JP2012229838A - Fluid cooling means and fluid cooling device - Google Patents

Fluid cooling means and fluid cooling device Download PDF

Info

Publication number
JP2012229838A
JP2012229838A JP2011097488A JP2011097488A JP2012229838A JP 2012229838 A JP2012229838 A JP 2012229838A JP 2011097488 A JP2011097488 A JP 2011097488A JP 2011097488 A JP2011097488 A JP 2011097488A JP 2012229838 A JP2012229838 A JP 2012229838A
Authority
JP
Japan
Prior art keywords
compressor
suction pressure
compressor suction
adjusting
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011097488A
Other languages
Japanese (ja)
Other versions
JP5754627B2 (en
Inventor
Masanobu Hinohara
昌信 日野原
Nobuki Ito
暢規 伊藤
Hiroyuki Maekawa
博之 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2011097488A priority Critical patent/JP5754627B2/en
Publication of JP2012229838A publication Critical patent/JP2012229838A/en
Application granted granted Critical
Publication of JP5754627B2 publication Critical patent/JP5754627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To expand a temperature adjustment range to be adapted only by adjusting a freezing circuit in fluid cooling using an evaporator.SOLUTION: When a compressor suction pressure set value pss corresponding to an evaporator exit temperature set value tos of a cooled fluid is an upper limit psu or less, an evaporator exit temperature (to) of the cooled fluid is adjusted to be the set value tos by adjusting evaporation pressure pe by adjusting a compressor output G, while an evaporation pressure control valve MVe is fully open as a low-temperature mode operation. When the compressor suction pressure set value pss is higher than the upper limit psu, the compressor suction pressure ps is adjusted to be the upper limit psu by adjusting the compressor output G as a high temperature mode operation, and the evaporation exist temperature (to) of the cooled fluid is adjusted to the set value tos by adjusting the evaporation pressure pe by adjusting opening of the evaporation pressure control valve MVe.

Description

本発明は流体冷却方法及び流体冷却装置に関し、詳しくは、空気などの冷却対象流体を蒸気圧縮式の冷凍回路における蒸発器において冷凍回路冷媒との熱交換により冷却する流体冷却方法、及び、その流体冷却方法の実施に好適な流体冷却装置に関する。   The present invention relates to a fluid cooling method and a fluid cooling device, and more particularly, a fluid cooling method for cooling a fluid to be cooled such as air by heat exchange with a refrigeration circuit refrigerant in an evaporator in a vapor compression refrigeration circuit, and the fluid The present invention relates to a fluid cooling apparatus suitable for implementing a cooling method.

蒸発器での流体冷却においては、圧縮機のオーバーヒートを防止するなどの観点から圧縮機吸込圧力psの許容範囲(例えば、圧縮機吸込圧力飽和温度tpsよる表現で示せば−5℃〜−40℃の範囲など)が規定される。   In the fluid cooling in the evaporator, the allowable range of the compressor suction pressure ps (for example, −5 ° C. to −40 ° C. in terms of the compressor suction pressure saturation temperature tps from the viewpoint of preventing overheating of the compressor). Range).

この為、空調用空気の冷却において例えば−30℃〜+50℃といった広範な温度調整範囲が要求される環境試験室などでは、特許文献1に見られるように、要求される温度調整範囲のうちの低温領域については、蒸発器で直接に空気を冷却するいわゆる直膨方式を採用するのに対し、高温領域については冷水により空気を冷却する冷水方式を採用する直膨・冷水併用方式が提案されている。   For this reason, in an environmental test room where a wide temperature adjustment range such as −30 ° C. to + 50 ° C. is required for cooling air-conditioning air, as shown in Patent Document 1, among the required temperature adjustment ranges For the low temperature region, a so-called direct expansion method that directly cools the air with an evaporator is adopted, whereas for the high temperature region, a direct expansion / cold water combined method that employs a cold water method that cools the air with cold water has been proposed. Yes.

また、低温領域で直膨方式を採用するのに対し、高温領域では直膨方式で一旦冷却した空気をヒータにより再加熱することで所要の温度に調整するといった直膨・再加熱方式も多く採用されている。   In addition, while the direct expansion method is used in the low temperature region, many direct expansion / reheating methods such as adjusting the required temperature by reheating the air once cooled in the direct expansion method with a heater in the high temperature region. Has been.

特開平6−323576号公報JP-A-6-323576

しかし、上述した従来の各方式では、冷凍回路に加えて併用方式化のための付帯機器が必要になることで、装置コストが高く付くとともに、装置が大型化して装置設置に大きなスペースを要する問題があり、また、それら付帯機器によるエネルギ消費のために装置全体としてのエネルギ消費量が大きくなって、運転コスト面や省エネルギ面で不利になる問題もあった。   However, each of the above-described conventional methods requires additional equipment for the combination method in addition to the refrigeration circuit, which increases the cost of the device and increases the size of the device and requires a large space for installing the device. In addition, there is a problem that the energy consumption of the entire apparatus becomes large due to the energy consumption by these incidental devices, which is disadvantageous in terms of operation cost and energy saving.

この実情に鑑み、本発明の主たる課題は、流体の冷却において冷凍回路の調整のみで対応し得る温度調整範囲を効果的に拡大して、上記の如き問題を解消する点にある。   In view of this situation, the main problem of the present invention is to effectively expand the temperature adjustment range that can be dealt with only by adjusting the refrigeration circuit in cooling the fluid, and to solve the above problems.

以下、理解を容易にするため主要要素には後述する実施形態で用いるのと同じ参照符号を付記する。   Hereinafter, for ease of understanding, the same reference numerals as those used in the embodiments described later are added to the main elements.

本発明の第1特徴構成は流体冷却方法に係り、その特徴は、
流体Aを蒸気圧縮式の冷凍回路における蒸発器において冷凍回路冷媒との熱交換により冷却する流体冷却方法であって、
被冷却流体Aの蒸発器出口温度設定値tosに対応する圧縮機吸込圧力設定値pssを設定し、
圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psu以下のとき(pss≦psu)には、低温モード運転として、蒸発器冷媒出口と圧縮機冷媒入口との間に介在させた蒸発圧力制御弁MVeを全開にした状態で、圧縮機出力Gの調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整し、
圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psuより高いとき(pss>psu)には、高温モード運転として、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整するとともに、蒸発圧力制御弁MVeの開度の調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する点にある。
A first characteristic configuration of the present invention relates to a fluid cooling method.
A fluid cooling method for cooling fluid A by heat exchange with a refrigeration circuit refrigerant in an evaporator in a vapor compression refrigeration circuit,
Set the compressor suction pressure set value pss corresponding to the evaporator outlet temperature set value tos of the cooled fluid A,
When the compressor suction pressure set value pss is equal to or lower than the compressor suction pressure upper limit value psu (pss ≦ psu), the evaporation pressure control interposed between the evaporator refrigerant outlet and the compressor refrigerant inlet is performed as the low temperature mode operation. With the valve MVe fully opened, the evaporator outlet temperature to of the fluid A to be cooled is adjusted to the evaporator outlet temperature set value tos by adjusting the evaporation pressure pe by adjusting the compressor output G.
When the compressor suction pressure set value pss is higher than the compressor suction pressure upper limit value psu (pss> psu), the compressor suction pressure ps is adjusted by adjusting the compressor output G as a high temperature mode operation. In addition to adjusting to psu, the evaporator outlet temperature to of the cooled fluid A is adjusted to the evaporator outlet temperature set value tos by adjusting the evaporation pressure pe by adjusting the opening of the evaporation pressure control valve MVe.

図5の左図(a),及び,中央図(b)は上記冷却方法における低温モード運転を示すモリエル線図であり、同図に示すように、この低温モード運転では、被冷却流体Aの蒸発器出口温度設定値tosが低くて、それに対応する圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psu以下の条件(pss≦psu)にあることに対して、圧縮機出力Gの調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する一般的な調整方式を採る。この冷温モード運転において蒸発圧力制御弁MVeは全開である。   The left diagram (a) and the central diagram (b) of FIG. 5 are Mollier diagrams showing the low-temperature mode operation in the cooling method. As shown in FIG. Adjustment of the compressor output G with respect to the condition that the evaporator outlet temperature set value tos is low and the corresponding compressor suction pressure set value pss is below the compressor suction pressure upper limit psu (pss ≦ psu) A general adjustment method is used in which the evaporator outlet temperature to of the fluid A to be cooled is adjusted to the evaporator outlet temperature set value tos by adjusting the evaporation pressure pe. In this cold / warm mode operation, the evaporation pressure control valve MVe is fully open.

なお、図5の中央図(b)は、次記の高温モード運転への切り換え近傍状態にある低温モード運転を示す。   In addition, the center figure (b) of FIG. 5 shows the low temperature mode driving | operation in the state near the switch to the following high temperature mode driving | operation.

また、図5の右図(c)は上記冷却方法における高温モード運転を示すモリエル線図であり、同図に示すように、この高温モード運転では、被冷却流体Aの蒸発器出口温度設定値tosが高くて、それに対応する圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psuより高い条件(pss>psu)にあることに対して、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整しながら、蒸発圧力制御弁MVeの開度の調整(略言すれば、蒸発圧力制御弁MVeの調整機能)による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する調整方式を採る。   Further, the right figure (c) of FIG. 5 is a Mollier diagram showing the high temperature mode operation in the cooling method. As shown in the figure, in this high temperature mode operation, the evaporator outlet temperature set value of the fluid A to be cooled is shown. While the tos is high and the corresponding compressor suction pressure set value pss is higher than the compressor suction pressure upper limit value psu (pss> psu), the compressor suction pressure ps is adjusted by adjusting the compressor output G. Of the fluid A to be cooled by adjusting the evaporation pressure pe by adjusting the opening of the evaporation pressure control valve MVe (in short, the adjustment function of the evaporation pressure control valve MVe) while adjusting the compressor suction pressure upper limit value psu. An adjustment method is adopted in which the evaporator outlet temperature to is adjusted to the evaporator outlet temperature set value tos.

即ち、被冷却流体Aの蒸発器出口温度設定値tosに対応する圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psuより高い条件(pss>psu)において、低温モード運転と同様の一般的な調整方式を採って、圧縮機出力Gの調整のみによる蒸発圧力peの調整で被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整するのでは、実際の圧縮機吸込圧力ps(圧縮機吸込圧力設定値pssに相当)が圧縮機吸込圧力上限値psuを超えてしまうが、このような条件において上記の高温モード運転を実施することにより、実際の圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに保ちながら、被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する。   That is, in the condition where the compressor suction pressure set value pss corresponding to the evaporator outlet temperature set value tos of the cooled fluid A is higher than the compressor suction pressure upper limit value psu (pss> psu), In order to adjust the evaporator outlet temperature to of the cooled fluid A to the evaporator outlet temperature set value tos by adjusting the evaporation pressure pe only by adjusting the compressor output G, the actual compressor suction Although the pressure ps (corresponding to the compressor suction pressure set value pss) exceeds the compressor suction pressure upper limit value psu, the actual compressor suction pressure ps can be obtained by performing the high temperature mode operation under such conditions. Is maintained at the compressor suction pressure upper limit value psu, the evaporator outlet temperature to of the fluid A to be cooled is adjusted to the evaporator outlet temperature set value tos.

従って、この第1特徴構成の冷却方法によれば、圧縮機吸込圧力上限値psuの存在にかかわらず、冷凍回路の調整のみで対応し得る温度調整範囲を効果的に拡大することができて、被冷却流体Aの冷却において要求される広範な温度調整範囲に対して冷凍回路の調整のみで対応することができ、これにより、先述の直膨・冷水併用方式や直膨・再加熱併用方式に比べ、併用方式化のための付帯機器を不要にして、装置コストを低減し得るとともに、装置を小型にして装置設置に要するスペースを小さくすることができる。   Therefore, according to the cooling method of the first characteristic configuration, regardless of the presence of the compressor suction pressure upper limit value psu, the temperature adjustment range that can be handled only by adjusting the refrigeration circuit can be effectively expanded. A wide range of temperature adjustments required for cooling the fluid A to be cooled can be handled only by adjusting the refrigeration circuit. This allows the direct expansion / cold water combined method and the direct expansion / reheating combined method described above. In comparison, it is possible to reduce the cost of the apparatus by eliminating the need for an accessory device for the combined use system, and it is possible to reduce the space required for installing the apparatus by reducing the size of the apparatus.

また、付帯機器でのエネルギ消費による装置全体としてのエネルギ消費量の増大も回避することができて、運転コストを安価にし得るとともに、省エネルギ化も効果的に促進することができる。   In addition, an increase in energy consumption of the entire apparatus due to energy consumption in the incidental equipment can be avoided, the operating cost can be reduced, and energy saving can be effectively promoted.

なお、この冷却方法において、被冷却流体Aの蒸発器出口温度設定値tosに対応する圧縮機吸込圧力設定値pssとは、圧縮機出力Gの調整のみによる蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整した場合における実際の圧縮機吸込圧力psに相当する値を云う。   In this cooling method, the compressor suction pressure set value pss corresponding to the evaporator outlet temperature set value tos of the fluid A to be cooled is the fluid A to be cooled by adjusting the evaporation pressure pe only by adjusting the compressor output G. The value corresponding to the actual compressor suction pressure ps when the evaporator outlet temperature to is adjusted to the evaporator outlet temperature set value tos.

従って、被冷却流体Aの蒸発器出口温度設定値tosに対応する圧縮機吸込圧力設定値pssは、装置の設計データや装置特性の測定データなどに基づいて被冷却流体Aの蒸発器出口温度設定値tosに応じ種々の設定手法により設定することができる。   Therefore, the compressor suction pressure setting value pss corresponding to the evaporator outlet temperature setting value tos of the cooled fluid A is set based on the design data of the device, the measurement data of the device characteristics, and the like. It can be set by various setting methods according to the value tos.

本発明の第2特徴構成は上記冷却方法に係り、その特徴は、
低温モード運転及び高温モード運転の夫々において、冷凍回路における膨張弁Exの開度の調整により、圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する点にある。
The second characteristic configuration of the present invention relates to the cooling method, and the characteristic is as follows:
In each of the low temperature mode operation and the high temperature mode operation, the superheat degree sh at the compressor suction pressure saturation temperature tps is adjusted to the superheat degree set value shs by adjusting the opening of the expansion valve Ex in the refrigeration circuit.

一般に過熱度調整は蒸発温度teにおける過熱度sh′を膨張弁開度の調整により過熱度設定値shs′に調整する方式が採られるが、蒸発器冷媒出口と圧縮機冷媒入口との間に蒸発圧力制御弁MVeを介在させる前記冷却方法では、蒸発温度teにおける過熱度sh′を過熱度設定値shs′に調整する一般の過熱度調整方式を採った場合、被冷却流体Aの蒸発器出口温度設定値tosが高くて蒸発温度teが高いとき(特に高温モード運転のとき)に、図5の右図(c)において破線で示すように、圧縮機入口冷媒温度ts′がかなり高くなって圧縮機のオーバーヒートを招く危険性が高くなる。   In general, the superheat degree adjustment is performed by adjusting the superheat degree sh 'at the evaporation temperature te to the superheat degree set value shs' by adjusting the opening degree of the expansion valve. However, evaporation occurs between the evaporator refrigerant outlet and the compressor refrigerant inlet. In the cooling method in which the pressure control valve MVe is interposed, when the general superheat degree adjustment method for adjusting the superheat degree sh ′ at the evaporation temperature te to the superheat degree set value shs ′ is adopted, the evaporator outlet temperature of the fluid A to be cooled When the set value tos is high and the evaporation temperature te is high (particularly during high-temperature mode operation), the compressor inlet refrigerant temperature ts ′ becomes considerably high as shown by the broken line in FIG. There is an increased risk of machine overheating.

これに対し、この第2特徴構成の冷却方法によれば、上記の如く圧縮機吸込圧力飽和温度tpsにおける過熱度shを膨張弁開度の調整により過熱度設定値shsに調整する方式を採ることで、蒸発温度teにおける過熱度sh′を過熱度設定値shs′に調整する一般の過熱度調整方式に比べ、図5の右図(c)において実線で示すように、圧縮機入口冷媒温度tsを効果的に低くすることができ、これにより、圧縮機のオーバーヒートを一層確実に防止することができる。   On the other hand, according to the cooling method of the second characteristic configuration, as described above, the method of adjusting the superheat degree sh at the compressor suction pressure saturation temperature tps to the superheat degree set value shs by adjusting the expansion valve opening degree is adopted. Thus, as compared with a general superheat degree adjustment method in which the superheat degree sh ′ at the evaporation temperature te is adjusted to the superheat degree set value shs ′, as shown by the solid line in the right diagram (c) of FIG. Can be effectively reduced, and this can more reliably prevent overheating of the compressor.

なお、この第2特徴構成の冷却方法では、蒸発器冷媒出口における気相冷媒中に液冷媒が若干残る可能性が高くなるが、蒸発圧力制御弁MVeの機能により冷媒は全てガス化されて圧縮機に吸い込まれる。しかし、配管内に残った液冷媒や潤滑油が圧縮機の起動時において圧縮機に吸い込まれるのを防止するため、蒸発器冷媒出口と圧縮機冷媒入口との間にはアキュムレータを介在させるのが望ましい。   In the cooling method of the second characteristic configuration, there is a high possibility that some liquid refrigerant remains in the gas-phase refrigerant at the evaporator refrigerant outlet, but the refrigerant is all gasified and compressed by the function of the evaporation pressure control valve MVe. Sucked into the machine. However, in order to prevent the liquid refrigerant and lubricating oil remaining in the pipe from being sucked into the compressor at the time of starting the compressor, an accumulator is interposed between the evaporator refrigerant outlet and the compressor refrigerant inlet. desirable.

本発明の第3特徴構成は上記冷却方法に係り、その特徴は、
圧縮機吸込圧力設定値pssを設定するのに、
被冷却流体Aの蒸発器出口温度設定値tosから蒸発器伝熱壁の内外温度差Δtを減算した値を蒸発温度設定値tes(=tos−Δt)とし、
蒸発温度teと蒸発圧力peとの相関に従って蒸発温度設定値tesをそれに対応する蒸発圧力設定値pesに換算し、
この蒸発圧力設定値pesから蒸発圧力制御弁MVeにおける圧力損失値Δpを減算した値を圧縮機吸込圧力設定値pss(=pes−Δp)として設定する点にある。
The third characteristic configuration of the present invention relates to the cooling method, and the characteristic is as follows:
To set the compressor suction pressure set value pss,
The value obtained by subtracting the internal / external temperature difference Δt of the evaporator heat transfer wall from the evaporator outlet temperature setting value tos of the fluid A to be cooled is defined as the evaporation temperature setting value tes (= tos−Δt),
According to the correlation between the evaporation temperature te and the evaporation pressure pe, the evaporation temperature set value tes is converted into the corresponding evaporation pressure set value pes,
A value obtained by subtracting the pressure loss value Δp in the evaporation pressure control valve MVe from the evaporation pressure set value pes is set as a compressor suction pressure set value pss (= pes−Δp).

このような圧縮機吸込圧力設定値pssの設定において(図3参照)、蒸発温度teと蒸発圧力peとの相関は、冷媒回路冷媒の温度と圧力の関係から得られる周知の相関である。   In the setting of the compressor suction pressure set value pss (see FIG. 3), the correlation between the evaporation temperature te and the evaporation pressure pe is a well-known correlation obtained from the relationship between the refrigerant circuit temperature and pressure.

従って、上記の如く圧縮機吸込圧力設定値pssを設定するのであれば、実質的に、蒸発器伝熱壁の内外温度差Δtのデータ(換言すれば、被冷却流体Aの蒸発器出口温度toと蒸発温度teとの温度差データ)、及び、蒸発圧力制御弁MVeでの圧力損失値Δpのデータを装置の設計値データや測定値データなどから準備するだけですみ、この点で、前記冷却方法の実施を容易にすることができる。   Therefore, if the compressor suction pressure set value pss is set as described above, substantially the data of the temperature difference Δt between the inside and outside of the evaporator heat transfer wall (in other words, the evaporator outlet temperature to of the cooled fluid A) The temperature difference data between the evaporation temperature te and the evaporation pressure control valve MVe and the pressure loss value Δp at the evaporation pressure control valve MVe need only be prepared from the device design value data and measurement value data. Implementation of the method can be facilitated.

なお、前述した第1特徴構成の冷却方法を実施するにあたっては、後述する第7〜第11特徴構成の冷却装置において制御手段が実行する制御動作を人為的に行なうようにしてもよい。   In carrying out the above-described cooling method of the first characteristic configuration, the control operation executed by the control means in the cooling devices of the seventh to eleventh characteristic configurations to be described later may be artificially performed.

本発明の第4特徴構成は流体冷却装置に係り、その特徴は、
流体を蒸気圧縮式の冷凍回路における蒸発器において冷凍回路冷媒との熱交換により冷却する流体冷却装置であって、
装置を運転制御する制御手段を備え、
この制御手段は、被冷却流体Aの蒸発器出口温度設定値tosに対応する圧縮機吸込圧力設定値pssを設定するとともに、
圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psu以下のとき(pss≦psu)には、低温モード運転として、蒸発器冷媒出口と圧縮機冷媒入口との間に介在させた蒸発圧力制御弁EVeを全開にした状態で、圧縮機出力Gの調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整し、
圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psuより高いとき(pss>psu)には、高温モード運転として、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整するとともに、蒸発圧力制御弁MVeの開度の調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する構成にしてある点にある。
A fourth characteristic configuration of the present invention relates to a fluid cooling device,
A fluid cooling device that cools fluid by heat exchange with a refrigerant in a refrigeration circuit in an evaporator in a vapor compression refrigeration circuit,
Comprising control means for controlling the operation of the device;
This control means sets the compressor suction pressure set value pss corresponding to the evaporator outlet temperature set value tos of the fluid A to be cooled,
When the compressor suction pressure set value pss is equal to or lower than the compressor suction pressure upper limit value psu (pss ≦ psu), the evaporation pressure control interposed between the evaporator refrigerant outlet and the compressor refrigerant inlet is performed as the low temperature mode operation. With the valve EVe fully opened, the evaporator outlet temperature to of the cooled fluid A is adjusted to the evaporator outlet temperature set value tos by adjusting the evaporation pressure pe by adjusting the compressor output G.
When the compressor suction pressure set value pss is higher than the compressor suction pressure upper limit value psu (pss> psu), the compressor suction pressure ps is adjusted by adjusting the compressor output G as a high temperature mode operation. In addition to being adjusted to psu, the evaporator outlet temperature to of the cooled fluid A is adjusted to the evaporator outlet temperature set value tos by adjusting the evaporation pressure pe by adjusting the opening of the evaporation pressure control valve MVe. is there.

この第4特徴構成の冷却装置によれば、前述した第1特徴構成の冷却方法を制御手段の制御動作により自動的に実施することができ、この点で、前記冷却方法の実施を容易にすることができる。   According to the cooling device of the fourth feature configuration, the cooling method of the first feature configuration described above can be automatically performed by the control operation of the control means, and in this respect, the cooling method can be easily performed. be able to.

本発明の第5特徴構成は上記冷却装置に係り、その特徴は、
前記制御手段は、低温モード運転及び高温モード運転の夫々において、冷凍回路における膨張弁Exの開度の調整により圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する構成にしてある点にある。
A fifth characteristic configuration of the present invention relates to the cooling device, and the characteristic is as follows:
The control means is configured to adjust the superheat degree sh at the compressor suction pressure saturation temperature tps to the superheat degree set value shs by adjusting the opening degree of the expansion valve Ex in the refrigeration circuit in each of the low temperature mode operation and the high temperature mode operation. It is in a certain point.

この第5特徴構成の空調装置によれば、前述した第2特徴構成の冷却方法を制御手段の制御動作により自動的に実施することができ、この点で、前記冷却方法の実施を容易にすることができる。   According to the air conditioner of the fifth characteristic configuration, the cooling method of the second characteristic configuration described above can be automatically performed by the control operation of the control means, and in this respect, the cooling method can be easily performed. be able to.

本発明の第6特徴構成は上記冷却装置に係り、その特徴は、
前記制御手段は、圧縮機吸込圧力設定値pssを設定するのに、
被冷却流体の蒸発器出口温度設定値tosから蒸発器伝熱壁の内外温度差Δtを減算した値を蒸発温度設定値tes(=tos−Δt)とし、
蒸発温度teと蒸発圧力peとの相関に従って蒸発温度設定値tesをそれに対応する蒸発圧力設定値pesに換算し、
この蒸発圧力設定値pesから蒸発圧力制御弁MVeにおける圧力損失値Δpを減算した値を圧縮機吸込圧力設定値pss(=pes−Δp)として設定する構成にしてある点にある。
A sixth characteristic configuration of the present invention relates to the cooling device, and the characteristic is as follows:
The control means sets the compressor suction pressure set value pss.
The value obtained by subtracting the internal / external temperature difference Δt of the evaporator heat transfer wall from the evaporator outlet temperature setting value tos of the fluid to be cooled is defined as an evaporation temperature setting value tes (= tos−Δt),
According to the correlation between the evaporation temperature te and the evaporation pressure pe, the evaporation temperature set value tes is converted into the corresponding evaporation pressure set value pes,
A value obtained by subtracting the pressure loss value Δp at the evaporation pressure control valve MVe from the evaporation pressure set value pes is set as a compressor suction pressure set value pss (= pes−Δp).

この第6特徴構成の冷却装置によれば、前述した第3特徴構成の冷却方法を制御手段の制御動作により自動的に実施することができ、この点で、前記冷却方法の実施を一層容易にすることができる。   According to the cooling device of the sixth feature configuration, the cooling method of the third feature configuration described above can be automatically performed by the control operation of the control means, and in this respect, the cooling method can be more easily performed. can do.

本発明の第7特徴構成は上記冷却装置に係り、その特徴は、
前記制御手段は、圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psu以下の値から圧縮機吸込圧力上限値psuより高い値になったとき、低温モード運転から高温モード運転へ移行する高温側過渡運転として、
蒸発圧力制御弁MVeを全開にした状態で、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整する制御を開始し、
その後、圧縮機吸込圧力psが圧縮機吸込圧力上限値psuに至った後に、蒸発圧力制御弁MVeの開度の調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する制御を開始して、高温モード運転に移行する構成にしてある点にある。
A seventh characteristic configuration of the present invention relates to the cooling device, and the characteristic is as follows:
When the compressor suction pressure set value pss is higher than the compressor suction pressure upper limit value psu and higher than the compressor suction pressure upper limit value psu, the control means is configured to switch from the low temperature mode operation to the high temperature mode operation. As side transient operation,
With the evaporation pressure control valve MVe fully opened, control for adjusting the compressor suction pressure ps to the compressor suction pressure upper limit value psu by adjusting the compressor output G is started.
After that, after the compressor suction pressure ps reaches the compressor suction pressure upper limit value psu, the evaporator outlet temperature to of the fluid A to be cooled is adjusted by adjusting the evaporation pressure pe by adjusting the opening of the evaporation pressure control valve MVe. The control for adjusting the outlet temperature set value tos is started, and the high temperature mode operation is started.

前記冷却装置において、被冷却流体Aの蒸発器出口温度設定値tosが高温側へ変更されて、圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psu以下の値(pss≦psu)から圧縮機吸込圧力上限値psuより高い値(pss>psu)になったとき、それまでの低温モード運転を直ちに高温モード運転に切り換えると、高温側へ変更された被冷却流体Aの蒸発器出口温度設定値tosに対して、その切り換え直後における被冷却流体Aの蒸発器出口温度toが未だ低温であるため、蒸発圧力制御弁MVeの開度が制御手段により急激に閉じ側に調整されて圧縮機吸込圧力psが急激に低下し、それが原因で、いわゆる低圧保護機能が作動して圧縮機が自動停止してしまう可能性がある。   In the cooling device, the evaporator outlet temperature set value tos of the fluid A to be cooled is changed to a high temperature side, and the compressor suction pressure set value pss is compressed from a value equal to or lower than the compressor suction pressure upper limit value psu (pss ≦ psu). When the low temperature mode operation is switched to the high temperature mode operation immediately when the value becomes higher than the machine suction pressure upper limit value psu (pss> psu), the evaporator outlet temperature setting of the cooled fluid A changed to the high temperature side Since the evaporator outlet temperature to of the cooled fluid A immediately after the switching is still low with respect to the value tos, the opening of the evaporation pressure control valve MVe is suddenly adjusted to the closed side by the control means, and the compressor suction There is a possibility that the so-called low-pressure protection function is activated and the compressor is automatically stopped due to the sudden drop in the pressure ps.

これに対し、この第7特徴構成の冷却装置によれば、低温モード運転から高温モード運転への移行において上記高温側過渡運転を介在させることにより、上記の如き圧縮機吸込圧力psの急激な低下による圧縮機の自動停止を防止することができ、これにより、装置の運転を安定的に保った状態で低温モード運転から高温モード運転へ円滑に移行することができる。   On the other hand, according to the cooling device having the seventh characteristic configuration, the compressor suction pressure ps as described above is drastically decreased by interposing the high temperature side transient operation in the transition from the low temperature mode operation to the high temperature mode operation. Thus, the automatic stop of the compressor due to the above can be prevented, so that the low temperature mode operation can be smoothly shifted to the high temperature mode operation while the operation of the apparatus is stably maintained.

本発明の第8特徴構成は上記冷却装置に係り、その特徴は、
前記制御手段は、高温側過渡運転において、
蒸発圧力制御弁MVeを全開にするとともに、膨張弁Exの開度を高温側過渡運転の開始時における開度に保持した状態で、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整する制御を開始し、
その後、圧縮機吸込圧力psが圧縮機吸込圧力上限値psuに至るまでの間、膨張弁Exの開度変化速度を緩速度に制限した状態での膨張弁開度の調整により圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する制御を実行する構成にしてある点にある。
An eighth characteristic configuration of the present invention relates to the cooling device, and the characteristic is as follows:
In the high temperature side transient operation, the control means,
While the evaporation pressure control valve MVe is fully opened and the opening of the expansion valve Ex is maintained at the opening at the start of the high temperature side transient operation, the compressor suction pressure ps is adjusted by adjusting the compressor output G. Start the control to adjust to the pressure upper limit value psu,
After that, until the compressor suction pressure ps reaches the compressor suction pressure upper limit value psu, the compressor suction pressure saturation is achieved by adjusting the expansion valve opening in a state where the opening change rate of the expansion valve Ex is limited to a slow speed. The point is that the control for adjusting the superheat degree sh at the temperature tps to the superheat degree set value shs is executed.

この第8特徴構成の冷却装置によれば、高温側過渡運転において制御手段が膨張弁Exの開度調整による過熱度調整も含めた上記の如き制御を実行することで、低温モード運転から高温モード運転への移行を一層円滑かつ安定的なものにすることができる。   According to the cooling device of the eighth characteristic configuration, the control means performs the control as described above including the superheat degree adjustment by adjusting the opening degree of the expansion valve Ex in the high temperature side transient operation, so that the low temperature mode operation is changed to the high temperature mode. The transition to operation can be made smoother and more stable.

本発明の第9特徴構成は上記冷却装置に係り、その特徴は、
前記制御手段は、圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psuより高い値(pss>psu)から圧縮機吸込圧力上限値psu以下の値(pss≦psu)になったとき、高温モード運転から低温モード運転へ移行する低温側過渡運転として、
適当時間Tの間、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整する制御を維持するとともに、蒸発圧力制御弁MVeの開度の調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する制御を維持して、高温モード運転を保持し、
続いて、蒸発圧力制御弁MVeの開度をそのときの開度に保持した状態で圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力設定値pssに調整する制御を開始し、
更に続いて、圧縮機吸込圧力psが圧縮機吸込圧力設定値pssに至った後に、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力設定値pssに調整する制御を継続しながら、蒸発圧力制御弁MVeの開度変化速度を緩速度に制限した状態で蒸発圧力制御弁MVeの開度を全開開度まで増大させる制御を開始し、
その後、蒸発圧力制御弁MVeの開度が全開開度に至った後に、圧縮機出力Gの調整による蒸発圧力peの調整により被冷却流体Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する制御を開始して、低温モード運転に移行する構成にしてある点にある。
A ninth characteristic configuration of the present invention relates to the above cooling device,
When the compressor suction pressure set value pss becomes higher than the compressor suction pressure upper limit value psu (pss> psu) to the compressor suction pressure upper limit value psu (pss ≦ psu), As a low temperature side transient operation that shifts from mode operation to low temperature mode operation,
During the appropriate time T, the control of adjusting the compressor suction pressure ps to the compressor suction pressure upper limit value psu by adjusting the compressor output G is maintained, and the evaporation pressure pe by adjusting the opening of the evaporation pressure control valve MVe is maintained. Maintaining the control to adjust the evaporator outlet temperature to of the fluid A to be cooled to the evaporator outlet temperature set value tos by adjusting, maintaining the high temperature mode operation,
Subsequently, control is started to adjust the compressor suction pressure ps to the compressor suction pressure set value pss by adjusting the compressor output G in a state where the opening of the evaporation pressure control valve MVe is maintained at the opening at that time.
Then, after the compressor suction pressure ps reaches the compressor suction pressure set value pss, the control for adjusting the compressor suction pressure ps to the compressor suction pressure set value pss by adjusting the compressor output G is continued. , Start the control to increase the opening of the evaporation pressure control valve MVe to the fully open position in a state where the opening change rate of the evaporation pressure control valve MVe is limited to a slow speed,
Thereafter, after the opening degree of the evaporation pressure control valve MVe reaches the fully opened opening degree, the evaporator outlet temperature to of the cooled fluid A is adjusted to the evaporator outlet temperature set value tos by adjusting the evaporation pressure pe by adjusting the compressor output G. The control to be adjusted to is started, and the configuration is shifted to the low temperature mode operation.

前記冷却装置において、被冷却流体Aの蒸発器出口温度設定値tosが低温側へ変更されて、圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psuより高い値(pss>psu)から圧縮機吸込圧力上限値psu以下の値(pss≦psu)になったとき、それまでの高温モード運転を直ちに低温モード運転に切り換えると、蒸発圧力制御弁MVeが全開になることで圧縮機吸込圧力psが急激に高くなる、また、低温側へ変更された被冷却流体Aの蒸発器出口温度設定値tosに対して、切り換え直後における被冷却流体Aの蒸発器出口温度toが未だ高温であるため、圧縮機出力Gが制御手段により急激に増大側に調整されるといったことが生じる。   In the cooling device, the evaporator outlet temperature set value tos of the cooled fluid A is changed to a low temperature side, and the compressor suction pressure set value pss is compressed from a value higher than the compressor suction pressure upper limit value psu (pss> psu). When the compressor suction pressure upper limit value psu or lower (pss ≦ psu) is reached, if the previous high-temperature mode operation is immediately switched to the low-temperature mode operation, the evaporation pressure control valve MVe is fully opened, so that the compressor suction pressure ps The evaporator outlet temperature to of the cooled fluid A immediately after switching is still high with respect to the evaporator outlet temperature set value tos of the cooled fluid A changed to the low temperature side. The compressor output G is suddenly adjusted to the increasing side by the control means.

そしてまた、その圧縮機出力Gの急激な増大に対して、蒸発器熱容量により被冷却流体Aの蒸発器出口温度toの低温側への変化に遅れが生じ、そのことで、圧縮機吸込圧力psが過度に低下して、やはり低圧保護機能による圧縮機の自動停止が生じる可能性もある。   Further, with respect to the rapid increase in the compressor output G, the evaporator heat capacity causes a delay in the change of the evaporator outlet temperature to the low temperature side of the cooled fluid A, which causes the compressor suction pressure ps. May be excessively reduced, and the automatic shutdown of the compressor may also occur due to the low-pressure protection function.

これに対し、この第9特徴構成の冷却装置によれば、高温モード運転から低温モード運転への移行において上記低温側過渡運転を介在させることにより、上記の如き装置運転の不安定化や圧縮機吸込圧力psの過度な低下による圧縮機の自動停止を防止することができ、これにより、装置の運転を安定的に保った状態で高温モード運転から低温モード運転へ円滑に移行することができる。   On the other hand, according to the cooling device having the ninth characteristic configuration, the operation of the device as described above becomes unstable and the compressor is interposed by interposing the low temperature side transient operation in the transition from the high temperature mode operation to the low temperature mode operation. It is possible to prevent the compressor from being automatically stopped due to an excessive decrease in the suction pressure ps, thereby enabling a smooth transition from the high-temperature mode operation to the low-temperature mode operation while keeping the operation of the apparatus stable.

本発明の第10特徴構成は上記冷却装置に係り、その特徴は、
前記制御手段は、低温側過渡運転において、
適当時間Tの間、高温モード運転を保持した後、蒸発圧力制御弁MVeの開度をそのときの開度に保持するとともに膨張弁Exの開度をそのときの開度に保持した状態で圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力設定値pssに調整する制御を開始し、
その後、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力設定値pssに調整する制御を継続しながら、蒸発圧力制御弁MVeの開度変化速度を緩速度に制限した状態で蒸発圧力制御弁の開度MVeを全開開度まで増大させる制御を開始して、蒸発圧力制御弁MVeの開度が全開開度に至るまでの間、膨張弁Exの開度変化速度を緩速度に制限した状態での膨張弁開度の調整により圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する制御を実行する構成にしてある点にある。
A tenth characteristic configuration of the present invention relates to the above cooling device,
The control means, in the low temperature side transient operation,
After maintaining the high temperature mode operation for an appropriate time T, the evaporation pressure control valve MVe is held at the opening at that time, and the expansion valve Ex is held at the opening at that time. Control for adjusting the compressor suction pressure ps to the compressor suction pressure set value pss by adjusting the machine output G is started,
After that, while adjusting the compressor output G by adjusting the compressor suction pressure ps to the compressor suction pressure set value pss, the evaporation pressure control valve MVe is evaporated in a state where the opening change rate is limited to a slow speed. The control to increase the opening MVe of the pressure control valve to the fully opened opening is started, and the opening change rate of the expansion valve Ex is made slow until the opening of the evaporation pressure control valve MVe reaches the fully opened opening. The control is performed to adjust the superheat degree sh at the compressor suction pressure saturation temperature tps to the superheat degree set value shs by adjusting the opening degree of the expansion valve in the restricted state.

この第10特徴構成の冷却装置によれば、低温側過渡運転において制御手段が膨張弁の開度調整による過熱度調整を含めて上記の如き制御を実行することで、高温モード運転から低温モード運転への移行を一層円滑かつ安定的なものにすることができる。   According to the cooling device of the tenth characteristic configuration, the control means executes the control as described above including the superheat degree adjustment by adjusting the opening degree of the expansion valve in the low temperature side transient operation, so that the high temperature mode operation is changed to the low temperature mode operation. The transition to can be made smoother and more stable.

本発明の第11特徴構成は上記冷却装置に係り、その特徴は、
圧縮機冷媒出口を圧縮機冷媒入口に短絡する第1短絡路を設けるとともに、凝縮器冷媒出口を圧縮機冷媒入口に短絡する第2短絡路を設け、
第1短絡路に、その第1短絡路を開閉するとともに第1短絡路を通じた圧縮機吐出冷媒の短絡流量q1を調整する第1制御弁を介在させ、
第2短絡路に、その第2短絡路を開閉するとともに第2短絡路を通じた凝縮器送出冷媒の短絡流量q2を調整する第2制御弁を介在させ、
前記制御手段は、圧縮機回転数nが圧縮機回転数下限値ndより大きい状態(n>nd)では、
第1短絡路を第1制御弁により閉じるとともに第2短絡路を第2制御弁により閉じた状態で、圧縮機回転数nの調整により圧縮機出力Gを調整し、
圧縮機回転数nが圧縮機回転数下限値ndに至った状態(n=nd)では、
第2短絡路を通じた凝縮器送出冷媒の短絡流量q2を第2制御弁により調整して圧縮機入口冷媒温度tsを圧縮機入口冷媒温度設定値tssに調整するとともに、第1短絡路を通じた圧縮機吐出冷媒の短絡流量q1を第1制御弁により調整することで、圧縮機出力Gを調整する構成にしてある点にある。
The eleventh characteristic configuration of the present invention relates to the above cooling device,
A first short circuit that short-circuits the compressor refrigerant outlet to the compressor refrigerant inlet and a second short circuit that short-circuits the condenser refrigerant outlet to the compressor refrigerant inlet;
A first control valve for opening and closing the first short circuit and adjusting the short circuit flow rate q1 of the refrigerant discharged through the first short circuit through the first short circuit;
A second control valve that opens and closes the second short circuit and adjusts the short circuit flow rate q2 of the refrigerant sent through the second short circuit through the second short circuit;
In the state where the compressor rotational speed n is larger than the compressor rotational speed lower limit nd (n> nd),
With the first short circuit closed by the first control valve and the second short circuit closed by the second control valve, the compressor output G is adjusted by adjusting the compressor speed n,
In a state where the compressor rotational speed n reaches the compressor rotational speed lower limit nd (n = nd),
The short-circuit flow rate q2 of the refrigerant delivered through the second short circuit is adjusted by the second control valve to adjust the compressor inlet refrigerant temperature ts to the compressor inlet refrigerant temperature set value tss, and the compression through the first short circuit The compressor output G is adjusted by adjusting the short-circuit flow rate q1 of the refrigerant discharged from the machine by the first control valve.

この第11特徴構成の冷却装置では、圧縮機回転数nが圧縮機回転数下限値ndより大きい状態では、圧縮機回転数nの調整により圧縮機出力G(換言すれば、被冷却流体に対する蒸発器の冷却能力)を調整し、圧縮機回転数nが圧縮機回転数下限値ndに至った状態では、第1短絡路を通じた圧縮機吐出冷媒の短絡流量q1及び第2短絡路を通じた凝縮器送出冷媒の短絡流量q2を第1,第2制御弁により調整することで圧縮機出力Gを調整する。   In the cooling device having the eleventh characteristic configuration, when the compressor rotational speed n is larger than the compressor rotational speed lower limit nd, the compressor output G (in other words, evaporation of the fluid to be cooled is adjusted by adjusting the compressor rotational speed n). When the compressor rotation speed n reaches the compressor rotation speed lower limit nd, the compressor discharge refrigerant short-circuit flow rate q1 through the first short circuit and the condensation through the second short circuit The compressor output G is adjusted by adjusting the short-circuit flow rate q2 of the refrigerant delivered to the compressor using the first and second control valves.

従って、この第11特徴構成の冷却装置によれば、被冷却流体の冷却において要求される温度調整範囲に対して冷凍回路の調整のみで対応する方式としながらも、単に圧縮機回転数nの調整だけで圧縮機出力Gを調整するのに比べ、対応可能な温度調整範囲を一層効果的に拡大することができる。   Therefore, according to the cooling device having the eleventh characteristic configuration, the compressor rotation speed n is simply adjusted while only the adjustment of the refrigeration circuit corresponds to the temperature adjustment range required for cooling the cooled fluid. Compared with adjusting the compressor output G alone, the applicable temperature adjustment range can be expanded more effectively.

また、この第11特徴構成の冷却装置によれば、短絡流量q1,q2の調整により圧縮機出力Gを調整する際、第2短絡路を通じた凝縮器送出冷媒の短絡流量q2を調整することで、圧縮機入口冷媒温度tsを圧縮機入口冷媒温度設定値tssに調整するから、圧縮機のオーバーヒートを一層効果的に防止することができる。   Further, according to the cooling device having the eleventh characteristic configuration, when adjusting the compressor output G by adjusting the short-circuit flow rates q1 and q2, the short-circuit flow rate q2 of the refrigerant sent through the condenser through the second short-circuit path is adjusted. Since the compressor inlet refrigerant temperature ts is adjusted to the compressor inlet refrigerant temperature set value tss, overheating of the compressor can be more effectively prevented.

直膨式空調装置の冷媒回路及び装置構成を示す図The figure which shows the refrigerant circuit and apparatus structure of a direct expansion type air conditioner 圧縮機出力調整のフローチャートFlow chart of compressor output adjustment 蒸発器出口温度設定値と圧縮機吸込圧力設定値との関係を示すモリエル線図Mollier diagram showing relationship between evaporator outlet temperature set value and compressor suction pressure set value 運転選択の基本フローチャートBasic flow chart for operation selection 低温モード運転及び高温モード運転の運転形態を示すモリエル線図Mollier diagram showing operation mode of low temperature mode operation and high temperature mode operation 低温モード運転での実行制御のフローチャートFlow chart of execution control in low temperature mode operation 高温モード運転での実行制御のフローチャートFlow chart of execution control in high temperature mode operation 運転選択を詳細フローチャートDetailed flowchart of operation selection 高温側過渡運転のフローチャートHigh-temperature side transient operation flowchart 低温側過渡運転のフローチャートLow temperature side transient operation flowchart

図1は本発明による流体冷却装置の一例である直膨式空調装置を示し、この空調装置の冷媒回路Krでは、圧縮機Cmの運転により冷媒Rを圧縮機Cm−凝縮器Co−電子膨張弁Ex−蒸発器Ev―蒸発圧力制御弁MVe―アキュムレータAq−圧縮機Cmの順に循環させることで、図3のモリエル線図に示す如き蒸気圧縮式の冷凍回路Crを形成する。   FIG. 1 shows a direct expansion type air conditioner as an example of a fluid cooling apparatus according to the present invention. In the refrigerant circuit Kr of this air conditioner, the refrigerant R is converted into the compressor Cm-condenser Co-electronic expansion valve by the operation of the compressor Cm. By circulating in the order of Ex-evaporator Ev-evaporation pressure control valve MVe-accumulator Aq-compressor Cm, a vapor compression refrigeration circuit Cr as shown in the Mollier diagram of FIG. 3 is formed.

そして、この空調装置では、蒸発器Evを空気冷却用の熱交換器として機能させ、この蒸発器Evにおいて被冷却流体である空気Aを蒸発過程の冷媒Rと熱交換させることで、冷媒蒸発に伴う気化熱奪取により空気Aを冷却し、冷却後の空気Aをファン1により給気風路を通じて空調対象室に供給することで、その空調対象室を所定温度の冷房状態にする。   In this air conditioner, the evaporator Ev functions as a heat exchanger for air cooling, and in this evaporator Ev, the air A, which is a fluid to be cooled, is heat-exchanged with the refrigerant R in the evaporation process, thereby evaporating the refrigerant. The air A is cooled by taking the heat of vaporization, and the cooled air A is supplied to the air-conditioning target room by the fan 1 through the supply air passage, so that the air-conditioning target room is cooled to a predetermined temperature.

冷媒回路Krにおける蒸発器Evの冷媒出口からアキュムレータAqの冷媒入口にわたる冷媒路部分には蒸発圧力制御弁MVeを介在させてあり、この蒸発圧力制御弁MVeは、その弁開度を調整することにより蒸発器Evにおける冷媒圧力(蒸発圧力pe)を調整する弁である。   In the refrigerant circuit Kr, an evaporating pressure control valve MVe is interposed in a refrigerant path portion from the refrigerant outlet of the evaporator Ev to the refrigerant inlet of the accumulator Aq. The evaporating pressure control valve MVe is adjusted by adjusting the valve opening degree. This is a valve for adjusting the refrigerant pressure (evaporation pressure pe) in the evaporator Ev.

また、冷媒回路Krには、圧縮機Cmの冷媒出口をアキュムレータAqを通じて圧縮機Cmの冷媒入口に短絡する第1短絡路2を設けるとともに、凝縮器Coの冷媒出口を同じくアキュムレータAqを通じて圧縮機Cmの冷媒入口に短絡する第2短絡路3を設けてあり、具体的には、第1短絡路2の下流部分と第2短絡路3の下流部分とは共通の合流路とし、この合流路を蒸発圧力制御弁MVeの冷媒出口からアキュムレータAqの冷媒入口にわたる冷媒路部分に接続してある。   Further, the refrigerant circuit Kr is provided with a first short circuit 2 for short-circuiting the refrigerant outlet of the compressor Cm to the refrigerant inlet of the compressor Cm through the accumulator Aq, and the refrigerant outlet of the condenser Co is also connected to the compressor Cm through the accumulator Aq. The second short-circuit path 3 that is short-circuited to the refrigerant inlet of the first short-circuit path is provided. Specifically, the downstream portion of the first short-circuit path 2 and the downstream portion of the second short-circuit path 3 are formed as a common combined flow path. The refrigerant pressure passage is connected to a refrigerant passage portion extending from the refrigerant outlet of the evaporation pressure control valve MVe to the refrigerant inlet of the accumulator Aq.

第1短絡路2には、第1制御弁として、第1短絡路2を開閉する第1開閉弁SV1と、第1短絡路2を通じた圧縮機吐出冷媒Rの短絡流量q1を調整する第1流量調整弁MV1とを介在させてあり、同様に、第2短絡路3には、第2制御弁として、第2短絡路3を開閉する第2開閉弁SV2と、第2短絡路3を通じた凝縮器送出冷媒Rの短絡流量q2を調整する第2流量調整弁MV2とを介在させてある。   In the first short circuit 2, as a first control valve, a first on-off valve SV 1 that opens and closes the first short circuit 2 and a first flow rate q 1 of the compressor discharge refrigerant R through the first short circuit 2 are adjusted. Similarly, a flow rate adjusting valve MV1 is interposed, and similarly, the second short circuit 3 is provided with a second on-off valve SV2 for opening and closing the second short circuit 3 and the second short circuit 3 as a second control valve. A second flow rate adjustment valve MV2 for adjusting the short-circuit flow rate q2 of the condenser delivery refrigerant R is interposed.

4は冷媒回路Krの運転制御を司る制御器(特許請求の範囲で言う制御手段)であり、この制御器4は冷媒回路Krの各部に配備したセンサの測定情報に基づいて圧縮機Cm並びに各弁を制御する。   Reference numeral 4 denotes a controller (control means referred to in the claims) that controls the operation of the refrigerant circuit Kr. The controller 4 is based on the measurement information of the sensors provided in each part of the refrigerant circuit Kr and the compressor Cm Control the valve.

センサとしては、被冷却空気Aの蒸発器出口温度to(即ち、蒸発器Evで冷却した空気Aの温度)測定する温度センサS1、上記蒸発圧力peを測定する圧力センサS2、圧縮機Cmの冷媒入口における冷媒Rの圧力ps(即ち、圧縮機吸込圧力)を測定する圧力センサS3、同じく圧縮機Cmの冷媒入口における冷媒Rの温度ts(即ち、圧縮機入口冷媒温度)を測定する温度センサS4などを装備してある。   The sensor includes a temperature sensor S1 for measuring the evaporator outlet temperature to of the air to be cooled A (that is, the temperature of the air A cooled by the evaporator Ev), the pressure sensor S2 for measuring the evaporation pressure pe, and the refrigerant of the compressor Cm. A pressure sensor S3 that measures the pressure ps (ie, compressor suction pressure) of the refrigerant R at the inlet, and a temperature sensor S4 that measures the temperature ts (ie, compressor inlet refrigerant temperature) of the refrigerant R at the refrigerant inlet of the compressor Cm. Etc. are equipped.

ここで、制御器4は、圧縮機Cmの出力G(換言すれば、被冷却空気Aに対する蒸発器Evの冷却能力)を調整するのに、図2に示すように、インバータinvによる圧縮機回転数nの調整が可能な範囲(例えば、40%回転数〜100%回転数)では、第1開閉弁SV1及び第2開閉弁SV2を閉弁状態に保って、第1短絡路2及び第2短絡路3を通じた冷媒短絡を断った状態で、インバータinvによる圧縮機回転数nの調整により圧縮機出力Gを調整する。   Here, the controller 4 adjusts the output G of the compressor Cm (in other words, the cooling capacity of the evaporator Ev with respect to the air to be cooled A), as shown in FIG. In a range in which the number n can be adjusted (for example, 40% rotation speed to 100% rotation speed), the first open / close valve SV1 and the second open / close valve SV2 are kept closed, and the first short circuit 2 and the second short circuit 2 In a state where the refrigerant short circuit through the short circuit 3 is cut off, the compressor output G is adjusted by adjusting the compressor rotational speed n by the inverter inv.

また、その圧縮機回転数nの調整において圧縮機回転数nが調整範囲の下限である圧縮機回転数下限値ndに至った状態では、同図2に示すように、圧縮機回転数nを圧縮機回転数下限値ndに保持し、かつ、第1開閉弁SV1及び第2開閉弁SV2を開弁して第1短絡路2及び第2短絡路3を通じた冷媒短絡を生じさせる。   In the state where the compressor rotational speed n has reached the compressor rotational speed lower limit nd which is the lower limit of the adjustment range in the adjustment of the compressor rotational speed n, as shown in FIG. The compressor rotation speed lower limit nd is maintained, and the first on-off valve SV1 and the second on-off valve SV2 are opened to cause a refrigerant short circuit through the first short circuit 2 and the second short circuit 3.

そして、この状態で、温度センサS4により測定される圧縮機入口冷媒温度tsに基づき、第2短絡路3を通じた凝縮器送出冷媒Rの短絡流量q2を第2流量調整弁MV2により調整して、圧縮機入口冷媒温度tsを圧縮機入口冷媒温度設定値tssに調整しながら、第1短絡路2を通じた圧縮機吐出冷媒Rの短絡流量q1を第1流量調整弁MV1により調整して合計短絡流量(q1+q2)を調整することで、圧縮機出力Gを調整する構成にしてある。   In this state, based on the compressor inlet refrigerant temperature ts measured by the temperature sensor S4, the short-circuit flow rate q2 of the condenser delivery refrigerant R through the second short circuit 3 is adjusted by the second flow rate adjustment valve MV2, While adjusting the compressor inlet refrigerant temperature ts to the compressor inlet refrigerant temperature set value tss, the short circuit flow rate q1 of the compressor discharge refrigerant R through the first short circuit 2 is adjusted by the first flow rate adjustment valve MV1 to obtain the total short circuit flow rate. The compressor output G is adjusted by adjusting (q1 + q2).

制御器4は、温度設定部5において設定される被冷却空気Aの蒸発器出口温度設定値tosに応じて低温モード運転か高温モード運転かのいずれかを選択的に実施する構成にしてあり、具体的には図3,図4に示すように、制御器4は温度設定部5において被冷却空気Aの蒸発器出口温度設定値tosが変更される毎に、次の(a1)〜(a4)の運転選択により、低温モード運転を実施するか、あるいは、高温モード運転を実施するかを選択する。   The controller 4 is configured to selectively perform either the low temperature mode operation or the high temperature mode operation according to the evaporator outlet temperature set value tos of the air to be cooled A set in the temperature setting unit 5. Specifically, as shown in FIGS. 3 and 4, the controller 4 changes the following (a1) to (a4) every time the evaporator outlet temperature set value tos of the air A to be cooled is changed in the temperature setting unit 5. ) To select whether to perform low temperature mode operation or high temperature mode operation.

<運転選択(基本)>
(a1)温度設定部5において新たに設定された被冷却空気Aの蒸発器出口温度設定値tosから蒸発器伝熱壁の内外温度差Δtを減算した値を蒸発温度設定値tes(=tos−Δt)とする。
<Operation selection (basic)>
(A1) The value obtained by subtracting the internal / external temperature difference Δt of the evaporator heat transfer wall from the evaporator outlet temperature setting value tos of the air to be cooled A newly set in the temperature setting unit 5 is the evaporation temperature setting value tes (= tos− Δt).

(a2)蒸発温度teと蒸発圧力peとの相関に従って蒸発温度設定値tesをそれに対応する蒸発圧力設定値pesに換算する。   (A2) According to the correlation between the evaporation temperature te and the evaporation pressure pe, the evaporation temperature set value tes is converted into the corresponding evaporation pressure set value pes.

(a3)蒸発圧力設定値pesから蒸発圧力制御弁MVeでの圧力損失値Δpを減算した値を圧縮機吸込圧力設定値pss(=pes−Δp)として設定する。   (A3) A value obtained by subtracting the pressure loss value Δp at the evaporation pressure control valve MVe from the evaporation pressure set value pes is set as the compressor suction pressure set value pss (= pes−Δp).

(a4)圧縮機吸込圧力設定値pssが圧縮機吸込圧力psの許容範囲上限である圧縮機吸込圧力上限値psu以下のとき(pss≦psu)には、低温モード運転の実施を選択し、圧縮機吸込圧力設定値pssが圧縮機吸込圧力上限値psuより高いとき(pss>psu)には、高温モード運転の実施を選択する。   (A4) When the compressor suction pressure set value pss is equal to or lower than the compressor suction pressure upper limit value psu which is the upper limit of the compressor suction pressure ps (pss ≦ psu), the execution of the low temperature mode operation is selected and the compression is performed. When the compressor suction pressure set value pss is higher than the compressor suction pressure upper limit value psu (pss> psu), execution of the high temperature mode operation is selected.

なお、蒸発器伝熱壁の内外温度差Δt及び蒸発圧力制御弁MVeでの圧力損失値Δpは、夫々、装置の設計値データや装置の試験運転において収集した測定値データなどに基づいて制御器4の記憶部に予め記憶させてあるデータ値である。   Note that the internal / external temperature difference Δt of the evaporator heat transfer wall and the pressure loss value Δp at the evaporation pressure control valve MVe are based on the design value data of the device, the measured value data collected in the test operation of the device, etc., respectively. 4 is a data value stored in advance in the storage unit 4.

この運転選択において低温モード運転が選択された場合、次の(b1)〜(b3)の制御の実行により冷温モード運転を実施する(図5の左図(a)及び図6参照)。   When the low temperature mode operation is selected in this operation selection, the cold temperature mode operation is performed by executing the following controls (b1) to (b3) (see the left diagram (a) and FIG. 6 in FIG. 5).

<低温モード運転>
(b1)蒸発圧力制御弁MVeを全開に保持する。
<Low temperature mode operation>
(B1) The evaporation pressure control valve MVe is held fully open.

(b2)温度センサS1による測定される被冷却空気Aの蒸発器出口温度toに基づいて、圧縮機出力Gの調整による蒸発圧力peの調整により、被冷却空気Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する。………〈圧縮機出力Gの調整による蒸発器出口温度制御〉   (B2) Based on the evaporator outlet temperature to of the cooled air A measured by the temperature sensor S1, the evaporator outlet temperature to of the cooled air A is evaporated by adjusting the evaporation pressure pe by adjusting the compressor output G. Adjust to the vessel outlet temperature set value tos. …… <Evaporator outlet temperature control by adjusting compressor output G>

(b3)圧力センサS3により測定される圧縮機吸込圧力ps及び温度センサS4により測定される圧縮機入口冷媒温度tsに基づき、電子膨張弁Exの開度をPID制御などにより通常速度で調整して、圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する。………〈圧縮機吸込圧力飽和温度tpsにおける通常過熱度制御〉   (B3) Based on the compressor suction pressure ps measured by the pressure sensor S3 and the compressor inlet refrigerant temperature ts measured by the temperature sensor S4, the opening degree of the electronic expansion valve Ex is adjusted at a normal speed by PID control or the like. The superheat degree sh at the compressor suction pressure saturation temperature tps is adjusted to the superheat degree set value shs. ……… <Normal superheat control at compressor suction pressure saturation temperature tps>

一方、運転選択において高温モード運転が選択された場合、次の(c1)〜(c3)の制御の実行により高温モード運転を実施する(図5の右図(c)及び図7参照)。   On the other hand, when the high temperature mode operation is selected in the operation selection, the high temperature mode operation is performed by executing the following controls (c1) to (c3) (see the right diagram (c) and FIG. 7 in FIG. 5).

<高温モード運転>
(c1)圧力センサS3により測定される圧縮機吸込圧力psに基づいて、圧縮機出力Gの調整により、圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整する。………〈圧縮機出力Gの調整による圧縮機吸込圧力上限保持制御〉
<High temperature mode operation>
(C1) Based on the compressor suction pressure ps measured by the pressure sensor S3, the compressor suction pressure ps is adjusted to the compressor suction pressure upper limit value psu by adjusting the compressor output G. ……… <Compressor suction pressure upper limit holding control by adjusting compressor output G>

(c2)温度センサS1による測定される被冷却空気Aの蒸発器出口温度toに基づき、蒸発圧力制御弁MVeの開度をPID制御などにより通常速度で調整して蒸発圧力peを調整し、この蒸発圧力制御弁MVeの開度調整による蒸発圧力peの調整により、被冷却空気Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する。………〈蒸発圧力制御弁MVeによる蒸発器出口温度制御〉   (C2) Based on the evaporator outlet temperature to of the air to be cooled A measured by the temperature sensor S1, the opening of the evaporation pressure control valve MVe is adjusted at a normal speed by PID control or the like to adjust the evaporation pressure pe. By adjusting the evaporation pressure pe by adjusting the opening of the evaporation pressure control valve MVe, the evaporator outlet temperature to of the cooled air A is adjusted to the evaporator outlet temperature set value tos. ……… Evaporator outlet temperature control by evaporation pressure control valve MVe>

(c3)圧力センサS3により測定される圧縮機吸込圧力ps及び温度センサS4により測定される圧縮機入口冷媒温度tsに基づき、電子膨張弁Exの開度をPID制御などにより通常速度で調整して、圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する。………〈圧縮機吸込圧力飽和温度tpsにおける通常過熱度制御〉   (C3) Based on the compressor suction pressure ps measured by the pressure sensor S3 and the compressor inlet refrigerant temperature ts measured by the temperature sensor S4, the opening degree of the electronic expansion valve Ex is adjusted at a normal speed by PID control or the like. The superheat degree sh at the compressor suction pressure saturation temperature tps is adjusted to the superheat degree set value shs. ……… <Normal superheat control at compressor suction pressure saturation temperature tps>

つまり、この空調装置では、被冷却空気Aの蒸発器出口温度設定値tosが高温で、低温モード運転では圧縮機吸込圧力ps(圧縮機吸込圧力設定値pssに相当)が圧縮機吸込圧力上限値psuを越えて圧縮機吸込圧力psの許容範囲を高圧側に逸脱してしまう状況において高温モード運転を実施する。   That is, in this air conditioner, the evaporator outlet temperature set value tos of the air to be cooled A is high, and the compressor suction pressure ps (corresponding to the compressor suction pressure set value pss) in the low temperature mode operation is the compressor suction pressure upper limit value. The high temperature mode operation is performed in a situation where the allowable range of the compressor suction pressure ps exceeds the psu and deviates to the high pressure side.

そして、この高温モード運転において、圧縮機吸込圧力psをその許容範囲の上限である圧縮機吸込圧力上限値psuに保持した状態で、蒸発圧力制御弁MVeの開度調整により被冷却空気Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整することで、蒸発器Evで冷却対象空気Aを直接に冷却する直膨方式を採りながらも、空調対象室に供給する冷却空気Aの温度調整範囲(即ち、蒸発器出口温度設定値tosの変更許容範囲)を大きく確保できるようにしてある。   In this high-temperature mode operation, the evaporation of the cooled air A is performed by adjusting the opening of the evaporation pressure control valve MVe while the compressor suction pressure ps is held at the compressor suction pressure upper limit psu which is the upper limit of the allowable range. By adjusting the evaporator outlet temperature to the evaporator outlet temperature set value tos, the temperature of the cooling air A supplied to the air-conditioning target room while adopting the direct expansion method in which the cooling target air A is directly cooled by the evaporator Ev. A large adjustment range (that is, an allowable change range of the evaporator outlet temperature set value tos) can be secured.

また、電子膨張弁Exの開度調整による過熱度調整において、蒸発温度teにおける過熱度sh′を過熱度設定値shs′に調整する一般の調整方式を採った場合、図5の右図(c)に破線で示すように圧縮機入口冷媒温度ts′がかなり高くなることに対し、この空調装置では低温モード運転及び高温モード運転の夫々において、圧縮機吸込圧力飽和温度tpsにおける過熱度shを電子膨張弁Exの開度調整により過熱度設定値shsに調整する過熱度調整方式にすることで、圧縮機入口冷媒温度tsの高温化を回避して圧縮機Cmのオーバーヒートを一層確実に防止するようにしてある。   Further, in the superheat degree adjustment by adjusting the opening degree of the electronic expansion valve Ex, when a general adjustment method for adjusting the superheat degree sh ′ at the evaporation temperature te to the superheat degree set value shs ′ is adopted, the right diagram (c) of FIG. ), The compressor inlet refrigerant temperature ts' becomes considerably high. In this air conditioner, the superheat sh at the compressor suction pressure saturation temperature tps is expressed in the air in each of the low temperature mode operation and the high temperature mode operation. By adopting a superheat degree adjustment system that adjusts to the superheat degree set value shs by adjusting the opening degree of the expansion valve Ex, it is possible to avoid overheating of the compressor Cm more reliably by avoiding a high temperature of the compressor inlet refrigerant temperature ts. It is.

制御器4は、被冷却空気Aの蒸発器出口温度設定値tosが変更される毎に前記の運転選択(図5)により低温モード運転か高温モード運転かのいずれかを選択する際、詳しくは図8に示すように、蒸発器出口温度設定値tosの変更前における圧縮機吸込圧力設定値pssと圧縮機吸込圧力上限値psuとの大小関係の判定(#1)を行なうとともに、蒸発器出口温度設定値tosの変更後における圧縮機吸込圧力設定値pssと圧縮機吸込圧力上限値psuとの大小関係の判定(#2,#3)を行う構成にしてある。   When the controller 4 selects either the low temperature mode operation or the high temperature mode operation by the above operation selection (FIG. 5) every time the evaporator outlet temperature set value tos of the air A to be cooled is changed, As shown in FIG. 8, a determination is made of the magnitude relationship (# 1) between the compressor suction pressure set value pss and the compressor suction pressure upper limit value psu before the change of the evaporator outlet temperature set value tos, and the evaporator outlet The configuration is such that determination of the magnitude relationship (# 2, # 3) between the compressor suction pressure set value pss and the compressor suction pressure upper limit value psu after the change of the temperature set value tos is performed.

即ち、制御器4は、これら大小関係の判定(#1〜#3)により、蒸発器出口温度設定値tosの変更前に低温モード運転を実施していた場合において、蒸発器出口温度設定値tosの変更に伴い低温モード運転から高温モード運転に移行する必要があるか否かを判別し、また、蒸発器出口温度設定値tosの変更前に高温モード運転を実施していた場合において、蒸発器出口温度設定値tosの変更に伴い高温モード運転から低温モード運転に移行する必要があるか否かを判別する。   In other words, the controller 4 determines whether the evaporator outlet temperature set value tos when the low temperature mode operation is performed before the change of the evaporator outlet temperature set value tos by the determination of the magnitude relationship (# 1 to # 3). It is determined whether or not it is necessary to shift from the low temperature mode operation to the high temperature mode operation according to the change of the temperature, and when the high temperature mode operation is performed before the change of the evaporator outlet temperature set value tos, It is determined whether or not it is necessary to shift from the high temperature mode operation to the low temperature mode operation with the change of the outlet temperature set value tos.

そして、制御器4は、この判別結果として、蒸発器出口温度設定値tosの変更前に低温モード運転を実施していた場合において、蒸発器出口温度設定値tosの変更に伴い低温モード運転から高温モード運転に移行する必要がない場合には、蒸発器出口温度設定値tosの変更後も継続して低温モード運転を実施(#4)する。   As a result of the determination, the controller 4 performs the low temperature mode operation from the low temperature mode operation with the change of the evaporator outlet temperature set value tos when the low temperature mode operation is performed before the change of the evaporator outlet temperature set value tos. If it is not necessary to shift to the mode operation, the low temperature mode operation is continued (# 4) even after the evaporator outlet temperature set value tos is changed.

また、蒸発器出口温度設定値tosの変更前に低温モード運転を実施していた場合において、蒸発器出口温度設定値tosの変更に伴い低温モード運転から高温モード運転に移行する必要がある場合には、蒸発器出口温度設定値tosの変更後、高温側過渡運転を実施(#5)した上で高温モード運転(#6)に移行する。   Further, when the low temperature mode operation is performed before the change of the evaporator outlet temperature set value tos, it is necessary to shift from the low temperature mode operation to the high temperature mode operation in accordance with the change of the evaporator outlet temperature set value tos. After changing the evaporator outlet temperature set value tos, the high temperature side transient operation is performed (# 5) and then the high temperature mode operation (# 6) is performed.

同様に、制御器4は、上記判別結果として、蒸発器出口温度設定値tosの変更前に高温モード運転を実施していた場合において、蒸発器出口温度設定値tosの変更に伴い高温モード運転から低温モード運転に移行する必要がない場合には、蒸発器出口温度設定値tosの変更後も継続して高温モード運転を実施(#7)する。   Similarly, when the controller 4 performs the high temperature mode operation before the change of the evaporator outlet temperature set value tos as the determination result, the controller 4 starts the operation from the high temperature mode operation with the change of the evaporator outlet temperature set value tos. If it is not necessary to shift to the low temperature mode operation, the high temperature mode operation is continued (# 7) even after the evaporator outlet temperature set value tos is changed.

また、蒸発器出口温度設定値tosの変更前に高温モード運転を実施していた場合において、蒸発器出口温度設定値tosの変更に伴い高温モード運転から低温モード運転に移行する必要がある場合には、蒸発器出口温度設定値tosの変更後、低温側過渡運転を実施(#8)した上で高温モード運転(#9)に移行する。   Further, when the high temperature mode operation is performed before the change of the evaporator outlet temperature set value tos, it is necessary to shift from the high temperature mode operation to the low temperature mode operation in accordance with the change of the evaporator outlet temperature set value tos. After changing the evaporator outlet temperature set value tos, the transition to the high temperature mode operation (# 9) is performed after performing the low temperature side transient operation (# 8).

そして、制御器4は、低温モード運転から高温モード運転への移行時に介在させる高温側過渡運転において次の(d1)〜(d4)の制御を実行する(図9及び図5参照)。   Then, the controller 4 executes the following controls (d1) to (d4) in the high temperature side transient operation that is interposed during the transition from the low temperature mode operation to the high temperature mode operation (see FIGS. 9 and 5).

<高温側過渡運転>
(d1)蒸発圧力制御弁MVeを全開にするとともに、電子膨張弁Exの開度を高温側過渡運転の開始時における開度に保持する。
<High temperature side transient operation>
(D1) The evaporation pressure control valve MVe is fully opened, and the opening of the electronic expansion valve Ex is held at the opening at the start of the high temperature side transient operation.

(d2)圧力センサS3により測定される圧縮機吸込圧力psに基づいて、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整する制御を開始する。………〈圧縮機出力Gの調整による圧縮機吸込圧力上限保持制御の開始〉   (D2) Based on the compressor suction pressure ps measured by the pressure sensor S3, control for adjusting the compressor suction pressure ps to the compressor suction pressure upper limit value psu by adjusting the compressor output G is started. …… <Start of compressor suction pressure upper limit holding control by adjusting compressor output G>

(d3)圧縮機吸込圧力psが圧縮機吸込圧力上限値psuに至るまでの間、電子膨張弁Exの開度を所定の緩速度で調整して、圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する。………〈圧縮機吸込圧力飽和温度tpsにおける緩速度過熱度制御〉   (D3) Until the compressor suction pressure ps reaches the compressor suction pressure upper limit value psu, the degree of superheat sh at the compressor suction pressure saturation temperature tps is adjusted by adjusting the opening of the electronic expansion valve Ex at a predetermined slow speed. Is adjusted to the superheat setting value shs. ……… <Slow speed superheat control at compressor suction pressure saturation temperature tps>

(d4)圧力センサS3により測定される圧縮機吸込圧力psが圧縮機吸込圧力上限値psuに至った後、温度センサS1による測定される被冷却空気Aの蒸発器出口温度toに基づいて、蒸発圧力制御弁MVeの開度をPID制御などにより通常速度で調整して蒸発圧力peを調整し、この蒸発圧力制御弁MVeの開度調整による蒸発圧力peの調整により被冷却空気Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する制御を開始する。………〈蒸発圧力制御弁MVeによる蒸発器出口温度制御の開始〉   (D4) After the compressor suction pressure ps measured by the pressure sensor S3 reaches the compressor suction pressure upper limit value psu, evaporation is performed based on the evaporator outlet temperature to of the cooled air A measured by the temperature sensor S1. The evaporation pressure pe is adjusted by adjusting the opening degree of the pressure control valve MVe at a normal speed by PID control or the like, and the evaporator outlet of the cooled air A is adjusted by adjusting the evaporation pressure pe by adjusting the opening degree of the evaporation pressure control valve MVe. Control for adjusting the temperature to the evaporator outlet temperature set value tos is started. ……… <Start of evaporator outlet temperature control by evaporation pressure control valve MVe>

また、圧力センサS3により測定される圧縮機吸込圧力ps及び温度センサS4により測定される圧縮機入口冷媒温度tsに基づき、電子膨張弁Exの開度をPID制御などにより通常速度で調整して、圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する制御を開始する。………〈圧縮機吸込圧力飽和温度tpsにおける通常過熱度制御の開始〉   Further, based on the compressor suction pressure ps measured by the pressure sensor S3 and the compressor inlet refrigerant temperature ts measured by the temperature sensor S4, the opening degree of the electronic expansion valve Ex is adjusted at a normal speed by PID control or the like, Control for adjusting the superheat degree sh at the compressor suction pressure saturation temperature tps to the superheat degree set value shs is started. …… <Start of normal superheat control at compressor suction pressure saturation temperature tps>

即ち、これら制御の開始をもって高温モード運転への移行を完了する。   That is, the transition to the high temperature mode operation is completed with the start of these controls.

一方、制御器4は、高温モード運転から低温モード運転への移行時に介在させる低温側過渡運転において次の(e1)〜(e4)の制御を実行する(図10及び図5参照)。   On the other hand, the controller 4 performs the following controls (e1) to (e4) in the low-temperature side transient operation that is interposed during the transition from the high-temperature mode operation to the low-temperature mode operation (see FIGS. 10 and 5).

<低温側過渡運転>
(e1)蒸発器出口温度設定値tosの変更後、適当時間Tの間、圧力センサS3により測定される圧縮機吸込圧力psに基づき圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力上限値psuに調整する制御を維持する。………〈圧縮機出力Gの調整による圧縮機吸込圧力上限保持制御の維持〉
<Low-temperature side transient operation>
(E1) After changing the evaporator outlet temperature set value tos, the compressor suction pressure ps is adjusted to the compressor suction by adjusting the compressor output G based on the compressor suction pressure ps measured by the pressure sensor S3 for an appropriate time T. Control to adjust to the pressure upper limit value psu is maintained. ......... <Maintenance of compressor suction pressure upper limit retention control by adjusting compressor output G>

また同様に、蒸発器出口温度設定値tosの変更後、適当時間Tの間、温度センサS1による測定される被冷却空気Aの蒸発器出口温度toに基づき蒸発圧力制御弁MVeの開度調整による蒸発圧力peを調整して、被冷却空気Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する制御を維持する。………〈蒸発圧力制御弁MVeによる蒸発器出口温度制御の維持〉   Similarly, after changing the evaporator outlet temperature set value tos, during an appropriate time T, by adjusting the opening of the evaporation pressure control valve MVe based on the evaporator outlet temperature to of the cooled air A measured by the temperature sensor S1. The control for adjusting the evaporator outlet temperature to of the air to be cooled A to the evaporator outlet temperature set value tos is maintained by adjusting the evaporation pressure pe. ……… <Maintenance of evaporator outlet temperature control by evaporation pressure control valve MVe>

即ち、これら制御の維持により、蒸発器出口温度設定値tosの変更後も適当時間Tの間、高温モード運転を維持する。   That is, by maintaining these controls, the high-temperature mode operation is maintained for an appropriate time T even after the evaporator outlet temperature set value tos is changed.

(e2)適当時間Tの間、高温モード運転を保持した後、蒸発圧力制御弁MVeの開度をそのときの開度に保持するとともに、電子膨張弁Exの開度をそのときの開度に保持した状態で、温度センサS1による測定される被冷却空気Aの蒸発器出口温度toに基づき、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力設定値pssに調整する。………〈圧縮機出力Gの調整による蒸発器出口温度制御の準備〉   (E2) After holding the high temperature mode operation for an appropriate time T, the opening of the evaporation pressure control valve MVe is held at the opening at that time, and the opening of the electronic expansion valve Ex is set to the opening at that time. In the held state, the compressor suction pressure ps is adjusted to the compressor suction pressure set value pss by adjusting the compressor output G based on the evaporator outlet temperature to of the air to be cooled A measured by the temperature sensor S1. …… <Preparation for evaporator outlet temperature control by adjusting compressor output G>

(e3)圧縮機吸込圧力psが圧縮機吸込圧力設定値pssに至るまでの間、電子膨張弁Exの開度を所定の緩速度で調整して、圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する。………〈圧縮機吸込圧力飽和温度tpsにおける緩速度過熱度制御〉   (E3) While the compressor suction pressure ps reaches the compressor suction pressure set value pss, the degree of superheat sh at the compressor suction pressure saturation temperature tps is adjusted by adjusting the opening of the electronic expansion valve Ex at a predetermined slow speed. Is adjusted to the superheat setting value shs. ……… <Slow speed superheat control at compressor suction pressure saturation temperature tps>

(e4)圧力センサS3により測定される圧縮機吸込圧力psが圧縮機吸込圧力設定値pssに至った後、圧縮機出力Gの調整により圧縮機吸込圧力psを圧縮機吸込圧力設定値pssに調整する制御、及び、電子膨張弁Exの開度を所定の緩速度で調整して圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する制御を継続しながら、蒸発圧力制御弁MVeの開度を所定の緩速度で全開開度まで増大させる。   (E4) After the compressor suction pressure ps measured by the pressure sensor S3 reaches the compressor suction pressure set value pss, the compressor suction pressure ps is adjusted to the compressor suction pressure set value pss by adjusting the compressor output G. And evaporative pressure control while continuing the control to adjust the degree of superheat sh at the compressor suction pressure saturation temperature tps to the superheat degree set value shs by adjusting the opening of the electronic expansion valve Ex at a predetermined slow speed The opening degree of the valve MVe is increased to a full opening degree at a predetermined slow speed.

(e5)蒸発圧力制御弁MVeの開度が全開開度に至った後、温度センサS1による測定される被冷却空気Aの蒸発器出口温度toに基づき、圧縮機出力Gの調整による蒸発圧力peの調整により被冷却空気Aの蒸発器出口温度toを蒸発器出口温度設定値tosに調整する制御を開始する。………〈圧縮機出力Gの調整による蒸発器出口温度制御の開始〉   (E5) After the opening of the evaporation pressure control valve MVe reaches the fully open position, the evaporation pressure pe by adjusting the compressor output G based on the evaporator outlet temperature to of the air to be cooled A measured by the temperature sensor S1. The control for adjusting the evaporator outlet temperature to of the air to be cooled A to the evaporator outlet temperature set value tos is started. …… <Start of evaporator outlet temperature control by adjusting compressor output G>

また、圧力センサS3により測定される圧縮機吸込圧力ps及び温度センサS4により測定される圧縮機入口冷媒温度tsに基づき、電子膨張弁Exの開度をPID制御などにより通常速度で調整して、圧縮機吸込圧力飽和温度tpsにおける過熱度shを過熱度設定値shsに調整する制御を開始する。………〈圧縮機吸込圧力飽和温度tpsにおける通常過熱度制御の開始〉   Further, based on the compressor suction pressure ps measured by the pressure sensor S3 and the compressor inlet refrigerant temperature ts measured by the temperature sensor S4, the opening degree of the electronic expansion valve Ex is adjusted at a normal speed by PID control or the like, Control for adjusting the superheat degree sh at the compressor suction pressure saturation temperature tps to the superheat degree set value shs is started. …… <Start of normal superheat control at compressor suction pressure saturation temperature tps>

即ち、これら制御の開始により低温モード運転への移行を完了する。   That is, the transition to the low temperature mode operation is completed by the start of these controls.

つまり、この空調装置では、低温モード運転から高温モード運転への移行において上記高温側過渡運転を介在させ、また、高温モード運転から低温モード運転への移行において上記低温側過渡運転を介在させることにより、低圧保護機能により圧縮機Cmが自動停止するなどの運転支障を回避した状態で、低温モード運転から高温モード運転への移行、及び、高温モード運転から低温モード運転への移行を夫々、円滑に行なわせるようにしてある。   That is, in this air conditioner, the high temperature side transient operation is interposed in the transition from the low temperature mode operation to the high temperature mode operation, and the low temperature side transient operation is interposed in the transition from the high temperature mode operation to the low temperature mode operation. Smoothly transition from the low temperature mode operation to the high temperature mode operation and from the high temperature mode operation to the low temperature mode operation while avoiding operational troubles such as the compressor Cm being automatically stopped by the low pressure protection function. It is supposed to be done.

〔別実施形態〕
上述の実施形態では、空調用空気Aを被冷却流体として蒸発器Evで直接に冷却する直膨式空調の例を示したが、蒸発器Evで冷却する冷却対象流体は空気以外の気体あるいは水などの液体であってもよい。
[Another embodiment]
In the above-described embodiment, the example of the direct expansion type air conditioning in which the air-conditioning air A is directly cooled by the evaporator Ev using the air-conditioning air A as the fluid to be cooled has been shown. Or a liquid such as

蒸発器Evで冷却した被冷却流体Aの用途も、環境試験室やクリーンルームなどの室内冷却(冷房)に限らず、物品の冷却や機器の冷却などであってもよい。   The use of the cooled fluid A cooled by the evaporator Ev is not limited to indoor cooling (cooling) such as an environmental test room or a clean room, but may be cooling of articles or equipment.

被冷却流体Aの蒸発器出口温度設定値tosに対応する圧縮機吸込圧力設定値pssを設定するのに、被冷却流体Aの蒸発器出口温度設定値tosとそれに対応する圧縮機吸込圧力設定値pssとを予め書き込んだデータテーブルを設けておき、このデータテーブルを用いて被冷却流体Aの蒸発器出口温度設定値tosに対応する圧縮機吸込圧力設定値pssを設定するようにしてもよい。   In order to set the compressor suction pressure set value pss corresponding to the evaporator outlet temperature set value tos of the cooled fluid A, the evaporator outlet temperature set value tos of the cooled fluid A and the corresponding compressor suction pressure set value A data table in which pss is written in advance may be provided, and the compressor suction pressure set value pss corresponding to the evaporator outlet temperature set value tos of the fluid A to be cooled may be set using this data table.

被冷却流体Aの蒸発器出口温度設定値tosは人為操作により設定するものに限らず、空調対象室の室内温度設定値や測定室内温湿度などに基づいて自動的に設定するものであってもよい。   The evaporator outlet temperature set value tos of the fluid A to be cooled is not limited to that set by human operation, but may be set automatically based on the room temperature set value of the air-conditioning target room, the measurement room temperature and humidity, etc. Good.

上述の実施形態では、圧縮機回転数nが圧縮機回転数下限値ndに至った状態において、第1短絡路2及び第2短絡路3を通じた冷媒短絡流量q1,q2の調整により圧縮機出力Gを調整するようにしたが、この冷媒短絡流量q1,q2の調整による圧縮機出力Gの調整を省略して、圧縮機回転数nの調整のみにより圧縮機出力Gを調整するようにしてもよい。   In the embodiment described above, the compressor output is adjusted by adjusting the refrigerant short circuit flow rates q1 and q2 through the first short circuit 2 and the second short circuit 3 in a state where the compressor speed n reaches the compressor speed lower limit nd. Although G is adjusted, adjustment of the compressor output G by adjusting the refrigerant short circuit flow rates q1 and q2 is omitted, and the compressor output G is adjusted only by adjusting the compressor rotational speed n. Good.

前述の実施形態では、冷媒回路KrにアキュムレータAqを介装した例を示したが、圧縮機Cmの運転停止時において液冷媒や潤滑油を回収できて冷媒回路Krに液冷媒や潤滑油が残らないようにできる場合などでは、このアキュムレータAqを省略してもよい。   In the above-described embodiment, the accumulator Aq is provided in the refrigerant circuit Kr. However, when the compressor Cm is stopped, the liquid refrigerant and the lubricating oil can be recovered, and the liquid refrigerant and the lubricating oil remain in the refrigerant circuit Kr. This accumulator Aq may be omitted when it can be avoided.

また、低温側過渡運転の初期において高温モード運転を保持する時間Tは、予め定めた所定時間あるいは冷凍回路Crの運転状況等に応じてに変化する時間など、どのような時間であってもよく、少なくとも低温側過渡運転の初期において高温モード運転を保持する時間状態を現出させる時間であればよい。   Further, the time T during which the high temperature mode operation is maintained in the initial stage of the low temperature side transient operation may be any time such as a predetermined time or a time that varies depending on the operating condition of the refrigeration circuit Cr. Any time may be used as long as the time state in which the high-temperature mode operation is maintained at least in the initial stage of the low-temperature side transient operation.

本発明よる流体冷却方法及び流体冷却装置は、各種分野における種々の冷却用途において用いることができる。   The fluid cooling method and the fluid cooling device according to the present invention can be used in various cooling applications in various fields.

Δp 圧力損失値
Δt 内外温度差
2 第1短絡路
3 第2短絡路
4 制御手段
A 被冷却流体
Cm 圧縮機
Co 凝縮器
Cr 冷凍回路
Ev 蒸発器
Ex 膨張弁
G 圧縮機出力
SV1 第1制御弁
MV1 第1制御弁
SV2 第2制御弁
MV2 第2制御弁
MVe 蒸発圧力制御弁
R 冷媒
n 圧縮機回転数
nd 圧縮機回転数下限値
pe 蒸発圧力
pes 蒸発圧力設定値
ps 圧縮機吸込圧力
pss 圧縮機吸込圧力設定値
psu 圧縮機吸込圧力上限値
q1 短絡流量
q2 短絡流量
sh 過熱度
shs 過熱度設定値
te 蒸発温度
tes 蒸発温度設定値
to 蒸発器出口温度
tos 蒸発器出口温度設定値
tps 圧縮機吸込圧力飽和温度
ts 圧縮機入口冷媒温度
tss 圧縮機入口冷媒温度設定値
Δp Pressure loss value Δt Internal / external temperature difference 2 First short circuit 3 Second short circuit 4 Control means A Fluid to be cooled Cm Compressor Co Condenser Cr Refrigeration circuit Ev Evaporator Ex Expansion valve G Compressor output SV1 First control valve MV1 1st control valve SV2 2nd control valve MV2 2nd control valve MVe Evaporation pressure control valve R Refrigerant n Compressor rotation speed nd Compressor rotation speed lower limit pe Evaporation pressure pes Evaporation pressure set value ps Compressor suction pressure pss Compressor suction Pressure set value psu Compressor suction pressure upper limit value q1 Short circuit flow rate q2 Short circuit flow rate sh Superheat degree shs Superheat degree set value te Evaporation temperature tes Evaporation temperature set value to Evaporator outlet temperature tos Evaporator outlet temperature set value tps Compressor suction pressure saturation Temperature ts Compressor inlet refrigerant temperature tss Compressor inlet refrigerant temperature setting

Claims (11)

流体を蒸気圧縮式の冷凍回路における蒸発器において冷凍回路冷媒との熱交換により冷却する流体冷却方法であって、
被冷却流体の蒸発器出口温度設定値に対応する圧縮機吸込圧力設定値を設定し、
圧縮機吸込圧力設定値が圧縮機吸込圧力上限値以下のときには、低温モード運転として、蒸発器冷媒出口と圧縮機冷媒入口との間に介在させた蒸発圧力制御弁を全開にした状態で、圧縮機出力の調整による蒸発圧力の調整により被冷却流体の蒸発器出口温度を蒸発器出口温度設定値に調整し、
圧縮機吸込圧力設定値が圧縮機吸込圧力上限値より高いときには、高温モード運転として、圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力上限値に調整するとともに、蒸発圧力制御弁の開度の調整による蒸発圧力の調整により被冷却流体の蒸発器出口温度を蒸発器出口温度設定値に調整する流体冷却方法。
A fluid cooling method for cooling a fluid by heat exchange with a refrigeration circuit refrigerant in an evaporator in a vapor compression refrigeration circuit,
Set the compressor suction pressure setting value corresponding to the evaporator outlet temperature setting value of the fluid to be cooled,
When the compressor suction pressure set value is less than or equal to the compressor suction pressure upper limit value, the low pressure mode operation is performed with the evaporation pressure control valve interposed between the evaporator refrigerant outlet and the compressor refrigerant inlet fully opened. Adjust the evaporator outlet temperature of the fluid to be cooled to the evaporator outlet temperature set value by adjusting the evaporation pressure by adjusting the machine output,
When the compressor suction pressure set value is higher than the compressor suction pressure upper limit value, the compressor suction pressure is adjusted to the compressor suction pressure upper limit value by adjusting the compressor output as the high temperature mode operation, and the evaporation pressure control valve is opened. The fluid cooling method of adjusting the evaporator outlet temperature of the fluid to be cooled to the evaporator outlet temperature set value by adjusting the evaporation pressure by adjusting the degree.
低温モード運転及び高温モード運転の夫々において、冷凍回路における膨張弁の開度の調整により、圧縮機吸込圧力飽和温度における過熱度を過熱度設定値に調整する請求項1記載の流体冷却方法。   2. The fluid cooling method according to claim 1, wherein in each of the low temperature mode operation and the high temperature mode operation, the superheat degree at the compressor suction pressure saturation temperature is adjusted to a superheat degree set value by adjusting an opening degree of the expansion valve in the refrigeration circuit. 圧縮機吸込圧力設定値を設定するのに、
被冷却流体の蒸発器出口温度設定値から蒸発器伝熱壁の内外温度差を減算した値を蒸発温度設定値とし、
蒸発温度と蒸発圧力との相関に従って蒸発温度設定値をそれに対応する蒸発圧力設定値に換算し、
この蒸発圧力設定値から蒸発圧力制御弁における圧力損失値を減算した値を圧縮機吸込圧力設定値として設定する請求項1又は2記載の流体冷却方法。
To set the compressor suction pressure setting value,
The value obtained by subtracting the internal / external temperature difference of the evaporator heat transfer wall from the evaporator outlet temperature setting value of the fluid to be cooled is used as the evaporation temperature setting value.
Convert the evaporation temperature set value to the corresponding evaporation pressure set value according to the correlation between the evaporation temperature and the evaporation pressure,
The fluid cooling method according to claim 1 or 2, wherein a value obtained by subtracting a pressure loss value at the evaporation pressure control valve from the evaporation pressure setting value is set as a compressor suction pressure setting value.
流体を蒸気圧縮式の冷凍回路における蒸発器において冷凍回路冷媒との熱交換により冷却する流体冷却装置であって、
装置を運転制御する制御手段を備え、
この制御手段は、被冷却流体の蒸発器出口温度設定値に対応する圧縮機吸込圧力設定値を設定するとともに、
圧縮機吸込圧力設定値が圧縮機吸込圧力上限値以下のときには、低温モード運転として、蒸発器冷媒出口と圧縮機冷媒入口との間に介在させた蒸発圧力制御弁を全開にした状態で、圧縮機出力の調整による蒸発圧力の調整により被冷却流体の蒸発器出口温度を蒸発器出口温度設定値に調整し、
圧縮機吸込圧力設定値が圧縮機吸込圧力上限値より高いときには、高温モード運転として、圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力上限値に調整するとともに、蒸発圧力制御弁の開度の調整による蒸発圧力の調整により被冷却流体の蒸発器出口温度を蒸発器出口温度設定値に調整する構成にしてある流体冷却装置。
A fluid cooling device that cools fluid by heat exchange with a refrigerant in a refrigeration circuit in an evaporator in a vapor compression refrigeration circuit,
Comprising control means for controlling the operation of the device;
This control means sets the compressor suction pressure setting value corresponding to the evaporator outlet temperature setting value of the fluid to be cooled,
When the compressor suction pressure set value is less than or equal to the compressor suction pressure upper limit value, the low pressure mode operation is performed with the evaporation pressure control valve interposed between the evaporator refrigerant outlet and the compressor refrigerant inlet fully opened. Adjust the evaporator outlet temperature of the fluid to be cooled to the evaporator outlet temperature set value by adjusting the evaporation pressure by adjusting the machine output,
When the compressor suction pressure set value is higher than the compressor suction pressure upper limit value, the compressor suction pressure is adjusted to the compressor suction pressure upper limit value by adjusting the compressor output as the high temperature mode operation, and the evaporation pressure control valve is opened. A fluid cooling device configured to adjust the evaporator outlet temperature of the fluid to be cooled to the evaporator outlet temperature set value by adjusting the evaporation pressure by adjusting the degree.
前記制御手段は、低温モード運転及び高温モード運転の夫々において、冷凍回路における膨張弁の開度の調整により圧縮機吸込圧力飽和温度における過熱度を過熱度設定値に調整する構成にしてある請求項4記載の流体冷却装置。   The control means is configured to adjust a superheat degree at a compressor suction pressure saturation temperature to a superheat degree set value by adjusting an opening degree of an expansion valve in a refrigeration circuit in each of a low temperature mode operation and a high temperature mode operation. 5. The fluid cooling device according to 4. 前記制御手段は、圧縮機吸込圧力設定値を設定するのに、
被冷却流体の蒸発器出口温度設定値から蒸発器伝熱壁の内外温度差を減算した値を蒸発温度設定値とし、
蒸発温度と蒸発圧力との相関に従って蒸発温度設定値をそれに対応する蒸発圧力設定値に換算し、
この蒸発圧力設定値から蒸発圧力制御弁における圧力損失値を減算した値を圧縮機吸込圧力設定値として設定する構成にしてある請求項4又は5記載の流体冷却装置。
The control means sets the compressor suction pressure set value,
The value obtained by subtracting the internal / external temperature difference of the evaporator heat transfer wall from the evaporator outlet temperature setting value of the fluid to be cooled is used as the evaporation temperature setting value.
Convert the evaporation temperature set value to the corresponding evaporation pressure set value according to the correlation between the evaporation temperature and the evaporation pressure,
The fluid cooling device according to claim 4 or 5, wherein a value obtained by subtracting a pressure loss value at the evaporation pressure control valve from the evaporation pressure set value is set as a compressor suction pressure set value.
前記制御手段は、圧縮機吸込圧力設定値が圧縮機吸込圧力上限値以下の値から圧縮機吸込圧力上限値より高い値になったとき、低温モード運転から高温モード運転へ移行する高温側過渡運転として、
蒸発圧力制御弁を全開にした状態で、圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力上限値に調整する制御を開始し、
その後、圧縮機吸込圧力が圧縮機吸込圧力上限値に至った後に、蒸発圧力制御弁の開度の調整による蒸発圧力の調整により被冷却流体の蒸発器出口温度を蒸発器出口温度設定値に調整する制御を開始して、高温モード運転に移行する構成にしてある請求項4〜6のいずれか1項に記載の流体冷却装置。
When the compressor suction pressure setting value is higher than the compressor suction pressure upper limit value and higher than the compressor suction pressure upper limit value, the control means is a high temperature side transient operation that shifts from the low temperature mode operation to the high temperature mode operation. As
With the evaporation pressure control valve fully open, start control to adjust the compressor suction pressure to the compressor suction pressure upper limit by adjusting the compressor output,
After that, after the compressor suction pressure reaches the compressor suction pressure upper limit value, the evaporator outlet temperature of the fluid to be cooled is adjusted to the evaporator outlet temperature set value by adjusting the evaporation pressure by adjusting the opening of the evaporation pressure control valve The fluid cooling device according to any one of claims 4 to 6, wherein a control for starting the operation is started to shift to a high temperature mode operation.
前記制御手段は、高温側過渡運転において、
蒸発圧力制御弁を全開にするとともに、膨張弁の開度を高温側過渡運転の開始時における開度に保持した状態で、圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力上限値に調整する制御を開始し、
その後、圧縮機吸込圧力が圧縮機吸込圧力上限値に至るまでの間、膨張弁の開度変化速度を緩速度に制限した状態での膨張弁開度の調整により圧縮機吸込圧力飽和温度における過熱度を過熱度設定値に調整する制御を実行する構成にしてある請求項7記載の流体冷却装置。
In the high temperature side transient operation, the control means,
While fully opening the evaporation pressure control valve and maintaining the opening of the expansion valve at the opening at the start of the high temperature side transient operation, the compressor suction pressure is adjusted to the compressor suction pressure upper limit by adjusting the compressor output. Start the control to adjust,
After that, until the compressor suction pressure reaches the compressor suction pressure upper limit value, overheating at the compressor suction pressure saturation temperature by adjusting the expansion valve opening with the expansion valve opening change rate limited to a slow speed. The fluid cooling device according to claim 7, wherein control is performed to adjust the degree to a superheat degree set value.
前記制御手段は、圧縮機吸込圧力設定値が圧縮機吸込圧力上限値より高い値から圧縮機吸込圧力上限値以下の値になったとき、高温モード運転から低温モード運転へ移行する低温側過渡運転として、
所定時間の間、圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力上限値に調整する制御を維持するとともに、蒸発圧力制御弁の開度の調整による蒸発圧力の調整により被冷却流体の蒸発器出口温度を蒸発器出口温度設定値に調整する制御を維持して、高温モード運転を保持し、
続いて、蒸発圧力制御弁の開度をそのときの開度に保持した状態で圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力設定値に調整する制御を開始し、
更に続いて、圧縮機吸込圧力が圧縮機吸込圧力設定値に至った後に、圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力設定値に調整する制御を継続しながら、蒸発圧力制御弁の開度変化速度を緩速度に制限した状態で蒸発圧力制御弁の開度を全開開度まで増大させる制御を開始し、
その後、蒸発圧力制御弁の開度が全開開度に至った後に、圧縮機出力の調整による蒸発圧力の調整により被冷却流体の蒸発器出口温度を蒸発器出口温度設定値に調整する制御を開始して、低温モード運転に移行する構成にしてある請求項4〜8のいずれか1項に記載の流体冷却装置。
The control means, when the compressor suction pressure set value is lower than the compressor suction pressure upper limit value from the value higher than the compressor suction pressure upper limit value, the low temperature side transient operation to shift from the high temperature mode operation to the low temperature mode operation As
During the predetermined time, the control of adjusting the compressor suction pressure to the compressor suction pressure upper limit value by adjusting the compressor output is maintained, and the adjustment of the evaporation pressure by adjusting the opening of the evaporation pressure control valve adjusts the fluid to be cooled. Maintain control to adjust the evaporator outlet temperature to the evaporator outlet temperature set value, maintain high temperature mode operation,
Subsequently, the control to adjust the compressor suction pressure to the compressor suction pressure set value by adjusting the compressor output while maintaining the opening of the evaporation pressure control valve at the opening at that time,
Subsequently, after the compressor suction pressure reaches the compressor suction pressure set value, the evaporation pressure control valve continues to control to adjust the compressor suction pressure to the compressor suction pressure set value by adjusting the compressor output. Start the control to increase the opening of the evaporation pressure control valve to the fully open position with the opening change rate of
After that, after the opening of the evaporation pressure control valve reaches the fully open position, control to adjust the evaporator outlet temperature of the fluid to be cooled to the evaporator outlet temperature set value by adjusting the evaporation pressure by adjusting the compressor output is started. The fluid cooling device according to claim 4, wherein the fluid cooling device is configured to shift to a low-temperature mode operation.
前記制御手段は、低温側過渡運転において、
所定時間の間、高温モード運転を保持した後、蒸発圧力制御弁の開度をそのときの開度に保持するとともに膨張弁の開度をそのときの開度に保持した状態で圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力設定値に調整する制御を開始し、
その後、圧縮機出力の調整により圧縮機吸込圧力を圧縮機吸込圧力設定値に調整する制御を継続しながら、蒸発圧力制御弁の開度変化速度を緩速度に制限した状態で蒸発圧力制御弁の開度を全開開度まで増大させる制御を開始して、蒸発圧力制御弁の開度が全開開度に至るまでの間、膨張弁の開度変化速度を緩速度に制限した状態での膨張弁開度の調整により圧縮機吸込圧力飽和温度における過熱度を過熱度設定値に調整する制御を実行する構成にしてある請求項9記載の流体冷却装置。
The control means, in the low temperature side transient operation,
After maintaining the high temperature mode operation for a predetermined time, the opening of the evaporative pressure control valve is maintained at the current opening and the opening of the expansion valve is maintained at the current opening. Start the control to adjust the compressor suction pressure to the compressor suction pressure set value by adjustment,
After that, while continuing the control to adjust the compressor suction pressure to the compressor suction pressure set value by adjusting the compressor output, the evaporative pressure control valve The expansion valve with the rate of change of the opening of the expansion valve limited to a slow speed until the opening of the evaporative pressure control valve reaches the fully opened position. The fluid cooling device according to claim 9, wherein control is performed to adjust the degree of superheat at the compressor suction pressure saturation temperature to a superheat degree set value by adjusting the opening.
圧縮機冷媒出口を圧縮機冷媒入口に短絡する第1短絡路を設けるとともに、凝縮器冷媒出口を圧縮機冷媒入口に短絡する第2短絡路を設け、
第1短絡路に、その第1短絡路を開閉するとともに第1短絡路を通じた圧縮機吐出冷媒の短絡流量を調整する第1制御弁を介在させ、
第2短絡路に、その第2短絡路を開閉するとともに第2短絡路を通じた凝縮器送出冷媒の短絡流量を調整する第2制御弁を介在させ、
前記制御手段は、圧縮機回転数が圧縮機回転数下限値より大きい状態では、
第1短絡路を第1制御弁により閉じるとともに第2短絡路を第2制御弁により閉じた状態で、圧縮機回転数の調整により圧縮機出力を調整し、
圧縮機回転数が圧縮機回転数下限値に至った状態では、
第2短絡路を通じた凝縮器送出冷媒の短絡流量を第2制御弁により調整して圧縮機入口冷媒温度を圧縮機入口冷媒温度設定値に調整するとともに、第1短絡路を通じた圧縮機吐出冷媒の短絡流量を第1制御弁により調整することで、圧縮機出力を調整する構成にしてある請求項4〜10のいずれか1項に記載の流体冷却装置。
A first short circuit that short-circuits the compressor refrigerant outlet to the compressor refrigerant inlet and a second short circuit that short-circuits the condenser refrigerant outlet to the compressor refrigerant inlet;
A first control valve that opens and closes the first short circuit and adjusts the short circuit flow rate of the refrigerant discharged through the first short circuit through the first short circuit;
A second control valve that opens and closes the second short circuit and adjusts the short circuit flow rate of the refrigerant sent through the second short circuit through the second short circuit;
The control means is in a state where the compressor rotational speed is larger than the compressor rotational speed lower limit value,
With the first short circuit closed by the first control valve and the second short circuit closed by the second control valve, the compressor output is adjusted by adjusting the compressor speed,
In the state where the compressor speed has reached the lower limit value of the compressor speed,
The short circuit flow rate of the refrigerant sent through the second short circuit is adjusted by the second control valve to adjust the compressor inlet refrigerant temperature to the compressor inlet refrigerant temperature set value, and the compressor discharge refrigerant through the first short circuit. The fluid cooling device according to claim 4, wherein the compressor output is adjusted by adjusting the short-circuit flow rate of the compressor by using the first control valve.
JP2011097488A 2011-04-25 2011-04-25 Fluid cooling method and fluid cooling device Active JP5754627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097488A JP5754627B2 (en) 2011-04-25 2011-04-25 Fluid cooling method and fluid cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097488A JP5754627B2 (en) 2011-04-25 2011-04-25 Fluid cooling method and fluid cooling device

Publications (2)

Publication Number Publication Date
JP2012229838A true JP2012229838A (en) 2012-11-22
JP5754627B2 JP5754627B2 (en) 2015-07-29

Family

ID=47431529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097488A Active JP5754627B2 (en) 2011-04-25 2011-04-25 Fluid cooling method and fluid cooling device

Country Status (1)

Country Link
JP (1) JP5754627B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113899A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JP2021055932A (en) * 2019-09-30 2021-04-08 三機工業株式会社 Cooling device and control method of cooling device
CN115325812A (en) * 2022-07-19 2022-11-11 广东瑞星新能源科技有限公司 Dryer, control method and readable storage medium

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196555A (en) * 1986-02-24 1987-08-29 三洋電機株式会社 Refrigerator
JPH03164659A (en) * 1990-10-24 1991-07-16 Fuji Electric Co Ltd Refrigerator
JPH05133621A (en) * 1991-11-11 1993-05-28 Mitsubishi Electric Corp Cooling device
JPH06323576A (en) * 1993-05-17 1994-11-25 Takasago Thermal Eng Co Ltd Operation method of heat source system for environmental testing room
JPH09196477A (en) * 1996-01-17 1997-07-31 Tokyo Gas Co Ltd Compression type refrigerator and method for controlling the operation thereof
JP2001280669A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating cycle device
JP2005055053A (en) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd Air conditioner
JP2006112753A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Refrigerating air conditioner
JP2006220407A (en) * 2005-01-13 2006-08-24 Denso Corp Expansion valve for refrigeration cycle
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method
JP2007057221A (en) * 2005-07-29 2007-03-08 Daikin Ind Ltd Refrigerating apparatus
JP2010175203A (en) * 2009-01-30 2010-08-12 Hitachi Appliances Inc Refrigeration system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196555A (en) * 1986-02-24 1987-08-29 三洋電機株式会社 Refrigerator
JPH03164659A (en) * 1990-10-24 1991-07-16 Fuji Electric Co Ltd Refrigerator
JPH05133621A (en) * 1991-11-11 1993-05-28 Mitsubishi Electric Corp Cooling device
JPH06323576A (en) * 1993-05-17 1994-11-25 Takasago Thermal Eng Co Ltd Operation method of heat source system for environmental testing room
JPH09196477A (en) * 1996-01-17 1997-07-31 Tokyo Gas Co Ltd Compression type refrigerator and method for controlling the operation thereof
JP2001280669A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating cycle device
JP2005055053A (en) * 2003-08-04 2005-03-03 Matsushita Electric Ind Co Ltd Air conditioner
JP2006112753A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Refrigerating air conditioner
JP2006220407A (en) * 2005-01-13 2006-08-24 Denso Corp Expansion valve for refrigeration cycle
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method
JP2007057221A (en) * 2005-07-29 2007-03-08 Daikin Ind Ltd Refrigerating apparatus
JP2010175203A (en) * 2009-01-30 2010-08-12 Hitachi Appliances Inc Refrigeration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113899A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JP2021055932A (en) * 2019-09-30 2021-04-08 三機工業株式会社 Cooling device and control method of cooling device
JP7374691B2 (en) 2019-09-30 2023-11-07 三機工業株式会社 Cooling device and cooling device control method
CN115325812A (en) * 2022-07-19 2022-11-11 广东瑞星新能源科技有限公司 Dryer, control method and readable storage medium
CN115325812B (en) * 2022-07-19 2024-03-19 广东瑞星新能源科技有限公司 Dryer, control method, and readable storage medium

Also Published As

Publication number Publication date
JP5754627B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6370545B2 (en) Heat pump system
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP5533209B2 (en) Air conditioner
CN111578467A (en) Control method of air conditioning system and air conditioning system
JP5173857B2 (en) Air conditioner
JP2014119145A (en) Air conditioner
EP3922928A1 (en) Outdoor unit of refrigeration device and refrigeration device comprising same
WO2019053876A1 (en) Air conditioning device
JP2009002635A (en) Heat source machine, its control method, heat source system and its operating method
JP7224480B2 (en) Outdoor unit and refrigeration cycle equipment
JP5754627B2 (en) Fluid cooling method and fluid cooling device
JP5872110B1 (en) Air conditioner
JP2011196630A (en) Multi-room type air conditioning device
JP2014085078A (en) Air conditioner
JP2011007482A (en) Air conditioner
JP5463995B2 (en) Multi-room air conditioner
JP6400223B2 (en) Air conditioner and control method of air conditioner
JP5313774B2 (en) Air conditioner
JP5517891B2 (en) Air conditioner
JP2015014372A (en) Air conditioner
JP2014077560A (en) Air conditioner
US9500397B2 (en) Refrigerant system and a control method the same
JP5619492B2 (en) Air conditioner
JP2009293887A (en) Refrigerating device
WO2016194185A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5754627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250