. . Furthermore, the surface of the Y detection electrode 21 at the end and its peripheral portion may be subjected to surface etching processing, or the surface of all the Y detection electrodes 21 and the peripheral portion thereof may be subjected to surface etching processing.

次に、本発明の実施例を比較例と共に説明する。
実施例1
試験用の静電容量センサシートを製造してそのパターン層の検出電極の表面端部に表面エッチング加工処理をプラズマ処理法により施し、表面エッチング加工処理した検出電極の表面端部に引き回しラインを重ねて接続し、検出電極の表面端部と引き回しラインとの導通性を測定した。
Next, examples of the present invention will be described together with comparative examples.
Example 1
A test capacitance sensor sheet is manufactured, and surface etching processing is applied to the surface edge of the detection electrode of the pattern layer by the plasma processing method, and a drawing line is superimposed on the surface edge of the surface etching processed detection electrode. The continuity between the surface end of the detection electrode and the lead line was measured.

試験用の静電容量センサシートは、20cm幅の第一、第二の基材を用意し、第一の基材の基材層にXパターン層を形成し、第一、第二の基材を対向させて粘着性の粘着シートで粘着固定し、第一、第二の基材に回転可能な30cm幅のゴムローラを圧接して摺動することにより、第一、第二の基材、及び粘着シートを加圧して密着させた後、所定の大きさにカットして製造した。   The test capacitance sensor sheet is prepared by preparing first and second substrates having a width of 20 cm, forming an X pattern layer on the substrate layer of the first substrate, and the first and second substrates. By adhering and fixing with a pressure-sensitive adhesive sheet, and pressing and sliding a rotatable 30 cm wide rubber roller on the first and second substrates, and the first and second substrates, and The pressure-sensitive adhesive sheet was pressed and brought into close contact, and then cut into a predetermined size for production.

各基材層は、透明のポリエチレンテレフタレートフィルムを横長の平面矩形にすることで形成した。バインダ樹脂層は、バインダ樹脂をアクリル樹脂とし、この樹脂に多数の銀ナノワイヤを含有した。また、Xパターン層は、第一の基材のバインダ樹脂層をエッチング加工して連続した一本の帯をY方向に12本並べて形成し、この12本の帯を複数のX検出電極とみなし、各X検出電極の表面両端部に表面エッチング加工処理をそれぞれダイレクトプラズマ処理法により施すとともに、各X検出電極の表面両端部に銀ペーストの引き回しラインをそれぞれ重ねて印刷することで形成した。   Each base material layer was formed by making a transparent polyethylene terephthalate film into a horizontally long planar rectangle. In the binder resin layer, the binder resin was an acrylic resin, and the resin contained a large number of silver nanowires. The X pattern layer is formed by etching the binder resin layer of the first base material and arranging 12 continuous bands in the Y direction. The 12 bands are regarded as a plurality of X detection electrodes. Each of the X detection electrodes was formed by subjecting both ends of the surface of the X detection electrode to surface etching by a direct plasma treatment method and printing by superimposing silver paste drawing lines on both ends of the surface of each X detection electrode.

各X検出電極は、長さ150mm、幅5mm、厚さ30nmの大きさとした。各X検出電極表面の端部と引き回しラインとの接続面積は、1.8mm(0.4×4.5mm=1.8mm)の大きさとした。また、ダイレクトプラズマ処理法は、処理ガスをアルゴンとし、処理出力0.02W/cm、処理時間3minの条件で実施した。 Each X detection electrode has a length of 150 mm, a width of 5 mm, and a thickness of 30 nm. The connection area between the end of each X detection electrode surface and the routing line was 1.8 mm 2 (0.4 × 4.5 mm = 1.8 mm 2 ). The direct plasma treatment method was performed under the conditions of a treatment gas of argon, a treatment output of 0.02 W / cm 2 , and a treatment time of 3 minutes.

ゴムローラは、速度30cm/secで10回圧接して摺動した。このゴムローラの圧接に際しては、30cmの線幅で5〜10kgの圧力を作用させた。また、導通性については、先ず、ゴムローラを圧接する前に一対の引き回しライン間の抵抗値(kΩ)を測定し、この測定値をX検出電極の表面端部と引き回しラインとの接続部における初期抵抗値(kΩ)とした。   The rubber roller slid in pressure contact 10 times at a speed of 30 cm / sec. When the rubber roller was pressed, a pressure of 5 to 10 kg was applied with a line width of 30 cm. As for continuity, first, before pressing the rubber roller, the resistance value (kΩ) between the pair of routing lines is measured, and this measured value is initially measured at the connection between the surface end of the X detection electrode and the routing line. Resistance value (kΩ) was used.

また、ゴムローラを10回圧接して摺動した後に一対の引き回しライン間の抵抗値(kΩ)を測定し、この測定値をX検出電極の表面端部と引き回しラインとの接続部における抵抗値(kΩ)とみなした。そして、これらの抵抗値からゴムローラの加圧前後の抵抗値の変化率(%)を求めた。また、測定値から平均値、最大値、最小値、標準偏差を求めた。このようにして導通性を測定したら、その結果を表1にまとめて記載した。   Further, after sliding the rubber roller 10 times, the resistance value (kΩ) between the pair of drawing lines is measured, and this measured value is measured as the resistance value at the connection portion between the surface end of the X detection electrode and the drawing line ( kΩ). Then, the change rate (%) of the resistance value before and after pressing the rubber roller was determined from these resistance values. In addition, an average value, a maximum value, a minimum value, and a standard deviation were obtained from the measured values. When the conductivity was measured in this manner, the results are summarized in Table 1.

Figure 2012237746
Figure 2012237746

実施例2
試験用の静電容量センサシートを製造してそのXパターン層のX検出電極の表面端部に表面エッチング加工処理を紫外線処理法により施し、表面エッチング加工処理したX検出電極の表面端部に引き回しラインを重ねて接続し、X検出電極の表面端部と引き回しラインとの導通性を測定した。
Example 2
A capacitance sensor sheet for testing is manufactured, the surface end of the X detection electrode of the X pattern layer is subjected to surface etching processing by an ultraviolet treatment method, and the surface etching processing is applied to the surface end of the X detection electrode. The lines were overlapped and connected, and the conductivity between the surface end of the X detection electrode and the lead line was measured.

試験用の静電容量センサシートは、実施例1と同様の構成に製造した。紫外線処理法は、市販の処理装置を用い、光源を低圧水銀ランプとし、紫外線の照度200mW/cm、処理時間2minの条件で実施した。
導通性についても実施例1と同様とし、導通性を測定したら、その結果を表2にまとめて記載した。
The test capacitance sensor sheet was manufactured in the same configuration as in Example 1. The ultraviolet treatment method was carried out using a commercially available treatment apparatus, using a low-pressure mercury lamp as the light source, and under the conditions of ultraviolet illumination of 200 mW / cm 2 and treatment time of 2 minutes.
The conductivity was also the same as in Example 1, and when the conductivity was measured, the results are summarized in Table 2.

Figure 2012237746
Figure 2012237746

実施例3
試験用の静電容量センサシートを製造してそのXパターン層のX検出電極の表面端部に表面エッチング加工処理をコロナ処理法により施し、表面エッチング加工処理したX検出電極の表面端部に引き回しラインを重ねて接続し、X検出電極の表面端部と引き回しラインとの導通性を測定した。
Example 3
A capacitance sensor sheet for testing is manufactured, and the surface end of the X detection electrode of the X pattern layer is subjected to surface etching processing by the corona treatment method, and is routed to the surface end of the X detection electrode subjected to the surface etching processing. The lines were overlapped and connected, and the conductivity between the surface end of the X detection electrode and the lead line was measured.

試験用の静電容量センサシートは、実施例1と同様の構成に製造した。コロナ処理法は、市販の処理装置を用い、出力を6Wとし、複数のX検出電極の相対的な移動速度6m/min、処理装置の電極から銀ナノワイヤまでの距離を4mmとする条件で実施した。
導通性についても実施例1と同様とし、導通性を測定したら、その結果を表3にまとめて記載した。
The test capacitance sensor sheet was manufactured in the same configuration as in Example 1. The corona treatment method was carried out using a commercially available treatment device, with an output of 6 W, a relative moving speed of a plurality of X detection electrodes of 6 m / min, and a distance from the treatment device electrode to the silver nanowire of 4 mm. .
The conductivity was also the same as in Example 1, and when the conductivity was measured, the results are summarized in Table 3.

Figure 2012237746
Figure 2012237746

比較例
試験用の静電容量センサシートを製造してそのXパターン層のX検出電極の表面端部に表面エッチング加工処理を施さず、この未処理のX検出電極の表面端部に引き回しラインを重ねて接続し、X検出電極の表面端部と引き回しラインとの導通性を測定した。
静電容量センサシートの構成や導通性については実施例と同様とし、導通性を測定した後、その結果を表4にまとめた。
Comparative Example A test capacitance sensor sheet was manufactured, and the surface end portion of the X detection electrode of the X pattern layer was not subjected to surface etching processing, and a routing line was formed on the surface end portion of the untreated X detection electrode. They were connected in a stacked manner, and the conductivity between the surface end of the X detection electrode and the lead line was measured.
The configuration and conductivity of the capacitance sensor sheet were the same as those in the example. After measuring the conductivity, the results are summarized in Table 4.

Figure 2012237746
Figure 2012237746

実施例1、2、3によれば、X検出電極と引き回しラインとの接続部における導通性が向上したので、きわめて良好な平均値、最大値、最小値、標準偏差を得ることができた。したがって、初期抵抗値の安定や抵抗変化の抑制を実現し、接触抵抗値の増大や不安定化を招くおそれを有効に排除できることが判明した。   According to Examples 1, 2, and 3, the conductivity at the connection portion between the X detection electrode and the routing line was improved, so that a very good average value, maximum value, minimum value, and standard deviation could be obtained. Accordingly, it has been found that the stability of the initial resistance value and the suppression of the resistance change can be realized, and the possibility that the contact resistance value increases or becomes unstable can be effectively eliminated.

これに対し、従来例に相当する比較例によれば、表面エッチング加工処理を施さないので、ゴムローラの圧接摺動にかかわらず、初期抵抗値が安定しないことがあった。また、実施例と比較すると、満足する平均値、最大値、最小値、標準偏差を得ることができなかった。この比較例により、X検出電極と引き回しラインとの接続部における導通性が悪化し、抵抗値の増大や不安定化を招くことが明らかとなった。   On the other hand, according to the comparative example corresponding to the conventional example, since the surface etching processing is not performed, the initial resistance value may not be stable regardless of the pressure contact sliding of the rubber roller. Further, compared with the examples, satisfactory average values, maximum values, minimum values, and standard deviations could not be obtained. According to this comparative example, it has been clarified that the conductivity at the connection portion between the X detection electrode and the routing line is deteriorated, resulting in an increase in resistance value and instability.

本発明に係る静電容量センサシートの製造方法及び静電容量センサシートは、例えばオーディオ機器、家電機器、携帯情報機器、自動車搭載機器等の分野で使用することができる。   The method for producing a capacitive sensor sheet and the capacitive sensor sheet according to the present invention can be used in the fields of audio equipment, home appliances, portable information equipment, automobile-mounted equipment, and the like.

1 第一の基材(基材)
1A 第二の基材(基材)
2 基材層
3 バインダ樹脂層
4 銀ナノワイヤ(導電性ナノワイヤ)
7 バインダ樹脂
10 Xパターン層(パターン層)
11 X検出電極(検出電極)
12 引き回しライン
13 接続部
20 Yパターン層(パターン層)
21 Y検出電極(検出電極)
22 引き回しライン
23 接続部
1 First base material (base material)
1A Second base material (base material)
2 Base material layer 3 Binder resin layer 4 Silver nanowire (conductive nanowire)
7 Binder resin 10 X pattern layer (pattern layer)
11 X detection electrode (detection electrode)
12 Leading line 13 Connection part 20 Y pattern layer (pattern layer)
21 Y detection electrode (detection electrode)
22 Leading line 23 Connection part

Claims (11)

絶縁性を有する基材層に導電性ナノワイヤ含有のバインダ樹脂層が形成され、このバインダ樹脂層の表面から導電性ナノワイヤが部分的に突出する基材を使用することにより、静電容量センサシートを製造する静電容量センサシートの製造方法であって、
基材のバインダ樹脂層を加工して導電性を有するパターン層の複数の検出電極を形成する際、バインダ樹脂層の表面、あるいは複数の検出電極の少なくとも一部の検出電極の表面端部を表面エッチング加工処理することにより、検出電極から部分的に突出した導電性ナノワイヤの突出部におけるバインダ樹脂を除去し、
基材の基材層に導電材料を塗布して乾燥硬化させることにより、導電性を有するパターン層の引き回しラインを形成し、
パターン層の少なくとも一部の検出電極の表面端部と引き回しラインとを接続するとともに、この接続部には、バインダ樹脂が除去された導電性ナノワイヤの突出部を接触させることを特徴とする静電容量センサシートの製造方法。
By using a base material in which a conductive nanowire-containing binder resin layer is formed on the insulating base material layer, and the conductive nanowire partially protrudes from the surface of the binder resin layer, a capacitance sensor sheet is obtained. A method of manufacturing a capacitance sensor sheet to be manufactured,
When forming the plurality of detection electrodes of the conductive pattern layer by processing the binder resin layer of the base material, the surface of the binder resin layer or at least a part of the surface of the plurality of detection electrodes is the surface. Etching process removes the binder resin in the protruding part of the conductive nanowire partially protruding from the detection electrode,
By applying a conductive material to the base material layer of the base material and drying and curing it, a wiring line of the pattern layer having conductivity is formed,
The electrostatic sensor is characterized in that at least a part of the surface of the detection electrode of the pattern layer is connected to the drawing line, and a protruding part of the conductive nanowire from which the binder resin is removed is brought into contact with the connection part. A method for manufacturing a capacitive sensor sheet.
表面エッチング加工処理を、ドライエッチング法とウェットエッチング法のいずれかの方法で施す請求項1記載の静電容量センサシートの製造方法。   The method for producing a capacitance sensor sheet according to claim 1, wherein the surface etching processing is performed by one of a dry etching method and a wet etching method. 表面エッチング加工処理を、プラズマ処理法、紫外線処理法、又はコロナ処理法で施す請求項1記載の静電容量センサシートの製造方法。   The method of manufacturing a capacitance sensor sheet according to claim 1, wherein the surface etching processing is performed by a plasma processing method, an ultraviolet processing method, or a corona processing method. パターン層の全ての検出電極の表面を表面エッチング加工処理する請求項1、2、又は3記載の静電容量センサシートの製造方法。   4. The method of manufacturing a capacitance sensor sheet according to claim 1, wherein the surface of all detection electrodes of the pattern layer is subjected to surface etching processing. 引き回しラインと接続される検出電極の表面を表面エッチング加工処理する請求項1、2、又は3記載の静電容量センサシートの製造方法。   4. The method of manufacturing a capacitance sensor sheet according to claim 1, wherein the surface of the detection electrode connected to the routing line is subjected to surface etching processing. 絶縁性を有する基材層に導電性のパターン層を形成し、このパターン層の検出電極に導体が接近した場合に静電容量の変化を検出する静電容量センサシートであって、
パターン層は、基材層に配列される複数の検出電極と、基材層に形成されて複数の検出電極に接続される引き回しラインとを含み、複数の検出電極を、基材層に導電性ナノワイヤ含有のバインダ樹脂層を形成してその表面から導電性ナノワイヤを部分的に突出させ、このバインダ樹脂層を加工することにより形成し、
パターン層の少なくとも引き回しラインと接続される検出電極の表面端部を表面エッチング加工処理することにより、この検出電極から部分的に突出した導電性ナノワイヤの突出部におけるバインダ樹脂を除去し、このバインダ樹脂が除去された導電性ナノワイヤの突出部を検出電極と引き回しラインとの接続部に接触させるようにしたことを特徴とする静電容量センサシート。
A capacitance sensor sheet that forms a conductive pattern layer on an insulating base material layer and detects a change in capacitance when a conductor approaches the detection electrode of the pattern layer,
The pattern layer includes a plurality of detection electrodes arranged on the base material layer and a lead line formed on the base material layer and connected to the plurality of detection electrodes, and the plurality of detection electrodes are electrically connected to the base material layer. Forming a binder resin layer containing nanowires, partially projecting conductive nanowires from the surface, and processing this binder resin layer,
The binder resin in the protruding portion of the conductive nanowire partially protruding from the detection electrode is removed by subjecting at least the surface end portion of the detection electrode connected to the drawing line of the pattern layer to surface etching, and this binder resin A capacitive sensor sheet, wherein the protruding portion of the conductive nanowire from which the metal is removed is brought into contact with a connection portion between the detection electrode and the routing line.
表面エッチング加工処理を、ドライエッチング法とウェットエッチング法のいずれかの方法で施すようにした請求項6記載の静電容量センサシート。   7. The capacitance sensor sheet according to claim 6, wherein the surface etching processing is performed by any one of a dry etching method and a wet etching method. 表面エッチング加工処理を、プラズマ処理法、紫外線処理法、又はコロナ処理法で施すようにした請求項6記載の静電容量センサシート。   The capacitance sensor sheet according to claim 6, wherein the surface etching processing is performed by a plasma processing method, an ultraviolet processing method, or a corona processing method. パターン層の全ての検出電極の表面を表面エッチング加工処理するようにした請求項6、7、又は8記載の静電容量センサシート。   9. The capacitance sensor sheet according to claim 6, 7 or 8, wherein the surface of all detection electrodes of the pattern layer is subjected to surface etching processing. 引き回しラインと接続される検出電極の表面を表面エッチング加工処理するようにした請求項6、7、又は8記載の静電容量センサシート。   9. The capacitance sensor sheet according to claim 6, 7 or 8, wherein the surface of the detection electrode connected to the routing line is subjected to surface etching processing. 基材層を対向して粘着される一対の基材層とし、一方の基材層にXパターン層を形成してその複数のX検出電極をX方向に配列するとともに、他方の基材層にYパターン層を形成してその複数のY検出電極をY方向に配列し、Xパターン層の複数のX検出電極のうち、少なくとも引き回しラインに重ねて接続される末端のX検出電極の表面端部を表面エッチング加工処理し、Yパターン層の複数のY検出電極のうち、少なくとも引き回しラインに重ねて接続される末端のY検出電極の表面端部を表面エッチング加工処理するようにした請求項6ないし10いずれかに記載の静電容量センサシート。   A pair of base material layers that are adhered to face each other, and an X pattern layer is formed on one base material layer, and the plurality of X detection electrodes are arranged in the X direction. A surface end portion of a terminal X detection electrode which is formed by forming a Y pattern layer, arranging the plurality of Y detection electrodes in the Y direction, and being connected to be overlapped with at least a lead line among the plurality of X detection electrodes of the X pattern layer The surface etching process is performed, and at least the surface end portion of the terminal Y detection electrode connected to be overlapped with the routing line among the plurality of Y detection electrodes of the Y pattern layer is subjected to the surface etching process. 10. The capacitance sensor sheet according to any one of 10.
JP2012093534A 2011-04-25 2012-04-17 Capacitance sensor sheet manufacturing method and capacitance sensor sheet Active JP5730240B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012093534A JP5730240B2 (en) 2011-04-25 2012-04-17 Capacitance sensor sheet manufacturing method and capacitance sensor sheet
CN201280020265.7A CN103492992B (en) 2011-04-25 2012-04-20 The manufacture method of direct capacitance sensor chip and direct capacitance sensor chip
PCT/JP2012/060748 WO2012147659A1 (en) 2011-04-25 2012-04-20 Method for manufacturing electrostatic capacity sensor sheet, and electrostatic capacity sensor sheet
US14/112,176 US9541578B2 (en) 2011-04-25 2012-04-20 Capacitive sensor sheet producing method and capacitive sensor sheet
KR1020137027024A KR101592661B1 (en) 2011-04-25 2012-04-20 Capacitive sensor sheet producing method and capacitive sensor sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011096985 2011-04-25
JP2011096985 2011-04-25
JP2012093534A JP5730240B2 (en) 2011-04-25 2012-04-17 Capacitance sensor sheet manufacturing method and capacitance sensor sheet

Publications (2)

Publication Number Publication Date
JP2012237746A true JP2012237746A (en) 2012-12-06
JP5730240B2 JP5730240B2 (en) 2015-06-03

Family

ID=47072179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093534A Active JP5730240B2 (en) 2011-04-25 2012-04-17 Capacitance sensor sheet manufacturing method and capacitance sensor sheet

Country Status (5)

Country Link
US (1) US9541578B2 (en)
JP (1) JP5730240B2 (en)
KR (1) KR101592661B1 (en)
CN (1) CN103492992B (en)
WO (1) WO2012147659A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073475A (en) * 2011-09-28 2013-04-22 Fujifilm Corp Wiring structure, method for manufacturing wiring structure, and touch panel
JP2014010516A (en) * 2012-06-28 2014-01-20 Hitachi Chemical Co Ltd Capacitive touch panel and manufacturing method thereof
JP2014137617A (en) * 2013-01-15 2014-07-28 Fujifilm Corp Coloring composition for heat-resistant decoration, manufacturing method of capacitance type input device, capacitance type input device, and image display device equipped with the same
JP2014191553A (en) * 2013-03-27 2014-10-06 Dainippon Printing Co Ltd Manufacturing method of touch panel sensor component
JP2014235731A (en) * 2013-05-31 2014-12-15 宇辰光電股▲ふん▼有限公司 Touch panel and method for manufacturing the same
JP2015056047A (en) * 2013-09-12 2015-03-23 アルプス電気株式会社 Input device
JP2015197930A (en) * 2014-03-31 2015-11-09 ティーピーケイ ユニヴァーサル ソリューションズ リミテッド Capacitive touch-sensitive device and production method of the same
US9778808B2 (en) 2013-12-11 2017-10-03 Samsung Display Co., Ltd. Touch panel and method for manufacturing the same
JP2017224117A (en) * 2016-06-14 2017-12-21 コニカミノルタ株式会社 Transparent planar device and method for manufacturing the same
JP2021103514A (en) * 2019-12-24 2021-07-15 ティーピーケイ アドバンスド ソリューションズ インコーポレーテッドTpk Advanced Solutions Inc Touch panel and formation method thereof
JP7036963B1 (en) * 2020-10-21 2022-03-15 ティーピーケイ アドバンスド ソリューションズ インコーポレーテッド Touch panel and touch device
WO2023281852A1 (en) * 2021-07-09 2023-01-12 パナソニックIpマネジメント株式会社 Load sensor
WO2023047665A1 (en) * 2021-09-24 2023-03-30 パナソニックIpマネジメント株式会社 Load sensor

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173070A1 (en) 2012-05-18 2013-11-21 3M Innovative Properties Company Corona patterning of overcoated nanowire transparent conducting coatings
JP5987668B2 (en) * 2012-12-06 2016-09-07 日立化成株式会社 Display device and manufacturing method thereof
US10168814B2 (en) 2012-12-14 2019-01-01 Apple Inc. Force sensing based on capacitance changes
US10817096B2 (en) 2014-02-06 2020-10-27 Apple Inc. Force sensor incorporated into display
US10386970B2 (en) * 2013-02-08 2019-08-20 Apple Inc. Force determination based on capacitive sensing
US9851828B2 (en) 2013-03-15 2017-12-26 Apple Inc. Touch force deflection sensor
JP2015015009A (en) * 2013-07-08 2015-01-22 信越ポリマー株式会社 Method for manufacturing electrostatic capacitance sensor sheet
TW201514802A (en) 2013-07-16 2015-04-16 Lg Innotek Co Ltd Touch window and touch device including the same
US9671889B1 (en) 2013-07-25 2017-06-06 Apple Inc. Input member with capacitive sensor
CN106068490B (en) 2014-02-12 2019-02-22 苹果公司 It is determined using the power of sheet type sensor and capacitor array
CN104951156A (en) * 2014-03-31 2015-09-30 宸盛光电有限公司 Capacitive touch control device
US10198123B2 (en) 2014-04-21 2019-02-05 Apple Inc. Mitigating noise in capacitive sensor
CN104020888A (en) * 2014-05-30 2014-09-03 南昌欧菲光科技有限公司 Touch screen
CN104020887A (en) * 2014-05-30 2014-09-03 南昌欧菲光科技有限公司 Touch screen
KR102248460B1 (en) * 2014-08-08 2021-05-07 삼성디스플레이 주식회사 Touch screen panel and fabrication method of the same
KR102281850B1 (en) 2015-02-25 2021-07-26 삼성디스플레이 주식회사 Touch sensor, manufacturing method thereof and display device including the same
US10006937B2 (en) 2015-03-06 2018-06-26 Apple Inc. Capacitive sensors for electronic devices and methods of forming the same
KR102511647B1 (en) * 2015-06-19 2023-03-17 닛샤 가부시키가이샤 Touch sensor with circular polarization plate and image display device
US9715301B2 (en) 2015-08-04 2017-07-25 Apple Inc. Proximity edge sensing
US10007343B2 (en) 2016-03-31 2018-06-26 Apple Inc. Force sensor in an input device
KR102146151B1 (en) * 2016-10-03 2020-08-19 김영수 Apparatus of display having surface-treated detachable sheet
KR101965063B1 (en) * 2017-08-04 2019-04-02 경희대학교 산학협력단 Touch sensor in-cell type organic electroluminesence device
CN110069152A (en) * 2018-01-24 2019-07-30 祥达光学(厦门)有限公司 Touch panel and touch sensing winding
CN110221731B (en) * 2018-03-02 2023-03-28 宸鸿光电科技股份有限公司 Direct patterning method of touch panel and touch panel thereof
US20190324073A1 (en) * 2018-04-19 2019-10-24 Simplex Quantum Inc. Capacitive sensor and capacitive sensor head
CN108708647A (en) * 2018-04-27 2018-10-26 信利光电股份有限公司 A kind of automatic door control method and system, storage medium and mobile terminal
US10866683B2 (en) 2018-08-27 2020-12-15 Apple Inc. Force or touch sensing on a mobile device using capacitive or pressure sensing
US11089678B2 (en) * 2019-01-31 2021-08-10 Korea Electronics Technology Institute Composite conductive substrate and manufacturing method thereof
KR102348562B1 (en) * 2020-04-17 2022-01-07 율촌화학 주식회사 Finger sensor integrated type capacitance touch screen sensor and the method for prodicng the same
US20240077446A1 (en) * 2021-01-29 2024-03-07 The Regents Of The University Of Colorado, A Body Corporate Additively Fabricated Capacitive Soil Moisture Sensor
CN115113749A (en) * 2021-03-17 2022-09-27 宸美(厦门)光电有限公司 Touch sensor and manufacturing method thereof
TWI765619B (en) * 2021-03-23 2022-05-21 大陸商宸美(廈門)光電有限公司 Touch sensor and manufacturing method thereof
US11435863B1 (en) * 2021-04-15 2022-09-06 Tpk Advanced Solutions Inc. Touch sensor and manufacturing method thereof
US11809648B2 (en) * 2022-01-28 2023-11-07 Tpk Advanced Solutions Inc. Touch sensor
CN114911376A (en) * 2022-05-31 2022-08-16 武汉天马微电子有限公司 Touch panel and touch display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146421A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel, method for manufacturing the same, and display using the touch panel
JP2010027294A (en) * 2008-07-16 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010044968A (en) * 2008-08-13 2010-02-25 Nissha Printing Co Ltd Method of manufacturing conductive pattern-covered body, and conductive pattern covered body

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146421A (en) 1998-11-11 2000-05-26 Toshiba Corp Refrigerator
JP2002217375A (en) * 2001-01-18 2002-08-02 Mitsubishi Electric Corp Capacitive element and method for manufacturing the same
JP4856328B2 (en) * 2001-07-13 2012-01-18 ローム株式会社 Manufacturing method of semiconductor device
AU2003229333A1 (en) 2002-05-21 2003-12-12 Eikos, Inc. Method for patterning carbon nanotube coating and carbon nanotube wiring
KR101226440B1 (en) * 2005-09-26 2013-01-28 삼성디스플레이 주식회사 Display panel and display device having the same and method of detecting touch position of the display device
WO2008000045A1 (en) * 2006-06-30 2008-01-03 University Of Wollongong Nanostructured composites
US7990481B2 (en) * 2006-10-30 2011-08-02 Samsung Electronics Co., Ltd. Display device having particular touch sensor protrusion facing sensing electrode
CN101419519B (en) * 2007-10-23 2012-06-20 清华大学 Touch panel
JP2010049618A (en) 2008-08-25 2010-03-04 Shin Etsu Polymer Co Ltd Capacitive sensor
JP2010086385A (en) 2008-10-01 2010-04-15 Shin Etsu Polymer Co Ltd Capacitance sensor
JP5259368B2 (en) 2008-12-15 2013-08-07 日本写真印刷株式会社 Conductive nanofiber sheet and method for producing the same
US20130062736A1 (en) * 2011-09-09 2013-03-14 Texas Instruments Incorporated Post-polymer revealing of through-substrate via tips
WO2014150577A1 (en) * 2013-03-15 2014-09-25 Sinovia Technologies Photoactive transparent conductive films, method of making them and touch sensitive device comprising said films

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146421A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel, method for manufacturing the same, and display using the touch panel
JP2010027294A (en) * 2008-07-16 2010-02-04 Nitto Denko Corp Transparent conductive film and touch panel
JP2010044968A (en) * 2008-08-13 2010-02-25 Nissha Printing Co Ltd Method of manufacturing conductive pattern-covered body, and conductive pattern covered body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073475A (en) * 2011-09-28 2013-04-22 Fujifilm Corp Wiring structure, method for manufacturing wiring structure, and touch panel
JP2014010516A (en) * 2012-06-28 2014-01-20 Hitachi Chemical Co Ltd Capacitive touch panel and manufacturing method thereof
JP2014137617A (en) * 2013-01-15 2014-07-28 Fujifilm Corp Coloring composition for heat-resistant decoration, manufacturing method of capacitance type input device, capacitance type input device, and image display device equipped with the same
JP2014191553A (en) * 2013-03-27 2014-10-06 Dainippon Printing Co Ltd Manufacturing method of touch panel sensor component
JP2014235731A (en) * 2013-05-31 2014-12-15 宇辰光電股▲ふん▼有限公司 Touch panel and method for manufacturing the same
JP2015056047A (en) * 2013-09-12 2015-03-23 アルプス電気株式会社 Input device
US9778808B2 (en) 2013-12-11 2017-10-03 Samsung Display Co., Ltd. Touch panel and method for manufacturing the same
JP2015197930A (en) * 2014-03-31 2015-11-09 ティーピーケイ ユニヴァーサル ソリューションズ リミテッド Capacitive touch-sensitive device and production method of the same
JP2017224117A (en) * 2016-06-14 2017-12-21 コニカミノルタ株式会社 Transparent planar device and method for manufacturing the same
JP2021103514A (en) * 2019-12-24 2021-07-15 ティーピーケイ アドバンスド ソリューションズ インコーポレーテッドTpk Advanced Solutions Inc Touch panel and formation method thereof
JP7036963B1 (en) * 2020-10-21 2022-03-15 ティーピーケイ アドバンスド ソリューションズ インコーポレーテッド Touch panel and touch device
WO2023281852A1 (en) * 2021-07-09 2023-01-12 パナソニックIpマネジメント株式会社 Load sensor
WO2023047665A1 (en) * 2021-09-24 2023-03-30 パナソニックIpマネジメント株式会社 Load sensor

Also Published As

Publication number Publication date
JP5730240B2 (en) 2015-06-03
US20140035599A1 (en) 2014-02-06
WO2012147659A1 (en) 2012-11-01
US9541578B2 (en) 2017-01-10
KR101592661B1 (en) 2016-02-05
CN103492992B (en) 2016-08-17
KR20140014236A (en) 2014-02-05
CN103492992A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5730240B2 (en) Capacitance sensor sheet manufacturing method and capacitance sensor sheet
KR101657951B1 (en) Conductive sheet and manufacturing method for same
KR101812606B1 (en) Method for manufacturing transparent printed circuit and method for manufacturing transparent touch panel
KR101362863B1 (en) Method for forming pattern for transparent conductive layer
CN105103099A (en) Sheet for manufacturing sensor sheet, method for manufacturing sheet for manufacturing sensor sheet, sensor sheet for touch pad, and method for manufacturing sensor sheet for touch pad
CN106104444A (en) Transparent conductive laminate and possess the touch panel of transparent conductive laminate
KR102337625B1 (en) A method for forming an article comprising a pathway of particles wherein a termination of the pathway of particles is exposed
JP6070675B2 (en) Method for producing transparent conductive substrate and touch panel sensor
US10951211B2 (en) FPC integrated capacitance switch and method of manufacturing the same
US9044728B2 (en) Ozone generating element and method for manufacturing ozone generating element
CN112860093A (en) Flexible folding touch sensor and manufacturing method thereof
CN108089778A (en) A kind of touch-screen
TWI521552B (en) Preparation method of transparent conductive body
KR20160034121A (en) Manufacturing method for transparent conductive substrate, transparent conductive substrate and touch panel using nanowires
JP2015184994A (en) Transparent conductive laminate and touch panel having transparent conductive laminate
KR20160034120A (en) Manufacturing method for transparent conductive substrate, transparent conductive substrate and touch panel using nanowires
JP2010040424A (en) Method of manufacturing touch sensor
JP2018116747A (en) Sheet for producing sensor sheet and method for producing the same, and sensor sheet for touch pad and method for producing the same
JP2012227097A (en) Method of manufacturing electrostatic sensor sheet and electrostatic sensor sheet
JP2022025959A (en) Wiring board and production method thereof
JP2017111478A (en) Sheet for capacitance type touch sensor and method for manufacturing the same
JP2016139311A (en) Method for producing conductive pattern formation sheet
CN114188091A (en) Patterned transparent circuit and preparation method and application thereof
JP2017097675A (en) Method for manufacturing sheet for capacitance type touch sensor
KR20160113537A (en) Conductive substrate using light irradiation and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5730240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250