JP2012219066A - Method of manufacturing tetrahydrofuran - Google Patents

Method of manufacturing tetrahydrofuran Download PDF

Info

Publication number
JP2012219066A
JP2012219066A JP2011087280A JP2011087280A JP2012219066A JP 2012219066 A JP2012219066 A JP 2012219066A JP 2011087280 A JP2011087280 A JP 2011087280A JP 2011087280 A JP2011087280 A JP 2011087280A JP 2012219066 A JP2012219066 A JP 2012219066A
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
tetrahydrofuran
sulfonic acid
thf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011087280A
Other languages
Japanese (ja)
Other versions
JP5817189B2 (en
Inventor
Masaru Utsunomiya
賢 宇都宮
Akira Yamashita
亮 山下
Seijiro Nishimura
誠二郎 西村
Kota Tanaka
幸太 田中
Eiji Hattori
英次 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011087280A priority Critical patent/JP5817189B2/en
Publication of JP2012219066A publication Critical patent/JP2012219066A/en
Application granted granted Critical
Publication of JP5817189B2 publication Critical patent/JP5817189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing tetrahydrofuran (THF) which reduces reduction of a reaction speed and the amount of solid by-products to be generated, can obtain stably high productivity and is advantageous industrially, regarding the method of manufacturing THF from 1,4-butanediol using an acid catalyst.SOLUTION: The method of manufacturing THF is characterized in that, when producing THF by supplying 1,4-butanediol of a raw material to a reaction tank and performing cyclodehydration reaction in the presence of sulfonic acid, a gas containing THF and water in the reaction tank is introduced into a heat exchanger and while supplying a part of a condensate obtained from an outlet of the heat exchanger to a gas phase part of the reaction tank, the remaining condensate is extracted to the outside of the reaction tank.

Description

本発明はテトラヒドロフランの製造方法に関して、より詳しくは、スルホン酸を用いて、1,4−ブタンジオールからテトラヒドロフランを加熱条件で反応蒸留形式により製造する方法に関する。   The present invention relates to a method for producing tetrahydrofuran, and more particularly, to a method for producing tetrahydrofuran from 1,4-butanediol using a sulfonic acid by heating under a heating condition.

テトラヒドロフラン(以下、「THF」と略記することがある)は各種有機化合物の溶剤として使用される他に、ポリテトラメチレンエーテルグリコールなどのポリエーテルポリオールの原料モノマーとしても有用な化合物として知られている。
テトラヒドロフランなどの環状エーテルの工業的な製法としては、従来より様々な製法が知られているが、中でもジヒドロキシ化合物の脱水環化により製造されることが多い。このジヒドロキシ化合物の脱水環化反応用の触媒としては、高い転化率と選択性の観点から酸触媒が有効であることが知られており、例えば、特開平10−77277号公報には、1,4−ブタンジオールなどのアルカンジオールを、コバルトを含有する触媒、有機スルホン酸及び高沸点アミンの存在下で、脱水素及び脱水してジヒドロフランなどのα,β−環状不飽和エーテルを製造する方法が記載されている。また、特表2006−503050号公報には、ヘテロポリ酸触媒上で1,4−ブタンジオールを含有する反応混合物の反応によってTHFを連続的に製造する方法が記載されている。
Tetrahydrofuran (hereinafter sometimes abbreviated as “THF”) is used as a solvent for various organic compounds and is also known as a useful compound as a raw material monomer for polyether polyols such as polytetramethylene ether glycol. .
Various industrial methods for producing cyclic ethers such as tetrahydrofuran have been conventionally known, but in particular, they are often produced by dehydration cyclization of dihydroxy compounds. As a catalyst for the dehydration cyclization reaction of this dihydroxy compound, it is known that an acid catalyst is effective from the viewpoint of high conversion and selectivity. For example, JP-A-10-77277 discloses 1, A process for producing an α, β-cyclic unsaturated ether such as dihydrofuran by dehydrogenating and dehydrating alkanediol such as 4-butanediol in the presence of a catalyst containing cobalt, an organic sulfonic acid and a high boiling point amine. Is described. JP-T-2006-503050 discloses a method for continuously producing THF by reaction of a reaction mixture containing 1,4-butanediol on a heteropolyacid catalyst.

特開平10−77277号 公報Japanese Patent Laid-Open No. 10-77277 特表2006−503050号 公報JP 2006-503050 A

上記特許文献1〜2に記載の方法は、反応条件のよって触媒の劣化や設備の腐食などが発生しうる懸念があり、運転条件の制約も多かった。また触媒が高価であるという点からも設備や運転コストが多くかかるため、工業的に有利な方法とは言えなかった。
比較的安価で且つ高温条件でも使用可能な酸触媒としてパラトルエンスルホン酸などのスルホン酸を酸触媒として使用することが考えられるが、スルホン酸は水による反応阻害効果があり、水存在下でテトラヒドロフラン生成速度が低下することが判明した。更に、反応を長時間行うと反応器内の液粘度が上昇し、固形の副生物の析出が発生することも判明した。
The methods described in Patent Documents 1 and 2 have a concern that the catalyst may be deteriorated or the equipment may be corroded depending on the reaction conditions, and there are many restrictions on the operating conditions. In addition, since the cost of the catalyst is high, it requires a lot of equipment and operating costs, and thus cannot be said to be an industrially advantageous method.
It is conceivable to use sulfonic acid such as para-toluenesulfonic acid as an acid catalyst as an acid catalyst that is relatively inexpensive and can be used under high temperature conditions. However, sulfonic acid has an inhibitory effect on water, and tetrahydrofuran is used in the presence of water. It has been found that the production rate decreases. Furthermore, it was also found that when the reaction is carried out for a long time, the liquid viscosity in the reactor increases and solid by-products are precipitated.

本発明は、上記課題に鑑みてなされたものであって、酸触媒を用いて1,4−ブタンジ
オールからTHFを製造する方法において、反応速度の低下、固形副生物の生成量を低減し、安定的に高い生産性が得られる工業的に有利なTHFの製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and in a method for producing THF from 1,4-butanediol using an acid catalyst, the reaction rate is reduced, the amount of solid by-products is reduced, An object of the present invention is to provide an industrially advantageous method for producing THF that can stably provide high productivity.

本発明者らは、上記課題を解決すべく鋭意検討した結果、原料の1,4−ブタンジオールをスルホン酸の存在下で脱水環化反応を行うことによりテトラヒドロフランを生成する際に、加熱下で気相と液相を有する反応槽から、反応槽内のテトラヒドロフラン及び水を含むガスを熱交換器に導入し、該熱交換器出口から得られる凝縮液の一部を該反応槽の気相部に供給しながら、残りの凝縮液を反応槽外に抜き出すことで、固形副生物の生成を低減し、且つ反応速度の低下も低減できることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have been conducted under heating when producing tetrahydrofuran by subjecting the raw material 1,4-butanediol to a dehydration cyclization reaction in the presence of sulfonic acid. A gas containing tetrahydrofuran and water in a reaction vessel is introduced into a heat exchanger from a reaction vessel having a gas phase and a liquid phase, and a part of the condensate obtained from the outlet of the heat exchanger is removed from the gas phase part of the reaction vessel. It was found that by extracting the remaining condensate out of the reaction tank while supplying to the reactor, the production of solid by-products can be reduced and the reduction in reaction rate can also be reduced.

本発明はこのような知見に基づいて達成されたものであり、以下の[1]〜[8]を要旨とする。
[1]原料の1,4−ブタンジオールを反応槽に供給し、スルホン酸の存在下で脱水環化反応を行うことによりテトラヒドロフランを生成する際に、該反応槽内のテトラヒドロフラン及び水を含むガスを熱交換器に導入し、該熱交換器出口から得られる凝縮液の一部を該反応槽の気相部に供給しながら、残りの凝縮液を反応槽外に抜き出すことを特徴とするテトラヒドロフランの製造方法。
[2]前記反応槽の気相部に供給する凝縮液の流量と前記反応槽外に抜き出す凝縮液の流量の比が0.01以上10.00以下であることを特徴とする[1]に記載のテトラヒドロフランの製造方法。
[3]反応槽内の水分濃度が0.1〜5.0重量%であることを特徴とする[1]又は[2]に記載のテトラヒドロフランの製造方法。
[4]前記反応槽内の液相部の温度が80〜250℃であることを特徴とする[1]〜[3]のいずれかに記載のテトラヒドロフランの製造方法。
[5]前記反応槽中のスルホン酸の濃度が0.01〜20.0重量%の範囲であることを特徴とする[1]〜[4]のいずれかに記載のテトラヒドロフランの製造方法。
[6]前記1,4−ブタンジオールと共にスルホン酸を反応槽に供給することを特徴とする[1]〜[5]のいずれかに記載のテトラヒドロフランの製造方法。
[7]前記スルホン酸が有機スルホン酸であることを特徴とする[1]〜[6]のいずれかに記載のテトラヒドロフランの製造方法。
[8]前記有機スルホン酸がパラトルエンスルホン酸であることを特徴とする[7]に記載のテトラヒドロフランの製造方法。
The present invention has been achieved on the basis of such findings, and the following [1] to [8] are summarized.
[1] A gas containing tetrahydrofuran and water in the reaction vessel when 1,4-butanediol as a raw material is supplied to the reaction vessel and tetrahydrofuran is produced by performing a dehydration cyclization reaction in the presence of sulfonic acid. In which the remaining condensate is withdrawn out of the reaction tank while supplying a part of the condensate obtained from the outlet of the heat exchanger to the gas phase part of the reaction tank. Manufacturing method.
[2] The ratio of the flow rate of the condensate supplied to the gas phase part of the reaction tank and the flow rate of the condensate extracted outside the reaction tank is 0.01 or more and 10.00 or less. The method for producing tetrahydrofuran according to the description.
[3] The method for producing tetrahydrofuran according to [1] or [2], wherein the water concentration in the reaction vessel is 0.1 to 5.0% by weight.
[4] The method for producing tetrahydrofuran according to any one of [1] to [3], wherein the temperature of the liquid phase in the reaction vessel is 80 to 250 ° C.
[5] The method for producing tetrahydrofuran according to any one of [1] to [4], wherein the concentration of the sulfonic acid in the reaction vessel is in the range of 0.01 to 20.0% by weight.
[6] The method for producing tetrahydrofuran according to any one of [1] to [5], wherein sulfonic acid is supplied to the reaction tank together with the 1,4-butanediol.
[7] The method for producing tetrahydrofuran according to any one of [1] to [6], wherein the sulfonic acid is an organic sulfonic acid.
[8] The method for producing tetrahydrofuran according to [7], wherein the organic sulfonic acid is paratoluenesulfonic acid.

本発明により、固形副生物の生成を低減しながら、且つ反応速度の低減も回避して、効率よく1,4−ブタンジオールからテトラヒドロフランを製造することができる。   According to the present invention, tetrahydrofuran can be efficiently produced from 1,4-butanediol while reducing the production of solid by-products and avoiding a reduction in reaction rate.

以下、本発明を実施するための最良の形態(以下、発明の実施の形態)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが出来る。
本発明で使用する原料の1,4−ブタンジオール(以下、「1,4BG」と略記することがある)は、公知の方法により得ることができる。例えばブタジエンのジアセトキシ化により得た1,4−ジアセトキシ−2−ブテンを水素化、加水分解を行って得た1,4BGを使用することができる。或いは無水マレイン酸の水素化により得た1,4BG、レッペ法によりアセチレンから誘導した1,4BG、プロピレンの酸化を経由して得られる1,4BG、発酵法により得た1,4BGなどが使用可能である。これら公知技術で製造した1,4−ブタンジオールが含む各種副生物、例えば2−(4−ヒドロキシブトキシ)テトラヒドロフランなどを本発明で使用する原料の1,4BGに含有していても差し支えない。
The best mode for carrying out the present invention (hereinafter, an embodiment of the present invention) will be described in detail below. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the invention.
The raw material 1,4-butanediol (hereinafter sometimes abbreviated as “1,4BG”) used in the present invention can be obtained by a known method. For example, 1,4BG obtained by hydrogenating and hydrolyzing 1,4-diacetoxy-2-butene obtained by diacetoxylation of butadiene can be used. Alternatively, 1,4BG obtained by hydrogenation of maleic anhydride, 1,4BG derived from acetylene by the Reppe method, 1,4BG obtained by oxidation of propylene, 1,4BG obtained by fermentation, etc. can be used. It is. Various by-products contained in 1,4-butanediol produced by these known techniques, such as 2- (4-hydroxybutoxy) tetrahydrofuran, may be contained in the raw material 1,4BG used in the present invention.

本発明の反応槽とは、反応器や、反応容器、反応釜、反応塔等と同じ意味内容で用いられるものであって、脱水環化反応を行うことができる容器であれば特に限定されるものではないが、脱水環化反応が化学平衡となる場合には、反応生成水を反応槽から取り除くと反応が進行することから、反応槽内に、原料、触媒又は生成物が液相で存在して反応を行う反応部、主に反応で生成する水からなる液相部及び揮発性の低い生成物からなる気相部を有する構造とすることが好ましい。反応槽の液相部は反応の経過に従い、連続的又は間欠的に反応槽外に抜き出すことで反応は進行する。本発明のように、1,4BGをスルホン酸の存在下で脱水環化反応によりTHFを生成する反応では、反応部にスルホン酸を存
在させ1,4BGを反応部に供給し、反応による生成する揮発されたTHFと一部の水蒸気が反応部の気相部に含まれ、残りの水や副生物は反応部の液相部に含まれる。
The reaction tank of the present invention is used in the same meaning as a reactor, reaction vessel, reaction kettle, reaction tower, etc., and is particularly limited as long as it is a vessel capable of performing a dehydration cyclization reaction. However, when the dehydration cyclization reaction is in chemical equilibrium, the reaction proceeds when the reaction product water is removed from the reaction vessel. Therefore, the raw material, catalyst or product exists in the reaction vessel in the liquid phase. Thus, it is preferable to have a structure having a reaction part for performing the reaction, a liquid phase part mainly composed of water produced by the reaction, and a gas phase part composed of a product having low volatility. The reaction proceeds by extracting the liquid phase part of the reaction tank out of the reaction tank continuously or intermittently as the reaction progresses. As in the present invention, in a reaction in which 1,4BG is generated by THF-dehydration cyclization reaction in the presence of sulfonic acid, sulfonic acid is present in the reaction section, 1,4BG is supplied to the reaction section, and is generated by the reaction. Volatilized THF and a part of water vapor are contained in the gas phase part of the reaction part, and the remaining water and by-products are contained in the liquid phase part of the reaction part.

また、この際反応槽を加熱しながら反応を行うが、反応槽の加熱方式は外部ジャケットにスチーム等の熱媒を接触させることによって加熱するものであっても良いし、反応槽の内部にコイル等の伝熱装置を備えていて加熱するものであっても良い。このような反応槽の内部の材質としては特に限定されず、公知の材質が使用できるが、例えば、SUS製、ハステロイ、チタン、ガラス、中でも、スルホン酸に含まれる硫黄による腐食が軽減されるという観点から、好ましくは、SUS304、SUS316、SUS316L、ハステロイ、チタン、ガラス、より好ましくは、SUS316、SUS316L、ハステロイが挙げられる。このような反応槽は、通常では脱水環化反応を均一に効率よく行うため攪拌機が備えられている。攪拌機は特に限定されるものではない。攪拌機は通常、電動モーター、軸、攪拌機から構成されるがその攪拌翼も形状を問わない。 In this case, the reaction is carried out while heating the reaction tank. The reaction tank may be heated by bringing a heating medium such as steam into contact with the external jacket, or a coil inside the reaction tank. It may be provided with a heat transfer device such as a heater. The material inside the reaction vessel is not particularly limited, and a known material can be used. For example, SUS, Hastelloy, titanium, glass, among others, corrosion due to sulfur contained in sulfonic acid is reduced. From a viewpoint, Preferably, SUS304, SUS316, SUS316L, Hastelloy, titanium, glass, More preferably, SUS316, SUS316L, Hastelloy, etc. are mentioned. Such a reaction vessel is usually equipped with a stirrer in order to carry out the dehydration cyclization reaction uniformly and efficiently. The stirrer is not particularly limited. The stirrer is usually composed of an electric motor, a shaft, and a stirrer, but the stirrer may have any shape.

本発明の反応槽の気相部には、反応槽内の反応部で生成されたTHF及び水を含むガスが存在するが、このガスを熱交換器に導入し、熱交換器内で凝縮液化され、テトラヒドロフラン及び水を含む凝縮液を得ることができる。上記熱交換器とは、反応槽から生じる留出物を凝縮液化させる装置であり、該凝縮液化は、冷却液である外部流体と留出物とを熱交換させることにより行われる。なお、THF及び水を含むガスには、水溶液の形態で仕込まれる原料からの生成水、必要に応じて生成水と共沸させるために用いられる脱水溶剤なども含んでいても良い。   In the gas phase part of the reaction tank of the present invention, there is a gas containing THF and water produced in the reaction part in the reaction tank. This gas is introduced into the heat exchanger and condensed in the heat exchanger. Thus, a condensate containing tetrahydrofuran and water can be obtained. The heat exchanger is a device that condensates and distills the distillate generated from the reaction tank, and the condensation is performed by exchanging heat between the external fluid that is the cooling liquid and the distillate. The gas containing THF and water may contain water produced from the raw material charged in the form of an aqueous solution and, if necessary, a dehydrated solvent used for azeotroping with the water produced.

尚、生成したテトラヒドロフラン及び水を含むガスから原料の1,4−ブタンジオールなどの沸点が高い成分を分離するための充填塔、棚段塔など蒸留塔を熱交換器に導入する前に有してもよい。充填塔、棚段塔などの段数は任意であるが、通常理論段として1段以上、100段以下が好ましく、特に好ましくは3段以上、20段以下である。100段より大きい段数では塔が大きくなりすぎ、設備建設のための経済性が悪化してしまう。   Before introducing a distillation column such as a packed column or a plate column to separate components having a high boiling point such as raw material 1,4-butanediol from the produced gas containing tetrahydrofuran and water into a heat exchanger. May be. The number of stages such as packed towers and tray towers is arbitrary, but usually 1 or more and 100 or less is preferable as the theoretical stage, and particularly preferably 3 or more and 20 or less. If the number of stages is greater than 100, the tower becomes too large, and the economics for equipment construction deteriorate.

本発明では、生成するTHF及び水を含むガスを反応槽の気相部から排出して熱交換器により凝縮して該熱交換器出口から凝縮液を得て、その一部を反応槽内の気相部に戻すことを特徴としている。凝縮した液の組成はTHF、水を任意の濃度で含有するが、好ましくは、THF濃度が30〜95重量%であり、特に好ましくは、50〜85重量%の範囲である。また、本発明の脱水環化反応は化学量論的に水を生成するため、該凝縮液中の水濃度は、通常、1〜50重量%であり、好ましくは、5〜30重量%であり、特に好ましくは、15〜25重量%の範囲である。   In the present invention, the generated gas containing THF and water is discharged from the gas phase part of the reaction tank and condensed by a heat exchanger to obtain a condensate from the outlet of the heat exchanger. It is characterized by returning to the gas phase. The composition of the condensed liquid contains THF and water at arbitrary concentrations, but the THF concentration is preferably 30 to 95% by weight, particularly preferably 50 to 85% by weight. In addition, since the dehydration cyclization reaction of the present invention generates water stoichiometrically, the water concentration in the condensate is usually 1 to 50% by weight, preferably 5 to 30% by weight. Particularly preferably, it is in the range of 15 to 25% by weight.

熱交換器出口から得られる凝縮液の一部は反応槽内の気相部に戻し、残りの凝縮液は反応槽外に抜き出すが、反応槽の気相部に供給する凝縮液の流量と反応槽外に抜き出す凝縮液の流量の比(以下、「還流比」と呼ぶことがある)は、通常は0.001以上30以下であり、好ましくは0.01以上10.00以下の範囲であり、特に好ましくは0.1以上3.0以下の範囲である。尚、還流比が高すぎた場合には、加熱のための熱源コストが増大して経済性が悪化し、還流比が少なすぎた場合には、反応槽内での固形物析出低減の効果が得られず、且つ高沸点成分の分離悪化による凝縮液への混入が進行する。熱交換器に導入されるTHF及び水を含むガスの導入時の温度は10〜200℃が好ましく、特に好ましくは60〜100℃の範囲である。   A part of the condensate obtained from the heat exchanger outlet is returned to the gas phase part in the reaction tank, and the remaining condensate is withdrawn outside the reaction tank, but the flow rate and reaction of the condensate supplied to the gas phase part of the reaction tank The ratio of the flow rate of condensate drawn out of the tank (hereinafter sometimes referred to as “reflux ratio”) is usually 0.001 or more and 30 or less, preferably 0.01 or more and 10.00 or less. Particularly preferably, it is in the range of 0.1 to 3.0. If the reflux ratio is too high, the cost of the heat source for heating is increased and the economic efficiency is deteriorated. If the reflux ratio is too low, the effect of reducing solids precipitation in the reaction vessel is obtained. It cannot be obtained, and mixing into the condensate due to poor separation of high boiling point components proceeds. The temperature at the time of introducing the gas containing THF and water introduced into the heat exchanger is preferably 10 to 200 ° C, particularly preferably 60 to 100 ° C.

本発明における触媒にはスルホン酸を使用する。特に有機スルホン酸が好ましい。具体的には、パラトルエンスルホン酸、ベンゼンスルホン酸、オルトトルエンスルホン酸、メタトルエンスルホン酸などの芳香族スルホン酸誘導体、ブタンスルホン酸、ヘキサンスルホン酸、オクタンスルホン酸、ノナンスルホン酸などの鎖状の炭化水素スルホン酸誘導体
である。これらは混合物として用いても差し支えなく、また炭素骨格内にスルホン酸以外の官能基を有していても差し支えない。特に好ましくはパラトルエンスルホン酸である。
As the catalyst in the present invention, sulfonic acid is used. An organic sulfonic acid is particularly preferable. Specifically, aromatic sulfonic acid derivatives such as p-toluenesulfonic acid, benzenesulfonic acid, orthotoluenesulfonic acid, and metatoluenesulfonic acid, chain forms such as butanesulfonic acid, hexanesulfonic acid, octanesulfonic acid, and nonanesulfonic acid This is a hydrocarbon sulfonic acid derivative. These may be used as a mixture, or may have a functional group other than sulfonic acid in the carbon skeleton. Particularly preferred is p-toluenesulfonic acid.

本発明では反応槽内の反応部で1,4BGの脱水環化によるTHFの生成反応が進行するが、反応槽でのスルホン酸の濃度は、0.01重量%〜20重量%であり、好ましくは0.05重量%〜10重量%以下である。特に好ましくは0.2重量%〜5重量%である。なお、反応槽内の液相部の水分濃度としては、通常、0.1〜5.0重量%であり、好ましくは、0.2〜4.0重量%、更に好ましくは、0.3〜3.0重量%である。この濃度が高くなるほど、材質腐食を促進する傾向にあり、低くなるほど高沸点副生物の量が増加する傾向にある。   In the present invention, THF formation reaction by dehydration cyclization of 1,4BG proceeds in the reaction section in the reaction tank, and the concentration of sulfonic acid in the reaction tank is preferably 0.01 wt% to 20 wt%, Is 0.05 wt% to 10 wt%. Especially preferably, it is 0.2 weight%-5 weight%. The water concentration in the liquid phase part in the reaction tank is usually 0.1 to 5.0% by weight, preferably 0.2 to 4.0% by weight, more preferably 0.3 to 3.0% by weight. Higher concentrations tend to promote material corrosion, and lower concentrations tend to increase the amount of high-boiling by-products.

尚、スルホン酸は反応開始時、原料の1,4BGを供給して反応を開始する前に予め反応槽の反応部に存在させておき、反応を開始することも可能であるが、触媒劣化による反応収率低下を抑制するという観点から、逐次的にスルホン酸を反応槽に投入することがより効果的である。例えば、原料1,4BGにスルホン酸を混合し溶解させ反応槽に間欠的或いは連続的に供給することが好ましい。なお、その際に、反応槽内の液相部を反応槽外に間欠的或いは連続的に抜き出してもよい。その際に供給するスルホン酸の量としては1,4BGの経時投入量に対する濃度として1〜1000wtppmが好ましく、特に好ましくは5〜50wtppmである。   The sulfonic acid can be preliminarily present in the reaction section of the reaction tank before starting the reaction by supplying 1,4BG as a raw material at the start of the reaction. From the viewpoint of suppressing the decrease in reaction yield, it is more effective to sequentially add sulfonic acid to the reaction vessel. For example, it is preferable that sulfonic acid is mixed and dissolved in the raw materials 1 and 4BG and is supplied intermittently or continuously to the reaction vessel. At that time, the liquid phase portion in the reaction vessel may be extracted intermittently or continuously outside the reaction vessel. In this case, the amount of sulfonic acid to be supplied is preferably 1 to 1000 wtppm, particularly preferably 5 to 50 wtppm, as a concentration with respect to the amount of 1,4BG added with time.

反応槽内の液相部の内温である反応温度は、80℃〜250℃が好ましく、より好ましくは100℃〜200℃であり、特に好ましくは120℃〜180℃の範囲である。この温度が低くなるほど、THFの生産性が著しく低下する傾向にあり、高くなるほど微量副生物の増加、あるいは強酸であるスルホン酸を使用するために高価材質の使用が必須となってしまう。   The reaction temperature, which is the internal temperature of the liquid phase part in the reaction tank, is preferably 80 ° C to 250 ° C, more preferably 100 ° C to 200 ° C, and particularly preferably 120 ° C to 180 ° C. As the temperature decreases, the productivity of THF tends to decrease remarkably. As the temperature increases, the use of expensive materials becomes indispensable in order to increase trace by-products or to use sulfonic acid, which is a strong acid.

反応圧力は任意の圧力を採用可能であるが、絶対圧として10kPa〜1000kPaであり、特に好ましくは100kPa〜500kPaである。   Although any pressure can be adopted as the reaction pressure, the absolute pressure is 10 kPa to 1000 kPa, and particularly preferably 100 kPa to 500 kPa.

以下、実施例により本発明を更に詳細に説明するが、本発明の要旨を越えない限り以下の実施例に限定されるものではない。
以下の実施例において、水分の分析はカールフィッシャー法を用いて行った。テトラヒドロフランの分析はガスクロマトグラフィーにより行い、面積百分率により算出した。尚、100重量%から水分濃度を差し引いた値を算出し、その値から残る成分の割合(重量%)をガスクロマトグラフィーの各成分の面積百分率により計算した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, unless it exceeds the summary of this invention, it is not limited to a following example.
In the following examples, moisture analysis was performed using the Karl Fischer method. Tetrahydrofuran was analyzed by gas chromatography and calculated by area percentage. The value obtained by subtracting the water concentration from 100% by weight was calculated, and the ratio of the remaining component (% by weight) was calculated from the area percentage of each component of the gas chromatography.

<実施例1>
SUS316L製の500L反応槽を有し、且つ槽上部に理論段として4段の不規則充填物を充填した塔を有し、その塔頂部に熱交換器であるコンデンサで生成するガスを冷却する設備を使用した。冷却用の冷媒には水を使用し、反応槽の加熱はジャケット式、熱媒(オイル)を用いて行った。原料の1,4BGを400L、パラトルエンスルホン酸800g(0.2重量%)を仕込み、熱媒を使用して反応槽内の液相部の内温度を145℃まで加熱し、内液温度が145℃に安定した後、反応で生成するTHFと水を含むガスをコンデンサで凝縮し得られる凝縮液は生成液として反応槽外にある貯槽に抜き出すとともに、その一部を反応槽の上部の冷却器下に液として再導入して還流を行った。冷却器部位の内温度は87℃であった。
<Example 1>
Equipment that has a 500L reaction tank made of SUS316L and that has a tower packed with four stages of irregular packings as the theoretical stage at the top of the tank, and cools the gas generated by a condenser as a heat exchanger at the top of the tower It was used. Water was used as the cooling refrigerant, and the reaction tank was heated using a jacket type and a heat medium (oil). 400 L of raw material 1,4BG and 800 g (0.2% by weight) of p-toluenesulfonic acid are charged, and the internal temperature of the liquid phase in the reaction vessel is heated to 145 ° C. using a heat medium. After stabilizing at 145 ° C., the condensate obtained by condensing the gas containing THF and water produced in the reaction with a condenser is withdrawn into the storage tank outside the reaction tank as a product liquid, and a part of it is cooled at the top of the reaction tank The mixture was reintroduced as a liquid under reflux and refluxed. The internal temperature of the cooler part was 87 ° C.

上記の反応条件で1,4BGの脱水環化反応を連続的に行い、THFを生成させた。反応槽の気相部から生成ガスとして排出され、冷却器で凝縮されたテトラヒドロフランと水
を含む凝縮液を60kg/hrで得て、そのうち15kg/hrを反応槽の気相部に供給し、残りを反応槽外の貯槽に抜き出した(還流比:0.3)。また、液相量を360Lとなるよう調整し、その後、液相量を一定に保持するために原料1,4−ブタンジオールを60kg/hrで連続的に反応槽に供給した。反応槽の液相部からの抜き出し量は0.0kg/hrとして排出しなかった。液相部容量に対する原料1,4BGの流量比は6倍であった(滞留時間として考えると6hr)。その際、パラトルエンスルホン酸を0.72g/hrの量となるように原料1,4BGに溶解し、あわせて連続的に添加した。この際、反応槽の液相部の水分濃度は2.5重量%であった。
Under the above reaction conditions, 1,4BG was continuously subjected to dehydration cyclization reaction to generate THF. A condensate containing tetrahydrofuran and water exhausted as a product gas from the gas phase part of the reaction tank and condensed in a cooler is obtained at 60 kg / hr, of which 15 kg / hr is supplied to the gas phase part of the reaction tank, and the rest Was extracted into a storage tank outside the reaction tank (reflux ratio: 0.3). Further, the liquid phase amount was adjusted to be 360 L, and then the raw material 1,4-butanediol was continuously supplied to the reaction vessel at 60 kg / hr in order to keep the liquid phase amount constant. The amount extracted from the liquid phase part of the reaction tank was 0.0 kg / hr and was not discharged. The flow rate ratio of the raw materials 1 and 4BG to the liquid phase part volume was 6 times (6 hours when considered as the residence time). At that time, p-toluenesulfonic acid was dissolved in raw materials 1 and 4BG so as to have an amount of 0.72 g / hr, and continuously added. At this time, the water concentration in the liquid phase part of the reaction vessel was 2.5% by weight.

貯槽に得られた凝縮液の組成は、テトラヒドロフラン80重量%、水20重量%であり、1,4−ブタンジオールは検出下限の10重量ppm以下であった。
反応開始から185時間を経過した時点で原料1,4BGの供給を停止した。その後も加熱は継続し、反応を継続してTHF、及び副生水を留出させた。液相部を100Lまで4倍に濃縮した後、加熱を停止し、反応槽内の残液を110kg排出した。本残液中に固形物は見られなかった。その後、反応槽を開放し内部点検を行ったが、固形物の析出は確認されなかった。THFの収率は98.7モル%であった。
The composition of the condensate obtained in the storage tank was 80% by weight of tetrahydrofuran and 20% by weight of water, and 1,4-butanediol was 10 ppm by weight or less of the lower limit of detection.
At the time when 185 hours passed from the start of the reaction, the supply of the raw materials 1, 4BG was stopped. Thereafter, heating was continued, and the reaction was continued to distill THF and by-product water. After the liquid phase part was concentrated 4 times to 100 L, heating was stopped and 110 kg of the remaining liquid in the reaction vessel was discharged. Solid matter was not seen in this residual liquid. Thereafter, the reaction vessel was opened and the inside was inspected, but precipitation of solid matter was not confirmed. The yield of THF was 98.7 mol%.

<比較例1>
SUS316L製の1Lオートクレーブに、原料の1,4−ブタンジオール400g、パラトルエンスルホン酸800mg(0.2重量%)を仕込み、電気炉を使用して内温度を150℃まで加熱した。内液温度が150℃に安定した後、6時間加熱を継続した。その間、気相部からの生成ガス排出は実施しなかった。加熱終了後、液相を採取し、ガスクロマトグラフィーで分析した結果、テトラヒドロフランが40.7重量%、1,4−ブタンジオール38.3重量%、水分濃度が12.4重量%であった。テトラヒドロフラン収率は51.2モル%であった。
<Comparative Example 1>
A 1 L autoclave made of SUS316L was charged with 400 g of raw material 1,4-butanediol and 800 mg (0.2 wt%) of paratoluenesulfonic acid, and heated to an internal temperature of 150 ° C. using an electric furnace. After the internal liquid temperature was stabilized at 150 ° C., heating was continued for 6 hours. During that time, no product gas was discharged from the gas phase. After heating, the liquid phase was collected and analyzed by gas chromatography. As a result, tetrahydrofuran was 40.7% by weight, 1,4-butanediol 38.3% by weight, and the water concentration was 12.4% by weight. The tetrahydrofuran yield was 51.2 mol%.

実施例1と比較例1と比べると、生成ガスを気相部から排出せず、液相部の水分濃度が上昇する場合、同じ滞留時間であれば、回分型でより反応が加速されるはずにも関わらず、比較例1ではテトラヒドロフラン収率が低下する結果を得た。
<比較例2>
ガラス製の1L容量の3つ口フラスコを用い、原料の1,4BGを400cc、パラトルエンスルホン酸0.8g(0.2重量%)を仕込み、熱媒(オイルバス)を使用して反応槽内の液相部の内温度を150℃まで加熱し、内液温度が150℃に安定した後、反応で生成するTHFと水を含むガスをコンデンサで凝縮し得られる凝縮液は生成液として反応槽フラスコ外にある貯槽に抜き出した。この際、凝縮液は反応槽フラスコに還流は行わなかった。
Compared with Example 1 and Comparative Example 1, when the product gas is not discharged from the gas phase portion and the water concentration in the liquid phase portion is increased, the reaction is accelerated more batchwise if the residence time is the same. Nevertheless, in Comparative Example 1, the tetrahydrofuran yield decreased.
<Comparative example 2>
Using a glass 1L three-necked flask, 400cc of raw material 1,4BG and 0.8g (0.2% by weight) of paratoluenesulfonic acid are charged, and a reaction tank is used using a heat medium (oil bath). After the internal temperature of the liquid phase part is heated to 150 ° C. and the internal liquid temperature is stabilized at 150 ° C., the condensate obtained by condensing the gas containing THF and water generated by the reaction with a condenser reacts as a product liquid. It extracted to the storage tank outside a tank flask. At this time, the condensate was not refluxed into the reaction vessel flask.

上記の反応条件で1,4BGの脱水環化反応を連続的に行い、THFを生成させた。反応槽の気相部から生成ガスとして排出され、冷却器で凝縮されたテトラヒドロフランと水を含む凝縮液を100g/hrで得て、反応槽フラスコ外の貯槽に抜き出した(還流比:0.0)。また、液相量を400ccとなるよう調整し、その後、液相量を一定に保持するために原料1,4−ブタンジオールを100g/hrで連続的に反応槽に供給した。反応槽フラスコの液相部からの抜き出し量は0.0g/hrとして排出しなかった。液相部容量に対する原料1,4BGの流量比は4.0倍であった(滞留時間として考えると4.0hr)。その際、パラトルエンスルホン酸を1.2mg/hrの量となるように原料1,4BGに溶解し、あわせて連続的に添加した。この際、反応槽の液相部の水分濃度は2.0重量%であった。   Under the above reaction conditions, 1,4BG was continuously subjected to dehydration cyclization reaction to generate THF. A condensate containing tetrahydrofuran and water exhausted as a product gas from the gas phase portion of the reaction vessel and condensed in a cooler was obtained at 100 g / hr, and was extracted into a storage tank outside the reaction vessel flask (reflux ratio: 0.0 ). Further, the liquid phase amount was adjusted to 400 cc, and thereafter, raw material 1,4-butanediol was continuously supplied to the reaction vessel at 100 g / hr in order to keep the liquid phase amount constant. The amount extracted from the liquid phase part of the reaction vessel flask was 0.0 g / hr and was not discharged. The flow rate ratio of the raw materials 1 and 4BG to the liquid phase volume was 4.0 times (4.0 hours when considered as the residence time). At that time, p-toluenesulfonic acid was dissolved in raw materials 1 and 4BG so as to have an amount of 1.2 mg / hr, and continuously added. At this time, the water concentration in the liquid phase part of the reaction vessel was 2.0% by weight.

貯槽に得られた凝縮液の組成は、テトラヒドロフラン79.5重量%、水20重量%であり、1,4−ブタンジオールは0.5重量%であった。
反応開始から109時間を経過した時点で原料1,4BGの供給を停止した。その後も加熱は継続し、反応を継続してTHF、及び副生水を留出させた。液相部を100ccまで4倍に濃縮した後、加熱を停止し、反応槽内の残液を100g排出した。本残液中に固形物は見られなかったが、反応槽フラスコ内部の壁に黒色固形物が1.1mg析出していることを確認した。THFの収率は95.4モル%であった。
The composition of the condensate obtained in the storage tank was 79.5% by weight of tetrahydrofuran, 20% by weight of water, and 0.5% by weight of 1,4-butanediol.
When 109 hours passed from the start of the reaction, the supply of the raw materials 1, 4BG was stopped. Thereafter, heating was continued, and the reaction was continued to distill THF and by-product water. After the liquid phase part was concentrated 4 times to 100 cc, heating was stopped and 100 g of the remaining liquid in the reaction vessel was discharged. Although no solid matter was found in the residual liquid, it was confirmed that 1.1 mg of black solid matter had precipitated on the inner wall of the reaction vessel flask. The yield of THF was 95.4 mol%.

Claims (8)

原料の1,4−ブタンジオールを反応槽に供給し、スルホン酸の存在下で脱水環化反応を行うことによりテトラヒドロフランを生成する際に、該反応槽内のテトラヒドロフラン及び水を含むガスを熱交換器に導入し、該熱交換器出口から得られる凝縮液の一部を該反応槽の気相部に供給しながら、残りの凝縮液を反応槽外に抜き出すことを特徴とするテトラヒドロフランの製造方法。   When 1,4-butanediol as a raw material is supplied to a reaction vessel and tetrahydrofuran is produced by performing a dehydration cyclization reaction in the presence of sulfonic acid, heat exchange is performed on the gas containing tetrahydrofuran and water in the reaction vessel. A process for producing tetrahydrofuran, wherein the remaining condensate is withdrawn out of the reaction vessel while supplying a part of the condensate obtained from the outlet of the heat exchanger to the gas phase part of the reaction vessel. . 前記反応槽の気相部に供給する凝縮液の流量と前記反応槽外に抜き出す凝縮液の流量の比が0.01以上10.00以下であることを特徴とする請求項1に記載のテトラヒドロフランの製造方法。   2. The tetrahydrofuran according to claim 1, wherein a ratio of a flow rate of the condensate supplied to the gas phase portion of the reaction vessel and a flow rate of the condensate drawn out of the reaction vessel is 0.01 or more and 10.00 or less. Manufacturing method. 反応槽内の水分濃度が0.1〜5.0重量%であることを特徴とする請求項1又は2に記載のテトラヒドロフランの製造方法。   The method for producing tetrahydrofuran according to claim 1 or 2, wherein the water concentration in the reaction vessel is 0.1 to 5.0% by weight. 前記反応槽内の液相部の温度が80〜250℃であることを特徴とする請求項1〜3のいずれか1項に記載のテトラヒドロフランの製造方法。   The temperature of the liquid phase part in the said reaction tank is 80-250 degreeC, The manufacturing method of tetrahydrofuran of any one of Claims 1-3 characterized by the above-mentioned. 前記反応槽中のスルホン酸の濃度が0.01〜20.0重量%の範囲であることを特徴とする請求項1〜4のいずれか1項に記載のテトラヒドロフランの製造方法。   The method for producing tetrahydrofuran according to any one of claims 1 to 4, wherein the concentration of the sulfonic acid in the reaction vessel is in the range of 0.01 to 20.0% by weight. 前記1,4−ブタンジオールと共にスルホン酸を反応槽に供給することを特徴とする請求項1〜5のいずれか1項に記載のテトラヒドロフランの製造方法。   The method for producing tetrahydrofuran according to any one of claims 1 to 5, wherein sulfonic acid is supplied to the reaction tank together with the 1,4-butanediol. 前記スルホン酸が有機スルホン酸であることを特徴とする請求項1〜6のいずれか1項に記載のテトラヒドロフランの製造方法。   The method for producing tetrahydrofuran according to any one of claims 1 to 6, wherein the sulfonic acid is an organic sulfonic acid. 前記有機スルホン酸がパラトルエンスルホン酸であることを特徴とする請求項7に記載のテトラヒドロフランの製造方法。


The method for producing tetrahydrofuran according to claim 7, wherein the organic sulfonic acid is p-toluenesulfonic acid.


JP2011087280A 2011-04-11 2011-04-11 Method for producing tetrahydrofuran Active JP5817189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087280A JP5817189B2 (en) 2011-04-11 2011-04-11 Method for producing tetrahydrofuran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087280A JP5817189B2 (en) 2011-04-11 2011-04-11 Method for producing tetrahydrofuran

Publications (2)

Publication Number Publication Date
JP2012219066A true JP2012219066A (en) 2012-11-12
JP5817189B2 JP5817189B2 (en) 2015-11-18

Family

ID=47270960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087280A Active JP5817189B2 (en) 2011-04-11 2011-04-11 Method for producing tetrahydrofuran

Country Status (1)

Country Link
JP (1) JP5817189B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061731A1 (en) * 2012-10-18 2014-04-24 三菱化学株式会社 Method for producing tetrahydrofuran
JP2015193616A (en) * 2014-03-26 2015-11-05 三菱化学株式会社 Method for producing tetrahydrofuran
JP2017519121A (en) * 2014-05-05 2017-07-13 インヴィスタ テクノロジーズ エスアエルエルINVISTA TECHNOLOGIES S.a.r.l. Biological polyurethane fiber
CN114805250A (en) * 2022-05-24 2022-07-29 中化学科学技术研究有限公司 Preparation process and device of tetrahydrofuran

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293763A (en) * 1976-02-04 1977-08-06 Mitsubishi Chem Ind Ltd Preparation of tetrahydrofuran
CN1184107A (en) * 1996-11-28 1998-06-10 北京燕山石油化工公司合成橡胶厂 Minute amount of water removing technology for tetrahydrofuran with common rectifying tower
US6204399B1 (en) * 1996-01-16 2001-03-20 Linde Aktiengesellschaft Process and arrangement for producing tetrahydrofuran
US20080161585A1 (en) * 2006-12-29 2008-07-03 Hyosung Corporation Production of tetrahydrofuran from 1,4-butanediol
US7396945B1 (en) * 2007-02-16 2008-07-08 Hyosung Corporation Method of preparing tetrahydrofuran
CN102206197A (en) * 2011-03-31 2011-10-05 天津大学 Intermediate storage tank-carrying batch distillation and pervaporation coupling method for separating tetrahydrofuran from water and device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293763A (en) * 1976-02-04 1977-08-06 Mitsubishi Chem Ind Ltd Preparation of tetrahydrofuran
US6204399B1 (en) * 1996-01-16 2001-03-20 Linde Aktiengesellschaft Process and arrangement for producing tetrahydrofuran
CN1184107A (en) * 1996-11-28 1998-06-10 北京燕山石油化工公司合成橡胶厂 Minute amount of water removing technology for tetrahydrofuran with common rectifying tower
US20080161585A1 (en) * 2006-12-29 2008-07-03 Hyosung Corporation Production of tetrahydrofuran from 1,4-butanediol
US7396945B1 (en) * 2007-02-16 2008-07-08 Hyosung Corporation Method of preparing tetrahydrofuran
CN102206197A (en) * 2011-03-31 2011-10-05 天津大学 Intermediate storage tank-carrying batch distillation and pervaporation coupling method for separating tetrahydrofuran from water and device thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061731A1 (en) * 2012-10-18 2014-04-24 三菱化学株式会社 Method for producing tetrahydrofuran
US9284289B2 (en) 2012-10-18 2016-03-15 Mitsubishi Chemical Corporation Method for producing tetrahydrofuran
JP2015193616A (en) * 2014-03-26 2015-11-05 三菱化学株式会社 Method for producing tetrahydrofuran
JP2017519121A (en) * 2014-05-05 2017-07-13 インヴィスタ テクノロジーズ エスアエルエルINVISTA TECHNOLOGIES S.a.r.l. Biological polyurethane fiber
US10883198B2 (en) 2014-05-05 2021-01-05 The Lycra Company Llc Bio-derived polyurethane fiber
CN114805250A (en) * 2022-05-24 2022-07-29 中化学科学技术研究有限公司 Preparation process and device of tetrahydrofuran
CN114805250B (en) * 2022-05-24 2023-12-29 中化学科学技术研究有限公司 Tetrahydrofuran preparation process and device

Also Published As

Publication number Publication date
JP5817189B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6244807B2 (en) Method for producing tetrahydrofuran
JP2010159212A (en) Method for separating alcohol
CN102482187B (en) Method for producing bioresourced acrylic acid from glycerol
JP5817189B2 (en) Method for producing tetrahydrofuran
CA2896290A1 (en) Method for producing dimethyl oxalate
JP2016540052A (en) Method for preparing succinic acid ester
WO2013005749A1 (en) Method for producing tetrahydrofuran
TW201527274A (en) Process
CN106518675A (en) Dimethyl oxalate production method with byproduct (dimethyl carbonate)
JP6015169B2 (en) Method for producing tetrahydrofuran
CN103910627B (en) Method Of Preparing Oxalic Acid Dialkyl Ester
US20160214952A1 (en) Improved process for manufacture of tetrahydrofuran
JP5949227B2 (en) Method for producing tetrahydrofuran
JP2012236819A (en) Method for producing tetrahydrofuran
CN109896953A (en) Production of ethyl technique
JP6424698B2 (en) Method for producing tetrahydrofuran
JP2012250967A (en) Manufacturing method for tetrahydrofuran
JP2012250966A (en) Manufacturing method for tetrahydrofuran
JP2013060429A (en) Method of purifying 1,4-butanediol and method of manufacturing tetrahydrofuran
CN107531610B (en) Process for recovering dialkyl succinate or maleate
CN110668920A (en) Method for preparing ethanol and co-producing cyclohexanol by using reactive distillation method
JP2023097499A (en) Bio-based ethylene carbonate and method for producing the same
KR20210146383A (en) Polymer grade acrylic acid production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350