JP2012218989A - Method for manufacturing mold for molding optical element, and mold for molding optical element - Google Patents

Method for manufacturing mold for molding optical element, and mold for molding optical element Download PDF

Info

Publication number
JP2012218989A
JP2012218989A JP2011087626A JP2011087626A JP2012218989A JP 2012218989 A JP2012218989 A JP 2012218989A JP 2011087626 A JP2011087626 A JP 2011087626A JP 2011087626 A JP2011087626 A JP 2011087626A JP 2012218989 A JP2012218989 A JP 2012218989A
Authority
JP
Japan
Prior art keywords
mold
optical element
film
molding die
mold base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011087626A
Other languages
Japanese (ja)
Other versions
JP5693340B2 (en
JP2012218989A5 (en
Inventor
Koji Teranishi
康治 寺西
Shigeru Hashimoto
茂 橋本
Toshisuke Tamaya
俊輔 玉屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011087626A priority Critical patent/JP5693340B2/en
Publication of JP2012218989A publication Critical patent/JP2012218989A/en
Publication of JP2012218989A5 publication Critical patent/JP2012218989A5/ja
Application granted granted Critical
Publication of JP5693340B2 publication Critical patent/JP5693340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a tetrahedral amorphous carbon film for glass pressing, which is free from generation of mold-release failure, welding failure and peeling failure of formed film in the peripheral part of a mold, to a mold for molding a plurality of optical elements having a large opening angle.SOLUTION: A magnet 4 is arranged at the inside of each mold base material 11 having a projected molding surface, and a ring-like magnet 5 is arranged at the outside of the each mold base material 11. In such a state that the plurality of mold base materials 11 are arranged concentrically, the magnetic flux density in the normal line direction at the vertex of the mold base material 11 is made highest, in the magnetic field formed by the magnet 4 and the ring-like magnet 5, and the tetrahedral amorphous carbon film is formed on the molding surface of each mold base material 11 by a filtered cathodic vacuum arc method while applying a voltage to the each mold base material 11.

Description

本発明は、レンズ、プリズムなどの光学素子をガラス素材のプレス成形により製造する際に使用される光学素子成形用型の製造方法に関するものである。   The present invention relates to a method of manufacturing an optical element molding die used when optical elements such as lenses and prisms are manufactured by press molding of a glass material.

ガラス研磨工程を必要とせず、ガラス素材のプレス成形によってレンズを製造する技術は、従来の光学素子成形用型の製造方法において必要とされた複雑な工程を省き、簡単かつ安価にレンズを製造することを可能とした。このような、ガラスの光学素子のプレス成形に使用される型材に要求される性質としては、硬度、耐熱性、離型性、鏡面加工性などに優れていることが挙げられる。   The technology for manufacturing a lens by press-molding a glass material without the need for a glass polishing process eliminates the complicated steps required in the conventional optical element molding mold manufacturing method, and easily and inexpensively manufactures a lens. Made it possible. Properties required for such a mold material used for press molding of a glass optical element include excellent hardness, heat resistance, releasability, and mirror finish.

従来、この種の型材として、金属、セラミックスや、それらをコーティングした材料など、数多くの提案がなされている。そのなかでも、ダイヤモンド状炭素膜、水素化アモルファスカーボン膜(a−C:H膜)、硬質炭素膜、テトラヘドラルアモルファスカーボン膜(taC膜)などの炭素膜を用いた型は、型とガラスとの離型性が良く、ガラスとの融着を起こしにくい利点を持っている。   Conventionally, many proposals have been made for this type of mold material, such as metals, ceramics, and materials coated with them. Among them, a mold using a carbon film such as a diamond-like carbon film, a hydrogenated amorphous carbon film (aC: H film), a hard carbon film, a tetrahedral amorphous carbon film (taC film) is a mold and a glass. It has the advantage that it can be easily released from the glass and is less likely to cause fusion with glass.

そこで、耐熱性の良い炭素膜としては、特許文献1に開示されたようにフィルタードカソーディックバキュームアーク法(FCVA法)で得られたtaC膜が知られている。従来のメタン系ガスを用いるダイヤモンド状炭素膜(硬質炭素膜)は、水素を含み、高温成形時に炭素と水素の結合が切れて、炭素同士がグラファイト結合(sp2結合)して硬度低下し易い。これに対してtaC膜は、その製法であるFCVA法がグラファイトを原料とするため、水素レスのダイヤモンド状炭素膜(高強度なsp3結合)を得ることが可能である。   Therefore, as a carbon film having good heat resistance, a taC film obtained by a filtered cathodic vacuum arc method (FCVA method) as disclosed in Patent Document 1 is known. A diamond-like carbon film (hard carbon film) using a conventional methane-based gas contains hydrogen, and the bond between carbon and hydrogen is broken at the time of high-temperature molding, and the carbon is easily graphite-bonded (sp2 bond) and the hardness is likely to decrease. On the other hand, the taC film can be obtained as a hydrogen-less diamond-like carbon film (high-strength sp3 bond) because the FCVA method, which is its production method, uses graphite as a raw material.

特開2004−075529号公報Japanese Patent Application Laid-Open No. 2004-075529

一般的にダイヤモンド状炭素膜、a−C:H膜、硬質炭素膜、taC膜を用いた型は、型とガラスとの離型性が良く、ガラスとの融着を起こしにくい利点がある。しかしながら、型と膜の密着性が一般に低く、成形操作を数百回以上繰り返して行うと、膜が剥離し、十分な成形性能が得られないことがある。   In general, a mold using a diamond-like carbon film, an aC: H film, a hard carbon film, or a taC film has an advantage in that the mold and the glass are easily releasable and hardly cause fusion with the glass. However, the adhesion between the mold and the film is generally low, and if the molding operation is repeated several hundred times or more, the film peels off and sufficient molding performance may not be obtained.

前述のFCVA法によるtaC膜の成膜方法は、陰極点からのイオン放出と同時に発生する陰極材料の微粒子を、プラズマ磁気輸送中のトラップ除去しながら、炭素イオンだけを型母材(成形用型基板)へ到達させて成膜している。しかしながらFCVA法の場合、型の周辺部の耐熱性が低いという問題点があった。特に、開角(型の光学軸中心と光学有効径位置における法線方向とが為す角度)の大きな形状の型の周辺部は、頂点部に比べて耐熱性が劣る傾向があった。そのため、型の周辺部において、成形回数の増加とともにtaC膜が剥離し、耐久劣化を引き起こしていた。   The above-described method for forming a taC film by the FCVA method is a method in which fine particles of a cathode material generated at the same time as ion emission from a cathode spot are removed by trapping during plasma magnetic transport, and only carbon ions are used as a mold base material (molding mold). The film is formed by reaching the substrate. However, in the case of the FCVA method, there is a problem that the heat resistance at the periphery of the mold is low. In particular, the peripheral part of the mold having a large opening angle (angle formed by the optical axis center of the mold and the normal direction at the optical effective diameter position) tended to be inferior in heat resistance compared to the apex part. For this reason, the taC film peeled off at the periphery of the mold as the number of moldings increased, causing deterioration in durability.

また、複数の型母材に対してtaC膜を形成するためには、FCVA装置の中に複数の型母材を配置し、同時に成膜することが必要となる。この場合、FCVA装置内における各型母材の磁場の状態を等しくする必要がある。   Further, in order to form a taC film on a plurality of mold base materials, it is necessary to dispose a plurality of mold base materials in the FCVA apparatus and to form films simultaneously. In this case, it is necessary to make the state of the magnetic field of each mold base material in the FCVA apparatus equal.

本発明は、複数の型母材に対してtaC膜を形成する際に、型母材の頂点部から周辺部まで均一な膜質のtaC膜を有する光学素子成形用型を製造することを目的とするものである。   An object of the present invention is to produce an optical element molding die having a taC film having a uniform film quality from the apex portion to the peripheral portion of a mold base material when forming a taC film on a plurality of mold base materials. To do.

本発明は、成形面が凸状の光学素子成形用型の製造方法において、内部に磁石が配置された複数の型母材を、真空チャンバー内において成形用型保持具を介して同心円状に配置し、前記各型母材の周りにはリング状磁石が配置されており、前記磁石とリング状磁石により形成される磁場は、前記型母材の頂点部の法線方向の磁束密度が最も高くなるように形成されており、前記各型母材に電圧を印加しながら、フィルタードカソーディックバキュームアーク法によって、前記型母材の成形面にテトラヘドラルアモルファスカーボン層を成膜するものである。   The present invention relates to a method for manufacturing an optical element molding die having a convex molding surface, in which a plurality of mold base materials having magnets arranged therein are arranged concentrically through a molding die holder in a vacuum chamber. A ring-shaped magnet is disposed around each mold base material, and the magnetic field formed by the magnet and the ring-shaped magnet has the highest magnetic flux density in the normal direction of the apex portion of the mold base material. A tetrahedral amorphous carbon layer is formed on the molding surface of the mold base material by a filtered cathodic vacuum arc method while applying a voltage to each of the mold base materials. .

FCVA法によってtaC膜を成膜する工程において、型母材の法線方向に磁場を形成し、成形用型保持具に電圧を印加することで、型の周辺部において膜質が劣るのを防ぐ。均一な膜質のtaC膜を設けることで、光学素子成形用型のプレス成形耐久回数を増し、光学素子の生産コストを大幅に低減することができる。   In the step of forming the taC film by the FCVA method, a magnetic field is formed in the normal direction of the mold base material, and a voltage is applied to the mold holder to prevent the film quality from being deteriorated at the periphery of the mold. By providing a taC film having a uniform film quality, it is possible to increase the number of press molding durability of the optical element molding die and greatly reduce the production cost of the optical element.

本発明におけるFCVA成膜法装置の断面図である。It is sectional drawing of the FCVA film-forming method apparatus in this invention. 本発明における光学素子成形用型とリング状磁石の配置を示した模式図The schematic diagram which showed arrangement | positioning of the optical element shaping | molding die and ring-shaped magnet in this invention 本発明における光学素子成形用型の断面図Sectional drawing of the optical element shaping | molding die in this invention

(第1の実施の形態)
本発明のtaC膜(テトラヘドラルアモルファスカーボン膜)を形成するフィルタードカソーディックバキュームアーク(FCVA)法の成膜装置の模式面を図1示す。真空チャンバー1内において、成形用型保持具2に複数の光学素子成形用型3は保持されている。光学素子成形用型3は凸状の成形面を有している。成形用型保持具2は、回転軸17を中心に不図示の機構により回転し、不図示の機構により、所定の電圧を印加することができる。光学素子成形用型3の内部には、磁石の長さ方向(図面の水平方法)に着磁された磁石4が設けられている。各光学素子成形用型3の周りには、磁石4と逆方向の磁界を形成するリング状磁石5が設けられている。バキュームアーク電源6により、アークプラズマ生成室7で炭素プラズマ(炭素イオン)を生成する。フィルターコイル8に所望の電流を流すことにより磁界が発生し、形成される磁力線により、炭素イオンは矢印9の方向に搬送される。炭素プラズマが搬送される原理は、炭素イオンの電子が、磁力線に絡むように、サイクロトロン運動し、前記電子に炭素イオンが、クーロン力により、追随するためである。なお真空チャンバー1内は、真空度が1×10−4Pa以下に不図示の真空ポンプにより排気されている。
(First embodiment)
FIG. 1 shows a schematic surface of a film forming apparatus of a filtered cathodic vacuum arc (FCVA) method for forming a taC film (tetrahedral amorphous carbon film) of the present invention. In the vacuum chamber 1, a plurality of optical element molding dies 3 are held by a molding die holder 2. The optical element molding die 3 has a convex molding surface. The molding die holder 2 is rotated by a mechanism (not shown) around the rotation shaft 17 and a predetermined voltage can be applied by the mechanism (not shown). Inside the optical element molding die 3, a magnet 4 magnetized in the magnet length direction (horizontal method in the drawing) is provided. Around each optical element molding die 3, a ring-shaped magnet 5 that forms a magnetic field in a direction opposite to that of the magnet 4 is provided. Carbon plasma (carbon ions) is generated in an arc plasma generation chamber 7 by a vacuum arc power source 6. A magnetic field is generated by passing a desired current through the filter coil 8, and the carbon ions are conveyed in the direction of the arrow 9 by the magnetic lines of force formed. The principle that the carbon plasma is transported is that the electrons of the carbon ions move in a cyclotron so that they are entangled with the lines of magnetic force, and the carbon ions follow the electrons by the Coulomb force. The vacuum chamber 1 is evacuated by a vacuum pump (not shown) so that the degree of vacuum is 1 × 10 −4 Pa or less.

図2は成形用型保持具2における光学素子成形用型3とリング状磁石5の配置を示した模式図である。図2に示したように、光学素子成形用型3の中心軸17を中心に、同心円状(2重の円周15、16の上)に複数の光学素子成形用型3が均等に配置されている。各光学素子成形用型3に設けられたリング状磁石5は、お互いが干渉しないよう配置されている。   FIG. 2 is a schematic diagram showing the arrangement of the optical element molding die 3 and the ring-shaped magnet 5 in the molding die holder 2. As shown in FIG. 2, a plurality of optical element molding dies 3 are evenly arranged concentrically (on the double circumferences 15 and 16) around the central axis 17 of the optical element molding dies 3. ing. The ring-shaped magnets 5 provided in the respective optical element molding dies 3 are arranged so as not to interfere with each other.

本発明において、炭素イオンは、スキャニングコイル10によって発生する磁場により、複数ある光学素子成形用型3の頂点に当るように制御されている。すなわち、イオンビーム径以内に、光学素子成形用型ガラス成形面が入るようイオンビーム径のスキャンの制御を行って、炭素イオンを光学素子成形用型3に到達させる。イオンビーム径スキャンの制御を行わない場合、光学素子成形用型3の成形面に成膜しTaC膜の膜厚分布と膜質が不均一になる。特に光学素子成形用型3の周辺部の膜厚が薄く、膜密度が低下するため、成形耐久性が大幅に劣化する。   In the present invention, carbon ions are controlled by the magnetic field generated by the scanning coil 10 so as to hit the apex of the plurality of optical element molding dies 3. That is, the scanning of the ion beam diameter is controlled so that the optical element forming mold glass forming surface is within the ion beam diameter, and the carbon ions reach the optical element forming mold 3. If the ion beam diameter scan is not controlled, the film thickness distribution and film quality of the TaC film are not uniform because the film is formed on the molding surface of the optical element molding die 3. In particular, since the film thickness of the peripheral part of the optical element molding die 3 is thin and the film density is lowered, the molding durability is greatly deteriorated.

また、磁石4とリング状磁石5の配置や強度は、形成された磁力線の磁束密度が、光学素子成形用型3の頂点部の法線方向が最も強くなるように調整されている。これにより、炭素イオンは光学素子成形用型3の頂点部に引き寄せられる。光学素子成形用型3の頂点部以外の磁束密度が最も強くなると、炭素イオンの光学素子成形用型3への垂直入射分の成膜レートが低下し、ガラス成形面の膜厚分布と膜質が不均一になる。   Further, the arrangement and strength of the magnet 4 and the ring-shaped magnet 5 are adjusted such that the magnetic flux density of the formed magnetic field lines is strongest in the normal direction of the apex portion of the optical element molding die 3. As a result, carbon ions are attracted to the apex of the optical element molding die 3. When the magnetic flux density other than the apex portion of the optical element molding die 3 is the strongest, the film formation rate for vertical incidence of carbon ions on the optical element molding die 3 decreases, and the film thickness distribution and film quality of the glass molding surface are reduced. It becomes uneven.

成形用型保持具2及び光学素子成形用型3に印加した電場と、光学素子成形用型3の内部に設けられた磁石4と、リング状磁石5により形成される磁場により、炭素イオンが、光学素子成形用型3方向に引き寄せられる。これにより、開角の大きな光学素子成形用型の成形面の法線方向に炭素イオンを効率的に入射させ、光学素子成形用型の頂点部と周辺部の膜厚分布と膜質の均質化が図られる。このようにして、光学素子成形用型3へtaC膜は成膜される。   Carbon ions are generated by the electric field applied to the molding die holder 2 and the optical element molding die 3, the magnet 4 provided inside the optical element molding die 3, and the magnetic field formed by the ring-shaped magnet 5. It is drawn in the direction of the optical element molding die 3. As a result, carbon ions are efficiently incident in the normal direction of the molding surface of the optical element molding die having a large opening angle, and the film thickness distribution and film quality at the apex and peripheral portions of the optical element molding die are made uniform. Figured. In this way, the taC film is formed on the optical element molding die 3.

この時、光学素子成形用型3の頂点部の法線方向の磁束密度は0.003テスラ以上0.015テスラ以下とすることが好ましい。磁束密度が0.003テスラよりも小さいと、炭素イオンが型に引き寄せられる効果がなく、成膜レートが低下する。また、成形用型保持具2及び光学素子成形用型3に印加する電場は、10V以上100V以下の正電圧が好ましい。正電圧が10Vより低くなると、炭素イオンを曲げる効果が小さくなり、100Vより大きくなると、炭素イオンが反発して、成膜レートが低下する。   At this time, the magnetic flux density in the normal direction of the apex of the optical element molding die 3 is preferably 0.003 Tesla or more and 0.015 Tesla or less. When the magnetic flux density is smaller than 0.003 Tesla, there is no effect of attracting carbon ions to the mold, and the film formation rate is lowered. The electric field applied to the molding die holder 2 and the optical element molding die 3 is preferably a positive voltage of 10V to 100V. When the positive voltage is lower than 10V, the effect of bending the carbon ions is reduced. When the positive voltage is higher than 100V, the carbon ions are repelled and the film formation rate is reduced.

さらに、光学素子成形用型3は絶縁部材を介して成形用型保持具2により保持することで、光学素子成形用型3を浮遊電位としても良い。この時、成形用型保持具2に10Vから100Vの正電圧を印加することにより、光学素子成形用型3の正電位が低くなる。この効果により、光学素子成形用型3の方が、炭素イオンを近づけるため、成膜レートが高くなる。   Furthermore, the optical element molding die 3 may be set to a floating potential by holding the optical element molding die 3 with the molding die holder 2 via an insulating member. At this time, the positive potential of the optical element molding die 3 is lowered by applying a positive voltage of 10 V to 100 V to the molding die holder 2. Due to this effect, the optical element molding die 3 is closer to carbon ions, so that the film formation rate is higher.

図3は、taC膜を成膜することで製造された光学素子成形用型の断面図である。型母材11から順に、SiC膜12、taC膜13が成膜されている。14は磁石4が挿入される型母材の開口部である。型母材11は、WCを主成分とする超硬合金が好ましいが、SiCの焼結体にCVD法で形成されたSiC膜を用いた型母材でも適用される。ただしその場合は、型母材に直接、FCVA法によりtaC膜が形成される。なお、型母材11とSiC膜12の間に、Ti膜、TiAlN膜を形成しても良い。   FIG. 3 is a cross-sectional view of an optical element molding die manufactured by forming a taC film. An SiC film 12 and a taC film 13 are formed in this order from the mold base material 11. Reference numeral 14 denotes an opening of the mold base material into which the magnet 4 is inserted. The mold base material 11 is preferably a cemented carbide containing WC as a main component, but is also applicable to a mold base material using a SiC film formed by a CVD method on a SiC sintered body. However, in that case, the taC film is formed directly on the mold base material by the FCVA method. A Ti film or a TiAlN film may be formed between the mold base material 11 and the SiC film 12.

(実施例1)
図1、図2に示す装置により、図3に示すような光学素子成形用型を形成した。光学素子成形用型形状としては、直径18mm、ガラス成形面の直径14mm、凸形状で開角は60度である。
Example 1
An optical element molding die as shown in FIG. 3 was formed by the apparatus shown in FIGS. The optical element molding die has a diameter of 18 mm, a glass molding surface diameter of 14 mm, a convex shape and an opening angle of 60 degrees.

まずに、WCを主成分とする超硬合金11に、スパッタリング装置を用いて光学素子成形面側に、SiC膜12を60nm成膜した。これは、後述するtaC膜を超硬合金11に成膜する上で、密着力を向上させるため中間層として成膜がなされている。本実施例では、スパッタ成膜法を用いたが、その他の成膜法としてプラズマソースイオンインプラテーション法(Plasma−Souce−Ion−Implatation、以下PSII法)を用いても勿論可能である。   First, a SiC film 12 having a thickness of 60 nm was formed on the cemented carbide 11 containing WC as a main component on the optical element molding surface side using a sputtering apparatus. This is formed as an intermediate layer in order to improve adhesion when a taC film described later is formed on the cemented carbide 11. In this embodiment, the sputter film formation method is used, but it is of course possible to use a plasma source ion implantation method (Plasma-Source-Ion-Implation, hereinafter referred to as PSII method) as another film formation method.

次に型母材11に設けた直径7mm、深さ48mmの開口部14に、外径6.5mm、高さ48mm、残留磁束密度0.5テスラを長さ方向に着磁した磁石4のN極を型頂点に向けて挿入した後、図1及び図2に示すFCVA法の成膜装置に設置した。設置条件として、成形用型保持具2上の光学素子成形用型配置外周円15の直径を181mmとし、均等に光学素子成形用型を12個配置した。成形用型保持具2上の光学素子成形用型配置内周円16の直径を110mmとし、均等に直径18mmの光学素子成形用型を6個、外周に配置型と均等な距離になるよう配置した。   Next, the N of the magnet 4 magnetized in the length direction with an outer diameter of 6.5 mm, a height of 48 mm, and a residual magnetic flux density of 0.5 Tesla in the opening 14 having a diameter of 7 mm and a depth of 48 mm provided in the mold base 11. After the pole was inserted toward the apex of the mold, it was placed in the FCVA film forming apparatus shown in FIGS. As installation conditions, the diameter of the optical element molding die arrangement outer circumference circle 15 on the molding die holder 2 was set to 181 mm, and twelve optical element molding dies were equally arranged. The diameter of the inner peripheral circle 16 of the optical element molding mold on the molding die holder 2 is 110 mm, and six optical element molding molds having a diameter of 18 mm are uniformly arranged on the outer periphery so as to be at an equal distance from the arrangement mold. did.

リング形状の磁石5としては、外径37mm、内径30mm、高さ3mm、残留磁束密度0.05テスラ長さ方向に着磁した磁石5のS極をFCVA源方向に向けて装着した。   As the ring-shaped magnet 5, the S pole of the magnet 5 magnetized in the length direction of the outer diameter of 37 mm, the inner diameter of 30 mm, the height of 3 mm, and the residual magnetic flux density of 0.05 Tesla was attached toward the FCVA source direction.

この時の、外周の型頂点部の磁束密度は0.006テスラ、内周の型頂点部の磁束密度は0.007テスラであり、0.007テスラより大きな磁束密度を有する箇所は、成形用型保持具3上に無かった。   At this time, the magnetic flux density at the outer peripheral mold apex is 0.006 Tesla, and the magnetic flux density at the inner peripheral mold apex is 0.007 Tesla. There was no mold holder 3.

次に、成形用型保持具3に、プラス電位20Vとなる様に電圧を印加して、taC膜13を900秒成膜した。taCの成膜条件としては、スキャニングコイル10によって発生する磁場(磁界の向きは磁石4と同じ)により、外周円15と内周円16にイオンビーム径の中心が当るよう制御した。本実施例のイオンビーム径は28mmであった。   Next, a voltage was applied to the molding die holder 3 so that the positive potential was 20 V, and the taC film 13 was formed for 900 seconds. The film formation conditions for taC were controlled such that the center of the ion beam diameter hits the outer circle 15 and the inner circle 16 by the magnetic field generated by the scanning coil 10 (the direction of the magnetic field is the same as that of the magnet 4). The ion beam diameter in this example was 28 mm.

本実施例の膜厚を計測した結果、型頂点部での膜厚は110nmで、型頂点部での膜厚に対する型開角60度での膜厚の比率が0.54〜0.86の範囲であった。taC膜の膜質評価として、700℃の窒素雰囲気中で3時間加熱後のラマン・スペクトルの1360cm−1の強度Idと15800cm−1の強度Igの比Id/Igを用いた。一般的に、成形後のId/Igが小さいほど、耐熱性が良いと言われている。本実施例の成形後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.3〜0.61の範囲であった。 As a result of measuring the film thickness of this example, the film thickness at the mold apex was 110 nm, and the ratio of the film thickness at the mold opening angle of 60 degrees to the film thickness at the mold apex was 0.54 to 0.86. It was in range. As film quality evaluation of taC film, using the ratio Id / Ig of 700 ° C. intensity Ig of intensity Id and 15800Cm -1 of Raman spectrum of 1360 cm -1 after 3 hours in a nitrogen atmosphere. Generally, it is said that the smaller the Id / Ig after molding, the better the heat resistance. As a result of measuring Id / Ig after molding in this example, Id / Ig at the mold apex portion and the mold opening angle of 60 degrees was in the range of 0.3 to 0.61.

次に、上記、光学素子成形用型材を用いて光学レンズのプレス成形を、連続的に500ショット行った。成形ガラスは、希土類を含む棚珪酸系ガラス(Tg:610℃、屈折率:1.85)で、成形条件は、窒素雰囲気下、プレス温度690℃で行った。成形の結果、型と成形された光学素子との間で、離型性は良好であり且つ、融着不良、成膜剥れ不良の無いプレス成形が行なわれた。また、成形用型保持具3に、プラス電位を10V、30Vにしても同様の成形結果が得られた。これらの結果を表1に示す。   Next, 500 shots of the optical lens were press-molded continuously using the mold for molding an optical element. Molded glass was shelf silicate glass containing rare earths (Tg: 610 ° C., refractive index: 1.85), and the molding conditions were a nitrogen atmosphere and a press temperature of 690 ° C. As a result of molding, press molding was performed between the mold and the molded optical element with good releasability and no fusing defect and film peeling defect. Further, the same molding result was obtained even when the plus potential was set to 10V and 30V on the mold holder 3. These results are shown in Table 1.

(実施例2)
光学素子成形用型3と成形用型保持具2を絶縁状態にする以外は、実施例1と同様に、taC膜を900秒成膜した。中間層としてのSiC膜は、実施例1と同様スパッタ装置を用いて60nm成膜した。本実施例の型膜厚を計測した結果、型頂点部での膜厚は130nmで、型頂点部での膜厚に対する型開角60度での膜厚の比率が0.69〜0.81の範囲であった。本実施例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.4〜0.5の範囲であった。
(Example 2)
A taC film was formed for 900 seconds in the same manner as in Example 1 except that the optical element molding die 3 and the molding die holder 2 were in an insulated state. The SiC film as the intermediate layer was formed to a thickness of 60 nm using a sputtering apparatus as in Example 1. As a result of measuring the mold film thickness of this example, the film thickness at the mold apex is 130 nm, and the ratio of the film thickness at the mold opening angle of 60 degrees to the film thickness at the mold apex is 0.69 to 0.81. Range. As a result of measuring Id / Ig after heating in this example, Id / Ig at a mold apex portion and a mold opening angle of 60 degrees was in a range of 0.4 to 0.5.

実施例1と同様に、成形評価を行なった結果、型と成形された光学素子との間で、離型性は良好であり且つ、融着不良、成膜剥れ不良の無いプレス成形が行なわれた。これらの結果を表1に示す。   As in Example 1, as a result of molding evaluation, press molding was performed between the mold and the molded optical element with good releasability and no fusing failure or film peeling failure. It was. These results are shown in Table 1.

(実施例3)
リング形状の磁石5の残留磁束密度を0.09テスラにする以外は、実施例2と同様に、taC膜を900秒成膜した。中間層としてのSiC膜は、実施例1と同様スパッタ装置を用いて60nm成膜した。
(Example 3)
A taC film was formed for 900 seconds in the same manner as in Example 2 except that the residual magnetic flux density of the ring-shaped magnet 5 was changed to 0.09 Tesla. The SiC film as the intermediate layer was formed to a thickness of 60 nm using a sputtering apparatus as in Example 1.

本実施例の外周の型頂点部の磁束密度は0.008テスラ、内周の型頂点部の磁束密度は0.009テスラであり、0.009テスラより大きな磁束密度を有する箇所は、成形用型保持具3上に無かった。本実施例の膜厚を計測した結果、型頂点部での膜厚は98nmで、型頂点部での膜厚に対する型開角60度での膜厚の比率が0.75〜1.1の範囲であった。本実施例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.31〜0.54の範囲であった。   In this example, the magnetic flux density at the outer peripheral mold apex portion is 0.008 Tesla, the inner peripheral mold apex magnetic flux density is 0.009 Tesla, and a portion having a magnetic flux density greater than 0.009 Tesla is for molding. There was no mold holder 3. As a result of measuring the film thickness of this example, the film thickness at the mold apex portion is 98 nm, and the ratio of the film thickness at the mold opening angle of 60 degrees to the film thickness at the mold apex portion is 0.75 to 1.1. It was in range. As a result of measuring Id / Ig after heating in this example, Id / Ig at a mold apex portion and a mold opening angle of 60 degrees was in a range of 0.31 to 0.54.

実施例1と同様に、成形評価を行なった結果、型と成形された光学素子との間で、離型性は良好であり且つ、融着不良、成膜剥れ不良の無いプレス成形が行なわれた。また、成形用型保持具3に、プラス電位を10V、30Vにしても同様の成形結果が得られた。これらの結果を表1に示す。   As in Example 1, as a result of molding evaluation, press molding was performed between the mold and the molded optical element with good releasability and no fusing failure or film peeling failure. It was. Further, the same molding result was obtained even when the plus potential was set to 10V and 30V on the mold holder 3. These results are shown in Table 1.

(比較例1)
リング形状の磁石5の残留磁束密度を0.18テスラにする以外は、実施例2と同様に、taC膜を900秒成膜した。中間層としてのSiC膜は、実施例1と同様スパッタ装置を用いて60nm成膜した。
(Comparative Example 1)
A taC film was formed for 900 seconds in the same manner as in Example 2 except that the residual magnetic flux density of the ring-shaped magnet 5 was changed to 0.18 Tesla. The SiC film as the intermediate layer was formed to a thickness of 60 nm using a sputtering apparatus as in Example 1.

本比較例の外周の型頂点部の磁束密度は0.008テスラ、内周の型頂点部の磁束密度は0.010テスラであり、0.013テスラの磁束密度を有する箇所が、リング形状の磁石間に存在した。本比較例の型膜厚を計測した結果、型頂点部での膜厚は70nmで、型頂点部での膜厚に対する型開角60度での膜厚の比率が0.07〜2.29の範囲であった。本比較例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.4〜1.1の範囲であった。   The magnetic flux density at the outer peripheral mold apex portion of this comparative example is 0.008 Tesla, the inner peripheral die apex magnetic flux density is 0.010 Tesla, and the portion having the magnetic flux density of 0.013 Tesla is a ring shape. Existed between the magnets. As a result of measuring the mold film thickness of this comparative example, the film thickness at the mold apex was 70 nm, and the ratio of the film thickness at a mold opening angle of 60 degrees to the film thickness at the mold apex was 0.07 to 2.29. Range. As a result of measuring Id / Ig after heating in this comparative example, Id / Ig at a mold apex portion and a mold opening angle of 60 degrees was in a range of 0.4 to 1.1.

次に、この光学素子成形用型材を用いて実施例1と同様に光学レンズの成形を行なったが、150ショットで、taC膜の周辺部の剥離が一部発生した。これらの結果を表1に示す。   Next, an optical lens was molded in the same manner as in Example 1 using this mold for molding an optical element. In 150 shots, a part of the peripheral portion of the taC film was peeled off. These results are shown in Table 1.

(比較例2)
リング形状の磁石5の残留磁束密度を0.28テスラにする以外は、実施例2と同様に、taC膜を900秒成膜した。本比較例の外周の型頂点部の磁束密度は0.012テスラ、内周の型頂点部の磁束密度は0.014テスラであり、0.018テスラの磁束密度を有する箇所が、リング形状の磁石間に存在した。本比較例の型膜厚を計測した結果、外周部に設置した型頂点部での膜厚は80nmで、内周部に設置した型頂点部での膜厚は260nmであった。内周部型頂点部での膜厚に対する型開角60度での膜厚の比率が0.08〜0.79の範囲であった。本比較例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.5〜1.5の範囲であった。
(Comparative Example 2)
A taC film was formed for 900 seconds as in Example 2 except that the residual magnetic flux density of the ring-shaped magnet 5 was 0.28 Tesla. In this comparative example, the magnetic flux density at the outer peripheral mold apex portion is 0.012 Tesla, the inner peripheral die apex magnetic flux density is 0.014 Tesla, and the portion having the magnetic flux density of 0.018 Tesla is a ring shape. Existed between the magnets. As a result of measuring the mold film thickness of this comparative example, the film thickness at the mold apex portion installed at the outer peripheral part was 80 nm, and the film thickness at the mold apex part installed at the inner peripheral part was 260 nm. The ratio of the film thickness at the mold opening angle of 60 degrees to the film thickness at the inner peripheral mold apex was in the range of 0.08 to 0.79. As a result of measuring Id / Ig after heating in this comparative example, Id / Ig at a mold apex portion and a mold opening angle of 60 degrees was in a range of 0.5 to 1.5.

次に、この光学素子成形用型材を用いて実施例1と同様に光学レンズの成形を行なったが、130ショットで、凸型周辺部の剥離が一部発生した。これらの結果を表1に示す。   Next, an optical lens was molded in the same manner as in Example 1 using this mold for molding an optical element. In 130 shots, a part of the convex peripheral part was peeled off. These results are shown in Table 1.

(比較例3)
型母材に入れる磁石を外径6.5mm、高さ6mm、残留磁束密度0.5テスラ、長さ方向に着磁した磁石4にする以外は、実施例2と同様に、taC膜を900秒成膜した。
(Comparative Example 3)
The taC film is made of 900 as in Example 2, except that the magnet to be put into the mold base is a magnet 4 having an outer diameter of 6.5 mm, a height of 6 mm, a residual magnetic flux density of 0.5 Tesla, and a magnetized in the length direction. Second film was formed.

本比較例の外周の型頂点部の磁束密度は0.004テスラ、内周の型頂点部の磁束密度は0.005テスラであり、0.005テスラより大きな磁束密度を有する箇所は、成形用型保持具3上に無かった。本比較例の膜厚を計測した結果、外周部に設置した型頂点部での膜厚は96nmで、内周部に設置した型頂点部での膜厚は145nmであった。内周部型頂点部での膜厚に対する型開角60度での膜厚の比率が0.21〜1.74の範囲であった。本比較例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.6〜1.7の範囲であった。   In this comparative example, the magnetic flux density at the outer peripheral mold apex portion is 0.004 Tesla, the inner peripheral die apex magnetic flux density is 0.005 Tesla, and a portion having a magnetic flux density greater than 0.005 Tesla is for molding. There was no mold holder 3. As a result of measuring the film thickness of this comparative example, the film thickness at the apex portion of the mold installed at the outer peripheral portion was 96 nm, and the film thickness at the apex portion of the mold installed at the inner peripheral portion was 145 nm. The ratio of the film thickness at a mold opening angle of 60 degrees to the film thickness at the inner peripheral mold apex was in the range of 0.21 to 1.74. As a result of measuring Id / Ig after heating in this comparative example, Id / Ig at the die apex portion and the die opening angle of 60 degrees was in the range of 0.6 to 1.7.

次に、この光学素子成形用型材を用いて実施例1と同様に光学レンズの成形を行なったが、140ショットで、凸型周辺部の剥離が一部発生した。これらの結果を表1に示す。   Next, an optical lens was molded in the same manner as in Example 1 using this mold for molding an optical element. However, in 140 shots, a part of the convex peripheral part was peeled off. These results are shown in Table 1.

(比較例4)
成形用型保持具3に、プラス電位を5Vにする以外は、実施例2と同様に、taC膜を900秒成膜した。本比較例の型膜厚を計測した結果、型頂点部での膜厚は150nmで、型頂点部での膜厚に対する型開角60度での膜厚の比率が0.6〜0.9の範囲であった。本比較例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが1.2〜1.9の範囲であった。
(Comparative Example 4)
A taC film was formed on the molding die holder 3 for 900 seconds in the same manner as in Example 2 except that the positive potential was changed to 5V. As a result of measuring the mold film thickness of this comparative example, the film thickness at the mold apex is 150 nm, and the ratio of the film thickness at the mold opening angle of 60 degrees to the film thickness at the mold apex is 0.6 to 0.9. Range. As a result of measuring Id / Ig after heating in this comparative example, Id / Ig at a mold apex portion and a mold opening angle of 60 degrees was in a range of 1.2 to 1.9.

次に、この光学素子成形用型材を用いて実施例1と同様に光学レンズの成形を行なったが、100ショットで、凸型周辺部の剥離が一部発生した。これらの結果を表1に示す。   Next, using this optical element molding die, an optical lens was molded in the same manner as in Example 1. However, in 100 shots, a part of the peripheral portion of the convex mold was peeled off. These results are shown in Table 1.

(比較例5)
成形用型保持具3に、プラス電位を35Vにする以外は、実施例2と同様に、taC膜を900秒成膜した。本比較例の型膜厚を計測した結果、型頂点部での膜厚は60nmで、型頂点部での膜厚に対する型開角60度での膜厚の比率が0.4〜0.7の範囲であった。本比較例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.3〜0.5の範囲であった。
(Comparative Example 5)
A taC film was formed on the molding die holder 3 for 900 seconds in the same manner as in Example 2 except that the positive potential was set to 35V. As a result of measuring the mold film thickness of this comparative example, the film thickness at the mold apex was 60 nm, and the ratio of the film thickness at a mold opening angle of 60 degrees to the film thickness at the mold apex was 0.4 to 0.7. Range. As a result of measuring Id / Ig after heating in this comparative example, Id / Ig at a mold apex portion and a mold opening angle of 60 degrees was in a range of 0.3 to 0.5.

次に、この光学素子成形用型材を用いて実施例1と同様に光学レンズの成形を行なったが、220ショットで、凸型周辺部の剥離が一部発生した。これらの結果を表1に示す。   Next, using this mold for molding an optical element, an optical lens was molded in the same manner as in Example 1. In 220 shots, a part of the convex peripheral part was peeled off. These results are shown in Table 1.

(比較例6)
スキャニングコイル10によって発生する磁場により、外周円15と内周円16に設置された光学素子成形用型の光学有効径外にイオンビーム径中心が当るよう制御する以外は実施例2と同様に、taC膜を900秒成膜した。本比較例の型膜厚を計測した結果、型頂点部での膜厚は50nmで、型頂点部での膜厚に対する型開角60度での膜厚の比率が0.05〜1.15の範囲であった。本比較例の加熱後のId/Igを計測した結果、型頂点部及び型開角60度でのId/Igが0.4〜1.1の範囲であった。
(Comparative Example 6)
As in Example 2, except that the magnetic field generated by the scanning coil 10 is controlled so that the center of the ion beam diameter is outside the effective optical diameter of the optical element molding die placed on the outer circumference circle 15 and the inner circumference circle 16. A taC film was formed for 900 seconds. As a result of measuring the mold film thickness of this comparative example, the film thickness at the mold apex was 50 nm, and the ratio of the film thickness at a mold opening angle of 60 degrees to the film thickness at the mold apex was 0.05 to 1.15. Range. As a result of measuring Id / Ig after heating in this comparative example, Id / Ig at a mold apex portion and a mold opening angle of 60 degrees was in a range of 0.4 to 1.1.

次に、この光学素子成形用型材を用いて実施例1と同様に光学レンズの成形を行なったが、160ショットで、凸型周辺部の剥離が一部発生した。これらの結果を表1に示す。   Next, using this optical element molding die, an optical lens was molded in the same manner as in Example 1. However, in 160 shots, a part of the convex peripheral part was peeled off. These results are shown in Table 1.

(実施例4)
光学素子成形用型3(凸形状で開角は55度)と成形用型保持具2を絶縁状態にし、実施例1と同様にしてtaC膜を成膜した。中間層としてのSiC膜は、実施例1と同様スパッタ装置を用いて60nm成膜した。
Example 4
The optical element molding die 3 (convex shape with an opening angle of 55 degrees) and the molding die holder 2 were insulated, and a taC film was formed in the same manner as in Example 1. The SiC film as the intermediate layer was formed to a thickness of 60 nm using a sputtering apparatus as in Example 1.

光学素子成形用型3の光学成形面の略法線方向に向けて−0.003、+0.003、+0.004、+0.015、+0.016テスラの磁束密度中に設置した。また、型保持部材5(型母材3とは絶縁状態)に、−10、±0、+10、+50、+100、+105ボルトを印加し、taC膜13を200nm成膜した。   It was installed in a magnetic flux density of −0.003, +0.003, +0.004, +0.015, and +0.016 Tesla toward the substantially normal direction of the optical molding surface of the optical element molding die 3. Further, −10, ± 0, +10, +50, +100, +105 volts were applied to the mold holding member 5 (insulated from the mold base material 3), and the taC film 13 was formed to a thickness of 200 nm.

次に、上記、光学素子成形用型材を用いて光学レンズのプレス成形を、連続的に800ショット行った。成形ガラスは、希土類を含む棚珪酸系ガラス(Tg:610℃、屈折率:1.85)で、成形条件は、窒素雰囲気下、プレス温度700℃で行った。成形の結果、型と成形された光学素子との間で、離型性は良好であり且つ、融着不良、成膜剥れ不良の無いプレス成形が行なわれた。成形結果について表2にまとめた。   Next, 800 shots of the optical lens were press-molded continuously using the above-mentioned mold for molding an optical element. The molded glass was shelf silicate glass containing rare earth (Tg: 610 ° C., refractive index: 1.85), and the molding conditions were performed at a press temperature of 700 ° C. in a nitrogen atmosphere. As a result of molding, press molding was performed between the mold and the molded optical element with good releasability and no fusing defect and film peeling defect. The molding results are summarized in Table 2.

表2から分かるように、磁束密度が0.004、0.015であり、印加電圧が+10、+50、+100の場合、型と成形された光学素子との間の離型性は『良好』であり、融着不良、成膜剥れ不良の無いプレス成形を行うことができた。またこのときの膜厚は、型の頂点部での膜厚に対する型開角55度での膜厚の比率は0.8〜1.0の範囲であった。また、同計測位置での膜の抵抗値を測定した結果、頂点部にて1010.8〜1012.5Ω・cm、型開角55度部にて109.5〜1011.7Ω・cmであり、膜厚、膜質ともに均一なものであった。 As can be seen from Table 2, when the magnetic flux density is 0.004, 0.015 and the applied voltage is +10, +50, +100, the releasability between the mold and the molded optical element is “good”. Yes, it was possible to carry out press molding without fusing defects and film formation peeling defects. Moreover, the ratio of the film thickness at the mold opening angle of 55 degrees to the film thickness at the apex portion of the mold was in the range of 0.8 to 1.0. Moreover, as a result of measuring the resistance value of the film at the same measurement position, 10 10.8 to 10 12.5 Ω · cm at the apex portion, and 10 9.5 to 10 11.7 at the mold opening angle 55 ° portion. It was Ω · cm, and both the film thickness and film quality were uniform.

磁束密度が−0.003、+0.003、+0.016であり、印加電圧が+10、+50、+100の場合は、成形時に離型不良現象がみられ、型とガラスの融着現象を含む型の膜耐久は500ショット以下であった。このとき型の周辺部ではtaC膜の剥離が一部発生した。同様に、磁束密度が0.004、+0.015であり、印加電圧が−10、±0、+105の場合も、同様に成形時に離型不良現象がみられ、型とガラスの融着現象を含む型の膜耐久は500ショット以下であった。このとき型の周辺部ではtaC膜の剥離が一部発生した。   When the magnetic flux density is -0.003, +0.003, +0.016, and the applied voltage is +10, +50, +100, a mold release failure phenomenon is observed at the time of molding, and a mold including a mold-glass fusion phenomenon The film durability was 500 shots or less. At this time, part of the taC film peeled off at the periphery of the mold. Similarly, when the magnetic flux density is 0.004 and +0.015 and the applied voltage is −10, ± 0, and +105, a demolding failure phenomenon is similarly observed during molding, and the mold and glass are fused. The film durability of the included mold was 500 shots or less. At this time, part of the taC film peeled off at the periphery of the mold.

また、磁束密度が−0.003、+0.003、+0.016であり、印加電圧が−10、±0、+105の場合は、十分な成膜を行うことができず、プレス成形を行うことができなかった。   In addition, when the magnetic flux density is −0.003, +0.003, +0.016 and the applied voltage is −10, ± 0, +105, sufficient film formation cannot be performed, and press molding is performed. I could not.

(実施例5)
光学素子成形用型3(凸形状で開角は45度)と成形用型保持具2を絶縁状態にし、実施例1と同様にしてtaC膜を成膜した。中間層としてのSiC膜は、実施例1と同様スパッタ装置を用いて60nm成膜した。また実施例4と同様にしてガラス成形テストを行い型の膜評価を行なった。その結果を表3に示す。
(Example 5)
The optical element molding die 3 (convex shape with an opening angle of 45 degrees) and the molding die holder 2 were insulated, and a taC film was formed in the same manner as in Example 1. The SiC film as the intermediate layer was formed to a thickness of 60 nm using a sputtering apparatus as in Example 1. Further, a glass molding test was conducted in the same manner as in Example 4 to evaluate the film of the mold. The results are shown in Table 3.

表2から分かるように、磁束密度が0.003、0.004であり、印加電圧が+10、+50、+100、+105の場合、型と成形された光学素子との間の離型性は(良好)であり、融着不良、成膜剥れ不良の無いプレス成形を行うことができた。また磁束密度が0.015であり、印加電圧が+10、+50、+100の場合、型と成形された光学素子との間の離型性は『良好』であり、融着不良、成膜剥れ不良の無いプレス成形を行うことができた。   As can be seen from Table 2, when the magnetic flux density is 0.003 and 0.004 and the applied voltage is +10, +50, +100, and +105, the releasability between the mold and the molded optical element is (good) It was possible to perform press molding without fusing defects and film peeling defects. In addition, when the magnetic flux density is 0.015 and the applied voltage is +10, +50, +100, the releasability between the mold and the molded optical element is “good”, poor fusion, and film peeling. It was possible to perform press molding without defects.

また、上記以外の条件で成膜した場合、型とガラスの融着現象を含む型の膜耐久は500ショット以下であった。このとき型の周辺部ではtaC膜の剥離が一部発生した。   Further, when the film was formed under conditions other than the above, the film durability of the mold including the fusion phenomenon between the mold and the glass was 500 shots or less. At this time, part of the taC film peeled off at the periphery of the mold.

1 真空チャンバー
2 成形用型保持具
3 光学素子成形用型
4 磁石
5 リング状磁石
6 バキュームアーク電源
7 アークプラズマ生成室
8 フィルターコイル
10 スキャニングコイル
11 型母材
12 SiC膜
13 taC膜
14 開口部
17 中心軸
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Mold holder 3 Optical element shaping mold 4 Magnet 5 Ring magnet 6 Vacuum arc power supply 7 Arc plasma generation chamber 8 Filter coil 10 Scanning coil 11 Mold base material 12 SiC film 13 taC film 14 Opening 17 Central axis

Claims (4)

成形面が凸状の光学素子成形用型の製造方法において、内部に磁石が配置された複数の型母材を、真空チャンバー内において成形用型保持具を介して同心円状に配置し、前記各型母材の周りにはリング状磁石が配置されており、前記磁石とリング状磁石により形成される磁場は、前記型母材の頂点部の法線方向の磁束密度が最も高くなるように形成されており、前記各型母材に電圧を印加しながら、フィルタードカソーディックバキュームアーク法によって、前記型母材の成形面にテトラヘドラルアモルファスカーボン膜を成膜することを特徴とする光学素子成形用型の製造方法。   In the method for manufacturing an optical element molding die having a convex molding surface, a plurality of mold base materials having magnets arranged therein are arranged concentrically in a vacuum chamber via a molding die holder, A ring-shaped magnet is arranged around the mold base material, and the magnetic field formed by the magnet and the ring-shaped magnet is formed so that the magnetic flux density in the normal direction of the apex portion of the mold base material is the highest. And forming a tetrahedral amorphous carbon film on a molding surface of the mold base material by applying a filtered cathodic vacuum arc method while applying a voltage to each of the mold base materials. A method for manufacturing a mold for molding. 前記磁場において、前記型母材の成形面に対して法線方向の磁束密度は、0.003テスラ以上0.015テスラ以下であり、前記型母材に印加する電圧は10V以上100V以下の正電圧であることを特徴とする請求項1に記載の光学素子成形用型の製造方法。   In the magnetic field, the magnetic flux density in the normal direction with respect to the molding surface of the mold base is 0.003 Tesla or more and 0.015 Tesla or less, and the voltage applied to the mold base is a positive voltage of 10 V or more and 100 V or less. The method for producing an optical element molding die according to claim 1, wherein the method is a voltage. 前記光学素子成形用型は絶縁部材を介して成形用型保持具により保持されており、前記光学素子成形用型を浮遊電位にした状態で、前記テトラヘドラルアモルファスカーボン膜を形成することを特徴とする請求項1に記載の光学素子成形用型の製造方法。   The optical element molding die is held by a molding die holder through an insulating member, and the tetrahedral amorphous carbon film is formed in a state where the optical element molding die is at a floating potential. The method for producing an optical element molding die according to claim 1. 請求項1又は3に記載の光学素子成形用型の製造方法によって製造されたことを特徴とする光学素子成形用型。   An optical element molding die manufactured by the method for manufacturing an optical element molding die according to claim 1 or 3.
JP2011087626A 2011-04-11 2011-04-11 Manufacturing method of optical element molding die and optical element molding die Expired - Fee Related JP5693340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087626A JP5693340B2 (en) 2011-04-11 2011-04-11 Manufacturing method of optical element molding die and optical element molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087626A JP5693340B2 (en) 2011-04-11 2011-04-11 Manufacturing method of optical element molding die and optical element molding die

Publications (3)

Publication Number Publication Date
JP2012218989A true JP2012218989A (en) 2012-11-12
JP2012218989A5 JP2012218989A5 (en) 2014-07-03
JP5693340B2 JP5693340B2 (en) 2015-04-01

Family

ID=47270898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087626A Expired - Fee Related JP5693340B2 (en) 2011-04-11 2011-04-11 Manufacturing method of optical element molding die and optical element molding die

Country Status (1)

Country Link
JP (1) JP5693340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295414A (en) * 2018-12-11 2019-02-01 北京师范大学 The technology and equipment of plated film in a kind of deep hole

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537825A (en) * 2001-04-20 2004-12-16 アプライド・プロセス・テクノロジーズ Magnetic mirror plasma source
JP2007009303A (en) * 2005-07-04 2007-01-18 Toyohashi Univ Of Technology Plasma surface treatment method, plasma treatment device, and work
JP2007123058A (en) * 2005-10-28 2007-05-17 Nec Tokin Corp Electrical contact switch
JP2008297171A (en) * 2007-06-01 2008-12-11 Toyohashi Univ Of Technology Diamond-like carbon (dlc) film and dlc coated die
WO2009090994A1 (en) * 2008-01-15 2009-07-23 Ulvac, Inc. Substrate stage, sputtering apparatus provided with substrate stage, and film forming method
JP2010116295A (en) * 2008-11-13 2010-05-27 Canon Inc Mold for molding optical element and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537825A (en) * 2001-04-20 2004-12-16 アプライド・プロセス・テクノロジーズ Magnetic mirror plasma source
JP2007009303A (en) * 2005-07-04 2007-01-18 Toyohashi Univ Of Technology Plasma surface treatment method, plasma treatment device, and work
JP2007123058A (en) * 2005-10-28 2007-05-17 Nec Tokin Corp Electrical contact switch
JP2008297171A (en) * 2007-06-01 2008-12-11 Toyohashi Univ Of Technology Diamond-like carbon (dlc) film and dlc coated die
WO2009090994A1 (en) * 2008-01-15 2009-07-23 Ulvac, Inc. Substrate stage, sputtering apparatus provided with substrate stage, and film forming method
JP2010116295A (en) * 2008-11-13 2010-05-27 Canon Inc Mold for molding optical element and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295414A (en) * 2018-12-11 2019-02-01 北京师范大学 The technology and equipment of plated film in a kind of deep hole
CN109295414B (en) * 2018-12-11 2020-11-20 北京师范大学 Technology and equipment for coating film in deep hole

Also Published As

Publication number Publication date
JP5693340B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5693340B2 (en) Manufacturing method of optical element molding die and optical element molding die
JP2010116295A (en) Mold for molding optical element and method for manufacturing the same
JP5868017B2 (en) Manufacturing method of optical element molding die and optical element molding die
JP5627214B2 (en) Mold and its manufacturing method
JP5762101B2 (en) Manufacturing method of optical element molding die and optical element molding die
JP5155579B2 (en) Method for manufacturing mold press mold and method for manufacturing glass optical element
JP6073624B2 (en) Method for producing mold press mold, mold press mold, and method for producing glass optical element using the same
JP5319874B2 (en) Mold member for injection molding
WO2018147372A1 (en) Method for manufacturing mold for forming optical element
JP5907774B2 (en) Method for manufacturing optical element molding die and method for manufacturing optical element
JPH06345448A (en) Production of optical element
JPWO2015194031A1 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
JP3308720B2 (en) Mold for optical element molding
JP3810022B2 (en) Method for manufacturing optical element molding die
JP2612627B2 (en) Mold for optical element molding
JP2002284534A (en) Optical element forming mold and method used for the same
JPH08259241A (en) Method for forming optical device
JP2571290B2 (en) Mold for optical element molding
JP2612621B2 (en) Mold for optical element molding
JP2006265045A (en) Method for manufacturing die for forming optical element
JP2006117455A (en) Optical element forming die and its manufacturing method
JP2010260783A (en) Mold for optical element and method for manufacturing the mold
JPH01108372A (en) Sputtering device
JP2010018453A (en) Metal mold for molding optical element, reproduction method of the same, and production method of optical element
JP2008214114A (en) Mold for molding optical element and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R151 Written notification of patent or utility model registration

Ref document number: 5693340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees