JP2012212512A - Laminate for battery exterior and secondary battery - Google Patents

Laminate for battery exterior and secondary battery Download PDF

Info

Publication number
JP2012212512A
JP2012212512A JP2011076322A JP2011076322A JP2012212512A JP 2012212512 A JP2012212512 A JP 2012212512A JP 2011076322 A JP2011076322 A JP 2011076322A JP 2011076322 A JP2011076322 A JP 2011076322A JP 2012212512 A JP2012212512 A JP 2012212512A
Authority
JP
Japan
Prior art keywords
resin
organic
layer
inorganic composite
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011076322A
Other languages
Japanese (ja)
Inventor
Hidenori Yoshida
秀紀 吉田
Nobuyuki Tsuchiya
信之 土屋
Shuichi Sugita
修一 杉田
Koichiro Ueda
耕一郎 上田
Motohiro Sasaki
基寛 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Paint Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Nisshin Steel Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2011076322A priority Critical patent/JP2012212512A/en
Publication of JP2012212512A publication Critical patent/JP2012212512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermally-fusible laminate for a battery exterior, in which a thermal fusion resin layer is laminated on a molten aluminum plated steel plate, and which has an excellent adhesion property of the thermal fusion resin layer and a small environmental load.SOLUTION: An organic/inorganic composite processing layer including a carboxyl group containing resin, an oxazoline group base containing resin, and a hardened material of a resin composition containing basic phosphate compound is formed on a surface of a molten aluminum plated steel plate, and a thermal fusion polyolefin resin layer is formed on it.

Description

本発明は、電池外装用積層体および前記電池外装用積層体を使用した二次電池に関する。   The present invention relates to a battery outer laminate and a secondary battery using the battery outer laminate.

ニッケル−カドミウム電池やニッケル−水素電池、リチウムイオン電池などの二次電池は、携帯電話やノート型パーソナルコンピュータ、ビデオカメラ、電気自動車、衛星、社会インフラ系コンポーネントなどの電子機器または電子部品に幅広く使用されている。特に、リチウムイオン二次電池は、エネルギー密度および出力特性に優れているため、小型化および軽量性が求められる携帯電話やモバイル機器などに多用されている。従来、これらの小型電池の包装部材には、軽量性、成形性およびコストの観点から、アルミニウム合金が用いられてきた。   Secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lithium-ion batteries are widely used in electronic devices and electronic parts such as mobile phones, notebook personal computers, video cameras, electric vehicles, satellites, and social infrastructure components. Has been. In particular, since lithium ion secondary batteries are excellent in energy density and output characteristics, they are frequently used in mobile phones and mobile devices that are required to be small and lightweight. Conventionally, aluminum alloys have been used for the packaging members of these small batteries from the viewpoints of lightness, formability, and cost.

また、近年、二次電池は、電気自動車やハイブリッド自動車、太陽電池用蓄電池などの大型機器においても採用されている。これら大型機器用の電池では、出力容量を向上させるために電解液の量を増やす必要があり、電池サイズも大型になる。このような大型電池の包装部材には、小型電池の包装部材以上の安全性(堅牢性や耐久性など)が求められる。   In recent years, secondary batteries have also been adopted in large equipment such as electric vehicles, hybrid vehicles, and storage batteries for solar cells. In these batteries for large equipment, it is necessary to increase the amount of the electrolyte in order to improve the output capacity, and the battery size is also large. Such a large battery packaging member is required to have safety (fastness, durability, etc.) higher than that of the small battery packaging member.

従来、電池の包装部材として用いられてきたアルミニウム合金は剛性が低いため、電池内部の圧力増加に対する耐圧性を高めるためには板厚を増加させる必要があった。また、アルミニウム合金は耐座屈性に劣るため、電池セル同士を結束および固定する場合にケース周辺のフランジ部を使用するときは、補助的な結束部材が必要であった。したがって、アルミニウム合金を電池の包装部材として使用する場合、電池の省スペース化および低コスト化には限界があった。さらに、アルミニウム合金は熱膨張係数が大きいため、放充電時の発熱により、包装部材に大きな熱衝撃が加わるという問題もあった。   Conventionally, since aluminum alloys that have been used as battery packaging members have low rigidity, it has been necessary to increase the plate thickness in order to increase pressure resistance against an increase in pressure inside the battery. In addition, since the aluminum alloy is inferior in buckling resistance, an auxiliary bundling member is required when using the flange portion around the case when bundling and fixing the battery cells. Therefore, when an aluminum alloy is used as a battery packaging member, there is a limit to space saving and cost reduction of the battery. Furthermore, since the aluminum alloy has a large coefficient of thermal expansion, there is also a problem that a large thermal shock is applied to the packaging member due to heat generation during charging and discharging.

上記問題点を解決する手段として、アルミニウム箔を心材とする軟質ラミネートフィルムに加えて、さらに硬質ラミネートフィルムも包装部材に使用することが提案されている(例えば、特許文献1参照)。特許文献1には、アルミニウム箔を心材とする軟質ラミネートフィルムで包装された電池素子(正極や負極、セパレータ、電解質などを含む)を、硬質な金属箔(例えば、ステンレス箔)を心材とする硬質ラミネートフィルムでさらに被覆し、軟質ラミネートフィルムと硬質ラミネートフィルムとをヒートシールすることで、電池パックを製造することが記載されている。このように軟質ラミネートフィルムで包装された電池素子を硬質ラミネートフィルムで補強することで、省スペース化と安全性(堅牢性や耐久性など)を両立することができる。   As means for solving the above problems, it has been proposed to use a hard laminate film as a packaging member in addition to a soft laminate film having an aluminum foil as a core (see, for example, Patent Document 1). Patent Document 1 discloses a battery element (including a positive electrode, a negative electrode, a separator, and an electrolyte) packaged with a soft laminate film having an aluminum foil as a core material, and a hard metal foil (for example, a stainless steel foil) as a core material. It is described that a battery pack is manufactured by further covering with a laminate film and heat-sealing the soft laminate film and the hard laminate film. Thus, by reinforcing the battery element packaged with the soft laminate film with the hard laminate film, it is possible to achieve both space saving and safety (fastness, durability, etc.).

一方、金属箔と熱融着性樹脂層を含むラミネートフィルム(積層体)を製造する際には、金属箔に対する熱融着性樹脂フィルムの密着性を向上させるために、金属箔の表面に化成処理皮膜を形成するのが一般的である。従来、このような化成処理皮膜としては六価クロムを含むものが一般的であった(例えば、特許文献2参照)。しかしながら、六価クロムには環境負荷が大きいという問題がある。そこで、六価クロムの代わりに三価クロムを含む化成処理皮膜が提案されている(例えば、特許文献3参照)。しかしながら、三価クロムを含む化成処理皮膜も、アルカリ性の環境下では三価クロムが六価クロムに還元されるおそれがあるため、環境負荷の観点から好ましくない。   On the other hand, when manufacturing a laminate film (laminated body) including a metal foil and a heat-fusible resin layer, the surface of the metal foil is converted to improve the adhesion of the heat-fusible resin film to the metal foil. It is common to form a treatment film. Conventionally, as such a chemical conversion treatment film, a film containing hexavalent chromium has been generally used (for example, see Patent Document 2). However, there is a problem that hexavalent chromium has a large environmental load. Therefore, a chemical conversion film containing trivalent chromium instead of hexavalent chromium has been proposed (see, for example, Patent Document 3). However, a chemical conversion treatment film containing trivalent chromium is also not preferable from the viewpoint of environmental burden because trivalent chromium may be reduced to hexavalent chromium in an alkaline environment.

そこで、近年、環境負荷削減のために六価クロムおよび三価クロムを含まない化成処理皮膜が提案されている。たとえば、特許文献4,5では、クロムをまったく含まないクロムフリーの化成処理皮膜が提案されている。   In recent years, therefore, chemical conversion coatings that do not contain hexavalent chromium and trivalent chromium have been proposed in order to reduce environmental impact. For example, Patent Documents 4 and 5 propose a chromium-free chemical conversion coating that contains no chromium.

特開2007−157460号公報JP 2007-157460 A 特開2000−340187号公報JP 2000-340187 A 国際公開第2002/063703号International Publication No. 2002/063703 特開2003−151513号公報JP 2003-151513 A 特開2009−084516号公報JP 2009-084516 A

特許文献1に記載の電池パックの製造方法では、軟質ラミネートフィルムをヒートシールした後、さらに硬質ラミネートフィルムもヒートシールしなければならない。したがって、特許文献1に記載の製造方法には、製造工程が煩雑であり、製造コストが高くなってしまうという問題がある。   In the battery pack manufacturing method described in Patent Document 1, after heat-sealing the soft laminate film, the hard laminate film must also be heat-sealed. Therefore, the manufacturing method described in Patent Document 1 has a problem that the manufacturing process is complicated and the manufacturing cost increases.

このような問題を解決する手段として、アルミニウム箔ではなく、薄い溶融アルミニウムめっき鋼板を心材とする積層体を電池の包装部材として使用することが考えられる。薄い溶融アルミニウムめっき鋼板は、加工性および強度に優れており、かつ安価であることから、薄い溶融アルミニウムめっき鋼板の表面に熱融着性樹脂層を配置した積層体を電池の包装部材として使用することで、省スペース化、安全性および低コスト化のすべてを実現できると期待される。なお、Alのみからなる溶融アルミニウムめっき層を形成した溶融アルミニウムめっき鋼板は、めっき層の加工性が低いため、金属箔とするのが困難である。そこで、心材とする溶融アルミニウムめっき鋼板の溶融アルミニウムめっき層には、加工性を向上させるためのSiが配合される。   As a means for solving such a problem, it is conceivable to use a laminated body having a thin hot-dip aluminized steel sheet as a core material instead of an aluminum foil as a battery packaging member. Since a thin hot-dip aluminum-plated steel sheet is excellent in workability and strength and is inexpensive, a laminate in which a heat-fusible resin layer is arranged on the surface of a thin hot-dip aluminum-plated steel sheet is used as a battery packaging member. Therefore, it is expected that all of space saving, safety and cost reduction can be realized. In addition, since the workability of a plating layer is low, the hot dip aluminum plating steel plate which formed the hot dip aluminum plating layer which consists only of Al is difficult to use as metal foil. Therefore, Si for improving workability is blended in the hot-dip aluminum plating layer of the hot-dip aluminum-plated steel sheet as the core material.

溶融アルミニウムめっき鋼板の表面に熱融着性樹脂層を配置した積層体を電池の包装部材として使用する場合、溶融アルミニウムめっき鋼板の表面に形成する化成処理皮膜として好適なものが存在しないという問題がある。   When using a laminate in which a heat-fusible resin layer is disposed on the surface of a hot-dip aluminized steel sheet as a battery packaging member, there is a problem that there is no suitable chemical conversion treatment film formed on the surface of the hot-dip aluminized steel sheet. is there.

たとえば、特許文献4,5に記載のクロムフリーの化成処理皮膜は、環境負荷の観点からは優れているが、熱融着性樹脂層が剥離するおそれがあるため、安全性の観点から好ましくない。すなわち、電池を長期間使用した場合、または電池内の電解液に水分が浸入してしまった場合に、電解液の加水分解により生じるフッ酸などにより、めっき層に含まれるSiが溶出してしまい、溶融アルミニウムめっき鋼板に対する熱融着性樹脂層の密着性が低下してしまうおそれがある。   For example, the chromium-free chemical conversion coating described in Patent Documents 4 and 5 is excellent from the viewpoint of environmental load, but is not preferable from the viewpoint of safety because the heat-fusible resin layer may be peeled off. . That is, when the battery is used for a long period of time or when water enters the electrolyte in the battery, Si contained in the plating layer is eluted by hydrofluoric acid generated by hydrolysis of the electrolyte. The adhesion of the heat-fusible resin layer to the hot-dip aluminum-plated steel sheet may be reduced.

以上のように、薄い溶融アルミニウムめっき鋼板の表面に熱融着性樹脂層を配置した積層体を電池の包装部材として使用することで、省スペース化、安全性および低コスト化のすべてを実現できると期待される。しかしながら、従来のクロムフリーの化成処理皮膜を形成した溶融アルミニウムめっき鋼板を心材として電池外装用積層体を作製した場合、電池の使用中に熱融着性樹脂層が剥離してしまうおそれがあった。   As described above, all of space saving, safety, and cost reduction can be realized by using a laminate in which a heat-fusible resin layer is arranged on the surface of a thin hot-dip aluminized steel sheet as a battery packaging member. It is expected. However, when a laminated body for battery exterior is manufactured using a hot-dip aluminized steel sheet with a conventional chromium-free chemical conversion coating as a core material, the heat-fusible resin layer may be peeled off during use of the battery. .

本発明は、かかる点に鑑みてなされたものであり、溶融アルミニウムめっき鋼板の表面に熱融着性樹脂層を形成した熱融着可能な電池外装用積層体であって、熱融着性樹脂層の密着性に優れ、かつ環境負荷が小さい電池外装用積層体を提供することを目的とする。   The present invention has been made in view of the above points, and is a heat-sealable laminate for battery exterior, in which a heat-sealable resin layer is formed on the surface of a hot-dip aluminized steel sheet, and the heat-sealable resin It aims at providing the laminated body for battery exteriors which is excellent in the adhesiveness of a layer, and has little environmental impact.

本発明者は、溶融アルミニウムめっき鋼板の表面にカルボキシル基含有樹脂、オキサゾリン基含有樹脂および塩基性リン酸化合物を含有する樹脂組成物の硬化物からなる有機無機複合処理層を形成し、その上に熱融着性樹脂層を形成することで、六価クロムなどを使用せずに熱融着性樹脂層の密着性を向上させうることを見出し、さらに検討を加えて本発明を完成させた。   The inventor forms an organic-inorganic composite treatment layer made of a cured product of a resin composition containing a carboxyl group-containing resin, an oxazoline group-containing resin, and a basic phosphoric acid compound on the surface of a hot-dip aluminum-plated steel sheet. It has been found that by forming a heat-fusible resin layer, the adhesion of the heat-fusible resin layer can be improved without using hexavalent chromium, and the present invention has been completed through further studies.

すなわち、本発明の第一は、以下の電池外装用積層体に関する。
[1]第1の面および第2の面を有し、Siを3〜15質量%含有する溶融アルミニウムめっき層が前記第1の面および前記第2の面に形成されている溶融アルミニウムめっき鋼板と;前記溶融アルミニウムめっき鋼板の第1の面に形成された、カルボキシル基含有樹脂、オキサゾリン基含有樹脂および塩基性リン酸化合物を含有する樹脂組成物の硬化物からなる有機無機複合処理層と;前記有機無機複合処理層の表面に形成された、厚みが10〜100μmの熱融着性ポリオレフィン系樹脂層とを有する、電池外装用積層体。
[2]前記有機無機複合処理層は、前記硬化物の樹脂成分を5〜800mg/m含有し、かつ前記硬化物のリン成分をリン換算で0.2〜200mg/m含有する、[1]に記載の電池外装用積層体。
[3]前記樹脂組成物における、前記カルボキシル基含有樹脂および前記オキサゾリン基含有樹脂の合計量に対する前記オキサゾリン基含有樹脂の割合は、2.0〜50.0質量%の範囲内である、[1]または[2]に記載の電池外装用積層体。
[4]前記カルボキシル基含有樹脂の酸価は、樹脂固形分換算で300mgKOH/g以上である、[1]〜[3]のいずれか一項に記載の電池外装用積層体。
[5]前記樹脂組成物は、塩基性ジルコニウム化合物をさらに含有し;前記有機無機複合処理層は、前記硬化物のジルコニウム成分をジルコニウム換算で0.5〜60mg/m含有する[1]〜[4]のいずれか一項に記載の電池外装用積層体。
[6]前記有機無機複合処理層と前記熱融着性ポリオレフィン系樹脂層との間に、厚みが10〜100μmの酸変性ポリオレフィン系樹脂層をさらに有する、[1]に記載の電池外装用積層体。
[7]前記溶融アルミニウムめっき鋼板の板厚は、20〜600μmの範囲内である、[1]に記載の電池外装用積層体。
[8]前記溶融アルミニウムめっき鋼板の第2の面に形成された樹脂層をさらに有する、[1]に記載の電池外装用積層体。
That is, the first of the present invention relates to the following battery laminate.
[1] A hot-dip galvanized steel sheet having a first face and a second face, and a hot-dip aluminum plating layer containing 3 to 15% by mass of Si formed on the first face and the second face And an organic-inorganic composite treatment layer formed of a cured product of a resin composition containing a carboxyl group-containing resin, an oxazoline group-containing resin, and a basic phosphate compound, formed on the first surface of the hot-dip aluminized steel sheet; The laminated body for battery exteriors which has the heat-fusible polyolefin resin layer with a thickness of 10-100 micrometers formed in the surface of the said organic inorganic composite process layer.
[2] The organic-inorganic composite treating layer, the cured product of the resin component 5~800mg / m 2 and containing, and containing 0.2~200mg / m 2 in phosphorus terms of phosphorus component of the cured product, [ 1] The battery exterior laminate according to 1).
[3] The ratio of the oxazoline group-containing resin to the total amount of the carboxyl group-containing resin and the oxazoline group-containing resin in the resin composition is in the range of 2.0 to 50.0 mass%, [1 ] Or the battery outer laminate according to [2].
[4] The battery exterior laminate according to any one of [1] to [3], wherein the acid value of the carboxyl group-containing resin is 300 mgKOH / g or more in terms of resin solid content.
[5] The resin composition further contains a basic zirconium compound; the organic-inorganic composite treatment layer contains 0.5 to 60 mg / m 2 of a zirconium component of the cured product in terms of zirconium [1] to The laminated body for battery exterior as described in any one of [4].
[6] The battery exterior laminate according to [1], further comprising an acid-modified polyolefin resin layer having a thickness of 10 to 100 μm between the organic-inorganic composite treatment layer and the heat-fusible polyolefin resin layer. body.
[7] The laminated body for battery exterior according to [1], wherein the thickness of the hot-dip aluminized steel sheet is in the range of 20 to 600 μm.
[8] The laminated body for battery exterior according to [1], further including a resin layer formed on the second surface of the hot-dip aluminized steel sheet.

また、本発明の第二は、以下の二次電池に関する。
[9][1]に記載の電池外装用積層体の成形品を熱融着して形成されたケースを有する二次電池。
The second of the present invention relates to the following secondary battery.
[9] A secondary battery having a case formed by heat-sealing a molded product of the battery exterior laminate according to [1].

本発明によれば、六価クロムなどを使用せずに熱融着性樹脂層の密着性に優れた電池外装用積層体を製造することができる。したがって、本発明によれば、より小さい環境負荷で、熱融着性樹脂層の密着性に優れた電池外装用積層体を製造することができる。   According to the present invention, it is possible to manufacture a laminated body for battery exterior that is excellent in the adhesion of the heat-fusible resin layer without using hexavalent chromium or the like. Therefore, according to this invention, the laminated body for battery exterior excellent in the adhesiveness of the heat-fusible resin layer can be manufactured with a smaller environmental load.

1.電池外装用積層体
本発明の電池外装用積層体は、溶融アルミニウムめっき鋼板と、有機無機複合処理層と、熱融着性ポリオレフィン系樹脂層とを含む積層体である。有機無機複合処理層は、溶融アルミニウムめっき鋼板の表面に形成されている。熱融着性ポリオレフィン系樹脂層は、有機無機複合処理層の表面に直接接合されているか、または酸変性ポリオレフィン系樹脂を介して有機無機複合処理層の表面に接合されている。本明細書では、溶融アルミニウムめっき鋼板の表面のうち、有機無機複合処理層および熱融着性ポリオレフィン系樹脂層が形成されている面を「第1の面」といい、反対側の面を「第2の面」という。本発明の電池外装用積層体を二次電池に適用した場合、第1の面は内面(電解質側の面)となり、第2の面は外面(外界側の面)となる。
1. Battery exterior laminate The battery exterior laminate of the present invention is a laminate comprising a hot-dip aluminized steel sheet, an organic-inorganic composite-treated layer, and a heat-sealable polyolefin resin layer. The organic-inorganic composite treatment layer is formed on the surface of the hot-dip aluminized steel sheet. The heat-fusible polyolefin resin layer is directly bonded to the surface of the organic-inorganic composite treatment layer, or is bonded to the surface of the organic-inorganic composite treatment layer via an acid-modified polyolefin resin. In this specification, among the surfaces of the hot-dip aluminized steel sheet, the surface on which the organic / inorganic composite treatment layer and the heat-fusible polyolefin-based resin layer are formed is referred to as “first surface”, and the opposite surface is referred to as “ This is called the “second surface”. When the battery exterior laminate of the present invention is applied to a secondary battery, the first surface is an inner surface (electrolyte side surface), and the second surface is an outer surface (external surface side surface).

以下、各構成要素について説明する。   Hereinafter, each component will be described.

(1)溶融アルミニウムめっき鋼板
本発明の電池外装用積層体の心材としては、鋼板の表面に溶融アルミニウムめっき層が形成された溶融アルミニウムめっき鋼板が使用される。下地鋼板の鋼種は、特に限定されない。下地鋼板の鋼種の例には、シリコンキルド鋼、アルミキルド鋼、チタンキルド鋼、オーステナイト系やフェライト系、マルテンサイト系などのステンレス鋼などが含まれる。
(1) Hot-dip aluminum-plated steel sheet As the core of the laminated body for battery exterior of the present invention, a hot-dip aluminum-plated steel sheet in which a hot-dip aluminum plating layer is formed on the surface of the steel sheet is used. The steel type of the base steel plate is not particularly limited. Examples of the steel type of the base steel sheet include silicon killed steel, aluminum killed steel, titanium killed steel, austenitic, ferritic and martensitic stainless steel.

溶融アルミニウムめっき層は、Siを3〜15質量%含有する。たとえば、Alのみからなる溶融アルミニウムめっき層を鋼板の表面に形成すると、下地鋼板と溶融アルミニウムめっき層との界面においてFeとAlが反応して脆いFe−Al合金層が形成される。脆いFe−Al合金層が形成された溶融アルミニウムめっき鋼板は、加工性が低く、金属箔とすることが困難である。Siは、このFe−Al合金層の生成および成長を抑制することで、溶融アルミニウムめっき鋼板の加工性を向上させる。このSiの効果は、Siの含有量が3質量%以上のときに顕著になり、15質量%超となると飽和する。溶融アルミニウムめっき層は、AlおよびSiの他に、必要に応じて少量のZnやMg、Ti、Ni、Cuなどを含有していてもよい。   The molten aluminum plating layer contains 3 to 15% by mass of Si. For example, when a molten aluminum plating layer made of only Al is formed on the surface of the steel sheet, Fe and Al react at the interface between the base steel sheet and the molten aluminum plating layer to form a brittle Fe—Al alloy layer. A hot-dip aluminized steel sheet on which a fragile Fe—Al alloy layer is formed has low workability and is difficult to form a metal foil. Si improves the workability of the hot-dip aluminized steel sheet by suppressing the formation and growth of this Fe—Al alloy layer. The effect of Si becomes significant when the Si content is 3% by mass or more, and is saturated when the Si content exceeds 15% by mass. The molten aluminum plating layer may contain a small amount of Zn, Mg, Ti, Ni, Cu or the like, if necessary, in addition to Al and Si.

溶融アルミニウムめっき鋼板の板厚は、電池外装材としての要求重量や要求強度、要求加工深さなどに応じて適宜設定することができる。電池外装材の重量を軽量化する観点からは、板厚は薄いほど好ましいが、板厚を薄くするほど、強度および加工性が低下し、かつ製造コストが上昇してしまう。電池外装材としての強度を確保する観点からは、板厚は20μm以上であることが好ましい。また、50mm程度の深絞り加工を行う場合であっても、板厚は600μmもあれば十分である。一般的に求められる電池外装材の強度および加工深さを考慮すると、溶融アルミニウムめっき鋼板の板厚は、40〜400μmの範囲内が好ましい。   The plate thickness of the hot-dip aluminum-plated steel sheet can be appropriately set according to the required weight, required strength, required processing depth, etc. as the battery exterior material. From the viewpoint of reducing the weight of the battery exterior material, the thinner the plate thickness, the better. However, the thinner the plate thickness, the lower the strength and workability, and the manufacturing cost increases. From the viewpoint of securing the strength as the battery exterior material, the plate thickness is preferably 20 μm or more. Further, even when deep drawing processing of about 50 mm is performed, a plate thickness of 600 μm is sufficient. In consideration of the generally required strength and processing depth of the battery outer packaging material, the thickness of the hot-dip aluminized steel sheet is preferably in the range of 40 to 400 μm.

(2)有機無機複合処理層
有機無機複合処理層は、溶融アルミニウムめっき鋼板の第1の面に形成されている。有機無機複合処理層は、溶融アルミニウムめっき鋼板と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)とを強固に密着させるとともに、電解質の劣化または加水分解により発生するフッ酸による溶融アルミニウムめっき鋼板の劣化を防ぐ機能を担う。
(2) Organic-inorganic composite treatment layer The organic-inorganic composite treatment layer is formed on the first surface of the hot-dip aluminized steel sheet. The organic / inorganic composite treatment layer firmly adheres the hot-dip aluminized steel sheet and the heat-sealable polyolefin resin layer (or acid-modified polyolefin resin layer) and melts it with hydrofluoric acid generated by electrolyte degradation or hydrolysis. Responsible for preventing deterioration of aluminum-plated steel sheet.

有機無機複合処理層は、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)を含有する樹脂組成物の硬化物からなる。ここで「塩基性リン酸化合物」とは、水溶液がアルカリ性を示すリン酸化合物を意味する。   The organic / inorganic composite treatment layer is formed of a cured product of a resin composition containing a carboxyl group-containing resin (A), an oxazoline group-containing resin (B), and a basic phosphoric acid compound (C). Here, the “basic phosphate compound” means a phosphate compound in which the aqueous solution exhibits alkalinity.

カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)は、配位結合および化学結合により三次元網目構造を形成して相互に結合するとともに、溶融アルミニウムめっき鋼板と強固に結合または付着する。具体的には、塩基性リン酸化合物(C)は、めっき層のアルミニウム成分と反応して不溶性の塩(リン酸アルミニウム)を形成することにより溶融アルミニウムめっき鋼板と強固に結合または付着して無機処理層を形成する。同時に、塩基性リン酸化合物(C)は、樹脂(A)が有するカルボキシル基と樹脂(B)が有するオキサゾリン基との反応触媒としても機能する。その結果として、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)の3成分に由来する高架橋密度の耐薬品性に優れた有機無機複合処理層が形成される。   The carboxyl group-containing resin (A), the oxazoline group-containing resin (B), and the basic phosphoric acid compound (C) form a three-dimensional network structure through coordination bonds and chemical bonds, and are bonded to each other. Bonds or adheres firmly to the steel plate. Specifically, the basic phosphate compound (C) binds or adheres firmly to the hot-dip aluminized steel sheet by reacting with the aluminum component of the plating layer to form an insoluble salt (aluminum phosphate). A treatment layer is formed. At the same time, the basic phosphate compound (C) also functions as a reaction catalyst for the carboxyl group of the resin (A) and the oxazoline group of the resin (B). As a result, an organic-inorganic composite treatment layer having high crosslink density and excellent chemical resistance derived from the three components of carboxyl group-containing resin (A), oxazoline group-containing resin (B) and basic phosphoric acid compound (C) is formed. Is done.

溶融アルミニウムめっき鋼板と有機無機複合処理層との界面に形成された不溶性のリン酸アルミニウムは、電解質の劣化または加水分解により発生するフッ酸による、溶融めっき層に含まれるSiの溶出を抑制する。このように、不溶性のリン酸アルミニウムは、有機無機複合処理層のバリア性を向上させることにより、溶融アルミニウムめっき鋼板の劣化を防ぎ、溶融アルミニウムめっき鋼板と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性を維持する。また、樹脂(A)が有する極性基(カルボキシル基や水酸基など)は、有機無機複合処理層と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性を向上させる。   The insoluble aluminum phosphate formed at the interface between the hot dip galvanized steel sheet and the organic / inorganic composite treatment layer suppresses the elution of Si contained in the hot dip layer due to hydrofluoric acid generated by the deterioration or hydrolysis of the electrolyte. Thus, insoluble aluminum phosphate improves the barrier property of the organic-inorganic composite treatment layer, thereby preventing the deterioration of the hot-dip aluminum-plated steel sheet, and the hot-melt-bonded polyolefin resin layer (or acid-free). Adhesion with the modified polyolefin resin layer) is maintained. Moreover, the polar group (carboxyl group, hydroxyl group, etc.) which resin (A) has improves the adhesiveness of an organic inorganic composite process layer and a heat-fusible polyolefin resin layer (or acid-modified polyolefin resin layer).

前記樹脂組成物は、さらに、塩基性ジルコニウム化合物(D)を含有することが好ましい。ここで「塩基性ジルコニウム化合物」とは、水溶液がアルカリ性を示すジルコニウム化合物を意味する。樹脂組成物に塩基性ジルコニウム化合物を含有させることで、金属架橋により樹脂間の結合をより強固にすることができる。また、塩基性ジルコニウム化合物(D)は、めっき層のアルミニウム成分との反応および樹脂の反応触媒として消費されなかった塩基性リン酸化合物(C)と反応して不溶性の塩(リン酸ジルコニウム)を形成することにより難溶化する。この不溶性のリン酸ジルコニウムは、リン酸アルミニウムと同様に、有機無機複合処理層のバリア性を向上させることにより、溶融アルミニウムめっき鋼板の劣化を防ぎ、溶融アルミニウムめっき鋼板と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性を維持する。その結果、塩基性ジルコニウム化合物(D)は、有機無機複合処理層の造膜性およびバリア性、ならびに溶融アルミニウムめっき鋼板と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性を向上させることができる。   The resin composition preferably further contains a basic zirconium compound (D). Here, “basic zirconium compound” means a zirconium compound in which an aqueous solution exhibits alkalinity. By containing a basic zirconium compound in the resin composition, the bond between the resins can be further strengthened by metal crosslinking. Further, the basic zirconium compound (D) reacts with the aluminum component of the plating layer and reacts with the basic phosphoric acid compound (C) that has not been consumed as a reaction catalyst for the resin to form an insoluble salt (zirconium phosphate). It becomes insoluble by forming. This insoluble zirconium phosphate, like aluminum phosphate, improves the barrier properties of the organic / inorganic composite treatment layer, thereby preventing the deterioration of the hot-dip aluminum-plated steel sheet and the hot-melt-bonded polyolefin resin. Adhesion with the layer (or acid-modified polyolefin resin layer) is maintained. As a result, the basic zirconium compound (D) is formed into a film-forming property and a barrier property of the organic-inorganic composite treatment layer, and between the hot-dip aluminum-plated steel sheet and the heat-fusible polyolefin resin layer (or acid-modified polyolefin resin layer). Adhesion can be improved.

有機無機複合処理層は、水や、酸成分(フッ酸など)を含有する酸性水溶液、有機溶剤などに対して優れた難溶性を示す。有機無機複合処理層は、上記(A)〜(C)の3成分、または上記(A)〜(D)の4成分が相乗的に作用することで、液体電解質および固体有機電解質ならびにこれらが劣化した電解質に対して優れた耐性を有し、有機無機複合処理層と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との強固な密着性を維持することができる。   The organic-inorganic composite treatment layer exhibits poor solubility in water, an acidic aqueous solution containing an acid component (such as hydrofluoric acid), an organic solvent, and the like. In the organic / inorganic composite treatment layer, the three components (A) to (C) or the four components (A) to (D) act synergistically, so that the liquid electrolyte and the solid organic electrolyte are deteriorated. It has excellent resistance to the electrolyte and can maintain strong adhesion between the organic-inorganic composite treatment layer and the heat-fusible polyolefin resin layer (or acid-modified polyolefin resin layer).

有機無機複合処理層は、前記樹脂組成物の硬化物の樹脂成分(カルボキシル基含有樹脂(A)およびオキサゾリン基含有樹脂(B)に由来する)を5〜800mg/mの範囲内で含有することが好ましく、12.5〜400mg/mの範囲内で含有することがより好ましい。樹脂成分の含有量が5mg/m未満の場合、有機無機複合処理層と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との強固な密着性を維持することができない。一方、樹脂成分の含有量を800mg/m超としても、密着性向上の効果が飽和してしまうため、コスト的に不利になる。なお、有機無機複合処理層における樹脂成分の含有量は、有機無機複合処理層を蛍光X線装置によって分析して得られた、炭素量(mg/m)から求めることができる。 The organic-inorganic composite treatment layer contains the resin component of the cured product of the resin composition (derived from the carboxyl group-containing resin (A) and the oxazoline group-containing resin (B)) within a range of 5 to 800 mg / m 2. It is preferable that it is contained in the range of 12.5 to 400 mg / m 2 . When the content of the resin component is less than 5 mg / m 2 , strong adhesion between the organic-inorganic composite treatment layer and the heat-fusible polyolefin resin layer (or acid-modified polyolefin resin layer) cannot be maintained. On the other hand, even if the content of the resin component exceeds 800 mg / m 2 , the effect of improving the adhesion is saturated, which is disadvantageous in terms of cost. In addition, content of the resin component in an organic inorganic composite treatment layer can be calculated | required from carbon amount (mg / m < 2 >) obtained by analyzing an organic inorganic composite treatment layer with a fluorescent X-ray apparatus.

また、有機無機複合処理層は、前記樹脂組成物の硬化物のリン成分(塩基性リン酸化合物(C)に由来する)をリン換算で0.2〜200mg/mの範囲内で含有することが好ましく、0.5〜100mg/mの範囲内で含有することがより好ましい。リン成分のリン換算の含有量が0.2mg/m未満の場合も、有機無機複合処理層と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との強固な密着性を維持することができない。一方、リン成分のリン換算の含有量が200mg/m超の場合は、有機無機複合処理層が厚くかつ脆くなり、加工時に受ける衝撃などにより凝集破壊しやすくなるため、却って、有機無機複合処理層と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性が低下したり、有機無機複合処理層のバリア性が低下したりするおそれがある。なお、有機無機複合処理層におけるリン成分の含有量は、有機無機複合処理層を蛍光X線装置によって分析して得られた、リン量(mg/m)として求めることができる。 The organic / inorganic composite treatment layer contains the phosphorus component of the cured product of the resin composition (derived from the basic phosphoric acid compound (C)) within a range of 0.2 to 200 mg / m 2 in terms of phosphorus. It is preferable to contain in the range of 0.5-100 mg / m < 2 >. Even when the phosphorus content of the phosphorus component is less than 0.2 mg / m 2 , the strong adhesion between the organic-inorganic composite treatment layer and the heat-fusible polyolefin resin layer (or acid-modified polyolefin resin layer) is ensured. It cannot be maintained. On the other hand, when the phosphorus component content of the phosphorus component is more than 200 mg / m 2 , the organic-inorganic composite treatment layer becomes thick and brittle and easily breaks down due to impact received during processing. There is a risk that the adhesion between the heat-fusible polyolefin resin layer (or the acid-modified polyolefin resin layer) and the barrier property of the organic / inorganic composite treatment layer may be reduced. In addition, content of the phosphorus component in an organic inorganic composite treatment layer can be calculated | required as phosphorus amount (mg / m < 2 >) obtained by analyzing an organic inorganic composite treatment layer with a fluorescent X ray apparatus.

樹脂成分およびリン成分の含有量は、有機無機複合処理層を形成する際に塗布する樹脂組成物(有機無機複合処理液)中の上記(A)〜(C)の3成分の濃度を調整したり、樹脂組成物(有機無機複合処理液)の塗布量を調整したりすることで、上記範囲内に調整することができる。   The content of the resin component and the phosphorus component is adjusted by adjusting the concentrations of the three components (A) to (C) in the resin composition (organic-inorganic composite treatment liquid) applied when forming the organic-inorganic composite treatment layer. Or by adjusting the coating amount of the resin composition (organic-inorganic composite treatment liquid).

また、有機無機複合処理層を形成する際に塗布する樹脂組成物(有機無機複合処理液)における、カルボキシル基含有樹脂(A)およびオキサゾリン基含有樹脂(B)の合計量に対するオキサゾリン基含有樹脂(B)の割合は、固形分として2.0〜50.0質量%の範囲内であることが好ましく、5.0〜40.0質量%の範囲内がより好ましい。有機無機複合処理液中のカルボキシル基含有樹脂(A)とオキサゾリン基含有樹脂(B)との固形分質量比率を上記範囲内とすることで、有機無機複合処理層中におけるカルボキシル基とオキサゾリン基との比率を好適な範囲にすることができる。その結果、有機無機複合処理層におけるカルボキシル基およびオキサゾリン基による架橋密度を高くすることができ、有機無機複合処理層のバリア性を向上させることができる。また、カルボキシル基含有樹脂(A)の比率が適切な範囲となることにより、溶融アルミニウムめっき鋼板と熱融着性ポリオレフィン系樹脂層との密着性を良好に維持することができる。オキサゾリン基含有樹脂(B)の割合が上記範囲外の場合、溶融アルミニウムめっき鋼板および熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)に対する有機無機複合処理層の密着性が不十分となるおそれがある。   In addition, in the resin composition (organic-inorganic composite treatment liquid) applied when forming the organic-inorganic composite treatment layer, the oxazoline group-containing resin relative to the total amount of the carboxyl group-containing resin (A) and the oxazoline group-containing resin (B) ( The proportion of B) is preferably in the range of 2.0 to 50.0% by mass as the solid content, and more preferably in the range of 5.0 to 40.0% by mass. By making the solid content mass ratio of the carboxyl group-containing resin (A) and the oxazoline group-containing resin (B) in the organic-inorganic composite treatment liquid within the above range, the carboxyl group and the oxazoline group in the organic-inorganic composite treatment layer The ratio can be in a suitable range. As a result, the crosslink density by the carboxyl group and oxazoline group in the organic-inorganic composite treatment layer can be increased, and the barrier property of the organic-inorganic composite treatment layer can be improved. Moreover, when the ratio of the carboxyl group-containing resin (A) falls within an appropriate range, the adhesion between the hot-dip aluminized steel sheet and the heat-fusible polyolefin resin layer can be maintained satisfactorily. When the proportion of the oxazoline group-containing resin (B) is outside the above range, the adhesion of the organic / inorganic composite treatment layer to the hot-dip aluminized steel sheet and the heat-fusible polyolefin-based resin layer (or acid-modified polyolefin-based resin layer) is insufficient. There is a risk of becoming.

樹脂組成物が塩基性ジルコニウム化合物(D)も含有する場合、有機無機複合処理層は、樹脂組成物の硬化物のジルコニウム成分(塩基性ジルコニウム化合物(D)に由来する)をジルコニウム換算で0.5〜60mg/mの範囲内で含有することが好ましく、1.25〜30mg/mの範囲内で含有することがより好ましい。ジルコニウム成分のジルコニウム換算の含有量が0.5mg/m未満の場合、有機無機複合処理層の造膜性およびバリア性を十分に向上させることができない。一方、ジルコニウム成分のジルコニウム換算の含有量が60mg/m超の場合、有機無機複合処理層が厚くかつ脆くなり、加工時に受ける衝撃などにより凝集破壊しやすくなるため、有機無機複合処理層と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性が低下したり、有機無機複合処理層のバリア性が低下したりするおそれがある。なお、有機無機複合処理層におけるジルコニウム成分の含有量は、有機無機複合処理層を蛍光X線装置によって分析して得られた、ジルコニウム量(mg/m)として求めることができる。 When the resin composition also contains a basic zirconium compound (D), the organic-inorganic composite treatment layer is obtained by converting the zirconium component of the cured product of the resin composition (derived from the basic zirconium compound (D)) to 0. preferably it contains in the range of 5-60 mg / m 2, and more preferably contains in the range of 1.25~30mg / m 2. When the zirconium content of the zirconium component is less than 0.5 mg / m 2, the film forming property and barrier property of the organic-inorganic composite treatment layer cannot be sufficiently improved. On the other hand, when the zirconium component content of the zirconium component exceeds 60 mg / m 2 , the organic-inorganic composite treatment layer becomes thick and brittle, and easily breaks down due to impact received during processing. There is a possibility that the adhesiveness with the fusible polyolefin resin layer (or acid-modified polyolefin resin layer) may be lowered, or the barrier property of the organic-inorganic composite treatment layer may be lowered. In addition, content of the zirconium component in an organic inorganic composite treatment layer can be calculated | required as a zirconium amount (mg / m < 2 >) obtained by analyzing an organic inorganic composite treatment layer with a fluorescent X ray apparatus.

ジルコニウム成分の含有量は、有機無機複合処理層を形成する際に塗布する樹脂組成物(有機無機複合処理液)中の塩基性ジルコニウム化合物(D)の濃度を調整したり、樹脂組成物(有機無機複合処理液)の塗布量を調整したりすることで、上記範囲内に調整することができる。   The content of the zirconium component is adjusted by adjusting the concentration of the basic zirconium compound (D) in the resin composition (organic-inorganic composite treatment liquid) applied when forming the organic-inorganic composite treatment layer, or by adjusting the resin composition (organic It can be adjusted within the above range by adjusting the coating amount of the inorganic composite treatment liquid.

以下、樹脂組成物に含まれる上記(A)〜(D)の各成分について説明する。   Hereinafter, the components (A) to (D) included in the resin composition will be described.

[カルボキシル基含有樹脂(A)]
カルボキシル基含有樹脂(A)は、オキサゾリン基含有樹脂(B)と共に三次元網目構造の硬化物を形成し、溶融アルミニウムめっき鋼板と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性を向上させる。
[Carboxyl group-containing resin (A)]
The carboxyl group-containing resin (A) forms a cured product having a three-dimensional network structure together with the oxazoline group-containing resin (B), and is a hot-melted aluminum-plated steel sheet and a heat-sealable polyolefin resin layer (or acid-modified polyolefin resin layer). Improves adhesion.

たとえば、カルボキシル基含有樹脂(A)は、カルボキシル基含有エチレン性不飽和モノマーを重合させた、複数のカルボキシル基を有する重合体である。このようなカルボキシル基含有樹脂(A)の例としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸およびフマル酸からなる群から選択される1種類または2種類以上のモノマーをラジカル重合させた重合体;前記1種類または2種類以上のモノマーと、1種類または2種類以上の他のエチレン性不飽和モノマーとをラジカル重合させた共重合体などが挙げられる。   For example, the carboxyl group-containing resin (A) is a polymer having a plurality of carboxyl groups obtained by polymerizing a carboxyl group-containing ethylenically unsaturated monomer. Examples of such a carboxyl group-containing resin (A) include a polymer obtained by radical polymerization of one or more monomers selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid. Examples thereof include a copolymer obtained by radical polymerization of the one or more monomers and one or more other ethylenically unsaturated monomers.

他のエチレン性不飽和モノマーの例としては、特に限定されるものではないが、例えば、1)2−ヒドロキシエチル(メタ)アクリレートや2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、アリルアルコール、メタクリルアルコール、2−ヒドロキシエチル(メタ)アクリレートとε−カプロラクトンとの付加物などの水酸基を含有するエチレン性不飽和モノマー;2)ハーフアミドやハーフチオエステルなどの、カルボキシル基を含有するエチレン性不飽和モノマー;3)(メタ)アクリルアミドやN−メチロール(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジブチル(メタ)アクリルアミド、N,N−ジオクチル(メタ)アクリルアミド、N−モノブチル(メタ)アクリルアミド、N−モノオクチル(メタ)アクリルアミドなどのアミド基を含有するエチレン性不飽和モノマー;4)メチル(メタ)アクリレートやエチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチルアクリレート、t−ブチルアクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリルメタクリレート、フェニルアクリレート、イソボルニル(メタ)アクリレート、シクロヘキシルメタクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ジヒドロジシクロペンタジエニル(メタ)アクリレートなどの(メタ)アクリレートエステルモノマー;5)スチレンやα−メチルスチレン、ビニルケトン、t−ブチルスチレン、パラクロロスチレン、ビニルナフタレンなどの重合性芳香族化合物;6)アクリロニトリルやメタクリロニトリルなどの重合性ニトリル;7)エチレンやプロピレンなどのα−オレフィン;8)酢酸ビニルやプロピオン酸ビニルなどのビニルエステル;9)ブタジエンやイソプレンなどのジエン、などが挙げられる。これらの中でも、他のエチレン性不飽和モノマーとして、水酸基を含有するエチレン性不飽和モノマーが含まれていることが好ましい。   Examples of other ethylenically unsaturated monomers are not particularly limited. For example, 1) 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) Ethylenically unsaturated monomers containing hydroxyl groups such as acrylate, allyl alcohol, methacryl alcohol, adducts of 2-hydroxyethyl (meth) acrylate and ε-caprolactone; 2) containing carboxyl groups such as half amides and half thioesters 3) (Meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dibutyl (meth) acrylamide, N, N-dioctyl (meth) Acrylamide, N-monobutyl Ethylenically unsaturated monomers containing amide groups such as (meth) acrylamide and N-monooctyl (meth) acrylamide; 4) methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl (meth) acrylate, lauryl methacrylate, phenyl acrylate, isobornyl (meth) acrylate, cyclohexyl methacrylate, t-butylcyclohexyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, dihydrodicyclo (Meth) acrylate ester monomers such as pentadienyl (meth) acrylate; 5) styrene, α-methylstyrene, vinyl ketone, t-butylstyrene, parachlorostyrene 6) Polymerizable nitriles such as acrylonitrile and methacrylonitrile; 7) α-olefins such as ethylene and propylene; 8) Vinyl esters such as vinyl acetate and vinyl propionate; 9 ) Dienes such as butadiene and isoprene. Among these, it is preferable that the ethylenically unsaturated monomer containing a hydroxyl group is contained as another ethylenically unsaturated monomer.

カルボキシル基含有樹脂(A)の質量平均分子量は、1×10〜5×10の範囲内が好ましい。カルボキシル基含有樹脂(A)の質量平均分子量が1×10未満の場合、有機無機複合処理層の造膜性が不十分となり、その結果として耐薬品性も不十分となるおそれがある。一方、カルボキシル基含有樹脂(A)の質量平均分子量が5×10超の場合、有機無機複合処理層を形成するための樹脂組成物(有機無機複合処理液)の粘度が高くなり、作業性が低下するおそれがある。カルボキシル基含有樹脂(A)の質量平均分子量は、ポリスチレンを標準として用いて、ゲルパーミエーションクロマトグラフィー(GPC)の測定結果から算出されうる。 The mass average molecular weight of the carboxyl group-containing resin (A) is preferably in the range of 1 × 10 3 to 5 × 10 5 . When the weight average molecular weight of the carboxyl group-containing resin (A) is less than 1 × 10 3, the film-forming property of the organic-inorganic composite treatment layer is insufficient, and as a result, the chemical resistance may be insufficient. On the other hand, when the weight average molecular weight of the carboxyl group-containing resin (A) is more than 5 × 10 5 , the viscosity of the resin composition (organic-inorganic composite treatment liquid) for forming the organic-inorganic composite treatment layer is increased, and workability is increased. May decrease. The mass average molecular weight of the carboxyl group-containing resin (A) can be calculated from the measurement result of gel permeation chromatography (GPC) using polystyrene as a standard.

カルボキシル基含有樹脂(A)は、市販のものを使用してもよい。たとえば、カルボキシル基含有樹脂(A)としては、アロンA30(ポリアクリル酸アンモニウム;東亞合成株式会社)、ジュリマーAC−10L(ポリアクリル酸;日本純薬株式会社)、PIA728(ポリイタコン酸;磐田化学工業株式会社)、アクアリックHL580(ポリアクリル酸;株式会社日本触媒)を用いることができる。   As the carboxyl group-containing resin (A), a commercially available product may be used. For example, as the carboxyl group-containing resin (A), Aron A30 (polyammonium acrylate; Toagosei Co., Ltd.), Jurimer AC-10L (polyacrylic acid; Nippon Seiyaku Co., Ltd.), PIA728 (polyitaconic acid; Iwata Chemical Industries) Co., Ltd.), Aquaric HL580 (polyacrylic acid; Nippon Shokubai Co., Ltd.) can be used.

カルボキシル基含有樹脂(A)としては、(メタ)アクリル酸もしくは(メタ)アクリル酸誘導体またはこれらの組み合わせを、モノマー全体に対して50モル%以上用いた樹脂を用いることが好ましく、構成するモノマーの全てが(メタ)アクリル酸や(メタ)アクリル酸誘導体などのアクリルモノマーで構成されていることがより好ましい。   As the carboxyl group-containing resin (A), it is preferable to use a resin in which (meth) acrylic acid or a (meth) acrylic acid derivative or a combination thereof is used in an amount of 50 mol% or more based on the whole monomer. More preferably, all are composed of acrylic monomers such as (meth) acrylic acid and (meth) acrylic acid derivatives.

カルボキシル基含有樹脂(A)の酸価は、後述するオキサゾリン基含有樹脂、塩基性リン酸化合物および塩基性ジルコニウム化合物との反応性を維持する観点より、樹脂固形分換算で300mgKOH/g以上であることが好ましい。カルボキシル基含有樹脂(A)の酸価が300mgKOH/g未満の場合、カルボキシル基含有樹脂(A)の反応性が低下してしまい、密着性および耐食性が低下するおそれがある。カルボキシル基含有樹脂(A)の酸価の上限は、樹脂固形分換算で779mgKOH/gである。   The acid value of the carboxyl group-containing resin (A) is 300 mgKOH / g or more in terms of resin solids from the viewpoint of maintaining the reactivity with the oxazoline group-containing resin, basic phosphate compound and basic zirconium compound described later. It is preferable. When the acid value of the carboxyl group-containing resin (A) is less than 300 mgKOH / g, the reactivity of the carboxyl group-containing resin (A) is lowered, and the adhesion and corrosion resistance may be lowered. The upper limit of the acid value of the carboxyl group-containing resin (A) is 779 mgKOH / g in terms of resin solid content.

カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)(ならびに任意成分として塩基性ジルコニウム化合物(D))を含む樹脂組成物(有機無機複合処理液)の経時安定性を向上させる観点からは、カルボキシル基含有樹脂(A)のカルボキシル基は、塩基性中和剤により中和されていることが好ましい。塩基性中和剤としては、有機無機複合処理層に残存しにくく、カルボキシル基含有樹脂(A)とオキサゾリン基含有樹脂(B)、塩基性リン酸化合物(C)または塩基性ジルコニウム化合物(D)との架橋反応を阻害するおそれが小さい、揮発性アミンやアンモニアなどを用いることが好ましい。揮発性アミンの例には、モノエタノールアミン、エチルエタノールアミン、ジメチルエタノールアミン、トリメチルアミン、トリエチルアミン、モルホリンなどが含まれる。   A resin composition (organic-inorganic composite treatment liquid) containing a carboxyl group-containing resin (A), an oxazoline group-containing resin (B) and a basic phosphate compound (C) (and a basic zirconium compound (D) as an optional component) From the viewpoint of improving the temporal stability, the carboxyl group of the carboxyl group-containing resin (A) is preferably neutralized with a basic neutralizing agent. As a basic neutralizer, it is difficult to remain in the organic-inorganic composite treatment layer, and carboxyl group-containing resin (A) and oxazoline group-containing resin (B), basic phosphate compound (C) or basic zirconium compound (D) It is preferable to use volatile amine, ammonia, or the like that is less likely to inhibit the crosslinking reaction. Examples of volatile amines include monoethanolamine, ethylethanolamine, dimethylethanolamine, trimethylamine, triethylamine, morpholine and the like.

[オキサゾリン基含有樹脂(B)]
オキサゾリン基含有樹脂(B)は、カルボキシル基含有樹脂(A)と共に三次元網目構造の硬化物を形成し、溶融アルミニウムめっき鋼板と熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)との密着性を向上させる。
[Oxazoline group-containing resin (B)]
The oxazoline group-containing resin (B) forms a cured product having a three-dimensional network structure together with the carboxyl group-containing resin (A), and a hot-melted aluminum-plated steel sheet and a heat-fusible polyolefin resin layer (or acid-modified polyolefin resin layer). Improves adhesion.

オキサゾリン基含有樹脂(B)は、主鎖がアクリル骨格であり、かつ複数のオキサゾリン基を有するものであれば特に限定されない。   The oxazoline group-containing resin (B) is not particularly limited as long as the main chain is an acrylic skeleton and has a plurality of oxazoline groups.

オキサゾリン基含有樹脂(B)中のオキサゾリン基の数は、オキサゾリン価(gsolid/eq.)で定義されうる。「オキサゾリン価」とは、オキサゾリン基1モル当たりの重合体の質量を意味する。重合体中のオキサゾリン基の数が多いと、オキサゾリン価は小さくなる。一方、重合体中のオキサゾリン基の数が少ないと、オキサゾリン価が大きくなる。   The number of oxazoline groups in the oxazoline group-containing resin (B) can be defined by an oxazoline value (gsolid / eq.). “Oxazoline number” means the mass of polymer per mole of oxazoline group. When the number of oxazoline groups in the polymer is large, the oxazoline value becomes small. On the other hand, when the number of oxazoline groups in the polymer is small, the oxazoline value increases.

オキサゾリン基含有樹脂(B)のオキサゾリン価は、40〜1000g solid/eq.の範囲内が好ましく、120〜240g solid/eq.の範囲内がより好ましい。オキサゾリン価が40g solid/eq.未満の場合、オキサゾリン基含有樹脂(B)の粘度が高くなり、有機無機複合処理層を形成する際の作業性が低下するおそれがある。一方、オキサゾリン価が1000g solid/eq.超の場合、カルボキシル基含有樹脂(A)との反応が不十分となり、その結果として耐薬品性も不十分となるおそれがある。   The oxazoline value of the oxazoline group-containing resin (B) is preferably in the range of 40 to 1000 g solid / eq., More preferably in the range of 120 to 240 g solid / eq. When the oxazoline value is less than 40 g solid / eq., The viscosity of the oxazoline group-containing resin (B) increases, and the workability when forming the organic-inorganic composite treatment layer may be reduced. On the other hand, when the oxazoline value exceeds 1000 g solid / eq., The reaction with the carboxyl group-containing resin (A) becomes insufficient, and as a result, chemical resistance may be insufficient.

オキサゾリン基含有樹脂(B)の質量平均分子量は、1×10〜5×10の範囲内が好ましい。オキサゾリン基含有樹脂(B)の質量平均分子量が1×10未満の場合、有機無機複合処理層の造膜性が不十分となり、その結果として耐薬品性も不十分となるおそれがある。一方、オキサゾリン基含有樹脂(B)の質量平均分子量が5×10超の場合、有機無機複合処理層を形成するための樹脂組成物(有機無機複合処理液)の粘度が高くなり、作業性が低下するおそれがある。オキサゾリン基含有樹脂(B)の質量平均分子量は、ポリスチレンを標準として用いて、ゲルパーミエーションクロマトグラフィー(GPC)の測定結果から算出されうる。 The mass average molecular weight of the oxazoline group-containing resin (B) is preferably in the range of 1 × 10 3 to 5 × 10 5 . When the mass average molecular weight of the oxazoline group-containing resin (B) is less than 1 × 10 3, the film-forming property of the organic-inorganic composite treatment layer is insufficient, and as a result, the chemical resistance may be insufficient. On the other hand, when the mass average molecular weight of the oxazoline group-containing resin (B) is more than 5 × 10 5 , the viscosity of the resin composition (organic-inorganic composite treatment liquid) for forming the organic-inorganic composite treatment layer is increased, and workability is increased. May decrease. The mass average molecular weight of the oxazoline group-containing resin (B) can be calculated from the measurement result of gel permeation chromatography (GPC) using polystyrene as a standard.

オキサゾリン基含有樹脂(B)は、市販のものを使用してもよい。たとえば、オキサゾリン基含有樹脂(B)としては、エポクロスWS−300、エポクロスWS−500、エポクロスWS−700(いずれも株式会社日本触媒)、NK Linker FX(新中村化学工業株式会社)を用いることができる。   A commercially available oxazoline group-containing resin (B) may be used. For example, as the oxazoline group-containing resin (B), Epocros WS-300, Epocros WS-500, Epocros WS-700 (all of which are Nippon Shokubai Co., Ltd.), NK Linker FX (Shin Nakamura Chemical Co., Ltd.) may be used. it can.

[塩基性リン酸化合物(C)]
塩基性リン酸化合物(C)は、めっき層のアルミニウム成分と反応して不溶性の塩(リン酸アルミニウム)を形成することにより溶融アルミニウムめっき鋼板と強固に結合または付着して無機処理層を形成する。また、塩基性リン酸化合物(C)は、樹脂(A)が有するカルボキシル基と樹脂(B)が有するオキサゾリン基との反応触媒としても機能し、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)の3成分に由来する高架橋密度の耐薬品性に優れた有機無機複合処理層を形成するために必須の成分である。
[Basic Phosphate Compound (C)]
The basic phosphate compound (C) reacts with the aluminum component of the plating layer to form an insoluble salt (aluminum phosphate), thereby firmly bonding or adhering to the hot-dip aluminum plated steel sheet to form an inorganic treatment layer. . The basic phosphoric acid compound (C) also functions as a reaction catalyst for the carboxyl group of the resin (A) and the oxazoline group of the resin (B), and the carboxyl group-containing resin (A) and the oxazoline group-containing resin. It is an essential component for forming an organic-inorganic composite treatment layer having a high crosslinking density and excellent chemical resistance derived from the three components (B) and the basic phosphate compound (C).

リン酸化合物(C)は、塩基性であることが必須である。カルボキシル基含有樹脂(A)およびオキサゾリン基含有樹脂(B)を含む樹脂組成物(有機無機処理液)に、酸性のリン酸化合物を添加してしまうと、樹脂成分がゲル化してしまうため、好ましくない。   It is essential that the phosphoric acid compound (C) is basic. If an acidic phosphoric acid compound is added to the resin composition (organic inorganic treatment liquid) containing the carboxyl group-containing resin (A) and the oxazoline group-containing resin (B), the resin component will be gelled. Absent.

塩基性リン酸化合物(C)は、公知のものを広く使用することができる。水溶液がアルカリ性を示す塩基性リン酸化合物(C)の例としては、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸ナトリウム、リン酸二水素カリウム、リン酸三アンモニウム、リン酸水素二アンモニウム、リン酸三ナトリウム、リン酸水素二ナトリウムなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて使用してもよい。   A well-known thing can be widely used for the basic phosphoric acid compound (C). Examples of the basic phosphate compound (C) in which the aqueous solution is alkaline include sodium tripolyphosphate, sodium hexametaphosphate, potassium pyrophosphate, sodium pyrophosphate, potassium dihydrogen phosphate, triammonium phosphate, diammonium hydrogen phosphate , Trisodium phosphate, disodium hydrogen phosphate, and the like. These may be used alone or in combination of two or more.

[塩基性ジルコニウム化合物(D)]
塩基性ジルコニウム化合物(D)は、樹脂間を金属架橋することで、有機無機複合処理層の造膜性、バリア性および熱融着性ポリオレフィン系樹脂層(または酸変性ポリオレフィン系樹脂層)に対する密着性をより向上させる。また、有機無機複合処理層を形成する際に塗布する樹脂組成物(有機無機処理液)に塩基性ジルコニウム化合物を添加した場合、ジルコニウム同士が酸素を介して結合して高分子量化するため、有機無機複合処理層のバリア性がさらに向上する。さらに、塩基性ジルコニウム化合物(D)は、塩基性リン酸化合物(C)と反応することで不溶性のリン酸ジルコニウムを形成して、有機無機複合処理層のバリア性をさらに向上させる。
[Basic Zirconium Compound (D)]
The basic zirconium compound (D) adheres to the polyolefin-based resin layer (or acid-modified polyolefin-based resin layer) of the organic / inorganic composite treatment layer by forming a metal bridge between the resins. Improve sex more. In addition, when a basic zirconium compound is added to the resin composition (organic / inorganic treatment liquid) applied when forming the organic / inorganic composite treatment layer, the zirconium bonds to each other through oxygen to increase the molecular weight. The barrier property of the inorganic composite treatment layer is further improved. Further, the basic zirconium compound (D) reacts with the basic phosphoric acid compound (C) to form insoluble zirconium phosphate, thereby further improving the barrier property of the organic-inorganic composite treatment layer.

ジルコニウム化合物(D)は、リン酸化合物(C)と同様に塩基性であることが必須である。カルボキシル基含有樹脂(A)およびオキサゾリン基含有樹脂(B)を含む樹脂組成物(有機無機処理液)に、酸性のジルコニウム化合物を添加してしまうと、樹脂成分がゲル化してしまうため、好ましくない。   Zirconium compound (D) is essential to be basic like phosphoric acid compound (C). If an acidic zirconium compound is added to the resin composition (organic inorganic treatment liquid) containing the carboxyl group-containing resin (A) and the oxazoline group-containing resin (B), the resin component will gel, which is not preferable. .

塩基性ジルコニウム化合物(D)は、公知のものを広く使用することができる。水溶液がアルカリ性を示す塩基性ジルコニウム化合物(D)の例としては、炭酸ジルコニウムアンモニウムなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて使用してもよい。   A well-known thing can be widely used for a basic zirconium compound (D). Examples of the basic zirconium compound (D) in which the aqueous solution exhibits alkalinity include ammonium zirconium carbonate. These may be used alone or in combination of two or more.

有機無機複合処理層を形成する方法は、特に限定されない。たとえば、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)、塩基性リン酸化合物(C)および水性溶媒を含有する有機無機複合処理液を溶融アルミニウムめっき鋼板の表面に塗布し、加熱乾燥させればよい。   The method for forming the organic-inorganic composite treatment layer is not particularly limited. For example, an organic-inorganic composite treatment liquid containing a carboxyl group-containing resin (A), an oxazoline group-containing resin (B), a basic phosphoric acid compound (C), and an aqueous solvent is applied to the surface of a hot-dip aluminized steel sheet and dried by heating. You can do it.

有機無機複合処理液は、水性溶媒に、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)を分散または溶解させたものである。有機無機複合処理液には、さらに塩基性ジルコニウム化合物(D)を添加してもよい。上記(A)〜(D)の各成分の濃度は、有機無機複合皮膜を形成したときに前述の含有量となるように調整される。水性溶媒は、通常は水であるが、有機無機複合処理液の物性を調整するためにアルコールが添加されていてもよい。水性溶媒に添加されうるアルコールとしては、公知のアルコールを広く使用できる。添加されうるアルコールの例としては、メチルアルコールやエチルアルコール、イソプロピルアルコール、n−ブチルアルコールなどの炭素数1〜4のアルコールが挙げられる。これらのアルコールの添加量は、水に対して20質量%以下であればよく、1〜5質量%程度が好ましい。   The organic-inorganic composite treatment liquid is obtained by dispersing or dissolving a carboxyl group-containing resin (A), an oxazoline group-containing resin (B), and a basic phosphoric acid compound (C) in an aqueous solvent. A basic zirconium compound (D) may be further added to the organic-inorganic composite treatment liquid. The density | concentration of each component of said (A)-(D) is adjusted so that it may become above-mentioned content, when an organic inorganic composite membrane | film | coat is formed. The aqueous solvent is usually water, but an alcohol may be added to adjust the physical properties of the organic-inorganic composite treatment liquid. Known alcohols can be widely used as alcohols that can be added to the aqueous solvent. Examples of the alcohol that can be added include alcohols having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and n-butyl alcohol. The addition amount of these alcohols should just be 20 mass% or less with respect to water, and about 1-5 mass% is preferable.

有機無機複合処理液のpHは、7以上(中性からアルカリ性)が好ましい。pHが7未満の場合、樹脂成分が時間の経過とともにゲル化してしまうため、所望の品質の有機無機複合処理液を得ることができない。有機無機複合処理液のpHの調整には、アルカリ金属またはアルカリ土類金属の酸化物または水酸化物や;アルカリ金属、アルカリ土類金属またはアンモニウムの塩のうち、塩基性を示す化合物;アンモニアやアミン類などを使用することができる。これらの中でも、カルボキシル基含有樹脂(A)とオキサゾリン基含有樹脂(B)、塩基性リン酸化合物(C)または塩基性ジルコニウム化合物(D)との架橋反応を阻害するおそれが小さい、揮発性アミンやアンモニアなどを用いることが好ましい。揮発性アミンの例には、モノエタノールアミン、エチルエタノールアミン、ジメチルエタノールアミン、トリメチルアミン、トリエチルアミン、モルホリンなどが含まれる。   The pH of the organic / inorganic composite treatment solution is preferably 7 or more (neutral to alkaline). When the pH is less than 7, the resin component gels with time, so an organic-inorganic composite treatment liquid with a desired quality cannot be obtained. For adjusting the pH of the organic / inorganic composite treatment solution, an alkali metal or alkaline earth metal oxide or hydroxide; a basic compound among alkali metal, alkaline earth metal or ammonium salts; ammonia or Amines and the like can be used. Among these, a volatile amine that is less likely to inhibit the crosslinking reaction between the carboxyl group-containing resin (A) and the oxazoline group-containing resin (B), the basic phosphate compound (C), or the basic zirconium compound (D). It is preferable to use ammonia or ammonia. Examples of volatile amines include monoethanolamine, ethylethanolamine, dimethylethanolamine, trimethylamine, triethylamine, morpholine and the like.

溶融アルミニウムめっき鋼板の表面に有機無機複合処理液を塗布する場合、溶融アルミニウムめっき鋼板の表面は、清浄化されていることが好ましい。溶融アルミニウムめっき鋼板の表面を清浄化する方法は、特に限定されず、公知の方法を広く使用することができる。清浄化方法の例には、純水洗浄、アルカリ洗浄、酸洗浄、洗剤洗浄、溶剤洗浄、コロナ放電処理などが含まれる。これらの方法は、2種類以上を組み合わせてもよい。   When apply | coating an organic inorganic composite process liquid to the surface of a hot dip aluminum plating steel plate, it is preferable that the surface of the hot dip aluminum plating steel plate is cleaned. The method for cleaning the surface of the hot-dip aluminized steel sheet is not particularly limited, and known methods can be widely used. Examples of cleaning methods include pure water cleaning, alkali cleaning, acid cleaning, detergent cleaning, solvent cleaning, and corona discharge treatment. Two or more of these methods may be combined.

有機無機複合処理液を塗布する方法は、特に限定されず、公知の方法を広く使用することができる。塗布方法の例には、浸漬法、スプレー法、ロールコート法、バーコート法、流しかけ処理法などが含まれる。塗布量を厳密に管理する観点からは、ロールコート法およびバーコート法が特に好ましい。   The method for applying the organic-inorganic composite treatment liquid is not particularly limited, and a known method can be widely used. Examples of the application method include a dipping method, a spray method, a roll coating method, a bar coating method, and a pouring treatment method. From the viewpoint of strictly controlling the coating amount, the roll coating method and the bar coating method are particularly preferable.

加熱乾燥は、有機無機複合処理液中の水性溶媒を蒸発させるため、および上記(A)〜(D)の各成分の反応を促進して、有機無機複合処理層を不溶化させるために行われる。加熱乾燥の方法は、電気オーブンによる加熱や、赤外オーブンによる加熱などの公知の方法を広く使用することができる。加熱温度は、80〜300℃の範囲内が好ましく、120〜250℃の範囲内がより好ましい。加熱時間は、加熱温度や、有機無機複合処理液の塗布量に応じて適宜調整すればよい。   The heat drying is performed to evaporate the aqueous solvent in the organic-inorganic composite treatment liquid and to promote the reaction of the components (A) to (D) to insolubilize the organic-inorganic composite treatment layer. As a drying method, a known method such as heating with an electric oven or heating with an infrared oven can be widely used. The heating temperature is preferably in the range of 80 to 300 ° C, and more preferably in the range of 120 to 250 ° C. The heating time may be appropriately adjusted according to the heating temperature and the coating amount of the organic / inorganic composite treatment liquid.

(3)熱融着性ポリオレフィン系樹脂層
前述の通り、熱融着性ポリオレフィン系樹脂層は、溶融アルミニウムめっき鋼板の第1の面に形成された有機無機複合処理層に直接接合されているか、または有機無機複合処理層の上に形成された後述の酸変性ポリオレフィン系樹脂を介して有機無機複合処理層に接合されている。熱融着性ポリオレフィン系樹脂層は、電池内部を外気から遮断して密封系にする機能を担う。すなわち、本発明の積層体を用いて電池を製造する際に、一方の積層体の熱融着性ポリオレフィン系樹脂層を他方の積層体の熱融着性ポリオレフィン系樹脂層または金属製電極と熱融着させることにより、電池内部を外気から遮断するとともに、電解液の液漏れを防止する。特に外気の水蒸気ガスが電池内部に侵入した場合、電解液中の電解質が加水分解を受けてフッ酸が生成することから、二次電池自体が劣化するばかりでなく、溶融アルミニウムめっき鋼板が腐食してしまうおそれもあり、熱融着性ポリオレフィン系樹脂層は、電解液に対する溶融アルミニウムめっき鋼板の耐腐食性を向上させる機能も担っている。
(3) Heat-fusible polyolefin resin layer As described above, whether the heat-fusible polyolefin resin layer is directly bonded to the organic-inorganic composite treatment layer formed on the first surface of the hot-dip aluminized steel sheet, Alternatively, it is bonded to the organic / inorganic composite treatment layer via an acid-modified polyolefin resin described later formed on the organic / inorganic composite treatment layer. The heat-sealable polyolefin resin layer has a function of blocking the inside of the battery from the outside air to form a sealed system. That is, when a battery is manufactured using the laminate of the present invention, the heat-sealable polyolefin resin layer of one laminate is used as the heat-sealable polyolefin resin layer or metal electrode of the other laminate and the heat. By fusing, the inside of the battery is shielded from the outside air, and the leakage of the electrolyte is prevented. In particular, when water vapor gas from the outside enters the battery, the electrolyte in the electrolyte is hydrolyzed and hydrofluoric acid is generated, which not only deteriorates the secondary battery itself but also corrodes the hot-dip aluminized steel sheet. The heat-fusible polyolefin resin layer also has a function of improving the corrosion resistance of the hot-dip aluminized steel sheet against the electrolytic solution.

熱融着性ポリオレフィン系樹脂層を構成する熱融着性ポリオレフィン系樹脂の種類は、特に限定されず、公知のものから適宜選択することができる。熱融着性ポリオレフィン系樹脂の例には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、エチレン−α−オレフィン共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸エステル共重合体、エチレン−酢酸ビニル共重合体、アイオノマー、ポリプロピレン、エチレン−プロピレン共重合体などが含まれる。これらの中では、ポリプロピレンが特に好ましい。   The kind of the heat-fusible polyolefin resin constituting the heat-fusible polyolefin resin layer is not particularly limited, and can be appropriately selected from known ones. Examples of heat-sealable polyolefin resins include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-α-olefin copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid. Examples include acid copolymers, ethylene-acrylic acid ester copolymers, ethylene-methacrylic acid ester copolymers, ethylene-vinyl acetate copolymers, ionomers, polypropylene, and ethylene-propylene copolymers. Among these, polypropylene is particularly preferable.

熱融着性ポリオレフィン系樹脂層の厚みは、10〜100μmの範囲内が好ましく、20〜80μmの範囲内がより好ましい。厚みが10μm未満の場合、十分な強度で熱融着させることができない。また、厚みを100μm超としても、熱融着の強度の向上は認められず、コスト的に不利になる。また、厚みが100μm超の場合、加工性が低下するおそれがある。   The thickness of the heat-fusible polyolefin resin layer is preferably in the range of 10 to 100 μm, and more preferably in the range of 20 to 80 μm. When the thickness is less than 10 μm, it cannot be heat-sealed with sufficient strength. Further, even if the thickness exceeds 100 μm, no improvement in the strength of heat fusion is recognized, which is disadvantageous in terms of cost. On the other hand, if the thickness exceeds 100 μm, the workability may be reduced.

有機無機複合処理層の上に熱融着性ポリオレフィン系樹脂層を配置する方法は、特に限定されず、公知の方法から適宜選択することができる。たとえば、有機無機複合処理層の上に熱融着性ポリオレフィン系樹脂フィルムを積層してもよいし(積層法)、有機無機複合処理層の上に熱融着性ポリオレフィン系樹脂組成物を塗布してもよい(塗布法)。積層法の例には、熱ラミネーション法、サンドラミネーション法などが含まれる。また、熱融着性ポリオレフィン系樹脂フィルムは、市販のものを使用してもよいし、Tダイ押し出し機などを用いて作製してもよい。また、熱融着性ポリオレフィン系樹脂フィルムは、未延伸のものでもよいし、一軸または二軸延伸されたものでもよい。一方、塗布法の例には、樹脂組成物を溶融してバーコータやロールコータなどで塗布する方法、溶融した樹脂組成物に有機無機複合処理層を形成した溶融アルミニウムめっき鋼板を浸漬する方法、樹脂組成物を溶媒に溶解してバーコータやロールコータ、スピンコートなどで塗布する方法などが含まれる。   The method for disposing the heat-fusible polyolefin resin layer on the organic / inorganic composite treatment layer is not particularly limited, and can be appropriately selected from known methods. For example, a heat-sealable polyolefin resin film may be laminated on the organic-inorganic composite treatment layer (lamination method), or a heat-sealable polyolefin resin composition may be applied on the organic-inorganic composite treatment layer. (Coating method). Examples of the lamination method include a thermal lamination method and a sand lamination method. Moreover, a commercially available heat-sealable polyolefin resin film may be used, or may be produced using a T-die extruder or the like. The heat-fusible polyolefin resin film may be unstretched or uniaxially or biaxially stretched. On the other hand, examples of the coating method include a method in which a resin composition is melted and coated with a bar coater or a roll coater, a method in which a molten aluminum-plated steel sheet in which an organic-inorganic composite treatment layer is formed is immersed in the melted resin composition, a resin Examples include a method in which the composition is dissolved in a solvent and applied by a bar coater, a roll coater, spin coating or the like.

(4)酸変性ポリオレフィン系樹脂層
本発明の積層体は、溶融アルミニウムめっき鋼板の第1の面に形成された有機無機複合処理層と熱融着性ポリオレフィン系樹脂層との間に、酸変性ポリオレフィン系樹脂層を有していてもよい。酸変性ポリオレフィン系樹脂層は、有機無機複合処理層とポリオレフィン系樹脂層との密着性をより向上させる。
(4) Acid-modified polyolefin resin layer The laminate of the present invention has an acid modification between the organic-inorganic composite treatment layer formed on the first surface of the hot-dip aluminized steel sheet and the heat-fusible polyolefin resin layer. You may have a polyolefin resin layer. The acid-modified polyolefin resin layer further improves the adhesion between the organic-inorganic composite treatment layer and the polyolefin resin layer.

酸変性ポリオレフィン系樹脂層を構成するポリオレフィン系樹脂の種類は、特に限定されず、公知のものから適宜選択することができる。酸変性ポリオレフィン系樹脂の例には、不飽和カルボン酸でグラフト変性したオレフィン樹脂、エチレンもしくはプロピレンとアクリル酸もしくはメタクリル酸との共重合体、金属架橋オレフィン樹脂などが含まれる。これらの中では、耐熱性の観点から、不飽和カルボン酸でグラフト変性したオレフィン樹脂が特に好ましい。   The kind of polyolefin resin which comprises an acid-modified polyolefin resin layer is not specifically limited, It can select suitably from a well-known thing. Examples of the acid-modified polyolefin resin include an olefin resin graft-modified with an unsaturated carboxylic acid, a copolymer of ethylene or propylene and acrylic acid or methacrylic acid, a metal-crosslinked olefin resin, and the like. Among these, an olefin resin graft-modified with an unsaturated carboxylic acid is particularly preferable from the viewpoint of heat resistance.

酸変性ポリオレフィン系樹脂層の厚みは、10〜100μmの範囲内が好ましく、15〜50μmの範囲内がより好ましい。厚みが10μm未満の場合、有機無機複合処理層への密着性を十分に確保できないおそれがある。また、厚みを100μm超としても、有機無機複合処理層への密着性の向上は認められず、コスト的に不利になる。また、厚みが100μm超の場合、加工性が低下するおそれがある。   The thickness of the acid-modified polyolefin resin layer is preferably in the range of 10 to 100 μm, and more preferably in the range of 15 to 50 μm. When thickness is less than 10 micrometers, there exists a possibility that adhesiveness to an organic inorganic composite process layer cannot fully be ensured. Further, even if the thickness exceeds 100 μm, improvement in adhesion to the organic-inorganic composite treatment layer is not recognized, which is disadvantageous in cost. On the other hand, if the thickness exceeds 100 μm, the workability may be reduced.

酸変性ポリオレフィン系樹脂層を配置する方法は、特に限定されず、公知の方法から適宜選択することができる。たとえば、有機無機複合処理層と熱融着性ポリオレフィン系樹脂層との間に酸変性ポリオレフィン系樹脂フィルムを積層してもよいし(積層法)、熱融着性ポリオレフィン系樹脂層を形成する前に、有機無機複合処理層の上に酸変性ポリオレフィン系樹脂組成物を塗布してもよい(塗布法)。酸変性ポリオレフィン系樹脂フィルムは、市販のものを使用してもよいし、Tダイ押し出し機などを用いて作製してもよい。また、酸変性ポリオレフィン系樹脂フィルムは、未延伸のものでもよいし、一軸または二軸延伸されたものでもよい。一方、塗布法の例には、樹脂組成物を溶融してバーコータやロールコータなどで塗布する方法、溶融した樹脂組成物に有機無機複合処理層を形成した溶融アルミニウムめっき鋼板を浸漬する方法、樹脂組成物を溶媒に溶解してバーコータやロールコータ、スピンコートなどで塗布する方法などが含まれる。   The method for disposing the acid-modified polyolefin resin layer is not particularly limited, and can be appropriately selected from known methods. For example, an acid-modified polyolefin resin film may be laminated between the organic / inorganic composite treatment layer and the heat-fusible polyolefin resin layer (lamination method), or before the heat-fusible polyolefin resin layer is formed. In addition, an acid-modified polyolefin resin composition may be applied on the organic / inorganic composite treatment layer (application method). As the acid-modified polyolefin resin film, a commercially available one may be used, or a T-die extruder may be used. The acid-modified polyolefin resin film may be unstretched or uniaxially or biaxially stretched. On the other hand, examples of the coating method include a method in which a resin composition is melted and coated with a bar coater or a roll coater, a method in which a molten aluminum-plated steel sheet in which an organic-inorganic composite treatment layer is formed is immersed in the melted resin composition, a resin Examples include a method in which the composition is dissolved in a solvent and applied by a bar coater, a roll coater, spin coating or the like.

(5)外層樹脂層
本発明の積層体は、溶融アルミニウムめっき鋼板の第2の面側に樹脂層(以下「外層樹脂層」ともいう)を有していてもよい。外層樹脂層は、電池外装用材に求められる加工性、意匠性、耐突き刺し性、絶縁性などを向上させうる。
(5) Outer layer resin layer The laminate of the present invention may have a resin layer (hereinafter also referred to as “outer layer resin layer”) on the second surface side of the hot-dip aluminized steel sheet. The outer resin layer can improve processability, designability, puncture resistance, insulation, and the like required for battery exterior materials.

外層樹脂層を構成する樹脂の種類は、特に限定されず、要求される特性(加工性、意匠性、耐突き刺し性、絶縁性など)に応じて公知のものから適宜選択することができる。また、外層樹脂層の厚みも特に限定されず、要求される特性に応じて適宜設定することができる。さらに、外層樹脂層は、単層であってもよいし、2層以上の複層であってもよい。   The type of resin constituting the outer resin layer is not particularly limited, and can be appropriately selected from known ones according to required properties (workability, design properties, puncture resistance, insulation, etc.). Further, the thickness of the outer resin layer is not particularly limited, and can be appropriately set according to required characteristics. Further, the outer resin layer may be a single layer or a multilayer of two or more layers.

以上のように、本発明の積層体は、溶融アルミニウムめっき鋼板の表面と熱融着性ポリオレフィン系樹脂層との間に、カルボキシル基含有樹脂、オキサゾリン基含有樹脂および塩基性リン酸化合物を含有する樹脂組成物の硬化物からなる有機無機複合処理層を有しているため、熱融着性ポリオレフィン系樹脂層の密着性が優れている。   As described above, the laminate of the present invention contains a carboxyl group-containing resin, an oxazoline group-containing resin, and a basic phosphate compound between the surface of the hot-dip aluminized steel sheet and the heat-fusible polyolefin resin layer. Since it has an organic-inorganic composite treatment layer made of a cured product of the resin composition, the adhesiveness of the heat-fusible polyolefin resin layer is excellent.

2.二次電池
本発明の積層体は、二次電池の外装材(ケース)として好適に使用されうる。二次電池の形状は、直方体の角筒形状や円筒形状など、特に限定されない。二次電池の種類も、リチウムイオン電池、リチウムポリマー電池、ニッケル水素電池、ニッケルカドミウム電池など、特に限定されない。
2. Secondary Battery The laminate of the present invention can be suitably used as an exterior material (case) for a secondary battery. The shape of the secondary battery is not particularly limited, such as a rectangular parallelepiped rectangular tube shape or a cylindrical shape. The type of secondary battery is not particularly limited, such as a lithium ion battery, a lithium polymer battery, a nickel metal hydride battery, or a nickel cadmium battery.

本発明の積層体を二次電池の外装材(ケース)として使用する際には、本発明の積層体同士を貼り合わせて密閉するのが好ましい。このとき、成形加工された積層体同士を貼り合わせてもよいし、一方の積層体のみが成形加工されていてもよい。本発明の積層体を成形加工する方法は、特に限定されず、プレス加工や扱き加工、絞り加工などの公知の方法から適宜選択することができる。本発明の積層体を貼り合わせる方法としては、本発明の積層体の第1の面(ポリオレフィン系樹脂層で被覆されている面)同士を合わせて、熱融着で接着する方法が好ましい。   When the laminate of the present invention is used as an exterior material (case) for a secondary battery, it is preferable that the laminates of the present invention are bonded together and sealed. At this time, the molded laminates may be bonded together, or only one of the laminates may be molded. The method for forming and processing the laminate of the present invention is not particularly limited, and can be appropriately selected from known methods such as pressing, handling, and drawing. As a method for laminating the laminate of the present invention, a method in which the first surfaces (surfaces coated with the polyolefin resin layer) of the laminate of the present invention are combined and bonded by heat fusion is preferable.

本発明の積層体を用いて二次電池を製造するには、本発明の積層体を成形加工して得られるケースに、正極や負極、セパレータなどの電池素子、電解液などの電池内容部を収容し、熱融着により接着すればよい。   In order to manufacture a secondary battery using the laminate of the present invention, a battery element such as a positive electrode, a negative electrode, a separator, and a battery content portion such as an electrolyte solution are formed on a case obtained by molding the laminate of the present invention. It can be accommodated and bonded by heat fusion.

以下、本発明を実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.

供試溶融アルミニウムめっき鋼板として、板厚0.27mm、片面あたりのめっき付着量40g/mの溶融Al−Siめっき鋼板を準備した。めっき層全体におけるSiの含有量は、9質量%である。各溶融アルミニウムめっき鋼板を弱アルカリ脱脂(pH8.0、液温60℃、浸漬時間1分間)した後、各溶融アルミニウムめっき鋼板の表面に処理液(有機無機複合処理液、有機処理液または無機処理液)をバーコータを用いて塗布し、160℃のオーブンで45秒間乾燥させて、各溶融アルミニウムめっき鋼板の表面に処理層(有機無機複合処理層、有機処理層または無機処理層)を形成した。 As a test molten aluminum plated steel sheet, a molten Al-Si plated steel sheet having a thickness of 0.27 mm and a coating adhesion amount of 40 g / m 2 per side was prepared. The content of Si in the entire plating layer is 9% by mass. Each hot-dip aluminum-plated steel sheet is weakly alkaline degreased (pH 8.0, liquid temperature 60 ° C., immersion time 1 minute), and then treated with a treatment liquid (organic-inorganic composite treatment liquid, organic treatment liquid or inorganic treatment) on the surface of each hot-dip aluminum-plated steel sheet The liquid was applied using a bar coater and dried in an oven at 160 ° C. for 45 seconds to form a treatment layer (organic-inorganic composite treatment layer, organic treatment layer or inorganic treatment layer) on the surface of each hot-dip aluminum-plated steel sheet.

実施例1〜3では、処理液として、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)を含有する有機無機複合処理液を塗布した。実施例4〜11では、処理液として、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)、塩基性リン酸化合物(C)および塩基性ジルコニウム化合物(D)を含有する有機無機複合処理液を塗布した(表1参照)。   In Examples 1 to 3, an organic-inorganic composite treatment liquid containing a carboxyl group-containing resin (A), an oxazoline group-containing resin (B), and a basic phosphate compound (C) was applied as the treatment liquid. In Examples 4 to 11, an organic-inorganic composite treatment containing a carboxyl group-containing resin (A), an oxazoline group-containing resin (B), a basic phosphate compound (C), and a basic zirconium compound (D) as the treatment liquid. The liquid was applied (see Table 1).

一方、比較例1では、処理液として、カルボキシル基含有樹脂(A)およびオキサゾリン基含有樹脂(B)を含有する有機処理液を塗布した。比較例2では、処理液として、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性ジルコニウム化合物(D)を含有する有機無機複合処理液を塗布した。比較例3では、処理液として、塩基性リン酸化合物(C)および塩基性ジルコニウム化合物(D)を含有する無機処理液を塗布した(表1参照)。   On the other hand, in Comparative Example 1, an organic treatment liquid containing a carboxyl group-containing resin (A) and an oxazoline group-containing resin (B) was applied as the treatment liquid. In Comparative Example 2, an organic-inorganic composite treatment liquid containing a carboxyl group-containing resin (A), an oxazoline group-containing resin (B), and a basic zirconium compound (D) was applied as the treatment liquid. In Comparative Example 3, an inorganic treatment liquid containing a basic phosphate compound (C) and a basic zirconium compound (D) was applied as the treatment liquid (see Table 1).

カルボキシル基含有樹脂(A)は、以下の手順で調製した。まず、加熱装置および攪拌装置を有する4ツ口ベッセルにイオン交換水775質量部を仕込み、攪拌および窒素還流を行いながらイオン交換水を80℃まで加熱した。次いで、加熱、攪拌および窒素還流を行いながら、アクリル酸120質量部、アクリル酸エチル20質量部および2−ヒドロキシエチルメタクリレート60質量部の混合モノマー液と、過硫酸アンモニウム1.6質量部と、イオン交換水23.4質量部との混合液を滴下漏斗を用いて3時間かけて滴下した。滴下終了後も、加熱、攪拌および窒素還流を2時間継続した。その後、加熱および窒素還流を止め、攪拌しながら内容液を30℃まで冷却した。次いで、25質量%アンモニア水113質量部およびイオン交換水887質量部を加えた。20分間攪拌した後、200メッシュのふるいを用いて濾過し、無色透明のカルボキシル基含有樹脂(A)の水溶液を得た。得られたカルボキシル基含有樹脂(A)の水溶液の不揮発分は、10質量%であった。また、カルボキシル基含有樹脂(A)の酸価は、固形分換算で467mgKOH/gであった。カルボキシル基含有樹脂(A)の質量平均分子量は、58000であった。   The carboxyl group-containing resin (A) was prepared by the following procedure. First, 775 parts by mass of ion-exchanged water was charged into a four-necked vessel having a heating device and a stirring device, and the ion-exchanged water was heated to 80 ° C. while stirring and refluxing with nitrogen. Next, while heating, stirring and refluxing with nitrogen, a mixed monomer solution of 120 parts by mass of acrylic acid, 20 parts by mass of ethyl acrylate and 60 parts by mass of 2-hydroxyethyl methacrylate, 1.6 parts by mass of ammonium persulfate, and ion exchange A mixed solution of 23.4 parts by mass of water was dropped over 3 hours using a dropping funnel. Even after completion of the dropwise addition, heating, stirring and nitrogen reflux were continued for 2 hours. Thereafter, heating and nitrogen reflux were stopped, and the content liquid was cooled to 30 ° C. while stirring. Subsequently, 113 mass parts of 25 mass% ammonia water and 887 mass parts of ion-exchange water were added. After stirring for 20 minutes, the mixture was filtered using a 200-mesh sieve to obtain an aqueous solution of a colorless and transparent carboxyl group-containing resin (A). The nonvolatile content of the aqueous solution of the obtained carboxyl group-containing resin (A) was 10% by mass. Moreover, the acid value of carboxyl group-containing resin (A) was 467 mgKOH / g in conversion of solid content. The mass average molecular weight of the carboxyl group-containing resin (A) was 58,000.

オキサゾリン基含有樹脂(B)は、エポクロスWS−300(B1)(オキサゾリン価:120g solid/eq.、質量平均分子量:120000;株式会社日本触媒)を使用した。塩基性リン酸化合物(C)は、リン酸水素二アンモニウムを使用した。塩基性ジルコニウム化合物(D)は、炭酸ジルコニウムアンモニウムを使用した。各処理液のpHは、アンモニアを滴下して8.5に調整した。   As the oxazoline group-containing resin (B), Epocros WS-300 (B1) (oxazoline value: 120 g solid / eq., Mass average molecular weight: 120,000; Nippon Shokubai Co., Ltd.) was used. As the basic phosphate compound (C), diammonium hydrogen phosphate was used. As the basic zirconium compound (D), zirconium ammonium carbonate was used. The pH of each treatment solution was adjusted to 8.5 by adding ammonia dropwise.

表1に、各処理液(有機無機複合処理液、有機処理液または無機処理液)を溶融アルミニウムめっき鋼板の表面に塗布したときの、塗布層1mあたりの各成分の含有量を示す。塩基性リン酸化合物(C)および塩基性ジルコニウム化合物(D)の含有量については、蛍光X線解析装置(AXIS−NOVA;株式会社島津製作所)を用いて、各処理液を塗布した溶融アルミニウムめっき鋼板における塗布層1mあたりのリン量、ジルコニウム量を測定した。また、樹脂成分の(A)+(B)合計量については、蛍光X線解析装置を用いて、各処理液を塗布した溶融アルミニウムめっき鋼板における塗布層1mあたりの炭素量を測定し、換算係数を2倍として炭素量から換算して求めた。

Figure 2012212512
Table 1 shows the content of each component per 1 m 2 of the coating layer when each treatment liquid (organic-inorganic composite treatment liquid, organic treatment liquid, or inorganic treatment liquid) is applied to the surface of the hot-dip aluminized steel sheet. About content of a basic phosphoric acid compound (C) and a basic zirconium compound (D), the hot-dip aluminum plating which apply | coated each processing liquid using the fluorescent-X-ray-analysis apparatus (AXIS-NOVA; Shimadzu Corporation) The amount of phosphorus and the amount of zirconium per 1 m 2 of the coating layer in the steel sheet were measured. Also, the (A) + (B) the total amount of the resin component, using a fluorescent X-ray analyzer to measure the carbon content per coated layer 1 m 2 in the molten aluminum-plated steel sheet coated with the treatment solution, in terms of The coefficient was doubled and calculated from the amount of carbon.
Figure 2012212512

実施例1、3では、有機無機複合処理層を形成した溶融アルミニウムめっき鋼板の表面に膜厚30μmの無延伸ポリプロピレンフィルム(パイレンフィルムCT、P1128;東洋紡績株式会社)を熱ラミネーション法で積層し、積層体を作製した(表2参照)。具体的には、有機無機複合処理層を形成した溶融アルミニウムめっき鋼板を基材温度が100℃になるようにオーブンで加熱した後、その表面に無延伸ポリプロピレンフィルムを加圧ロールにて仮ラミネートし、仮ラミネートした鋼板を160℃のオーブンで60秒間加熱して、積層体を作製した。   In Examples 1 and 3, an unstretched polypropylene film (pyrene film CT, P1128; Toyobo Co., Ltd.) having a film thickness of 30 μm is laminated on the surface of a hot-dip aluminum-plated steel sheet on which an organic-inorganic composite treatment layer has been formed by a thermal lamination method. A laminate was produced (see Table 2). Specifically, the hot-dip aluminized steel sheet on which the organic / inorganic composite treatment layer is formed is heated in an oven so that the substrate temperature becomes 100 ° C., and then an unstretched polypropylene film is temporarily laminated on the surface with a pressure roll. The laminated steel sheet was manufactured by heating the temporarily laminated steel sheet in an oven at 160 ° C. for 60 seconds.

また、実施例2、4〜11および比較例1〜3では、処理層(有機無機複合処理液、有機処理液または無機処理液)を形成した溶融アルミニウムめっき鋼板の表面に、酸変性ポリプロピレンフィルムと上述の無延伸ポリプロピレンフィルムとを2枚重ねて上述の熱ラミネーション法で積層し、積層体を作製した(表2参照)。酸変性ポリプロピレンフィルムは、酸変性ポリプロピレン(モディック、P553A;三菱化学株式会社)をTダイ押し出し機を用いて30μmの厚さで押し出して調製した。

Figure 2012212512
In Examples 2, 4 to 11 and Comparative Examples 1 to 3, the acid-modified polypropylene film and the surface of the hot-dip aluminized steel sheet on which the treatment layer (organic-inorganic composite treatment liquid, organic treatment liquid or inorganic treatment liquid) was formed Two sheets of the above-mentioned unstretched polypropylene film were stacked and laminated by the above-mentioned thermal lamination method to produce a laminate (see Table 2). The acid-modified polypropylene film was prepared by extruding acid-modified polypropylene (Modic, P553A; Mitsubishi Chemical Corporation) at a thickness of 30 μm using a T-die extruder.
Figure 2012212512

得られた各積層体(実施例1〜11、比較例1〜3)から試験片(15mm×100mm)を切り出し、JIS K6854−3に準拠して引張り速度300mm/分で密着性試験を行った。無延伸ポリプロピレンフィルム(実施例1、3)または酸変性ポリプロピレンフィルム(実施例2、4〜11および比較例1〜3)の処理層に対する接着強度が15N/15mm以上の場合を「◎」、10N/15mm以上15N/15mm未満の場合を「○」、10N/15mm未満の場合を「×」と評価した。   A test piece (15 mm × 100 mm) was cut out from each of the obtained laminates (Examples 1 to 11 and Comparative Examples 1 to 3), and an adhesion test was performed at a pulling speed of 300 mm / min in accordance with JIS K6854-3. . When the non-stretched polypropylene film (Examples 1 and 3) or the acid-modified polypropylene film (Examples 2, 4 to 11 and Comparative Examples 1 to 3) has an adhesive strength of 15 N / 15 mm or more to the treated layer, “◎”, 10 N The case of ≦ 15 mm and less than 15 N / 15 mm was evaluated as “◯”, and the case of less than 10 N / 15 mm was evaluated as “X”.

また、得られた各積層体(実施例1〜11、比較例1〜3)から新たに試験片(35mm×35mm)を切り出し、耐電解液試験を行った。まず、密閉可能なテフロン(登録商標)製容器内において、各試験片を85℃の電解液に7日、14日、21日または28日間浸漬した後、各試験片をエタノールで洗浄し、乾燥させた。電解液は、エチレンカーボネートとジエチルカーボネートの混合液(1:1)に6フッ化リン酸リチウム(LiPF)を1モル/リットルとなるように添加して調製した。次いで、セロハンテープを各試験片のフィルムに貼り付けた後、セロハンテープを剥がして、フィルム密着状態を評価した。セロハンテープ剥離試験後もフィルムが剥離しなかったものを「◎」、セロハンテープ剥離試験前はフィルムが剥離していないが試験後に剥離したものを「○」、電解液への浸漬のみでフィルムが剥離したものを「×」と評価した。 Moreover, the test piece (35 mm x 35 mm) was newly cut out from each obtained laminated body (Examples 1-11, Comparative Examples 1-3), and the electrolyte solution test was done. First, after immersing each test piece in an electrolyte solution at 85 ° C. for 7, 14, 21, or 28 days in a sealable Teflon (registered trademark) container, each test piece is washed with ethanol and dried. I let you. The electrolytic solution was prepared by adding lithium hexafluorophosphate (LiPF 6 ) to a mixed liquid (1: 1) of ethylene carbonate and diethyl carbonate so as to be 1 mol / liter. Subsequently, after attaching a cellophane tape to the film of each test piece, the cellophane tape was peeled off and the film adhesion state was evaluated. “◎” indicates that the film did not peel after the cellophane tape peel test, “○” indicates that the film did not peel before the cellophane tape peel test, but “○” indicates that the film peeled after the test. What peeled was evaluated as "x".

密着性試験および耐電解液試験の結果を表3に示す。「−」は、試験継続を断念したことを示す。

Figure 2012212512
Table 3 shows the results of the adhesion test and the electrolytic solution resistance test. “-” Indicates that the test was abandoned.
Figure 2012212512

実施例1〜11の積層体は、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)を含有する樹脂組成物の硬化物からなる有機無機複合処理層が緻密に形成されているため、フィルム密着性および耐電解液性について良好な評価が得られた。特に、酸変性ポリプロピレンフィルムを含む実施例2、4〜11の積層体は、フィルム密着性および耐電解液性についてより良好な評価が得られた。また、有機無機複合処理層が塩基性ジルコニウム化合物(D)も含有している実施例4〜11の積層体は、有機無機複合処理層の造膜性、バリア性、フィルム密着性がより向上しているため、耐電解液性について良好な評価が得られた。   The laminated body of Examples 1-11 is an organic inorganic composite process layer which consists of a hardened | cured material of the resin composition containing carboxyl group-containing resin (A), oxazoline group-containing resin (B), and basic phosphoric acid compound (C). Since the film was formed densely, good evaluation was obtained for film adhesion and electrolyte resistance. In particular, the laminates of Examples 2 and 4 to 11 including an acid-modified polypropylene film were better evaluated for film adhesion and electrolytic solution resistance. In addition, the laminates of Examples 4 to 11 in which the organic-inorganic composite treatment layer also contains the basic zirconium compound (D) have improved film-forming properties, barrier properties, and film adhesion of the organic-inorganic composite treatment layer. Therefore, favorable evaluation was obtained about electrolyte solution resistance.

これに対し、比較例1〜3の積層体は、カルボキシル基含有樹脂(A)、オキサゾリン基含有樹脂(B)および塩基性リン酸化合物(C)を含有する樹脂組成物の硬化物からなる有機無機複合処理層が形成されていないため、フィルム密着性および耐電解液性について良好な評価が得られなかった。   On the other hand, the laminates of Comparative Examples 1 to 3 are organic materials composed of a cured product of a resin composition containing a carboxyl group-containing resin (A), an oxazoline group-containing resin (B), and a basic phosphate compound (C). Since the inorganic composite treatment layer was not formed, good evaluation was not obtained for film adhesion and electrolyte resistance.

本発明の積層体は、熱融着性ポリオレフィン系樹脂層の密着性および耐電解液性が優れているため、電池外装用材として好適に用いられうる。   Since the laminate of the present invention is excellent in the adhesion and electrolyte solution resistance of the heat-sealable polyolefin resin layer, it can be suitably used as a battery exterior material.

Claims (9)

第1の面および第2の面を有し、Siを3〜15質量%含有する溶融アルミニウムめっき層が前記第1の面および前記第2の面に形成されている溶融アルミニウムめっき鋼板と、
前記溶融アルミニウムめっき鋼板の第1の面に形成された、カルボキシル基含有樹脂、オキサゾリン基含有樹脂および塩基性リン酸化合物を含有する樹脂組成物の硬化物からなる有機無機複合処理層と、
前記有機無機複合処理層の表面に形成された、厚みが10〜100μmの熱融着性ポリオレフィン系樹脂層と、
を有する、電池外装用積層体。
A hot-dip galvanized steel sheet having a first face and a second face, and a hot-dip aluminum plating layer containing 3 to 15% by mass of Si formed on the first face and the second face;
An organic-inorganic composite treatment layer formed of a cured product of a resin composition containing a carboxyl group-containing resin, an oxazoline group-containing resin, and a basic phosphate compound, formed on the first surface of the hot-dip aluminum-plated steel sheet;
A heat-fusible polyolefin resin layer having a thickness of 10 to 100 μm formed on the surface of the organic-inorganic composite treatment layer;
A laminate for battery exterior, comprising:
前記有機無機複合処理層は、前記硬化物の樹脂成分を5〜800mg/m含有し、かつ前記硬化物のリン成分をリン換算で0.2〜200mg/m含有する、請求項1に記載の電池外装用積層体。 The organic-inorganic composite treating layer, the cured product of the resin component 5~800mg / m 2 and containing, and containing 0.2~200mg / m 2 phosphorus component phosphorus terms of the cured product, in claim 1 The laminated body for battery exterior of description. 前記樹脂組成物における、前記カルボキシル基含有樹脂および前記オキサゾリン基含有樹脂の合計量に対する前記オキサゾリン基含有樹脂の割合は、2.0〜50.0質量%の範囲内である、請求項1または請求項2に記載の電池外装用積層体。   The ratio of the oxazoline group-containing resin to the total amount of the carboxyl group-containing resin and the oxazoline group-containing resin in the resin composition is in the range of 2.0 to 50.0% by mass. Item 3. A laminated body for battery exterior according to Item 2. 前記カルボキシル基含有樹脂の酸価は、樹脂固形分換算で300mgKOH/g以上である、請求項1〜3のいずれか一項に記載の電池外装用積層体。   The laminated body for battery exteriors as described in any one of Claims 1-3 whose acid value of the said carboxyl group-containing resin is 300 mgKOH / g or more in conversion of resin solid content. 前記樹脂組成物は、塩基性ジルコニウム化合物をさらに含有し、
前記有機無機複合処理層は、前記硬化物のジルコニウム成分をジルコニウム換算で0.5〜60mg/m含有する、
請求項1〜4のいずれか一項に記載の電池外装用積層体。
The resin composition further contains a basic zirconium compound,
The organic-inorganic composite treatment layer contains 0.5 to 60 mg / m 2 of a zirconium component of the cured product in terms of zirconium.
The laminated body for battery exteriors as described in any one of Claims 1-4.
前記有機無機複合処理層と前記熱融着性ポリオレフィン系樹脂層との間に、厚みが10〜100μmの酸変性ポリオレフィン系樹脂層をさらに有する、請求項1に記載の電池外装用積層体。   The laminate for battery exterior according to claim 1, further comprising an acid-modified polyolefin resin layer having a thickness of 10 to 100 µm between the organic-inorganic composite treatment layer and the heat-fusible polyolefin resin layer. 前記溶融アルミニウムめっき鋼板の板厚は、20〜600μmの範囲内である、請求項1に記載の電池外装用積層体。   The laminated body for battery exterior according to claim 1, wherein the thickness of the hot-dip aluminum-plated steel sheet is in the range of 20 to 600 µm. 前記溶融アルミニウムめっき鋼板の第2の面に形成された樹脂層をさらに有する、請求項1に記載の電池外装用積層体。   The laminated body for battery exteriors of Claim 1 which further has the resin layer formed in the 2nd surface of the said hot-dip aluminum plating steel plate. 請求項1に記載の電池外装用積層体の成形品を熱融着して形成されたケースを有する二次電池。   A secondary battery having a case formed by heat-sealing a molded article of the battery exterior laminate according to claim 1.
JP2011076322A 2011-03-30 2011-03-30 Laminate for battery exterior and secondary battery Pending JP2012212512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076322A JP2012212512A (en) 2011-03-30 2011-03-30 Laminate for battery exterior and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076322A JP2012212512A (en) 2011-03-30 2011-03-30 Laminate for battery exterior and secondary battery

Publications (1)

Publication Number Publication Date
JP2012212512A true JP2012212512A (en) 2012-11-01

Family

ID=47266331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076322A Pending JP2012212512A (en) 2011-03-30 2011-03-30 Laminate for battery exterior and secondary battery

Country Status (1)

Country Link
JP (1) JP2012212512A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052298A (en) * 2009-09-03 2011-03-17 Toppan Printing Co Ltd Packing material for battery exterior, method for producing the same, and secondary battery
JP2012164565A (en) * 2011-02-08 2012-08-30 Nisshin Steel Co Ltd Laminate for battery outer packaging and secondary battery
JP5588058B1 (en) * 2013-03-29 2014-09-10 日本ペイント株式会社 Chrome-free metal surface treatment agent
JP2014177626A (en) * 2013-02-14 2014-09-25 Nippon Shokubai Co Ltd Resin composition for vibration damping material
WO2015080268A1 (en) * 2013-11-29 2015-06-04 日本ペイント株式会社 Method for treating surface of zinc-aluminum-magnesium alloy-plated copper sheet
JP2015185340A (en) * 2014-03-24 2015-10-22 昭和電工パッケージング株式会社 Outer packaging material for electrochemical device and electrochemical device
WO2016129640A1 (en) * 2015-02-12 2016-08-18 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent
JP2017150012A (en) * 2016-02-22 2017-08-31 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent
JP2021153065A (en) * 2016-10-05 2021-09-30 大日本印刷株式会社 Packing material for battery, method of manufacturing the same, and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151513A (en) * 2001-08-31 2003-05-23 Dainippon Printing Co Ltd Laminated body for batter case and secondary battery
JP2007168184A (en) * 2005-12-20 2007-07-05 Nippon Steel Materials Co Ltd Resin-coated stainless steel foil, container, and rechargeable battery
WO2009041077A1 (en) * 2007-09-26 2009-04-02 Toppan Printing Co., Ltd. Packing material for lithium battery and method for manufacturing the same
JP2009245719A (en) * 2008-03-31 2009-10-22 Nisshin Steel Co Ltd Modified aluminum-based plated steel material for battery case, battery case, and lithium ion secondary battery
JP2011052298A (en) * 2009-09-03 2011-03-17 Toppan Printing Co Ltd Packing material for battery exterior, method for producing the same, and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151513A (en) * 2001-08-31 2003-05-23 Dainippon Printing Co Ltd Laminated body for batter case and secondary battery
JP2007168184A (en) * 2005-12-20 2007-07-05 Nippon Steel Materials Co Ltd Resin-coated stainless steel foil, container, and rechargeable battery
WO2009041077A1 (en) * 2007-09-26 2009-04-02 Toppan Printing Co., Ltd. Packing material for lithium battery and method for manufacturing the same
JP2009245719A (en) * 2008-03-31 2009-10-22 Nisshin Steel Co Ltd Modified aluminum-based plated steel material for battery case, battery case, and lithium ion secondary battery
JP2011052298A (en) * 2009-09-03 2011-03-17 Toppan Printing Co Ltd Packing material for battery exterior, method for producing the same, and secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052298A (en) * 2009-09-03 2011-03-17 Toppan Printing Co Ltd Packing material for battery exterior, method for producing the same, and secondary battery
JP2012164565A (en) * 2011-02-08 2012-08-30 Nisshin Steel Co Ltd Laminate for battery outer packaging and secondary battery
JP2014177626A (en) * 2013-02-14 2014-09-25 Nippon Shokubai Co Ltd Resin composition for vibration damping material
JP5588058B1 (en) * 2013-03-29 2014-09-10 日本ペイント株式会社 Chrome-free metal surface treatment agent
EA028053B1 (en) * 2013-11-29 2017-10-31 Ниссин Стил Ко., Лтд. Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
WO2015080268A1 (en) * 2013-11-29 2015-06-04 日本ペイント株式会社 Method for treating surface of zinc-aluminum-magnesium alloy-plated copper sheet
US10161047B2 (en) 2013-11-29 2018-12-25 Nippon Paint Surf Chemicals Co., Ltd. Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
JP2015185340A (en) * 2014-03-24 2015-10-22 昭和電工パッケージング株式会社 Outer packaging material for electrochemical device and electrochemical device
WO2016129640A1 (en) * 2015-02-12 2016-08-18 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent
JP2017150012A (en) * 2016-02-22 2017-08-31 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent
WO2017146040A1 (en) * 2016-02-22 2017-08-31 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent
JP2021153065A (en) * 2016-10-05 2021-09-30 大日本印刷株式会社 Packing material for battery, method of manufacturing the same, and battery
JP7306429B2 (en) 2016-10-05 2023-07-11 大日本印刷株式会社 BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY

Similar Documents

Publication Publication Date Title
JP2012212512A (en) Laminate for battery exterior and secondary battery
JP5652177B2 (en) Exterior materials for lithium-ion batteries
JP5601265B2 (en) Packaging materials for electrochemical cells
JP2007294381A (en) Packaging material for battery
JP5407719B2 (en) Packaging materials for electrochemical cells
JP2003151513A (en) Laminated body for batter case and secondary battery
JP5474678B2 (en) Battery exterior laminate and secondary battery
WO2013035210A1 (en) Laminated body for battery outer housing, method for manufacturing laminated body for battery outer housing, and secondary battery
JP7325926B2 (en) Battery packaging materials and batteries
JP2012212511A (en) Laminate for battery exterior and secondary battery
JP6015066B2 (en) Battery packaging materials
JP5720026B2 (en) Battery exterior laminate and secondary battery
CN113782880A (en) Corrosion-resistant lithium battery aluminum plastic film and preparation method thereof
JP5878743B2 (en) Battery exterior laminate and secondary battery
KR101657202B1 (en) Electrode lead wire member for nonaqueous batteries
KR101394721B1 (en) Cell pouch treated plasma and method for manufacturing the same
JP7364881B2 (en) battery cell case
JP2006156334A (en) Packing material for battery
EP3982436A1 (en) Case for batteries and method for producing same
JP2010086833A (en) Packing material for electrochemical cell
JP2015053289A (en) Outer package material for lithium ion battery
JP5975084B2 (en) Packaging materials for electrochemical cells
JP2011216358A (en) Packaging material for electrochemical cells
JP5414832B2 (en) Method for producing composite packaging material for polymer battery
JPWO2019124282A1 (en) Battery packaging materials and batteries

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131212

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216