JP2005055053A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005055053A
JP2005055053A JP2003285645A JP2003285645A JP2005055053A JP 2005055053 A JP2005055053 A JP 2005055053A JP 2003285645 A JP2003285645 A JP 2003285645A JP 2003285645 A JP2003285645 A JP 2003285645A JP 2005055053 A JP2005055053 A JP 2005055053A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
temperature
indoor
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285645A
Other languages
Japanese (ja)
Inventor
Takayuki Izeki
貴之 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003285645A priority Critical patent/JP2005055053A/en
Publication of JP2005055053A publication Critical patent/JP2005055053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep a temperature of a heat exchanger within a range of certain specific temperatures, to prevent the breakage of a compressor caused by the rise of suction pressure of the compressor, and to effectively control the frosting on an apparatus without impairing amenity. <P>SOLUTION: When a temperature of an indoor heat exchanger 13 of an air conditioner is lowered, the operation is performed in a state that an operation frequency of a compressor 2 is lowered to increase the temperature to be higher than a temperature of an indoor heat exchanger temperature setting storing device 1. When a value of a suction pressure detecting device 10 of the compressor 2 is higher than a value of a suction pressure setting storing device 29, a motor-driven expansion valve 9 mounted in a suction pipe 8 is controlled in the closing direction to be over a valve opening degree of the motor-driven expansion valve 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮機をインバータにより可変制御する空気調和システムに関する。   The present invention relates to an air conditioning system in which a compressor is variably controlled by an inverter.

従来の空気調和機では、容量(周波数)可変形圧縮機を用い、図10に示すように室内機の熱交換器温度が露付き制御設定値Txに達すると容量(周波数)を制御し、室内機の吹き出し口等の露付きを回避するものが提案されている(例えば、特許文献1参照)。
特開平4−106357号公報
In a conventional air conditioner, a capacity (frequency) variable type compressor is used, and when the temperature of the heat exchanger of the indoor unit reaches the dew control value Tx as shown in FIG. There has been proposed one that avoids dew condensation such as the air outlet of the machine (see, for example, Patent Document 1).
JP-A-4-106357

しかしながら、従来の空気調和装置では、圧縮機のオイル供給は圧縮機回転数に依存し、容量(周波数)を下げすぎた場合圧縮機メカ部へのオイル供給能力が低下し、圧縮機の信頼性が著しく低下するため、容量(周波数)の低下には下限があった。また、容量(周波数)の低下により圧縮機の吸入圧力が上昇し、軸受け過重が増加しスラスト軸受けの損傷がおき圧縮機の信頼性が著しく低下するため、圧縮機容量(周波数)低下で熱交換器の温度上昇による露付き回避制御やサーモオフ寸前の低能力運転(低周波数運転)には限界があった。   However, in the conventional air conditioner, the oil supply of the compressor depends on the rotation speed of the compressor, and if the capacity (frequency) is reduced too much, the oil supply capacity to the compressor mechanical part is lowered, and the reliability of the compressor Has a lower limit, so there was a lower limit to the decrease in capacity (frequency). In addition, the suction pressure of the compressor increases due to a decrease in capacity (frequency), bearing overload increases, thrust bearings are damaged, and the reliability of the compressor is significantly reduced, so heat exchange occurs when the compressor capacity (frequency) decreases. There was a limit to dew evasion control due to temperature rise of the vessel and low capacity operation (low frequency operation) just before the thermo-off.

本発明は上記従来の欠点を解消するもので、圧縮機などの機器を保護しながら快適性を損なわず効果的に機器を制御するものである。   The present invention eliminates the above-mentioned conventional drawbacks, and effectively controls equipment without impairing comfort while protecting equipment such as a compressor.

上記課題を解決するために本発明は、室内機熱交換器温度と圧縮機吸入圧力検知装置の信号により圧縮機吸入管に設けた冷媒流量調整装置を制御するものである。   In order to solve the above-described problems, the present invention controls a refrigerant flow rate adjusting device provided in a compressor suction pipe based on an indoor unit heat exchanger temperature and a signal from a compressor suction pressure detection device.

この構成をなすことにより、室内熱交換器をある一定の温度範囲に保ち、圧縮機などの機器を保護し、かつ快適性を損なわず効果的に機器を制御することが可能となる。   With this configuration, the indoor heat exchanger can be maintained in a certain temperature range, equipment such as a compressor can be protected, and equipment can be effectively controlled without impairing comfort.

以上のように、本発明のこうせいによれば、露付き制御時やサーモオフ寸前の低能力運転時の圧縮機低周波運転時でも吸入圧力を低い状態で運転でき(室内熱交換器温度は高い状態)、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。   As described above, according to this embodiment of the present invention, it is possible to operate at a low suction pressure even during low-frequency operation of the compressor at the time of dew control or low-performance operation just before the thermo-off (the indoor heat exchanger temperature is high). ), It is possible to operate the air conditioner effectively while protecting the equipment such as the compressor and without impairing the comfort.

また、空気調和装置の室内機の吹き出し口周りの露付きを回避できると同時に圧縮機の最低運転周波数を高く設定でき、圧縮機の信頼性がさらに向上する。よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。   Further, the dew around the outlet of the indoor unit of the air conditioner can be avoided, and at the same time, the minimum operating frequency of the compressor can be set high, and the reliability of the compressor is further improved. Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

さらに、電磁弁を使用することによりコストダウンが図られる   Furthermore, the cost can be reduced by using a solenoid valve.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和機の冷凍サイクル図の一例であり、図2は制御ブロック図、図3はフローチャート図である。
(Embodiment 1)
1 is an example of a refrigeration cycle diagram of an air conditioner according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram, and FIG. 3 is a flowchart.

図1において、室外機1にはインバータ駆動の容量(周波数)可変形圧縮機2(以下単に圧縮機と称す)と、室外熱交換器3と、室外送風機4、冷媒液管5と、冷媒ガス管6と、冷暖房切換用の四方弁7と圧縮機2の冷媒吸入管8にモータ等により弁開度をパルス制御可能な電動冷媒膨張弁9と圧縮機2の吸入圧力を検知する吸入圧力検知装置10が設けられている。   In FIG. 1, an outdoor unit 1 includes an inverter-driven capacity (frequency) variable compressor 2 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 3, an outdoor blower 4, a refrigerant liquid pipe 5, and a refrigerant gas. Intake pressure detection for detecting the suction pressure of the compressor 6 and the electric refrigerant expansion valve 9 capable of pulse-controlling the valve opening by a motor or the like to the pipe 6, the four-way valve 7 for switching between heating and cooling, and the refrigerant suction pipe 8 of the compressor 2 A device 10 is provided.

又、室外機1には室外の温度を検出する室外吸込み温度検知装置11が設けられている。   The outdoor unit 1 is provided with an outdoor suction temperature detection device 11 for detecting the outdoor temperature.

一方、室内機12には室内熱交換器13と、室内送風機14と、室外機とつながる冷媒液管5と室内熱交換器13の間にモータ等により弁開度(以下、パルスと称す)を制御可能な冷媒流量調整装置の電動冷媒膨張弁15と、室内熱交換器13に熱交換器の温度を検出する室内熱交換器温度検知装置16が設けられている。   On the other hand, the indoor unit 12 has a valve opening (hereinafter referred to as a pulse) by a motor or the like between the indoor heat exchanger 13, the indoor fan 14, the refrigerant liquid pipe 5 connected to the outdoor unit, and the indoor heat exchanger 13. An electric refrigerant expansion valve 15 of the controllable refrigerant flow control device and an indoor heat exchanger temperature detection device 16 for detecting the temperature of the heat exchanger are provided in the indoor heat exchanger 13.

また、室内機12には部屋の室温を検出する室内吸込み温度検知装置17と、居住者が希望する運転モード(冷房または暖房)と室温と運転あるいは停止を設定できる運転設定装置18が設けられている。   Further, the indoor unit 12 is provided with an indoor suction temperature detecting device 17 for detecting the room temperature of the room, and an operation setting device 18 for setting the operation mode (cooling or heating) desired by the resident and the room temperature and operation or stop. Yes.

上記構成の冷凍サイクルにおいて、冷房あるいは除湿運転時、圧縮機2から吐出された冷媒は四方弁7を介して室外熱交換器3へと流れ、室外送風機4の駆動により室外熱交換器3で室外空気と熱交換して凝縮液化し、次に電動冷媒膨張弁15を通過することにより減圧された冷媒は室内熱交換器13で蒸発した後に、冷媒ガス管6を通り四方弁7を介して再び圧縮機2に吸入される。   In the refrigeration cycle having the above configuration, during cooling or dehumidifying operation, the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 through the four-way valve 7 and is driven outdoor by the outdoor heat exchanger 3 by driving the outdoor blower 4. The refrigerant that has been condensed and liquefied by exchanging heat with air and then evaporated by passing through the electric refrigerant expansion valve 15 evaporates in the indoor heat exchanger 13, passes through the refrigerant gas pipe 6, and again through the four-way valve 7. It is sucked into the compressor 2.

次に、本発明の圧縮機周波数の制御及び冷媒吸入管の電動膨張弁の制御の流れについて
図2、図3を用いて説明する。
Next, the flow of control of the compressor frequency and control of the electric expansion valve of the refrigerant suction pipe according to the present invention will be described with reference to FIGS.

本発明の空気調和機の制御装置19には、居住者が希望する運転モード切替スイッチ20(冷房、ドライ、送風または暖房)と室内温度設定スイッチ21と運転停止スイッチ22で構成されている運転設定装置18の信号を記憶する運転モード記憶装置23と、室内吸込み温度検知装置17と、室内吸込み温度の設定値を記憶する室内吸込み温度設定記憶装置24と、室外吸込み温度検知装置11と、室外吸い込み温度の設定値を記憶する室外吸込み温度設定記憶装置25と、圧縮機2の冷媒吸入管8に設けられた吸入圧力検知装置10と、吸入圧力値の上限設定値を記憶する吸入圧力設定記憶装置29と以上の信号を定期的に検出するためのサンプリング時間を設定する運転時間設定記憶装置30と、以上の信号をサンプリング時間毎受けて圧縮機2の運転周波数や圧縮機2の冷媒吸入管8に設けられた電動膨張弁9の弁開度を決定する判定装置31と判定装置31の信号により、圧縮機2や電動膨張弁9を駆動する出力リレー回路32を有している。
居住者が運転停止スイッチ22を選択すると、運転モード記憶装置23、室内吸込み温度検知装置17、室外吸込み温度検知装置11、室内吸い込み温度設定記憶装置24、室外吸い込み温度設定記憶装置25の信号により判定装置31が圧縮機2の基本運転周波数Hz0を決定し出力リレー回路32が圧縮機2を駆動するが(図3、STEP0)、室内温度設定スイッチ21の信号と室内吸込み温度検知装置17の信号の差が小さいと判定装置31が判断すると圧縮機2の周波数を下げ(STEP2)さげ小さい能力で運転を行なうが、このとき吸入圧力検知装置10の値(Ps)が吸入圧力設定記憶装置29の値(Pa)を上回ると(STEP3)、下回るまで電動膨張弁9のパルスを減じる様に制御を行う(現状パルスPexよりPAパルス減じ、流量が少なくなる方向へ制御)(STEP4)。
The air conditioner control device 19 of the present invention has an operation setting composed of an operation mode changeover switch 20 (cooling, drying, air blowing or heating) desired by a resident, an indoor temperature setting switch 21 and an operation stop switch 22. An operation mode storage device 23 that stores a signal of the device 18, an indoor suction temperature detection device 17, an indoor suction temperature setting storage device 24 that stores a set value of the indoor suction temperature, an outdoor suction temperature detection device 11, and an outdoor suction. Outdoor suction temperature setting storage device 25 for storing temperature setting values, suction pressure detection device 10 provided in the refrigerant suction pipe 8 of the compressor 2, and suction pressure setting storage device for storing upper limit setting values of suction pressure values 29 and an operation time setting storage device 30 for setting a sampling time for periodically detecting the above signals, and receiving the above signals every sampling time The determination device 31 for determining the operating frequency of the compressor 2 and the valve opening degree of the electric expansion valve 9 provided in the refrigerant suction pipe 8 of the compressor 2 and the signal of the determination device 31 are used to control the compressor 2 and the electric expansion valve 9. It has an output relay circuit 32 for driving.
When the resident selects the operation stop switch 22, determination is made based on signals from the operation mode storage device 23, the indoor suction temperature detection device 17, the outdoor suction temperature detection device 11, the indoor suction temperature setting storage device 24, and the outdoor suction temperature setting storage device 25. The device 31 determines the basic operation frequency Hz0 of the compressor 2 and the output relay circuit 32 drives the compressor 2 (FIG. 3, STEP0), but the signals of the indoor temperature setting switch 21 and the indoor suction temperature detection device 17 When the determination device 31 determines that the difference is small, the frequency of the compressor 2 is lowered (STEP 2), and the operation is performed with a small capacity. At this time, the value (Ps) of the suction pressure detection device 10 is the value of the suction pressure setting storage device 29. When it exceeds (Pa) (STEP 3), control is performed so that the pulse of the electric expansion valve 9 is reduced until it falls below (PA pulse from the current pulse Pex). Reduced, control the direction of flow is reduced) (STEP4).

そして、この構成のよれば、圧縮機周波数低下による圧縮機吸入圧力に伴う圧縮機破壊を回避でき、機器の信頼性及び機器の信頼性及び圧縮機の信頼性が向上する。よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。   And according to this structure, the compressor destruction accompanying the compressor suction pressure by the compressor frequency fall can be avoided, and the reliability of an apparatus, the reliability of an apparatus, and the reliability of a compressor improve. Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

(実施の形態2)
図1は、本発明の実施の形態1における空気調和機の冷凍サイクル図の一例であり、図4は制御ブロック図、図5はフローチャート、図6は温度ゾーン図である。
(Embodiment 2)
1 is an example of a refrigeration cycle diagram of an air conditioner according to Embodiment 1 of the present invention, FIG. 4 is a control block diagram, FIG. 5 is a flowchart, and FIG. 6 is a temperature zone diagram.

本発明にかかる空気調和機の冷凍サイクル図は実施の形態1と同様なので説明は省略する。   Since the refrigeration cycle diagram of the air conditioner according to the present invention is the same as that of Embodiment 1, the description thereof is omitted.

次に、本発明の圧縮機周波数の制御及び冷媒吸入管の電動膨張弁の制御の流れについて
図4、図5、図6を用いて説明する。
Next, the flow of control of the compressor frequency and control of the electric expansion valve of the refrigerant suction pipe according to the present invention will be described with reference to FIGS. 4, 5, and 6.

本発明の空気調和機の制御装置19には、居住者が希望する運転モード切替スイッチ20(冷房、ドライ、送風または暖房)と室内温度設定スイッチ21と運転停止スイッチ22で構成されている運転設定装置18の信号を記憶する運転モード記憶装置23と、室内吸込み温度検知装置17と、室内吸込み温度の設定値を記憶する室内吸込み温度設定記憶装置24と、室外吸込み温度検知装置11と、室外吸い込み温度の設定値を記憶する室外吸込み温度設定記憶装置25と、室内熱交換器温度検知装置16と、室内側の熱交換器温度の判定値を記憶する室内熱交換器温度設定記憶装置1(26),室内熱交換器温度設定記憶装置2(27)と、圧縮機2の運転周波数の下限設定値を記憶する圧縮機最低周波数設定記憶装置28と、圧縮機2の冷媒吸入管8に設けられた吸入圧力検知装置10と、吸入圧力値の上限設定値を記憶する吸入圧力設定記憶装置29と、以上の信号を定期的に検出するためのサンプリング時間を設定する運転時間設定記憶装置30と、以上の信号をサンプリング時間毎受けて圧縮機2の運転周波数や圧縮機2の冷媒吸入管8に設けられた電動膨張弁9の弁開度を決定する判定装置31と判定装置31の信号により、圧縮機2や電動膨張弁9を駆動する出力リレー回路32を有している。   The air conditioner control device 19 of the present invention has an operation setting composed of an operation mode changeover switch 20 (cooling, drying, air blowing or heating) desired by a resident, an indoor temperature setting switch 21 and an operation stop switch 22. An operation mode storage device 23 that stores a signal of the device 18, an indoor suction temperature detection device 17, an indoor suction temperature setting storage device 24 that stores a set value of the indoor suction temperature, an outdoor suction temperature detection device 11, and an outdoor suction. The outdoor suction temperature setting storage device 25 for storing the temperature setting value, the indoor heat exchanger temperature detection device 16, and the indoor heat exchanger temperature setting storage device 1 (26 for storing the indoor heat exchanger temperature determination value) ), The indoor heat exchanger temperature setting storage device 2 (27), the compressor minimum frequency setting storage device 28 for storing the lower limit setting value of the operating frequency of the compressor 2, and the compressor 2 The suction pressure detection device 10 provided in the refrigerant suction pipe 8, the suction pressure setting storage device 29 for storing the upper limit set value of the suction pressure value, and the operation for setting the sampling time for periodically detecting the above signals. A time setting storage device 30; a determination device 31 that receives the above signals every sampling time and determines the operating frequency of the compressor 2 and the valve opening degree of the electric expansion valve 9 provided in the refrigerant suction pipe 8 of the compressor 2; An output relay circuit 32 that drives the compressor 2 and the electric expansion valve 9 is provided by a signal from the determination device 31.

居住者が運転モード切替スイッチ20で冷房またはドライを選択すると、運転モード記憶装置23、室内吸込み温度検知装置17、室外吸込み温度検知装置11、室内吸い込み温度設定記憶装置24、室外吸い込み温度設定記憶装置25の信号により判定装置31が圧縮機2の基本運転周波数Hz0を決定し出力リレー回路32が圧縮機2を駆動するが(図5、STEP0)、室内吸い込み温度検知装置17の値が室内吸込み温度設定記憶装置24(ここでは例えば27℃)、室外吸い込み温度検知装置11の値が室外吸込み温度設定記憶装置25(ここでは例えば27℃)以下の場合は、吹き出し温度が低いと室内機12の吹き出し回りに露がつく可能性があると判断し、図6に示す様に室内熱交換器13の温度がTd℃以下(図6のCゾーン)に突入すると(STEP9)判定装置31が圧縮機2の運転周波数をダウン(ここでは例えば前の運転周波数の0.9倍の値)するように出力リレー回路32に指示を出し、低い周波数で圧縮機2を駆動し圧縮機2の能力を低下させ、室内熱交換器13の温度を上ることにより、吹き出し温度を上昇させ、吹き出し口の周りに露がつかない様に制御する(STEP12)。 When the resident selects cooling or dry with the operation mode changeover switch 20, the operation mode storage device 23, the indoor suction temperature detection device 17, the outdoor suction temperature detection device 11, the indoor suction temperature setting storage device 24, and the outdoor suction temperature setting storage device. The determination device 31 determines the basic operation frequency Hz 0 of the compressor 2 based on the signal 25 and the output relay circuit 32 drives the compressor 2 (FIG. 5, STEP 0), but the value of the indoor suction temperature detection device 17 is the indoor suction. When the values of the temperature setting storage device 24 (here, for example, 27 ° C.) and the outdoor suction temperature detection device 11 are equal to or lower than the outdoor suction temperature setting storage device 25 (for example, 27 ° C. here), if the blowing temperature is low, the indoor unit 12 Judging that there is a possibility of dew around the blowout, the temperature of the indoor heat exchanger 13 is Td ° C. or lower as shown in FIG. (STEP 9), the determination device 31 instructs the output relay circuit 32 to lower the operating frequency of the compressor 2 (in this case, for example, 0.9 times the previous operating frequency). Then, the compressor 2 is driven to lower the capacity of the compressor 2 and the temperature of the indoor heat exchanger 13 is raised, thereby raising the blowing temperature and controlling the dew around the blowing outlet (STEP 12). .

判定装置31は運転時間設定記憶装置30に設定された時間ごとに以上の動作を繰り返すが、図6に示す様に、室内熱交換器温度13の値がTc℃以上(図6のBゾーン)に上昇すると判定装置31は圧縮機2の周波数ダウンをやめ、現周波数を維持する。このBゾーンは室内機12の吹き出し口に露が付かない各々の室内機固有の下限熱交換器温度に設定されている。   The determination device 31 repeats the above operation every time set in the operation time setting storage device 30, but, as shown in FIG. 6, the value of the indoor heat exchanger temperature 13 is Tc ° C. or more (B zone in FIG. 6). When it rises to, the determination device 31 stops the frequency reduction of the compressor 2 and maintains the current frequency. This B zone is set to the lower limit heat exchanger temperature unique to each indoor unit in which dew does not form at the outlet of the indoor unit 12.

再び温度がTd℃以下(Cゾーンに突入)になると周波数ダウンを行うが、室内熱交換器13の温度がTa℃以上(図6のAゾーンに突入)になると(STEP7)、判定装置31は室内熱交換器13の温度が十分高く、吹き出し温度も十分に高いと判断し、圧縮機2の運転周波数を基本運転周波数Hz0に戻す様に制御を行う(STEP8)。
しかし、室内熱交換器13の温度がTd℃以下(図6のCゾーン)に突入し、判定装置31が圧縮機2の運転周波数のダウンを繰り返すことにより、吸入圧力検知装置10の値
(Ps)が吸入圧力設定記憶装置29の値(Pa)を上回る(STEP5)、下回るまで電磁膨張弁9のパルスを減じる様に制御を行う(現状パルスPexよりPAパルス減じ、流量が少なくなる方向へ制御)(STEP6)。
When the temperature again falls below Td ° C. (entering into the C zone), the frequency is reduced, but when the temperature of the indoor heat exchanger 13 reaches Ta ° C. or above (entering into the A zone in FIG. 6) (STEP 7), the judging device 31 It is determined that the temperature of the indoor heat exchanger 13 is sufficiently high and the blowing temperature is also sufficiently high, and control is performed so that the operation frequency of the compressor 2 is returned to the basic operation frequency Hz 0 (STEP 8).
However, when the temperature of the indoor heat exchanger 13 falls below Td ° C. (C zone in FIG. 6) and the determination device 31 repeatedly decreases the operating frequency of the compressor 2, the value of the suction pressure detection device 10 (Ps ) Exceeds the value (Pa) of the suction pressure setting storage device 29 (STEP 5), and the control is performed so that the pulse of the electromagnetic expansion valve 9 is reduced until the value is lower (PA pulse is reduced from the current pulse Pex, and the flow rate is reduced). (STEP 6).

また、室内熱交換器13の温度がTd℃以下(図6のCゾーン)に突入し、判定装置31が圧縮機2の運転周波数のダウンを繰り返し、運転周波数(Hz)が運転周波数の下限値を設定した圧縮機最低周波数設定記憶装置28の値(Hza)に達すると(STEP10)、室内熱交換器13の温度がTc℃以上(図3のBゾーン)になるまで電磁膨張弁9のパルスを減じる様に制御を行う(現状パルスPexよりPAパルス減じ、流量が少なくなる方向へ制御)(STEP11)。   Further, the temperature of the indoor heat exchanger 13 enters Td ° C. or lower (C zone in FIG. 6), the determination device 31 repeatedly decreases the operating frequency of the compressor 2, and the operating frequency (Hz) is the lower limit value of the operating frequency. When the value (Hza) of the compressor minimum frequency setting storage device 28 that has set the value reaches (STEP 10), the pulse of the electromagnetic expansion valve 9 is kept until the temperature of the indoor heat exchanger 13 becomes Tc ° C. or higher (B zone in FIG. 3) (The control is performed so that the PA flow is reduced from the current pulse Pex and the flow rate is reduced) (STEP 11).

ここで、圧縮機最低周波数設定記憶装置29の値は圧縮機2のメカ部にオイルを供給するのに必要な最低周波数で、これ以上周波数を下げるとオイルの供給が不足し、圧縮機2が破壊に至るという個々の圧縮機に固有の性能確保に大切で厳守すべき重要なスペックである。   Here, the value of the compressor minimum frequency setting storage device 29 is the minimum frequency required to supply oil to the mechanical part of the compressor 2. If the frequency is further reduced, the supply of oil becomes insufficient, and the compressor 2 It is an important specification that is important for ensuring the performance inherent to individual compressors leading to destruction.

そしてこの構成のよれば、空気調和装置の室内機の吹き出し口周りの露付きを回避できると同時に圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。
よって、圧縮機などの機器を保護し、かつ快適性を損なわず効果的に空気調和装置の運転が可能となる。
According to this configuration, it is possible to avoid the dew around the air outlet of the indoor unit of the air conditioner, and at the same time, to avoid the destruction of the compressor due to the increase of the compressor suction pressure, thereby improving the reliability of the equipment and the reliability of the compressor. improves.
Therefore, it is possible to protect the equipment such as the compressor and to operate the air conditioner effectively without impairing comfort.

(実施の形態3)
図7は、本発明の実施の形態3における空気調和機の冷凍サイクル図の一例であり、図8は制御ブロック図、図9はフローチャート、図6は温度ゾーン図である。
図7において、室外機1にはインバータ駆動の容量(周波数)可変形圧縮機2(以下単に圧縮機と称す)と、室外熱交換器3と、室外送風機4、冷媒液管5と、冷媒ガス管6と、冷暖房切換用の四方弁7が設けられている。
(Embodiment 3)
7 is an example of a refrigeration cycle diagram of an air conditioner according to Embodiment 3 of the present invention, FIG. 8 is a control block diagram, FIG. 9 is a flowchart, and FIG. 6 is a temperature zone diagram.
In FIG. 7, the outdoor unit 1 includes an inverter-driven capacity (frequency) variable compressor 2 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 3, an outdoor blower 4, a refrigerant liquid pipe 5, and a refrigerant gas. A pipe 6 and a four-way valve 7 for switching between heating and cooling are provided.

又、圧縮機2の冷媒吸入管8は途中で二本に分岐されており、一方の配管には電磁弁34が設けられている。又圧縮機2の冷媒吸入管8には吸入圧力を検知する吸入圧力検知装置10が設けられている。又、室外機1には室外の温度を検出する室外吸込み温度検知装置11が設けられている。   Moreover, the refrigerant | coolant suction pipe 8 of the compressor 2 is branched into two on the way, and the solenoid valve 34 is provided in one piping. The refrigerant suction pipe 8 of the compressor 2 is provided with a suction pressure detection device 10 that detects the suction pressure. The outdoor unit 1 is provided with an outdoor suction temperature detection device 11 for detecting the outdoor temperature.

一方、室内機12には室内熱交換器13と、室内送風機14と、室外機とつながる冷媒液管5と室内熱交換器13の間にモータ等により弁開度をパルス制御可能な電動冷媒膨張弁15と、室内熱交換器13に熱交換器の温度を検出する室内熱交換器温度検知装置16が設けられている。   On the other hand, the indoor unit 12 includes an indoor heat exchanger 13, an indoor fan 14, an electric refrigerant expansion capable of pulse-controlling the valve opening by a motor or the like between the refrigerant liquid pipe 5 connected to the outdoor unit and the indoor heat exchanger 13. The indoor heat exchanger temperature detecting device 16 for detecting the temperature of the heat exchanger is provided in the valve 15 and the indoor heat exchanger 13.

また、室内機12には部屋の室温を検出する室内吸込み温度検知装置17と、居住者が希望する運転モード(冷房または暖房)と室温と運転あるいは停止を設定できる運転設定装置18が設けられている
上記構成の冷凍サイクルにおいて、冷房あるいは除湿運転時、圧縮機2から吐出された冷媒は四方弁7を介して室外熱交換器3へと流れ、室外送風機4の駆動により室外熱交換器3で室外空気と熱交換して凝縮液化し、次に電動冷媒膨張弁15を通過することにより減圧された冷媒は室内熱交換器13で蒸発した後に、冷媒ガス管6を通り四方弁7を介して再び圧縮機2に吸入される。
Further, the indoor unit 12 is provided with an indoor suction temperature detecting device 17 for detecting the room temperature of the room, and an operation setting device 18 for setting the operation mode (cooling or heating) desired by the resident and the room temperature and operation or stop. In the refrigeration cycle having the above-described configuration, during cooling or dehumidifying operation, the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 via the four-way valve 7, and is driven by the outdoor blower 4 in the outdoor heat exchanger 3. The refrigerant is condensed and liquefied by exchanging heat with outdoor air, and then the refrigerant decompressed by passing through the electric refrigerant expansion valve 15 evaporates in the indoor heat exchanger 13, passes through the refrigerant gas pipe 6, and passes through the four-way valve 7. It is sucked into the compressor 2 again.

電磁弁34が開の場合は分岐された2本の経路を通って、電磁弁34が閉の場合は1本のみを通って圧縮機2に吸入される。   When the electromagnetic valve 34 is open, it passes through two branched paths, and when the electromagnetic valve 34 is closed, it passes through only one path and is sucked into the compressor 2.

次に、本発明の圧縮機周波数の制御及び冷媒吸入管の電磁弁の制御について説明する
本発明の空気調和機の制御装置19には、居住者が希望する運転モード切替スイッチ20(冷房、ドライ、送風または暖房)と室内温度設定スイッチ21と運転停止スイッチ22で構成されている運転設定装置18の信号を記憶する運転モード記憶装置23と、室内吸込み温度検知装置17と、室内吸込み温度の設定値を記憶する室内吸込み温度設定記憶装置24と、室外吸込み温度検知装置11と、室外吸い込み温度の設定値を記憶する室外吸込み温度設定記憶装置25と、室内熱交換器温度検知装置16と、室内側の熱交換器温度の判定値を記憶する室内熱交換器温度設定記憶装置1(26)、室内熱交換器温度設定記憶装置2(27)と、圧縮機2の運転周波数の下限設定値を記憶する圧縮機最低周波数設定記憶装置28と、
圧縮機2の冷媒吸入管8に設けられた吸入圧力検知装置10と、吸入圧力値の上限設定値を記憶する吸入圧力設定記憶装置29と以上の信号を定期的に検出するためのサンプリング時間を設定する運転時間設定記憶装置30と、以上の信号をサンプリング時間毎受けて圧縮機2の運転周波数や圧縮機2の冷媒吸入管8に設けられた電磁弁34の開閉を決定する判定装置31と判定装置31の信号により、圧縮機2や電磁弁34を駆動する出力リレー回路32を有している。
Next, the control device 19 for the air conditioner of the present invention, which explains the control of the compressor frequency and the control of the solenoid valve of the refrigerant suction pipe of the present invention, has an operation mode changeover switch 20 (cooling, dry operation) desired by the resident. , Ventilation or heating), an operation mode storage device 23 for storing signals of an operation setting device 18 constituted by an indoor temperature setting switch 21 and an operation stop switch 22, an indoor suction temperature detection device 17, and setting of the indoor suction temperature. Indoor suction temperature setting storage device 24 for storing values, outdoor suction temperature detection device 11, outdoor suction temperature setting storage device 25 for storing set values of outdoor suction temperature, indoor heat exchanger temperature detection device 16, and room The indoor heat exchanger temperature setting storage device 1 (26) for storing the judgment value of the inner heat exchanger temperature, the indoor heat exchanger temperature setting storage device 2 (27), and the compressor 2 A compressor lowest frequency setting storage unit 28 for storing a lower limit set value of the rolling frequency,
The suction pressure detection device 10 provided in the refrigerant suction pipe 8 of the compressor 2, the suction pressure setting storage device 29 for storing the upper limit setting value of the suction pressure value, and the sampling time for periodically detecting the above signals. An operating time setting storage device 30 to be set; a determination device 31 that receives the above signals every sampling time and determines the operating frequency of the compressor 2 and the opening and closing of the electromagnetic valve 34 provided in the refrigerant suction pipe 8 of the compressor 2; An output relay circuit 32 that drives the compressor 2 and the electromagnetic valve 34 is provided by a signal from the determination device 31.

居住者が運転モード切替スイッチ20で冷房またはドライを選択すると、運転モード記憶装置23、室内吸込み温度検知装置17、室外吸込み温度検知装置11、室内吸い込み温度設定記憶装置24、室外吸い込み温度設定記憶装置25の信号により判定装置31が圧縮機2の基本運転周波数Hz0を決定し出力リレー回路32が圧縮機2を駆動するが(図9、STEP0)、室内吸い込み温度検知装置17の値が室内吸込み温度設定記憶装置24(ここでは例えば27℃)、室外吸い込み温度検知装11の値が室外吸込み温度設定記憶装置25(ここでは例えば27℃)以下の場合は、吹き出し温度が低いと室内機12の吹き出し回りに露がつく可能性があると判断し、図6に示す様に室内熱交換器13の温度がTd℃以下(図6のCゾーン)に突入すると(STEP17)判定装置31が圧縮機2の運転周波数をダウン(ここでは例えば前の運転周波数の0.9倍の値)するように出力リレー回路32に指示を出し、低い周波数で圧縮機2を駆動し圧縮機2の能力を低下させ、室内熱交換器13の温度を上ることにより、吹き出し温度を上昇させ、吹き出し口の周りに露がつかない様に制御する(STEP20)。 When the resident selects cooling or dry with the operation mode changeover switch 20, the operation mode storage device 23, the indoor suction temperature detection device 17, the outdoor suction temperature detection device 11, the indoor suction temperature setting storage device 24, and the outdoor suction temperature setting storage device. The determination device 31 determines the basic operating frequency Hz 0 of the compressor 2 based on the signal 25 and the output relay circuit 32 drives the compressor 2 (FIG. 9, STEP 0), but the value of the indoor suction temperature detection device 17 is the indoor suction. When the value of the temperature setting storage device 24 (for example, 27 ° C.) and the outdoor suction temperature detection device 11 is equal to or lower than the outdoor suction temperature setting storage device 25 (for example, 27 ° C.), the blower temperature is low and the indoor unit 12 It is judged that there is a possibility of dew around the blowout, and the temperature of the indoor heat exchanger 13 is Td ° C. or lower as shown in FIG. (STEP 17), the determination device 31 issues an instruction to the output relay circuit 32 to lower the operating frequency of the compressor 2 (here, for example, 0.9 times the previous operating frequency). The compressor 2 is driven, the capacity of the compressor 2 is lowered, and the temperature of the indoor heat exchanger 13 is raised, thereby raising the blowout temperature and controlling the dew around the blowout opening (STEP 20).

判定装置31は運転時間設定記憶装置30に設定された時間ごとに以上の動作を繰り返すが、図6に示す様に、室内熱交換器温度13の値がTc℃以上(図6のBゾーン)に上昇すると判定装置31は圧縮機2の周波数ダウンやめ、現周波数を維持する。このBゾーンは室内機12の吹き出し口に露が付かない各々の室内機固有の下限熱交換器温度に設定されている。   The determination device 31 repeats the above operation every time set in the operation time setting storage device 30, but as shown in FIG. 6, the value of the indoor heat exchanger temperature 13 is Tc ° C. or more (B zone in FIG. 6). If it rises to, the determination device 31 stops the frequency of the compressor 2 and maintains the current frequency. This B zone is set to the lower limit heat exchanger temperature unique to each indoor unit in which dew does not form at the outlet of the indoor unit 12.

再び温度がTd℃以下(Cゾーンに突入)になると周波数ダウンを行うが、室内熱交換器13の温度がTa℃以上(図6のAゾーンに突入)になると(STEP15)、判定装置31は室内熱交換器13の温度が十分高く、吹き出し温度も十分に高いと判断し、圧縮機2の運転周波数を基本運転周波数Hz0に戻す様に制御を行う(STEP16)。 When the temperature falls below Td ° C. (entering into the C zone) again, the frequency is reduced, but when the temperature of the indoor heat exchanger 13 reaches Ta ° C. or more (entering into the A zone in FIG. 6) (STEP 15), the judging device 31 It is determined that the temperature of the indoor heat exchanger 13 is sufficiently high and the blowing temperature is also sufficiently high, and control is performed so that the operating frequency of the compressor 2 is returned to the basic operating frequency Hz 0 (STEP 16).

しかし、室内熱交換器13の温度がTd℃以下(図6のCゾーン)に突入し、判定装置31が圧縮機2の運転周波数のダウンを繰り返すことにより、吸入圧力検知装置10の値
(Ps)が吸入圧力設定記憶装置29の値(Pa)を上回ると(STEP13)、電磁弁34をオフし、吸入圧力検知装置10の値が下がるように制御を行う(流量が少なくなる方向へ制御)(STEP14)。
However, when the temperature of the indoor heat exchanger 13 falls below Td ° C. (C zone in FIG. 6) and the determination device 31 repeatedly decreases the operating frequency of the compressor 2, the value of the suction pressure detection device 10 (Ps ) Exceeds the value (Pa) of the suction pressure setting storage device 29 (STEP 13), the solenoid valve 34 is turned off, and control is performed so that the value of the suction pressure detection device 10 decreases (control in a direction in which the flow rate decreases). (STEP 14).

又、室内熱交換器13の温度がTd℃以下(図3のCゾーン)に突入し、判定装置31が圧縮機2の運転周波数のダウンを繰り返し、運転周波数(Hz)が運転周波数の下限値を設定した圧縮機最低周波数設定記憶装置28の値(Hza)に達すると(STEP18)、
電磁弁34をオフし、室内熱交換器13の温度が上がるように制御を行う(STEP19)。
Moreover, the temperature of the indoor heat exchanger 13 enters Td ° C. or lower (C zone in FIG. 3), the determination device 31 repeatedly decreases the operating frequency of the compressor 2, and the operating frequency (Hz) is the lower limit value of the operating frequency. When the value (Hza) of the compressor minimum frequency setting storage device 28 that has been set is reached (STEP 18),
The solenoid valve 34 is turned off, and control is performed so that the temperature of the indoor heat exchanger 13 increases (STEP 19).

これらの制御や負荷変動により室内熱交換器13の温度がTa℃以上(図6のAゾーンに突入)になると(STEP15)圧縮機2の運転周波数を基本運転周波数Hz0に戻す様に制御を行うが、(STEP16)このとき吸入圧力検知装置10の値(Ps)が吸入圧力設定記憶装置29の値(Pa)を下回る(STEP21)電磁弁22をオンするように制御を行う(STEP22)。 When the temperature of the indoor heat exchanger 13 becomes Ta ° C. or higher (rushes into the A zone of FIG. 6) due to these controls and load fluctuations (STEP 15), control is performed so that the operating frequency of the compressor 2 is returned to the basic operating frequency Hz 0. (STEP 16) At this time, the value (Ps) of the suction pressure detection device 10 falls below the value (Pa) of the suction pressure setting storage device 29 (STEP 21). Control is performed so that the electromagnetic valve 22 is turned on (STEP 22).

ここで、圧縮機最低周波数設定記憶装置29の値は圧縮機2のメカ部にオイルを供給するのに必要な最低周波数で、これ以上周波数を下げるとオイルの供給が不足し、圧縮機2が破壊に至るという個々の圧縮機に固有の性能確保に大切で厳守すべき重要なスペックである。   Here, the value of the compressor minimum frequency setting storage device 29 is the minimum frequency required to supply oil to the mechanical part of the compressor 2. If the frequency is further reduced, the supply of oil becomes insufficient, and the compressor 2 It is an important specification that is important for ensuring the performance inherent to individual compressors leading to destruction.

また、電磁弁34が設けられている分岐管33は電磁弁34が設けられていない分岐管より配管内径が十分大きく、電磁弁34がオンの時はこちらに多くの冷媒が流れ、オフの時は室内熱交換器13の出口圧力と圧縮機2の吸入圧力の差が十分大きくなるように設定されている。   Further, the branch pipe 33 provided with the solenoid valve 34 has a sufficiently larger pipe inner diameter than the branch pipe not provided with the solenoid valve 34. When the solenoid valve 34 is turned on, a large amount of refrigerant flows therethrough, and when the solenoid pipe 34 is turned off. Is set so that the difference between the outlet pressure of the indoor heat exchanger 13 and the suction pressure of the compressor 2 is sufficiently large.

そしてこの構成のよれば、空気調和装置の室内機の吹き出し口周りの露付きを回避できると同時に圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。
よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。
According to this configuration, it is possible to avoid the dew around the air outlet of the indoor unit of the air conditioner, and at the same time, to avoid the destruction of the compressor due to the increase of the compressor suction pressure, thereby improving the reliability of the equipment and the reliability of the compressor. improves.
Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

本発明の第1ならびに第2の実施の形態の冷凍サイクル図Refrigeration cycle diagram of the first and second embodiments of the present invention 本発明の第1の実施の形態の制御ブロック図Control block diagram of the first embodiment of the present invention 本発明の第1の実施の形態のフローチャートFlowchart of the first embodiment of the present invention 本発明の第2の実施の形態の制御ブロック図Control block diagram of the second embodiment of the present invention 本発明の第2の実施の形態のフローチャートFlowchart of the second embodiment of the present invention 温度ゾーン図Temperature zone diagram 冷凍サイクル図Refrigeration cycle diagram 本発明の第3の実施の形態の制御ブロック図Control block diagram of the third embodiment of the present invention 本発明の第3の実施の形態のフローチャートFlowchart of the third embodiment of the present invention 従来の温度ゾーン図Conventional temperature zone diagram

符号の説明Explanation of symbols

1 室外機
2 圧縮機
3 室外熱交換器
4 室外送風機
5 冷媒液管
6 冷媒ガス管
7 四方弁
8 冷媒吸入管
9 電動膨張弁
10 吸入圧力検知装置
11 室外吸込み温度検知装置
12 室内機
13 室内熱交換器
14 室内送風機
15 電動冷媒膨張弁
16 室内熱交換器検知装置
17 室内吸込み温度検知装置
18 運転設定装置
19 制御装置
24 室内吸込み温度設定記憶装置
25 室外吸込み温度設定記憶装置
26 室内熱交換器温度設定記憶装置1
27 室内熱交換器温度設定記憶装置2
28 圧縮機最低周波数設定記憶装置
29 吸入圧力設定記憶装置
34 電磁弁
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 4 Outdoor fan 5 Refrigerant liquid pipe 6 Refrigerant gas pipe 7 Four-way valve 8 Refrigerant suction pipe 9 Electric expansion valve 10 Suction pressure detection device 11 Outdoor suction temperature detection device 12 Indoor unit 13 Indoor heat Exchanger 14 Indoor blower 15 Electric refrigerant expansion valve 16 Indoor heat exchanger detection device 17 Indoor suction temperature detection device 18 Operation setting device 19 Control device 24 Indoor suction temperature setting storage device 25 Outdoor suction temperature setting storage device 26 Indoor heat exchanger temperature Setting storage device 1
27 Indoor heat exchanger temperature setting storage device 2
28 Compressor Minimum Frequency Setting Storage Device 29 Suction Pressure Setting Storage Device 34 Solenoid Valve

Claims (3)

圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を接続し、前記冷媒液管の途中に電動冷媒膨張弁を介装して冷凍サイクルを構成し、少なくとも前記室外機の冷媒吸入管に吸入圧力検知装置と冷媒流量調整装置を設け、前記吸入圧力検知装置の制御装置の信号により前記冷媒流量調整装置を制御する制御装置を設けたことを特徴とする空気調和装置。 An outdoor unit having a compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, and a refrigerant gas pipe is connected to an indoor unit having a heat exchanger and a blower, and an electric refrigerant expansion valve is interposed in the refrigerant liquid pipe. And a refrigerating cycle is installed, and at least a refrigerant suction pipe of the outdoor unit is provided with a suction pressure detection device and a refrigerant flow rate adjustment device, and the refrigerant flow rate adjustment device is controlled by a signal from the control device of the suction pressure detection device An air conditioner provided with a device. 室外機に少なくとも室外吸込み温度を検出する室外吸込み温度検知装置と前記室内機に室内吸込み温度を検出する室内吸込み温度検知装置と室内機の熱交換器に熱交換器の温度を検出する室内熱交換器温度検知装置とを設け、前記室外吸込み温度検知装置と前記室内吸込み温度検知装置と前記室内熱交換器温度検知装置との信号により圧縮機の回転数と電動膨張弁を制御し、さらに、吸入圧力検知装置と室内熱交換器温度検知装と前記圧縮機の制御装置の信号により、冷媒流量調整装置を制御する制御装置を設けたことを特徴とする、請求項1記載の空気調和装置。 An outdoor suction temperature detection device for detecting at least the outdoor suction temperature in the outdoor unit, an indoor suction temperature detection device for detecting the indoor suction temperature in the indoor unit, and an indoor heat exchange for detecting the temperature of the heat exchanger in the heat exchanger of the indoor unit And a compressor rotation speed and an electric expansion valve are controlled by signals from the outdoor suction temperature detection device, the indoor suction temperature detection device, and the indoor heat exchanger temperature detection device. 2. The air conditioner according to claim 1, further comprising a control device that controls the refrigerant flow rate adjusting device based on signals from a pressure detection device, an indoor heat exchanger temperature detection device, and a control device of the compressor. 吸入管の一部を少なくとも2本に分岐された分岐管で構成し、前記分岐管の少なくとも1本に電磁二方弁を設け、吸入圧力検知装置と室内熱交換器温度検知装置と圧縮機の制御装置の信号により、前記電磁二方弁を開閉制御する制御装置を設けたことを特徴とする、請求項2記載の空気調和装置。 A part of the suction pipe is constituted by a branch pipe branched into at least two, and an electromagnetic two-way valve is provided in at least one of the branch pipes, and the suction pressure detection device, the indoor heat exchanger temperature detection device, and the compressor The air conditioning apparatus according to claim 2, further comprising a control device that controls opening and closing of the electromagnetic two-way valve according to a signal from the control device.
JP2003285645A 2003-08-04 2003-08-04 Air conditioner Pending JP2005055053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285645A JP2005055053A (en) 2003-08-04 2003-08-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285645A JP2005055053A (en) 2003-08-04 2003-08-04 Air conditioner

Publications (1)

Publication Number Publication Date
JP2005055053A true JP2005055053A (en) 2005-03-03

Family

ID=34365214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285645A Pending JP2005055053A (en) 2003-08-04 2003-08-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP2005055053A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255730A (en) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp Air conditioner
JP2012047429A (en) * 2010-08-30 2012-03-08 Meiwa:Kk Chiller
CN101501412B (en) * 2006-08-08 2012-07-11 开利公司 Suction valve pulse width modulation control based on compressor temperature
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2013087973A (en) * 2011-10-13 2013-05-13 Mitsubishi Electric Corp Air conditioner
WO2020003490A1 (en) * 2018-06-29 2020-01-02 三菱電機株式会社 Air conditioning device
WO2022222605A1 (en) * 2021-04-22 2022-10-27 青岛海尔空调器有限总公司 Control method and apparatus for air conditioner compressor, and air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255730A (en) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp Air conditioner
JP4679401B2 (en) * 2006-03-20 2011-04-27 三菱電機株式会社 Air conditioner
CN101501412B (en) * 2006-08-08 2012-07-11 开利公司 Suction valve pulse width modulation control based on compressor temperature
JP2012047429A (en) * 2010-08-30 2012-03-08 Meiwa:Kk Chiller
JP2012229838A (en) * 2011-04-25 2012-11-22 Taikisha Ltd Fluid cooling means and fluid cooling device
JP2013087973A (en) * 2011-10-13 2013-05-13 Mitsubishi Electric Corp Air conditioner
WO2020003490A1 (en) * 2018-06-29 2020-01-02 三菱電機株式会社 Air conditioning device
JPWO2020003490A1 (en) * 2018-06-29 2021-04-01 三菱電機株式会社 Air conditioner
WO2022222605A1 (en) * 2021-04-22 2022-10-27 青岛海尔空调器有限总公司 Control method and apparatus for air conditioner compressor, and air conditioner

Similar Documents

Publication Publication Date Title
EP1862745B1 (en) Air conditioner
WO2009119023A1 (en) Freezing apparatus
KR20090029515A (en) Air-conditioner of the control method
JP2015021656A (en) Air conditioner
JP2014169802A (en) Air conditioning device
JP2014190600A (en) Air conditioner
JP4445246B2 (en) Air conditioner
JP4475655B2 (en) Air conditioner
JP2011137597A (en) Air conditioning device
JP2012013365A (en) Air conditioner
JP2005055053A (en) Air conditioner
KR20060124960A (en) Cool mode control method of air conditioner
JP2010266098A (en) Refrigeration cycle device
JP2005147541A (en) Multi-chamber type air conditioner
JP2005016884A (en) Air conditioner
JPH03241260A (en) Multi-room air-conditioner
JP2011257097A (en) Multi-room type air conditioning apparatus
JP7438342B2 (en) air conditioner
JP2019163907A (en) Air conditioner and air conditioning system
JP2007132647A (en) Air conditioner
KR20070030072A (en) Defrost control method of heat pump air-conditioner
JP3789620B2 (en) Air conditioner
JPH11142017A (en) Air conditioner
JP4736970B2 (en) Air conditioner
JP2005133970A (en) Air-conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219