JP2012213228A - Image processing apparatus, control method for controlling image processing apparatus, program, and computer storage medium - Google Patents

Image processing apparatus, control method for controlling image processing apparatus, program, and computer storage medium Download PDF

Info

Publication number
JP2012213228A
JP2012213228A JP2012163600A JP2012163600A JP2012213228A JP 2012213228 A JP2012213228 A JP 2012213228A JP 2012163600 A JP2012163600 A JP 2012163600A JP 2012163600 A JP2012163600 A JP 2012163600A JP 2012213228 A JP2012213228 A JP 2012213228A
Authority
JP
Japan
Prior art keywords
image
image detector
detector
processing apparatus
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012163600A
Other languages
Japanese (ja)
Inventor
Tomohiko Matsuura
友彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012163600A priority Critical patent/JP2012213228A/en
Publication of JP2012213228A publication Critical patent/JP2012213228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct a composite image to obtain a high-quality image.SOLUTION: An image processing apparatus comprises: combining means which combines a first image obtained by an image detector at a first position and a second image obtained by the image detector at a second position moved from the first position by a distance greater than or equal to one pixel width of the image detector; and correcting means which corrects the value of a defective pixel of a composite image combined by the combining means with the value of the pixel value of normal pixels surrounding the defective pixel, on the basis of the position of the defective pixel of the image detector.

Description

本発明は、画像検出器を移動して撮像したて取得した画像を合成する画像処理装置、画像処理装置の制御方法、プログラム及びコンピュータ可読媒体に関する   The present invention relates to an image processing apparatus that synthesizes an image acquired by moving an image detector, and a method for controlling the image processing apparatus, a program, and a computer-readable medium.

従来より、画像を高精細化する方法のひとつとして、画像検出器を主走査方向および/または副走査方向に1画素幅よりも小さい量だけ移動して複数回の撮像を行い、取得した複数の画像から高精細画像を合成することが行われている(特許文献1、特許文献2参照)。
上記の方法によれば、例えば図8に示すように、複数の撮像素子801から構成される画像検出器810を主走査方向および/または副走査方向に0.5画素幅だけ移動して計4回の撮像を行い、取得した4個の画像を適切に合成することにより各走査方向の解像度を2倍相当に向上した高精細画像820を取得することが可能である。
Conventionally, as one of the methods for increasing the definition of an image, an image detector is moved by an amount smaller than one pixel width in the main scanning direction and / or sub-scanning direction, and a plurality of acquired images are obtained. A high-definition image is synthesized from an image (see Patent Document 1 and Patent Document 2).
According to the above method, for example, as shown in FIG. 8, the image detector 810 composed of a plurality of image sensors 801 is moved by a width of 0.5 pixels in the main scanning direction and / or the sub-scanning direction, for a total of 4 It is possible to acquire a high-definition image 820 in which the resolution in each scanning direction has been improved by a factor of two by appropriately combining the four acquired images after performing multiple imaging operations.

特開平11−215324号公報JP 11-215324 A 特開2005−326260号公報JP-A-2005-326260

一方、画像検出器は一般に欠陥画素と呼ばれる出力不良の撮像素子を含むことがしばしばあり、欠陥画素を周囲の正常画素に基づいて補正することが広く行われている。そのため、図9に示すような欠陥画素901を含む画像検出器を利用して1画素幅より小さい移動量で撮像した複数の画像を合成すると、欠陥画素901が互いに隣接し、上述したような欠陥画素の周囲の正常画素に基づく補正処理の精度が低下するという課題があった。   On the other hand, an image detector often includes an image sensor having a poor output generally called a defective pixel, and it is widely performed to correct a defective pixel based on surrounding normal pixels. Therefore, when a plurality of images captured with a movement amount smaller than one pixel width is synthesized using an image detector including a defective pixel 901 as shown in FIG. 9, the defective pixels 901 are adjacent to each other, and the defect as described above. There has been a problem that the accuracy of correction processing based on normal pixels around the pixel is lowered.

また、高精細画像を合成する前の複数の画像を個別に欠陥補正する方法も考えられるが、画像の空間解像度を考慮すると、上述した補正処理よりも更に精度が低下することは明白である。   A method of individually correcting a plurality of images before synthesizing a high-definition image is also conceivable. However, when the spatial resolution of the image is taken into consideration, it is obvious that the accuracy is further lowered than the correction processing described above.

本発明はこのような課題を解決するために成されたものであり、欠陥画素の補正精度を低下させることなく複数の画像を合成して高画質かつ高精細な画像を取得することを目的とする。   The present invention has been made to solve such problems, and aims to obtain a high-quality and high-definition image by combining a plurality of images without reducing the correction accuracy of defective pixels. To do.

本発明の目的を達成するために、例えば本発明の画像処理装置は以下の構成を備える。すなわち、複数の画素を有し、画像信号に変換して撮像する画像検出器と、
前記画像検出器の第一の位置から前記画像検出器の画素の幅以上の距離を移動して第二の位置に移動する移動手段と、
前記第一の位置における前記画像検出器で得られた前記第一の画像と、前記第二の位置における前記画像検出器で得られた第二の画像とを合成する合成手段と、
前記画像検出器の欠陥画素の位置に基づいて、欠陥画素の周囲の正常画素の画素値の値で前記合成手段で合成された合成画像の欠陥画素の値を補正する補正手段と、を備える。
In order to achieve the object of the present invention, for example, an image processing apparatus of the present invention comprises the following arrangement. That is, an image detector that has a plurality of pixels and converts the image signal into an image signal, and
Moving means for moving from the first position of the image detector to a second position by moving a distance equal to or greater than the pixel width of the image detector;
Combining means for combining the first image obtained by the image detector at the first position and the second image obtained by the image detector at the second position;
Correcting means for correcting the value of the defective pixel of the synthesized image synthesized by the synthesizing means with the value of the pixel value of the normal pixels around the defective pixel based on the position of the defective pixel of the image detector.

本発明によれば、同一の欠陥画素を隣接することなく、複数の画像を合成することができる。   According to the present invention, it is possible to synthesize a plurality of images without adjoining the same defective pixel.

発明の実施例1.の構成を示すブロック図である。Embodiment 1 of the Invention It is a block diagram which shows the structure of these. 実施例1.および2.の画像処理装置の処理の流れを示す図である。Example 1. And 2. It is a figure which shows the flow of a process of this image processing apparatus. 実施例1.2.および3.の画像を示す図である。Example 1.2. And 3. FIG. 実施例1.2.および3.の合成画像を示す図である。Example 1.2. And 3. It is a figure which shows these composite images. 発明の実施例2.の構成を示すブロック図である。Embodiment 2 of the Invention It is a block diagram which shows the structure of these. 発明の実施例3.の構成を示すブロック図である。Embodiment 3 of the Invention It is a block diagram which shows the structure of these. 実施例3.の画像処理装置の処理の流れを示す図である。Example 3 It is a figure which shows the flow of a process of this image processing apparatus. 背景技術の原理を説明する図である。It is a figure explaining the principle of background art. 背景技術の課題を説明する図である。It is a figure explaining the subject of background art.

(実施例1)
以下、この発明の実施例1の形態を説明する。
Example 1
Hereinafter, the form of Example 1 of this invention is demonstrated.

図1はこの発明の実施例1.による画像処理装置100である。すなわち、画像処理装置100は、複数の画像を合成して高精細画像を取得する機能を有する画像処理装置であり、前処理回路103、制御手段としてのCPU108、メインメモリ109、操作パネル110、ディスプレイモニタ111、画像処理回路120を備えており、CPUバス107を介して互いにデータ授受されるようになされている。   FIG. 1 shows a first embodiment of the present invention. The image processing apparatus 100 according to FIG. That is, the image processing apparatus 100 is an image processing apparatus having a function of acquiring a high-definition image by combining a plurality of images, and includes a preprocessing circuit 103, a CPU 108 as control means, a main memory 109, an operation panel 110, a display. A monitor 111 and an image processing circuit 120 are provided to exchange data with each other via a CPU bus 107.

また、画像処理装置100は、前処理回路103に接続されたデータ収集回路102と、データ収集回路102に接続された画像検出器101及び移動装置104とを備えており、データ収集回路102はCPUバス107にも接続されている。画像検出器101は複数の画素を有し受光した光を画像として撮像する。つまり、光学像を画像信号に変換して画像として撮像する。   The image processing apparatus 100 also includes a data collection circuit 102 connected to the preprocessing circuit 103, an image detector 101 and a moving device 104 connected to the data collection circuit 102, and the data collection circuit 102 includes a CPU. A bus 107 is also connected. The image detector 101 has a plurality of pixels and captures received light as an image. That is, an optical image is converted into an image signal and captured as an image.

更に画像処理回路120は、複数の画像を合成して合成画像を生成する合成手段としての合成回路121、画像に対して欠陥補正処理を施す欠陥補正回路122を備える。   Further, the image processing circuit 120 includes a combining circuit 121 as a combining unit that combines a plurality of images to generate a combined image, and a defect correction circuit 122 that performs defect correction processing on the image.

上述の様な画像処理装置100において、メインメモリ109は、制御手段としてのCPU108での処理に必要な各種のデータなどが記憶されるものであると共に、CPU108の作業用としてのワークメモリを含む。CPU108は、メインメモリ109を用いて、操作パネル110からの操作にしたがって装置全体の動作制御等を行う。   In the image processing apparatus 100 as described above, the main memory 109 stores various data necessary for processing by the CPU 108 serving as control means, and includes a work memory for working the CPU 108. The CPU 108 uses the main memory 109 to perform operation control of the entire apparatus according to an operation from the operation panel 110.

図2は画像処理装置100が動作する際の制御処理の流れを示す図であり、図3は画像検出器101により撮像される複数の画像301乃至304を示している。また図4は前記複数の画像を合成して得た合成画像401を示している。尚、図2に示したフローチャートに従ったプログラムコードはメインメモリ109、もしくは図不示のROMに格納され、CPU108により読み出され、実行されるものとする。   FIG. 2 is a diagram showing a flow of control processing when the image processing apparatus 100 operates, and FIG. 3 shows a plurality of images 301 to 304 captured by the image detector 101. FIG. 4 shows a composite image 401 obtained by combining the plurality of images. The program code according to the flowchart shown in FIG. 2 is stored in the main memory 109 or a ROM (not shown), and is read out and executed by the CPU.

以下では図2乃至図4を用いて画像処理装置100が動作する際の処理の流れを説明する。はじめにデータ収集回路102が移動手段としての移動装置104を駆動して画像検出器101を第1の撮像位置に移動させる(s201)。続いて画像検出器101を駆動させ図不示の被写体を撮像し、第1の撮像位置における第一の画像301を取得する(s202)。次にデータ収集回路102は移動装置104を駆動して画像検出器101をその主走査方向に移動させ第2の撮像位置に平行移動させる(s203)。本実施例においては、このときの移動量を画像検出器101を構成する撮像素子の画素の幅の1.5倍の量とする。続いて上記処理s202と同様に画像検出器101を駆動させ図不示の被写体を撮像し、第2の撮像位置における第二の画像302を取得する(s204)。同様に画像検出器101をその副走査方向に画素幅の1.5倍の量だけ移動して第3の撮像位置に移動させ、第三の画像303を取得する(s205、s206)。同様に画像検出器101を第4の撮像位置に移動させ、第四の画像304を取得する(s207、s208)。尚、本実施例における各画像の撮像順序は上述した通りだが、これに限定されるものではなく任意の撮像順序として構わない。   Hereinafter, the flow of processing when the image processing apparatus 100 operates will be described with reference to FIGS. First, the data collection circuit 102 drives the moving device 104 as a moving unit to move the image detector 101 to the first imaging position (s201). Subsequently, the image detector 101 is driven to image a subject (not shown), and the first image 301 at the first imaging position is acquired (s202). Next, the data acquisition circuit 102 drives the moving device 104 to move the image detector 101 in the main scanning direction and translate it to the second imaging position (s203). In this embodiment, the amount of movement at this time is set to an amount that is 1.5 times the width of the pixel of the image sensor that constitutes the image detector 101. Subsequently, the image detector 101 is driven in the same manner as in the process s202 to image a subject (not shown), and the second image 302 at the second imaging position is acquired (s204). Similarly, the image detector 101 is moved in the sub-scanning direction by an amount 1.5 times the pixel width and moved to the third imaging position, and the third image 303 is acquired (s205, s206). Similarly, the image detector 101 is moved to the fourth imaging position, and the fourth image 304 is acquired (s207, s208). In addition, although the imaging order of each image in a present Example is as above-mentioned, it is not limited to this, It does not matter as arbitrary imaging orders.

上記処理s201乃至s208により取得された4個の画像は、データ収集回路102から前処理回路103に供給され、オフセット補正処理やゲイン補正処理等の一般的な前処理を施される(s209)。   The four images acquired by the above processing s201 to s208 are supplied from the data collection circuit 102 to the preprocessing circuit 103, and are subjected to general preprocessing such as offset correction processing and gain correction processing (s209).

次に画像処理回路120に備わる合成回路121が、上記処理s209により前処理を施した4個の画像301乃至304をそれぞれの撮像位置に基づいて移動して合成し、合成画像401を生成する(s210)。また、補間回路を新たに構成に加え、合成画像401の周辺部の画像を補間処理により生成すれば有効領域の減少を回避することも可能である。ここで、合成画像401の座標上で、画素幅の1.5倍の量だけ、画像302,303,304を移動して画像301と合成する。   Next, the synthesizing circuit 121 included in the image processing circuit 120 moves and synthesizes the four images 301 to 304 that have been pre-processed by the process s209 based on the respective imaging positions, thereby generating a synthesized image 401 ( s210). Further, if an interpolation circuit is newly added and an image of the peripheral portion of the composite image 401 is generated by interpolation processing, it is possible to avoid a decrease in effective area. Here, on the coordinates of the composite image 401, the images 302, 303, and 304 are moved by an amount that is 1.5 times the pixel width and combined with the image 301.

最後に画像処理回路120に備わる欠陥補正回路122が、合成画像401に対して欠陥補正処理を施す(s211)。欠陥補正処理は一般に補正対象の欠陥画素の周囲の正常画素、すなわち非欠陥画素に基づいて補正対象の欠陥画素の画素値を生成することで実現される。最も単純には欠陥画素に隣接する4画素または8画素のうち正常画素の平均値で欠陥画素の画素値を代用する方法が用いられる。本実施例によれば上記処理s203、s205、s207において画像検出器101を移動した量は各走査方向に1.5画素幅であるため、合成画像401において欠陥画素が互いに隣接する状況は発生し難く、高精度の欠陥補正処理が可能である。欠陥画素の位置については画像検出器101の製造過程で特定し、画像検出器101の個体の固有情報として画像処理装置100の内部、例えば欠陥補正回路122に予め記憶させるのが一般的である。上記処理s210における各画像の合成位置は既知であるため、画像検出器101の欠陥画素の位置から合成画像401の欠陥画素の位置を知ることができる。その他にも新たに欠陥検出回路を構成に加え、撮像の度に、または定期的に画像301乃至304または合成画像401から欠陥画素の位置を検出して利用してももちろん構わない。   Finally, the defect correction circuit 122 included in the image processing circuit 120 performs defect correction processing on the composite image 401 (s211). Defect correction processing is generally realized by generating pixel values of defective pixels to be corrected based on normal pixels around the defective pixels to be corrected, that is, non-defective pixels. The simplest method is to substitute the pixel value of the defective pixel with the average value of the normal pixels among the four or eight pixels adjacent to the defective pixel. According to the present embodiment, since the amount of movement of the image detector 101 in the processes s203, s205, and s207 is 1.5 pixels wide in each scanning direction, a situation occurs in which defective pixels are adjacent to each other in the composite image 401. Difficult and highly accurate defect correction processing is possible. In general, the position of the defective pixel is specified in the manufacturing process of the image detector 101, and is stored in advance in the image processing apparatus 100, for example, in the defect correction circuit 122 as unique information of the individual image detector 101. Since the combined position of each image in the process s210 is known, the position of the defective pixel of the combined image 401 can be known from the position of the defective pixel of the image detector 101. In addition, a defect detection circuit may be newly added to the configuration, and the position of the defective pixel may be detected and used from each of the images 301 to 304 or the composite image 401 at every imaging or periodically.

以上の様に実施例1.によれば、合成画像を合成するにあたり、欠陥画素が隣接する可能性を落として、合成画像を得ることが可能である。さらに、また複数の画像を主走査方向および/または副走査方向に1.5画素幅だけ移動して合成するため、合成後の画像において欠陥画素が互いに隣接する状況の発生を大幅に低減することが可能である。また、一枚の画像よりも高解像度の合成画像を取得可能とする効果がある。つまり、高解像度、高画質化した画像を得ることができる。   As described above, the first embodiment. According to the above, in synthesizing a synthesized image, it is possible to obtain a synthesized image by reducing the possibility that defective pixels are adjacent to each other. Furthermore, since a plurality of images are combined by moving by a width of 1.5 pixels in the main scanning direction and / or sub-scanning direction, occurrence of a situation in which defective pixels are adjacent to each other in the combined image is greatly reduced. Is possible. Further, there is an effect that it is possible to acquire a composite image having a higher resolution than that of one image. That is, an image with high resolution and high image quality can be obtained.

尚、本実施例では説明を簡単にするため、画像の撮像位置を主走査方向に2個の位置、副走査方向に2個の位置として計4(2×2)個の位置とした。またその際の移動量は各走査方向で1.5画素幅とした。しかしこれは最も簡単な例であり一般的には主走査方向にM個の位置、副走査方向にN個の位置として計M×N個の位置で撮像することが可能である。またその際の移動量を主走査方向は(m+1/M)画素幅、副走査方向は(n+1/N)画素幅、ただしm、nはそれぞれ1以上の整数とすることにより、本実施例と同様の効果が得られることは明らかである。   In the present embodiment, in order to simplify the description, there are a total of 4 (2 × 2) positions where the image capturing positions are two positions in the main scanning direction and two positions in the sub-scanning direction. Further, the movement amount at that time was set to 1.5 pixel width in each scanning direction. However, this is the simplest example, and in general, it is possible to image at a total of M × N positions with M positions in the main scanning direction and N positions in the sub-scanning direction. Further, the amount of movement at that time is (m + 1 / M) pixel width in the main scanning direction and (n + 1 / N) pixel width in the sub-scanning direction, where m and n are each an integer of 1 or more. It is clear that the same effect can be obtained.

(実施例2)
図5はこの発明の実施例2.による画像処理装置500である。実施例1.による画像処理装置100との相違は、画像検出器101の代わりに放射線画像検出器501が構成された点である。また、放射線画像検出器501は、被写体を透過した放射線画像を画像信号に変換して、画像を撮像するものである。
(Example 2)
5 shows a second embodiment of the present invention. Is an image processing apparatus 500. Example 1. The difference from the image processing apparatus 100 is that a radiation image detector 501 is configured instead of the image detector 101. The radiation image detector 501 converts a radiation image that has passed through the subject into an image signal and captures an image.

放射線発生装置502、放射線ビーム503および被検査体504が追加された点である。以下ではこれらに関連する部分についてのみ説明する。   The radiation generator 502, the radiation beam 503, and the inspection object 504 are added. Only the parts related to these will be described below.

はじめにデータ収集回路102が、放射線画像検出器の移動手段である移動装置104を駆動して放射線画像検出器501を第1の撮像位置に移動させる(s201)。続いてデータ収集回路102の制御により放射線発生装置502および放射線画像検出器501が駆動され、被検査体504に対して放射線ビーム503が放射される。放射線発生装置502から放射された放射線ビーム503は、被検査体504を減衰しながら透過して放射線画像検出器501に到達し、放射線画像検出器501により画像301として出力される(s202)。以降、実施例1.と同様に、データ収集回路102は移動装置104を駆動して放射線画像検出器501を第2、第3および第4の撮像位置に移動させ、それぞれの撮像位置で被検査体504の画像を取得する(s203乃至s208)。ただしそれぞれの撮像位置において放射線画像検出器501に加えて放射線発生装置502も併せて駆動し、被検査体504に対して放射線ビーム503が放射される点は本実施例の特徴である。   First, the data collection circuit 102 drives the moving device 104 that is a moving means of the radiographic image detector to move the radiographic image detector 501 to the first imaging position (s201). Subsequently, the radiation generator 502 and the radiation image detector 501 are driven by the control of the data acquisition circuit 102, and the radiation beam 503 is emitted to the object 504 to be inspected. The radiation beam 503 emitted from the radiation generator 502 passes through the object 504 while being attenuated, reaches the radiation image detector 501, and is output as an image 301 by the radiation image detector 501 (s202). Hereinafter, Example 1. In the same manner as described above, the data acquisition circuit 102 drives the moving device 104 to move the radiation image detector 501 to the second, third, and fourth imaging positions, and acquires an image of the inspected object 504 at each imaging position. (S203 to s208). However, the feature of this embodiment is that the radiation generator 502 is also driven together with the radiation image detector 501 at each imaging position, and the radiation beam 503 is emitted to the object 504 to be inspected.

上記処理s201乃至s208により取得された4個の画像は、引き続き各回路により前処理(s209)、画像合成(s210)、欠陥補正(s211)されるが、これらの処理については実施例1.と同様であるため説明を省略する。   The four images acquired by the above-described processes s201 to s208 are continuously preprocessed (s209), image composition (s210), and defect correction (s211) by each circuit. Since it is the same as that, description is abbreviate | omitted.

以上の様に実施例2.によれば、複数の放射線画像を合成して高精細な放射線画像を取得することが可能である。また複数の放射線画像を主走査方向および/または副走査方向に1.5画素幅だけ移動して合成するため、合成後の放射線画像において欠陥画素が互いに隣接する状況の発生を大幅に低減することが可能であり、精度の高い欠陥補正処理が可能である。結果として高画質かつ高精細な放射線画像を取得可能とする効果がある。   As described above, the second embodiment. According to the above, it is possible to obtain a high-definition radiation image by combining a plurality of radiation images. In addition, since a plurality of radiographic images are synthesized by moving by a width of 1.5 pixels in the main scanning direction and / or sub-scanning direction, the occurrence of a situation where defective pixels are adjacent to each other in the synthesized radiographic image is greatly reduced. It is possible to perform defect correction processing with high accuracy. As a result, there is an effect that a high-quality and high-definition radiation image can be acquired.

(実施例3)
図6はこの発明の実施例3.による画像処理装置600である。実施例2.による画像処理装置500との相違は、実施例2.において放射線画像検出器501を移動させるよう構成していた移動装置104が、本実施例では放射線発生装置502を移動させる移動装置604として構成されている点である。以下ではこれらに関連する部分についてのみ説明する。
(Example 3)
6 shows a third embodiment of the present invention. Is an image processing apparatus 600. Example 2 The difference from the image processing apparatus 500 according to FIG. In this embodiment, the moving device 104 configured to move the radiation image detector 501 is configured as a moving device 604 that moves the radiation generating device 502 in this embodiment. Only the parts related to these will be described below.

図7は画像処理装置600が動作する際の制御処理の流れを示す図である。はじめにデータ収集回路102が移動装置604を駆動して放射線発生装置502を第1の曝射位置に移動させる(s701)。続いてデータ収集回路102の制御により放射線発生装置502および放射線画像検出器501が駆動され、被検査体504に対して放射線ビーム503が放射される。放射線発生装置502から放射された放射線ビーム503は、被検査体504を減衰しながら透過して放射線画像検出器501に到達し、放射線画像検出器501により画像301として出力される(s702)。次にデータ収集回路102は移動装置604を駆動して放射線発生装置502を放射線画像検出器501の主走査方向に対応する方向に移動させ第2の曝射位置に移動させる(s703)。このとき移動量を例えば放射線画像検出器501を構成する撮像素子の画素幅の1.5倍の量とする。続いて上記処理s702と同様に放射線発生装置502および放射線画像検出器501を駆動し、第2の曝射位置における画像302を取得する(s704)。同様に放射線発生装置502を放射線画像検出器501の副走査方向に対応する方向に放射線画像検出器501の画素幅の1.5倍の量だけ移動して第3の曝射位置に移動させ、画像303を取得する(s705、s706)。同様に放射線発生装置502を第4の曝射位置に移動させ、画像304を取得する(s707、s708)。   FIG. 7 is a diagram showing a flow of control processing when the image processing apparatus 600 operates. First, the data collection circuit 102 drives the moving device 604 to move the radiation generating device 502 to the first exposure position (s701). Subsequently, the radiation generator 502 and the radiation image detector 501 are driven by the control of the data acquisition circuit 102, and the radiation beam 503 is emitted to the object 504 to be inspected. The radiation beam 503 emitted from the radiation generation apparatus 502 passes through the object 504 while being attenuated and reaches the radiation image detector 501 and is output as an image 301 by the radiation image detector 501 (s702). Next, the data acquisition circuit 102 drives the moving device 604 to move the radiation generating device 502 in a direction corresponding to the main scanning direction of the radiation image detector 501 and move it to the second exposure position (s703). At this time, the movement amount is set to, for example, an amount that is 1.5 times the pixel width of the image sensor that constitutes the radiation image detector 501. Subsequently, the radiation generator 502 and the radiation image detector 501 are driven in the same manner as in the process s702 to acquire the image 302 at the second exposure position (s704). Similarly, the radiation generator 502 is moved by an amount 1.5 times the pixel width of the radiation image detector 501 in the direction corresponding to the sub-scanning direction of the radiation image detector 501 and moved to the third exposure position. The image 303 is acquired (s705, s706). Similarly, the radiation generator 502 is moved to the fourth exposure position, and an image 304 is acquired (s707, s708).

上記処理s701乃至s708により取得された4個の画像は、引き続き各回路により前処理(s709)、画像合成(s710)、欠陥補正(s711)される。これらの処理については実施例1.における処理s209乃至s211と同様であるため説明を省略する。   The four images acquired by the above processing s701 to s708 are successively preprocessed (s709), image composition (s710), and defect correction (s711) by each circuit. These processes are described in Example 1. Since this is the same as steps s209 to s211 in FIG.

以上の様に実施例3.によれば、複数の放射線画像を合成して高精細な放射線画像を取得することが可能である。また複数の放射線画像を主走査方向および/または副走査方向に1.5画素幅だけ移動して合成するため、合成後の放射線画像において欠陥画素が互いに隣接する状況の発生を大幅に低減することが可能であり、精度の高い欠陥補正処理が可能である。結果として高画質かつ高精細な放射線画像を取得可能とする効果がある。   As described above, the third embodiment. According to the above, it is possible to obtain a high-definition radiation image by combining a plurality of radiation images. In addition, since a plurality of radiographic images are synthesized by moving by a width of 1.5 pixels in the main scanning direction and / or sub-scanning direction, the occurrence of a situation where defective pixels are adjacent to each other in the synthesized radiographic image is greatly reduced. It is possible to perform defect correction processing with high accuracy. As a result, there is an effect that a high-quality and high-definition radiation image can be acquired.

尚、本発明の目的は、実施形態1〜3の装置又はシステムの機能を実現するソフトウェアのプログラムコードを記憶した記憶媒体を、装置又はシステムに供給し、その装置又はシステムのコンピュータ(CPU又はMPU等)が記憶媒体に格納されたプログラムコードを読みだして実行することによっても、達成されることは言うまでもない。   An object of the present invention is to supply a storage medium storing software program codes for realizing the functions of the apparatus or system according to the first to third embodiments to the apparatus or system, and the computer (CPU or MPU) of the apparatus or system. Needless to say, this can also be achieved by reading and executing the program code stored in the storage medium.

この場合、記憶媒体から読み出されたプログラムコード自体が実施形態1〜3の機能を実現することとなり、そのプログラムコードを記憶したコンピュータ記憶媒体及び当該プログラムコードは本発明を構成することとなる。   In this case, the program code itself read from the storage medium realizes the functions of the first to third embodiments, and the computer storage medium storing the program code and the program code constitute the present invention.

プログラムコードを供給するためのコンピュータ記憶媒体としては、ROM、フロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード等を用いることができる。   As a computer storage medium for supplying the program code, ROM, floppy (registered trademark) disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, etc. should be used. Can do.

また、コンピュータが読み出したプログラムコードを実行することにより、実施形態1〜3の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS等が実際の処理の一部又は全部を行い、その処理によって実施例1〜3の機能が実現される場合も本発明の実施の態様に含まれることは言うまでもない。   Further, by executing the program code read by the computer, not only the functions of the first to third embodiments are realized, but the OS running on the computer based on the instruction of the program code performs the actual processing. Needless to say, a case where the functions of the first to third embodiments are realized by performing part or all of the above and the processing is included in the embodiment of the present invention.

さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部又は全部を行い、その処理によって実施例1〜3の機能が実現される場合も本発明の実施の態様に含まれることは言うまでもない。   Further, after the program code read from the storage medium is written to a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer, the function expansion is performed based on the instruction of the program code. It goes without saying that the case where the CPU or the like provided in the board or the function expansion unit performs part or all of the actual processing and the functions of the first to third embodiments are realized by the processing is also included in the embodiment of the present invention. .

このようなプログラム又は当該プログラムを格納した記憶媒体に本発明が適用される場合、当該プログラムは、例えば、上述の図2または図7に示されるフローチャートに対応したプログラムコードから構成される。   When the present invention is applied to such a program or a storage medium storing the program, the program is constituted by, for example, a program code corresponding to the flowchart shown in FIG. 2 or FIG.

101 画像検出器
104、604 移動装置
108 CPU
121 合成回路
122 欠陥補正回路
101 Image detector 104, 604 Moving device 108 CPU
121 Synthesis Circuit 122 Defect Correction Circuit

Claims (9)

複数の画素を有し、画像信号に変換して撮像する画像検出器と、
前記画像検出器の第一の位置から前記画像検出器の画素の幅以上の距離を移動して第二の位置に移動する移動手段と、
前記第一の位置における前記画像検出器で得られた前記第一の画像と、前記第二の位置における前記画像検出器で得られた第二の画像とを合成する合成手段と、
前記画像検出器の欠陥画素の位置に基づいて、欠陥画素の周囲の正常画素の画素値の値で前記合成手段で合成された合成画像の欠陥画素の値を補正する補正手段と、
を有することを特徴とする画像処理装置。
An image detector that has a plurality of pixels and converts the image signal into an image signal;
Moving means for moving from the first position of the image detector to a second position by moving a distance equal to or greater than the pixel width of the image detector;
Combining means for combining the first image obtained by the image detector at the first position and the second image obtained by the image detector at the second position;
Correction means for correcting the value of the defective pixel of the synthesized image synthesized by the synthesizing means with the value of the pixel values of normal pixels around the defective pixel based on the position of the defective pixel of the image detector;
An image processing apparatus comprising:
前記画像検出器を主走査方向および/または副走査方向に前記基第一の位置から前記画素の幅以上に移動した複数の位置に移動させて前記画像を取得する様に前記画像検出器及び前記移動手段を制御する制御手段と、を更に備える
ことを特徴とする請求項1に記載の画像処理装置。
The image detector and the image detector so as to acquire the image by moving the image detector to a plurality of positions moved from the basic first position to a width of the pixel or more in the main scanning direction and / or the sub-scanning direction. The image processing apparatus according to claim 1, further comprising a control unit that controls the moving unit.
前記第一の位置を含め主走査方向にM個の位置、副走査方向にN個の位置、合計M×N個の位置に前記画像検出器を移動させて前記画像を取得し、その際の移動量が主走査方向は(m+1/M)画素幅、副走査方向は(n+1/N)画素幅であり、m、nはそれぞれ1以上の整数であることを特徴とする請求項2に記載の画像処理装置。   The image detector is acquired by moving the image detector to M positions in the main scanning direction including the first position, N positions in the sub-scanning direction, and a total of M × N positions. The movement amount is (m + 1 / M) pixel width in the main scanning direction, (n + 1 / N) pixel width in the sub-scanning direction, and m and n are integers of 1 or more, respectively. Image processing apparatus. 前記画像検出器は放射線を画像信号に変換して、画像とし撮像する検出器であり、更に、被検体に放射線を曝射する放射線発生装置を備えることを特徴とする請求項1乃至3に記載の画像処理装置。   The said image detector is a detector which converts a radiation into an image signal, and images it as an image, and is further provided with the radiation generator which exposes a subject to a radiation, The Claim 1 thru | or 3 characterized by the above-mentioned. Image processing apparatus. 複数の画素を有し、放射線を画像信号に変換して撮像する画像検出器と、
前記放射線を放射する放射線発生装置を第一の位置から前記画像検出器の画素の幅以上の距離を移動して第二の位置に移動する移動手段と、
前記第一の位置における放射で前記画像検出器で得られた前記第一の画像と、前記第二の位置における放射で前記画像検出器で得られた第二の画像とを合成する合成手段と、
前記画像検出器の欠陥画素の位置に基づいて、欠陥画素の周囲の正常画素の画素値の値で前記合成手段で合成された合成画像の欠陥画素の値を補正する補正手段と、
を有することを特徴とする画像処理装置。
An image detector having a plurality of pixels and converting radiation into an image signal and imaging;
Moving means for moving the radiation generating device for emitting radiation from a first position to a second position by moving a distance equal to or greater than a pixel width of the image detector;
Combining means for combining the first image obtained by the image detector with radiation at the first position and the second image obtained by the image detector with radiation at the second position; ,
Correction means for correcting the value of the defective pixel of the synthesized image synthesized by the synthesizing means with the value of the pixel values of normal pixels around the defective pixel based on the position of the defective pixel of the image detector;
An image processing apparatus comprising:
複数の画素を有し、被写体を透過した放射線を画像信号に変換する駆動をして画像として撮像する画像検出器で取得した複数の画像を合成して合成画像を得る画像処理装置の制御方法であって、
前記画像検出器の駆動に合わせて照射される前記放射線に対して第一の位置で前記画像検出器の駆動で第一の画像を撮像する工程と、
該第一の位置から前記画素の幅以上の距離を前記画像検出器に照射される前記放射線の照射範囲を維持した状態で移動する第二の位置において、前記画像検出器の駆動に合わせて照射される前記放射線を前記画像検出器の駆動で第二の画像を撮像する工程と、
前記合成画像の座標上で、前記第二の画像の座標を前記距離に相当する値に変更して、前記第一の画像と前記合成画像を合成する合成工程と、
前記画像検出器の欠陥画素の位置に基づいて、欠陥画素の周囲の正常画素の画素値の値で前記合成工程で合成された前記合成画像の欠陥画素の値を補正する補正工程と、
を有する画像処理装置の制御方法。
A control method of an image processing apparatus that has a plurality of pixels, combines a plurality of images acquired by an image detector that drives to convert radiation transmitted through a subject into an image signal and captures the image as an image, and obtains a composite image There,
Capturing a first image by driving the image detector at a first position with respect to the radiation irradiated in accordance with the driving of the image detector;
Irradiation in accordance with the driving of the image detector at a second position that moves in a state where the irradiation range of the radiation irradiated to the image detector is maintained at a distance greater than the width of the pixel from the first position. Capturing the second image by driving the image detector with the radiation to be performed;
On the coordinates of the composite image, changing the coordinates of the second image to a value corresponding to the distance, and combining the first image and the composite image,
Based on the position of the defective pixel of the image detector, a correction step of correcting the value of the defective pixel of the composite image synthesized in the synthesis step with the value of the normal pixel surrounding the defective pixel;
A method for controlling an image processing apparatus.
請求項6に記載の画像処理装置の制御方法をコンピュータに実行させるプログラム。   A program for causing a computer to execute the control method of the image processing apparatus according to claim 6. 請求項6に記載の画像処理装置の制御方法をコンピュータに実行させるプログラムを記憶するコンピュータ記憶媒体。   A computer storage medium for storing a program for causing a computer to execute the control method for the image processing apparatus according to claim 6. 第一の位置における画像検出器で得られた第一の画像と、前記第一の位置から前記画像検出器の画素の幅以上の距離を移動した第二の位置における前記画像検出器で得られた第二の画像とを合成する合成手段と、
前記画像検出器の欠陥画素の位置に基づいて、欠陥画素の周囲の正常画素の画素値の値で前記合成手段で合成された合成画像の欠陥画素の値を補正する補正手段と、
を有することを特徴とする画像処理装置。
Obtained by the first image obtained by the image detector at the first position, and the image detector at the second position moved from the first position by a distance equal to or greater than the pixel width of the image detector. Combining means for combining the second image;
Correction means for correcting the value of the defective pixel of the synthesized image synthesized by the synthesizing means with the value of the pixel values of normal pixels around the defective pixel based on the position of the defective pixel of the image detector;
An image processing apparatus comprising:
JP2012163600A 2012-07-24 2012-07-24 Image processing apparatus, control method for controlling image processing apparatus, program, and computer storage medium Pending JP2012213228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012163600A JP2012213228A (en) 2012-07-24 2012-07-24 Image processing apparatus, control method for controlling image processing apparatus, program, and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012163600A JP2012213228A (en) 2012-07-24 2012-07-24 Image processing apparatus, control method for controlling image processing apparatus, program, and computer storage medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007305996A Division JP2009130818A (en) 2007-11-27 2007-11-27 Image processing device, control method of image processing device, program, and computer memory medium

Publications (1)

Publication Number Publication Date
JP2012213228A true JP2012213228A (en) 2012-11-01

Family

ID=47266744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012163600A Pending JP2012213228A (en) 2012-07-24 2012-07-24 Image processing apparatus, control method for controlling image processing apparatus, program, and computer storage medium

Country Status (1)

Country Link
JP (1) JP2012213228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006947A (en) * 2014-05-26 2016-01-14 三菱電機株式会社 Image reading apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322151A (en) * 1994-05-24 1995-12-08 Canon Inc Solid-state image pickup device
JPH09297111A (en) * 1996-05-08 1997-11-18 Hihakai Kensa Kk Radiographic testing device
JP2000134539A (en) * 1998-10-22 2000-05-12 Konica Corp Radiation image processor and radiation image generating method
JP2003156565A (en) * 2001-11-20 2003-05-30 Canon Inc Imaging device using photoelectric converter
JP2005326260A (en) * 2004-05-14 2005-11-24 Sony Corp X-ray imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322151A (en) * 1994-05-24 1995-12-08 Canon Inc Solid-state image pickup device
JPH09297111A (en) * 1996-05-08 1997-11-18 Hihakai Kensa Kk Radiographic testing device
JP2000134539A (en) * 1998-10-22 2000-05-12 Konica Corp Radiation image processor and radiation image generating method
JP2003156565A (en) * 2001-11-20 2003-05-30 Canon Inc Imaging device using photoelectric converter
JP2005326260A (en) * 2004-05-14 2005-11-24 Sony Corp X-ray imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006947A (en) * 2014-05-26 2016-01-14 三菱電機株式会社 Image reading apparatus

Similar Documents

Publication Publication Date Title
EP3110138B1 (en) Projection system, semiconductor integrated circuit, and image correction method
CN105832351B (en) Radiation imaging system and radiation imaging method
JP6309210B2 (en) Depth image generation method and apparatus, depth image processing method and apparatus
US10726539B2 (en) Image processing apparatus, image processing method and storage medium
US20120147224A1 (en) Imaging apparatus
JP2009130818A (en) Image processing device, control method of image processing device, program, and computer memory medium
JP6141084B2 (en) Imaging device
JP2009168658A (en) Three-dimensional shape measuring device
JP6815818B2 (en) Radiation imaging system and radiography imaging method
WO2012029658A1 (en) Imaging device, image-processing device, image-processing method, and image-processing program
JP2009136421A (en) Diagnostic x-ray apparatus and x-ray image processing method, and storage medium
JP2012054873A5 (en)
JP2020088654A (en) Radiographic imaging apparatus, radiographic imaging system, control method for radiographic imaging apparatus, and program
US11196929B2 (en) Signal processing device, imaging device, and signal processing method
JP2012213228A (en) Image processing apparatus, control method for controlling image processing apparatus, program, and computer storage medium
US20110026677A1 (en) Radiation imaging system, control method for the same, and program
JP2013142636A (en) Infrared target detector
JP6676345B2 (en) Radiation imaging system and radiation imaging method
JP5634744B2 (en) X-ray diagnostic apparatus, image processing apparatus, and program
JP2013162247A5 (en)
US20120033870A1 (en) Image data transfer apparatus and control method for the same
JP2020086651A (en) Image processing apparatus and image processing method
JP2009258846A (en) Image processing method, image processing system, image processor, and image processing program
JP2009294273A (en) Super resolution display device
JP6701025B2 (en) Data processing device, data processing method, and program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128