JP2012206713A - Method and device to start internal combustion engine especially by hybrid vehicle without starter - Google Patents

Method and device to start internal combustion engine especially by hybrid vehicle without starter Download PDF

Info

Publication number
JP2012206713A
JP2012206713A JP2012071722A JP2012071722A JP2012206713A JP 2012206713 A JP2012206713 A JP 2012206713A JP 2012071722 A JP2012071722 A JP 2012071722A JP 2012071722 A JP2012071722 A JP 2012071722A JP 2012206713 A JP2012206713 A JP 2012206713A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
cylinder
compression stroke
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012071722A
Other languages
Japanese (ja)
Inventor
Michael Baeuerle
ミヒャエル・ボールレ
Thomas Huber
トーマス・フーバー
Martin Klenk
マルティン・クレンク
Zu Schweinsberg Alexander Schenck
アレクサンダー・シェンク・ツー・シュヴァインスベルク
Ruediger Weiss
リューディガー・ヴァイス
Stephan Uhl
シュテファン・ウール
Volker Ricken
フォルカー・リッケン
Frank Wauro
フランク・ヴァーロ
Udo Sieber
ウド・ジーベル
Manfred Dietrich
マンフレッド・ディートリヒ
Oliver Kaefer
オリバー・ケーファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2012206713A publication Critical patent/JP2012206713A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/102Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/002Controlling intake air by simultaneous control of throttle and variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method to start an internal combustion engine without the drag torque, and without the need to install an additional pressure reducing valve, in the method starting an internal combustion engine, especially starting the internal combustion engine without a starter.SOLUTION: This is a method to start the internal combustion engine (2) without the starter, especially, a hybrid drive system (1), wherein a part of a cylinder (21) of the internal combustion engine (2) is composed as a cylinder that can decompress. The method by which the cylinder can be decompressed by the compression stroke includes: a step to adjust the final position of a crankshaft (25) when the internal combustion engine (2) stops and locates the cylinder that can be decompressed at the final position when stops in the compression stroke; and a step to decompress the cylinder that locates in the compression stroke and can be the decompressed when the start process is demanded following stop of the internal combustion engine (2) by firing the air and the fuel mixture in the cylinder (21) of the internal combustion engine (2) located in the combustion cycle in the static condition and generating the torque to start the internal combustion engine (2).

Description

本発明は、内燃機関、特に内燃機関をスタータなしに始動するための方法に関する。さらに本発明は、必要に応じて要求された高いトルクを提供できる内燃機関を有するハイブリッド駆動装置に関する。   The present invention relates to an internal combustion engine, in particular to a method for starting an internal combustion engine without a starter. Furthermore, the present invention relates to a hybrid drive device having an internal combustion engine that can provide the required high torque as required.

ハイブリッド駆動系のための多様なトポロジーが知られている。実際に使用されているハイブリッド駆動系では、内燃機関と、共通の動力伝達機構を駆動するための電動モータが直列に配置されている。このようなハイブリッド駆動系では、内燃機関および電動モータの被駆動軸が、動力伝達機構を駆動する共通の駆動軸に配置されている。   Various topologies for hybrid drive trains are known. In the hybrid drive system actually used, an internal combustion engine and an electric motor for driving a common power transmission mechanism are arranged in series. In such a hybrid drive system, the driven shafts of the internal combustion engine and the electric motor are arranged on a common drive shaft that drives the power transmission mechanism.

ハイブリッド運転を可能とするためには、内燃機関および電動モータの被駆動軸がクラッチにより相互に分離可能になっている。要求されるトルクがわずかな場合、これにより、内燃機関は分離され、要求されたトルクは電動モータのみにより提供される。より高いトルクが要求された場合、内燃機関が始動され、動力伝達機構との結合によって連結され、要求されたトルクは内燃機関および電動モータによって共に提供される。代替的に、総トルクを内燃機関によって提供することもでき、電動モータは受動的であり、発電機として切り換えることもできる。   In order to enable hybrid operation, the driven shafts of the internal combustion engine and the electric motor can be separated from each other by a clutch. If the required torque is small, this isolates the internal combustion engine and the required torque is provided only by the electric motor. When higher torque is required, the internal combustion engine is started and coupled by coupling with a power transmission mechanism, and the required torque is provided by the internal combustion engine and the electric motor together. Alternatively, the total torque can be provided by the internal combustion engine and the electric motor is passive and can be switched as a generator.

しかしながら、このようなハイブリッド駆動系では電動モータの最大トルクを駆動のために使用することができない。その理由は、要求されるトルクがさらに突然高められ、内燃機関を始動しなければならない場合のために、リザーブトルクを保持する必要があるからである。内燃機関の始動は引きずりにより得られ、このための引きずりトルクは、有利には電動モータにより提供される。内燃機関の始動時に電動モータによって提供すべきリザーブトルクは、電動モータのために設計された最大トルクの1/3までであってよい。したがって、要求されるトルクの範囲は、電動モータの最大トルクに関して制限されているか、または電動モータを相応に大きく寸法決めする必要がある。   However, in such a hybrid drive system, the maximum torque of the electric motor cannot be used for driving. The reason is that the reserve torque needs to be maintained in case the required torque is suddenly increased further and the internal combustion engine has to be started. The starting of the internal combustion engine is obtained by drag, and the drag torque for this is preferably provided by an electric motor. The reserve torque to be provided by the electric motor when starting the internal combustion engine may be up to 1/3 of the maximum torque designed for the electric motor. Therefore, the required torque range is limited with respect to the maximum torque of the electric motor or the electric motor needs to be sized accordingly.

車両をこのようなハイブリッド駆動系により運転した場合、走行快適性を得るために、運転手による内燃機関の始動ができるだけ気付かれないように行われることが不可欠である。すなわち、駆動トルクの増大は、運転手が純粋に電動モータによる走行時に駆動方式に対応して電動モータおよび内燃機関によって共に提供されるべき駆動トルクを要求した場合に、遅延および変動ができるだけわずかとなるように行うべきである。したがって、内燃機関が電動モータによって始動のために引きずられる必要のあるハイブリッド駆動系では、リザーブトルクを設けることは不可避的である。   When the vehicle is driven by such a hybrid drive system, in order to obtain driving comfort, it is essential that the internal combustion engine be started as little as possible by the driver. That is, the increase in driving torque is as little as possible in delay and fluctuation when the driver requests driving torque that should be provided by both the electric motor and the internal combustion engine in response to the driving method when traveling purely by the electric motor. Should be done. Therefore, it is inevitable to provide reserve torque in a hybrid drive system in which the internal combustion engine needs to be dragged for starting by an electric motor.

電動モータの最大トルクを電動モータ作動時の走行のために使用できることが望ましい場合、できるだけ外部引きずりトルクを提供することなしに内燃機関を始動することが不可欠である。このことは、例えば内燃機関に付加的なスタータトルクを設けることにより可能である。しかしながら、これには付加的な手間がかかる。   If it is desired that the maximum torque of the electric motor can be used for travel when the electric motor is operating, it is essential to start the internal combustion engine with as little external drag torque as possible. This is possible, for example, by providing an additional starter torque for the internal combustion engine. However, this takes additional effort.

さらに、内燃機関をスタータなしに始動することを想定してもよい。このためには、例えば、ドイツ国特許出願公開第10342703号明細書により、燃焼行程に位置するシリンダに燃料を噴射し、点火可能な空気・燃料混合物を形成し、圧縮行程に位置するシリンダで、空気・燃料混合物の点火時に減圧弁を開放し、圧縮力を低減もしくは除去することが既知である。減圧弁は付加的にシリンダに配置されている。しかしながら、付加的な減圧弁の設置は技術的に手間がかかり実際には実施不可能な解決方法である。   Furthermore, it may be assumed that the internal combustion engine is started without a starter. For this purpose, for example, according to DE 10342703, fuel is injected into a cylinder located in the combustion stroke to form an ignitable air / fuel mixture, in a cylinder located in the compression stroke, It is known to open the pressure reducing valve upon ignition of the air / fuel mixture to reduce or eliminate the compression force. The pressure reducing valve is additionally arranged in the cylinder. However, the installation of an additional pressure reducing valve is a technically cumbersome solution that is not practical.

減圧は、排気弁によって実施することもできる。ドイツ国特許出願公開第10028473号明細書は、弁により制御される内燃機関を減圧するための装置に関する。この装置は線形に変位可能な弁リフタを備え、弁リフタは、カムシャフトに固定された駆動ホイールの内部でU字形の遠心ウェイトに結合されている。回転数が小さい場合には、圧縮ばねとして形成された送り手段が作用し、この送り手段によって弁リフタは軌道に変位される。回転数が大きい場合、遠心ウェイトは送り手段の力に抗して作用し、弁リフタがもはや軌道に位置しないように弁リフタを切欠きに完全に押し込む。   Depressurization can also be performed by an exhaust valve. German Offenlegungsschrift 1,00284733 relates to a device for depressurizing an internal combustion engine controlled by a valve. The device includes a linearly displaceable valve lifter that is coupled to a U-shaped centrifugal weight within a drive wheel fixed to the camshaft. When the rotational speed is small, the feed means formed as a compression spring acts, and the valve lifter is displaced to the track by this feed means. When the rotational speed is high, the centrifugal weight acts against the force of the feeding means and pushes the valve lifter completely into the notch so that the valve lifter is no longer in the track.

ドイツ国特許出願公開第10316058号明細書もカムシャフトで回転可能なピン、カムシャフトに対して相対回動させるためにピンによりカムシャフトで支承された振動質量およびエンジン弁に弁作動力を加えるために振動質量と協働する減圧カムを有する減圧機構を記載している。   German Patent Application No. 10316058 also discloses a pin that can be rotated by a camshaft, a vibrating mass supported on the camshaft by the pin and a valve operating force applied to the engine valve for rotation relative to the camshaft. Describes a decompression mechanism having a decompression cam cooperating with the vibrating mass.

ドイツ国特許出願公開第10342703号明細書German Patent Application No. 10342703 ドイツ国特許出願公開第10028473号明細書German Patent Application Publication No. 10028473 ドイツ国特許出願公開第10316058号明細書German Patent Application No. 10316058

本発明の課題は、引きずりトルクなしに内燃機関を始動することができる方法および装置において、付加的な減圧弁を設ける必要がないものを提供することである。   It is an object of the present invention to provide a method and apparatus that can start an internal combustion engine without drag torque without the need for an additional pressure reducing valve.

この課題は、請求項1に記載の内燃機関をスタータなしに始動するための方法およびその他の独立請求項に記載の装置、エンジンシステム、ハイブリッド駆動系およびコンピュータプログラム製品により解決される。   This object is solved by a method for starting an internal combustion engine according to claim 1 without a starter and by the device, engine system, hybrid driveline and computer program product according to the other independent claims.

本発明のさらに有利な構成が従属請求項に記載されている。   Further advantageous configurations of the invention are described in the dependent claims.

第1の態様によれば、特にハイブリッド駆動系において、内燃機関をスタータなしに始動するための方法が得られる。内燃機関のシリンダの一部は減圧可能なシリンダとして構成されており、シリンダは圧縮行程で減圧可能である。方法は次のステップ:
内燃機関の停止時に:クランクシャフトの最終位置を調節し、停止時の最終位置で減圧可能なシリンダを圧縮行程に位置させるステップと;
内燃機関の停止に続いて始動プロセスが要求された場合に:静止状態で燃焼サイクルに位置する内燃機関のシリンダ内で空気・燃料混合物を点火し、内燃機関を始動するためのトルクを生成し、圧縮行程に位置する減圧可能なシリンダを減圧するステップとを含む。
The first aspect provides a method for starting an internal combustion engine without a starter, particularly in a hybrid drive system. A part of the cylinder of the internal combustion engine is configured as a depressurizable cylinder, and the cylinder can be depressurized in a compression stroke. The next steps are:
When the internal combustion engine is stopped: adjusting the final position of the crankshaft and positioning a cylinder that can be depressurized at the final position of the stop in the compression stroke;
When a start-up process is requested following the shutdown of the internal combustion engine: igniting the air / fuel mixture in the cylinder of the internal combustion engine located in the combustion cycle in a stationary state, generating torque for starting the internal combustion engine; Depressurizing the depressurizable cylinder located in the compression stroke.

上記方法の思想は、スタータなどの補助なしに(スタータなしに)内燃機関を始動することである。これは、内燃機関で、ピストンが燃焼サイクルの上死点直後の位置にあるシリンダに燃料が噴射され、点火され、これにより、クランクシャフトを運動させるトルクが得られることにより達成される。このようにして得られるクランクシャフトの回転エネルギーは、まず燃焼サイクルに到達したシリンダ内のピストンの上死点を克服し、そこで次のサイクルで燃料を噴射し、点火し、これによりクランクシャフトの回転エネルギーをさらに高めるためには十分である。いずれか1つのシリンダ内の全負荷空気量を圧縮するためにクランクシャフトの回転エネルギーが十分になるとすぐに、次の作業サイクルで、適宜なシリンダ内でエンジンの急速な上昇を確保する全負荷トルクを達成することができる。   The idea of the above method is to start the internal combustion engine without assistance (without the starter) such as a starter. This is achieved in an internal combustion engine by injecting and igniting fuel into a cylinder in which the piston is located immediately after the top dead center of the combustion cycle, thereby obtaining a torque that moves the crankshaft. The rotational energy of the crankshaft obtained in this way first overcomes the top dead center of the piston in the cylinder that has reached the combustion cycle, where fuel is injected and ignited in the next cycle, whereby the rotation of the crankshaft It is enough to further increase energy. Full load torque that ensures rapid engine lift in the appropriate cylinder in the next work cycle as soon as the crankshaft rotational energy is sufficient to compress the full load air volume in any one cylinder Can be achieved.

回転エネルギーが急速に減衰されることを防止するために、第1の点火プロセス、および場合によってはこれに続く点火プロセスで、圧縮行程に位置するシリンダ内の圧縮が除外されることが確保される。これは、このシリンダの吸気弁および排気弁の少なくともいずれかが開放され、これにより、適宜なガスばねによって加えられ、クランクシャフトの回転に抗して作用する逆トルクが防止されることにより達成される。   In order to prevent the rotational energy from being rapidly attenuated, it is ensured that the first ignition process, and possibly the subsequent ignition process, excludes the compression in the cylinder located in the compression stroke. . This is achieved by opening at least one of the intake valve and the exhaust valve of the cylinder, thereby preventing reverse torque that is applied by an appropriate gas spring and acts against the rotation of the crankshaft. The

機械制御式の排気弁では、排気弁は規定された図式にしたがって開閉され、これにより、通常は圧縮行程では排気弁の開放は不可能である。したがって、圧縮行程の始動プロセスで排気弁を開放するために一気筒エンジンの技術が用いられる。多気筒エンジンでは、カムシャフトの端部に回動可能なピンが設けられており、このピンには揺動質量体が設けられており、揺動質量体は、カムシャフトに対して相対回動するためにピンによってカムシャフトで支承されており、またエンジンバルブに弁作動力を加えるために揺動質量体と協働する減圧カムが設けられている。   In a mechanically controlled exhaust valve, the exhaust valve is opened and closed according to a defined diagram, so that it is usually not possible to open the exhaust valve during the compression stroke. Therefore, single cylinder engine technology is used to open the exhaust valve in the starting process of the compression stroke. In a multi-cylinder engine, a pivotable pin is provided at the end of the camshaft, and a rocking mass body is provided on the pin, and the rocking mass body rotates relative to the camshaft. For this purpose, a pressure-reducing cam is provided which is supported on a camshaft by a pin and cooperates with a rocking mass to apply a valve actuation force to the engine valve.

吸い込まれた外気の圧力の調節により、特に内燃機関のスロットルバルブの調節により内燃機関の停止時の最終位置を調整することによって、クランクシャフトの最終位置の調節を行うようにしてもよい。   The final position of the crankshaft may be adjusted by adjusting the final position when the internal combustion engine is stopped by adjusting the pressure of the sucked outside air, particularly by adjusting the throttle valve of the internal combustion engine.

さらに、クランクシャフトの最終位置の調節は、内燃機関の被駆動軸を電動式に最終位置に移動することによって行ってもよい。   Furthermore, the final position of the crankshaft may be adjusted by moving the driven shaft of the internal combustion engine to the final position in an electric manner.

第2の態様によれば、特にハイブリッド駆動系において、内燃機関をスタータなしに始動するための装置が提供され、内燃機関のシリンダの一部は減圧可能なシリンダとして構成されており、シリンダは、圧縮行程で減圧可能である。制御ユニットは:
内燃機関の停止時にクランクシャフトの最終位置を調節し、停止時の最終位置で減圧可能なシリンダが圧縮行程にあり、
内燃機関の停止に続く始動プロセスが要求された場合に、静止状態で燃焼サイクルに位置する内燃機関のシリンダ内で空気・燃料混合物を点火し、内燃機関を始動するためのトルクを生成し、
圧縮行程に位置する減圧可能なシリンダを減圧するように構成されている。
According to the second aspect, particularly in a hybrid drive system, an apparatus for starting an internal combustion engine without a starter is provided, wherein a part of the cylinder of the internal combustion engine is configured as a depressurizable cylinder, The pressure can be reduced during the compression stroke. The control unit is:
There is a cylinder in the compression stroke that adjusts the final position of the crankshaft when the internal combustion engine is stopped and can reduce the pressure at the final position when the
Igniting an air / fuel mixture in a cylinder of an internal combustion engine located in a combustion cycle in a stationary state when a starting process following a stop of the internal combustion engine is required, generating torque for starting the internal combustion engine;
The pressure-reducing cylinder located in the compression stroke is configured to be depressurized.

別の態様によれば:
複数のシリンダを有する内燃機関であって、内燃機関のシリンダの一部のみが減圧可能なシリンダとして構成されており、シリンダが圧縮行程で減圧可能である内燃機関と、
上記装置とを備えるエンジンシステムが設けられている。
According to another aspect:
An internal combustion engine having a plurality of cylinders, wherein only a part of the cylinders of the internal combustion engine is configured as a depressurizable cylinder, and the cylinder can be depressurized in a compression stroke;
An engine system comprising the above device is provided.

さらに、1つのみの減圧可能なシリンダを設けてもよく、減圧可能なシリンダの排気弁は、シリンダの吸気弁および排気弁の機能を制御する内燃機関のカムシャフトに配置された減圧装置によって制御される。   Further, only one depressurizable cylinder may be provided, and the depressurizable cylinder exhaust valve is controlled by a depressurization device disposed on the camshaft of the internal combustion engine that controls the function of the cylinder intake and exhaust valves. Is done.

減圧装置はカムシャフトの端部に配置されており、弁リフタに遠心ウェイトを備えていてもよく、弁リフタは、カムシャフトの回転数が回転数閾値を下回った場合に圧縮行程で排気弁を開放し、カムシャフトの回転数が回転数閾値を上回った場合に、圧縮行程の排気弁が閉鎖状態に留まるように弁リフタを遠心力により遠心ウェイトへ移動させる。   The pressure reducing device is disposed at the end of the camshaft, and the valve lifter may be provided with a centrifugal weight. The valve lifter controls the exhaust valve in the compression stroke when the camshaft rotation speed falls below the rotation speed threshold. The valve lifter is moved to the centrifugal weight by centrifugal force so that the exhaust valve in the compression stroke remains closed when the camshaft rotation speed exceeds the rotation speed threshold.

別の態様によれば、上記エンジンシステムと別の駆動部とを備えるハイブリッド駆動系が設けられている。   According to another aspect, a hybrid drive system including the engine system and another drive unit is provided.

別の態様では、データ処理装置として構成された場合に上記方法を実施するプログラムコードを含むコンピュータプログラム製品が設けられている。   In another aspect, a computer program product is provided that includes program code for performing the above method when configured as a data processing apparatus.

本発明の好ましい実施形態を添付の図面に基づき以下に詳述する。   Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

共通の動力伝達機構を有する内燃機関および電動モータを備えるハイブリッド駆動系を示す概略図である。It is the schematic which shows the hybrid drive system provided with the internal combustion engine and electric motor which have a common power transmission mechanism. 内燃機関を示す概略図である。It is the schematic which shows an internal combustion engine. 始動プロセスにおける回転数変化を示すグラフである。It is a graph which shows the rotation speed change in a starting process. シリンダの減圧を実施するための弁リフタを有するカムシャフトを示す斜視図である。It is a perspective view which shows the camshaft which has a valve lifter for implementing pressure reduction of a cylinder. 始動トルクなしに内燃機関を始動するための方法を示すフロー図である。FIG. 3 is a flow diagram illustrating a method for starting an internal combustion engine without starting torque.

図1は、車両の動力伝達機構を駆動するためのハイブリッド駆動系1の概略図を示す。ハイブリッド駆動系1は、第1被駆動軸3によって駆動系の動力伝達機構4に結合可能な内燃機関2を備える。第1被駆動軸3は第1クラッチ5を介して電動モータ7の第2被駆動軸6に結合されている。電動モータ7と動力伝達機構4との間には第2クラッチ8が配置されており、第2クラッチ8は、電動モータ7および内燃機関2を動力伝達機構4から分離するか、もしくは動力伝達機構4に結合する。動力伝達機構4は、ハイブリッド駆動系1により供給された駆動トルクをギヤ10を介して駆動ホイール9に分配する。   FIG. 1 shows a schematic diagram of a hybrid drive system 1 for driving a power transmission mechanism of a vehicle. The hybrid drive system 1 includes an internal combustion engine 2 that can be coupled to a power transmission mechanism 4 of the drive system by a first driven shaft 3. The first driven shaft 3 is coupled to the second driven shaft 6 of the electric motor 7 via the first clutch 5. A second clutch 8 is arranged between the electric motor 7 and the power transmission mechanism 4, and the second clutch 8 separates the electric motor 7 and the internal combustion engine 2 from the power transmission mechanism 4, or the power transmission mechanism. Bind to 4. The power transmission mechanism 4 distributes the drive torque supplied by the hybrid drive system 1 to the drive wheel 9 via the gear 10.

駆動制御ユニット11により、ハイブリッド駆動系1から適宜な形式で、あらかじめ規定された駆動トルクMsollが動力伝達機構4に供給される。このために、駆動制御ユニット11ではハイブリッド駆動系1のための作動対策が実施される。例えば駆動トルクMsollが要求された場合に駆動トルクが電動モータ7のみによって供給されるように作動対策がとられる。このために駆動制御装置11は、第1クラッチ5が開放され、内燃機関2もしくは内燃機関2の被駆動軸3を分離するように第1クラッチ5を制御し、電動モータ7を動力伝達機構4に結合するために第2クラッチ8が閉じられるように制御する。車両を回転駆動させるべき場合を除いて、第2クラッチ8は原則的に閉じられたままである。要求された駆動トルクMsollがあらかじめ規定されたトルク閾値を超過した場合、内燃機関2により付加的な回転トルクを供給し、これにより、要求された駆動トルクMsollは、電動モータ7の駆動トルクと内燃機関2の駆動トルクとにより供給されるようになっている。 The drive control unit 11 supplies a predetermined drive torque M soll from the hybrid drive system 1 to the power transmission mechanism 4 in an appropriate format. For this purpose, the drive control unit 11 implements an operation countermeasure for the hybrid drive system 1. For example, when the drive torque M soll is requested, an action measure is taken so that the drive torque is supplied only by the electric motor 7. For this purpose, the drive control device 11 controls the first clutch 5 so that the first clutch 5 is released and the internal combustion engine 2 or the driven shaft 3 of the internal combustion engine 2 is separated, and the electric motor 7 is connected to the power transmission mechanism 4. The second clutch 8 is controlled to be closed in order to be coupled to Except for the case where the vehicle is to be driven in rotation, the second clutch 8 remains essentially closed. If the requested drive torque M soll exceeds a predefined torque threshold, an additional rotational torque is supplied by the internal combustion engine 2 so that the requested drive torque M soll is the drive torque of the electric motor 7. And the drive torque of the internal combustion engine 2.

一般に純粋に電動式の作動時には内燃機関2は停止されるので、要求される駆動トルクMsollが上昇した場合、まず内燃機関2があらかじめ規定されたトルク閾値を超えて始動され、次いで内燃機関2が動力伝達機構4に供給されるトルクのために貢献することができるよう第1クラッチ5を閉じる必要がある。継続的な運転操作時に運転手により要求された駆動トルクMsollが駆動トルク閾値を急激に上回った場合、従来のハイブリッド駆動系1では内燃機関2を始動するために付加的なトルクを電動モータ7によって供給する必要がある。すなわち、駆動制御ユニット11は高められた駆動トルクを供給するために電動モータ7を制御し、同時にクラッチ5を閉じ、これにより、内燃機関2は、電動モータ7によって供給された駆動トルクと動力伝達機構4によって取り込まれたトルクとの差に相当する引きずりトルクを受ける。このため、始動トルクを供給するために十分なトルク余裕を設けることができるように駆動トルク閾値を選択すべきである。このようにしてのみ、内燃機関2を始動するために必要とされる始動トルクは駆動トルクを減衰しないことを補償できるが、これにより、車両の運転操作時の不快な微動が知覚可能になる。このため、電動モータ7は、純粋に電動式の作動によって電動モータ7により供給される駆動トルクを著しく上回る最大トルクを供給するように設計されている必要がある。このことは、電動モータをより大型に設計することにつながり、資源が利用されないことにつながる。そこで、外部トルクの供給なしに内燃機関2を始動することが提案される。 In general, since the internal combustion engine 2 is stopped during purely electric operation, when the required drive torque M soll rises, the internal combustion engine 2 is first started over a predetermined torque threshold, and then the internal combustion engine 2. Needs to be closed so that can contribute to the torque supplied to the power transmission mechanism 4. When the driving torque M soll requested by the driver during the continuous driving operation suddenly exceeds the driving torque threshold value, the conventional hybrid drive system 1 supplies the additional torque to the electric motor 7 in order to start the internal combustion engine 2. Need to be supplied by. That is, the drive control unit 11 controls the electric motor 7 to supply the increased drive torque and simultaneously closes the clutch 5, whereby the internal combustion engine 2 transmits the drive torque and power transmitted by the electric motor 7. A drag torque corresponding to the difference from the torque taken in by the mechanism 4 is received. For this reason, the drive torque threshold value should be selected so that a sufficient torque margin can be provided to supply the starting torque. Only in this way can the start torque required to start the internal combustion engine 2 be compensated for not attenuating the drive torque, which makes it possible to perceive unpleasant fine movements during the driving operation of the vehicle. For this reason, the electric motor 7 needs to be designed so as to supply a maximum torque significantly exceeding the drive torque supplied by the electric motor 7 by purely electric operation. This leads to the design of the electric motor with a larger size, which leads to the resource not being used. Therefore, it is proposed to start the internal combustion engine 2 without supplying external torque.

図2には、直接噴射による4サイクル式オットーエンジンが概略的に示されている。図2の内燃機関2は4つのシリンダ21を備え、これらのシリンダは異なる作業サイクルに位置している。作業サイクルは、シリンダ21の内部のピストン22の位置および運動方向ならびに吸気弁および排気弁23,24の位置によりそれぞれ規定される。さらに説明するためにシリンダ21にシリンダZ1〜Z4の連番を付す。   FIG. 2 schematically shows a four-stroke Otto engine with direct injection. The internal combustion engine 2 of FIG. 2 comprises four cylinders 21, which are located in different work cycles. The work cycle is defined by the position and direction of movement of the piston 22 inside the cylinder 21 and the positions of the intake and exhaust valves 23 and 24, respectively. For further explanation, the cylinders 21 are assigned serial numbers of the cylinders Z1 to Z4.

シリンダZ1に示される吸気サイクルでは、開放された吸気弁23を介して空気が吸気管から吸い込まれる。これは、ピストン22とクランクシャフト25との連結により誘起されるピストン22の下方向運動により得られる。   In the intake cycle indicated by the cylinder Z1, air is sucked from the intake pipe through the opened intake valve 23. This is obtained by the downward movement of the piston 22 induced by the connection between the piston 22 and the crankshaft 25.

シリンダZ2により示される次の圧縮行程では、ピストン22はクランクシャフト25の回動により燃焼室を縮小する方向に移動させられ、これにより、燃焼室内に位置する空気は吸気弁および排気弁23,24が閉じられた状態で圧縮される。圧縮は、ピストン22が上死点を超えるまで行われる。   In the next compression stroke indicated by the cylinder Z2, the piston 22 is moved in the direction of reducing the combustion chamber by the rotation of the crankshaft 25, whereby the air located in the combustion chamber is taken into the intake and exhaust valves 23, 24. Is compressed in a closed state. The compression is performed until the piston 22 exceeds the top dead center.

上死点を過えるとすぐに、噴射弁26による燃料の直接噴射により空気・燃料混合物が燃焼室内に形成され、空気・燃料混合物は点火プラグ27によって点火される。この燃焼サイクルでは、ピストンを下死点の方向に駆動する燃焼圧力が生じ、これにより、ピストンに結合されたクランクシャフト25でトルクが生成される。   As soon as the top dead center is exceeded, an air / fuel mixture is formed in the combustion chamber by direct injection of fuel by the injection valve 26, and the air / fuel mixture is ignited by the spark plug 27. In this combustion cycle, combustion pressure is generated that drives the piston in the direction of bottom dead center, thereby generating torque on the crankshaft 25 coupled to the piston.

ピストン22が移動時して燃焼サイクル後に下死点を超過するとすぐに、燃焼室を縮小するためのピストン22の上方向移動により排気弁24が開放された状態で燃焼排ガスが排出サイクルで排出される。   As soon as the piston 22 moves and the bottom dead center is exceeded after the combustion cycle, the combustion exhaust gas is discharged in the exhaust cycle with the exhaust valve 24 opened by the upward movement of the piston 22 to reduce the combustion chamber. The

次いでシリンダZ1に関して説明したプロセスが新たに始まる。   The process described for cylinder Z1 then begins anew.

このような内燃機関2を始動するためには、一般にシリンダ内で吸い込まれた空気の圧縮を達成するためにはクランクシャフト25を回転に移行させる外部の引きずりトルクが必要とされる。したがって、燃焼により誘起されたトルクはクランクシャフト25をさらに加速するために十分である。燃焼サイクルに位置するシリンダ内に燃料を噴射することより、シリンダの燃焼室で空気が圧縮されない場合でもトルクを生成することはできるが、このトルクは、一般に、吸い込まれた空気(シリンダZ2)を圧縮するために不可欠な圧縮トルクを生成するためには不十分であり、したがって、外部の引きずりトルクなしに内燃機関2を始動することは一般に不可能である。   In order to start such an internal combustion engine 2, an external drag torque that shifts the crankshaft 25 to rotation is generally required to achieve compression of the air sucked in the cylinder. Therefore, the torque induced by combustion is sufficient to further accelerate the crankshaft 25. By injecting fuel into a cylinder located in the combustion cycle, torque can be generated even when the air is not compressed in the combustion chamber of the cylinder, but this torque generally reduces the sucked air (cylinder Z2). It is not sufficient to generate the compression torque that is essential for compression, and therefore it is generally impossible to start the internal combustion engine 2 without external drag torque.

このことは、内燃機関2の始動段階で、内燃機関の始動前に燃焼サイクルに位置するシリンダ内に空気充填率を低減してトルクを生成し、同時に圧縮行程に位置するシリンダの圧縮トルクが同時に減衰または除去されることによって克服される。これは、当該シリンダの圧縮行程で(この場合、シリンダZ2)排気弁24が開放され、シリンダ内の空気の圧縮が許可されないことにより達成される。クランクシャフト25には、一般にトルクによって克服することのできる摩擦トルクのみが作用し、これにより、既に始動後の第1燃焼サイクルにより著しいトルク上昇が生じる。   This is because, at the start-up stage of the internal combustion engine 2, before the internal combustion engine is started, torque is generated by reducing the air filling rate in the cylinder located in the combustion cycle, and at the same time, the compression torque of the cylinder located in the compression stroke is simultaneously increased. Overcoming by being attenuated or eliminated. This is accomplished by opening the exhaust valve 24 during the compression stroke of the cylinder (in this case, the cylinder Z2) and disallowing compression of the air in the cylinder. The crankshaft 25 is only subjected to friction torque, which can generally be overcome by torque, and this causes a significant torque increase in the first combustion cycle after start-up.

圧縮行程に位置するシリンダの減圧は、減圧装置によって行われる。減圧装置は、電子制御式の吸気弁および排気弁23,24では駆動制御ユニット11に設け、これにより、圧縮行程に位置するシリンダの排気弁もしくは吸気弁23,24は、燃焼サイクルに位置するシリンダ内における燃焼点火直後に開放され、これにより、圧縮行程でシリンダの燃焼室内の減圧が行われる。シリンダの点火順序は上にZ1−Z2−Z3−Z4として説明されている。しかしながら、上述の順序とは異なっていてもよい。例えば、点火順序はZ1−Z3−Z4−Z2であってもよい。   The cylinder located in the compression stroke is decompressed by a decompression device. The decompression device is provided in the drive control unit 11 for the electronically controlled intake valves and exhaust valves 23, 24, whereby the exhaust valves or intake valves 23, 24 of the cylinder located in the compression stroke are cylinders located in the combustion cycle. It is opened immediately after the combustion ignition in the cylinder, whereby the pressure in the combustion chamber of the cylinder is reduced during the compression stroke. The cylinder firing sequence is described above as Z1-Z2-Z3-Z4. However, the order described above may be different. For example, the ignition order may be Z1-Z3-Z4-Z2.

図3には、内燃機関2の始動段階における回転数が概略的に示されている。シリンダZ3における第1点火の結果として回転数が増大していることがわかる。シリンダZ2における空気・燃料混合物の第2の点火まで、シリンダZ2のピストン22が上死点を超過し、燃焼サイクルに到達する前に回転数は再び幾分減少する。シリンダZ2で行われた燃焼は、その前にシリンダZ3で行われた燃焼と同様に、実質的に周辺圧力である空気・燃料混合物によって得られる。しかしながら、第2の燃焼は、クランクシャフト25が第1の燃焼により既に所定回転数に到達した場合にトルクを提供する。いま次の燃焼が、シリンダZ1で吸い込まれた空気の圧縮により得られ、これにより、シリンダZ1で行われる燃焼は、いま圧縮された空気・燃料混合物によって得られる。   FIG. 3 schematically shows the rotational speed at the start-up stage of the internal combustion engine 2. It can be seen that the rotational speed increases as a result of the first ignition in the cylinder Z3. Until the second ignition of the air / fuel mixture in the cylinder Z2, the piston 22 of the cylinder Z2 exceeds top dead center and the rotational speed decreases again somewhat before reaching the combustion cycle. The combustion performed in cylinder Z2 is obtained by an air / fuel mixture that is substantially at ambient pressure, similar to the combustion previously performed in cylinder Z3. However, the second combustion provides torque when the crankshaft 25 has already reached a predetermined number of revolutions due to the first combustion. The next combustion is obtained by the compression of the air sucked in the cylinder Z1, so that the combustion taking place in the cylinder Z1 is obtained by the now compressed air / fuel mixture.

一般に、内燃機関には電子式の吸気弁および排気弁23,24は設けられていない。その代わりに、内燃機関は、クランクシャフト25に連結されたカムシャフトによって、クランクシャフト25の位置に関係して機械式に操作される。こうした場合、減圧は機械的作用によって実施する必要がある。一気筒内燃機関における吸気弁および排気弁23,24の機能の機械式構成は従来技術に対応し、当該シリンダの減圧も機械的手段によって達成することが望ましい。   In general, an internal combustion engine is not provided with electronic intake valves and exhaust valves 23 and 24. Instead, the internal combustion engine is mechanically operated in relation to the position of the crankshaft 25 by means of a camshaft connected to the crankshaft 25. In such a case, the decompression must be performed by mechanical action. The mechanical structure of the functions of the intake valve and the exhaust valves 23 and 24 in the one-cylinder internal combustion engine corresponds to the prior art, and it is desirable that the pressure reduction of the cylinder is also achieved by mechanical means.

図4に示すように、例えば小型モータサイクルで使用するための一気筒エンジンでは、カムシャフト40の端部に線形に支承可能な弁リフタ41を設けてもよい。カムシャフト40は弁調整器42に配設さており、カムシャフト40に所定のように配置された突起もしくは***部がカムシャフト40の回動時に弁ばね43のばね力に抗して弁調節部42を移動させる。弁リフタ41は、遠心ウェイト44に結合されており、(図示しない)圧縮ばねに対して半径方向に可動に配置されている。弁リフタ41は送り手段を有し、送り手段は、回転数が小さい場合に作用し、半径方向にカムシャフト40を超えてスライドされ、軌道に変位され、対応した排気弁のための弁調整器42を操作する。回転数が大きい場合、遠心ウェイトは圧縮ばねの力に抗して作用し、もはや軌道に位置しなくなるように弁リフタ41を切欠き内に完全に押し込む。   As shown in FIG. 4, for example, in a one-cylinder engine for use in a small motorcycle, a valve lifter 41 that can be supported linearly may be provided at the end of the camshaft 40. The camshaft 40 is disposed in the valve regulator 42, and the protrusions or raised portions arranged on the camshaft 40 in a predetermined manner resist the spring force of the valve spring 43 when the camshaft 40 rotates. 42 is moved. The valve lifter 41 is coupled to the centrifugal weight 44 and is movably disposed in the radial direction with respect to a compression spring (not shown). The valve lifter 41 has feed means which act when the rotational speed is small, are slid radially beyond the camshaft 40 and displaced into the track, and a valve regulator for the corresponding exhaust valve 42 is operated. If the rotational speed is high, the centrifugal weight acts against the force of the compression spring and pushes the valve lifter 41 completely into the notch so that it no longer lies on the track.

弁リフタ41は、初期状態、すなわち、カムシャフトの停止状態で送出され、圧縮可能なシリンダの対応した排気弁を操作する。しかしながら、このような機械的な配置は内燃機関のシリンダのためにのみ実施可能である。なぜなら、このような構成は、カムシャフトの端部にのみ配置することができるからである。   The valve lifter 41 is delivered in an initial state, that is, in a stopped state of the camshaft, and operates a corresponding exhaust valve of a compressible cylinder. However, such a mechanical arrangement is only possible for the cylinders of an internal combustion engine. This is because such a configuration can be arranged only at the end of the camshaft.

図5には、内燃機関をスタータなしに始動するための方法のフロー図が示されている。ステップS1で、内燃機関2の停止時にカムシャフト25が、減圧可能なシリンダ、この場合には弁リフタにより排気弁を制御することができるシリンダが圧縮行程に位置するように位置決めされる。ステップS2では、内燃機関を始動するための要求が認識された場合(選択肢:はい)に、ステップS3で空気・燃料混合物が燃焼サイクルに位置するシリンダで生成される。この空気・燃料混合物はステップ4で点火され、同時に、またはまだ燃焼サイクル内で、減圧可能なシリンダがステップS5で減圧され、内燃機関2の抵抗の小さい始動が許可される。   FIG. 5 shows a flow diagram of a method for starting an internal combustion engine without a starter. In step S1, when the internal combustion engine 2 is stopped, the camshaft 25 is positioned so that the cylinder that can be depressurized, in this case, the cylinder that can control the exhaust valve by the valve lifter, is positioned in the compression stroke. In step S2, if a request for starting the internal combustion engine is recognized (option: yes), an air / fuel mixture is generated in a cylinder located in the combustion cycle in step S3. This air / fuel mixture is ignited in step 4 and, at the same time or still within the combustion cycle, the depressurizable cylinder is depressurized in step S5, allowing a low resistance start of the internal combustion engine 2.

内燃機関2が、停止時に別のシリンダ、例えば減圧不能なシリンダが圧縮行程に位置する配置で停止した場合、内燃機関のスタータなしの始動を実施するために減圧を行うことはできない。したがって、駆動制御ユニット11により制御して、減圧可能なシリンダが圧縮行程に位置する状態で内燃機関が常に静止状態となるように停止時に内燃機関を保持することが望ましい。有利には、減圧可能なシリンダのピストンは、ピストン運動の下死点後に70〜150°の範囲、有利には90°〜130°の範囲、特に100〜110°の範囲に位置し、または燃焼サイクルに位置するシリンダは、上死点後に70〜150°、有利には90〜130°、特に100〜110°に位置する。   When the internal combustion engine 2 is stopped in a position where another cylinder, for example, a cylinder that cannot be depressurized, is located in the compression stroke when the internal combustion engine 2 is stopped, the internal combustion engine 2 cannot be depressurized in order to start the starter without starter. Therefore, it is desirable to hold the internal combustion engine at the time of stop so that the internal combustion engine is always stationary in a state where the depressurizable cylinder is positioned in the compression stroke under the control of the drive control unit 11. Advantageously, the piston of the depressurizable cylinder is located in the range of 70 to 150 °, preferably in the range of 90 ° to 130 °, in particular in the range of 100 to 110 ° after the bottom dead center of the piston movement, or combustion The cylinder located in the cycle is located at 70 to 150 °, preferably 90 to 130 °, in particular 100 to 110 ° after top dead center.

内燃機関2の制御された保持は、内燃機関2の停止時にスロットルバルブを対応して調節することによって行うことができる。スロットルバルブによって、吸気管内の圧力が制御され、これにより、内燃機関1を静止状態に到達させる逆トルクは、所定位置でクランクシャフト25を保持する。クランクシャフトの位置決めは、自動制御式回転数センサによって行うことができ、内燃機関の停止時にスロットルバルブがクランクシャフト角度に関係して制御され、これにより生じる内燃機関2のより大きいまたはより小さい絞りにより、クランクシャフト25は望ましい位置で静止状態となる。この停止制御は制御ユニット11によって実施され、制御ユニット11は、通常運転時には、要求される目標トルクMsollによって決定されるシリンダ内の空気充填率に対応してスロットルバルブを制御する。 Controlled holding of the internal combustion engine 2 can be performed by correspondingly adjusting the throttle valve when the internal combustion engine 2 is stopped. The pressure in the intake pipe is controlled by the throttle valve, whereby the reverse torque that causes the internal combustion engine 1 to reach a stationary state holds the crankshaft 25 in a predetermined position. The crankshaft can be positioned by means of an automatically controlled rotational speed sensor, and when the internal combustion engine is stopped, the throttle valve is controlled in relation to the crankshaft angle, resulting in a larger or smaller throttle of the internal combustion engine 2. The crankshaft 25 is stationary at a desired position. This stop control is performed by the control unit 11, and the control unit 11 controls the throttle valve in accordance with the air filling rate in the cylinder determined by the required target torque M soll during normal operation.

様々な理由から、内燃機関の静止状態は、内燃機関をスタータなしに始動するためには不適切な不都合なカムシャフト位置で行われる場合がある。この場合、ハイブリッド駆動系では車両の静止状態で、または電動モータによって供給される低い駆動トルク、すなわち、あらかじめ規定された閾値を下回る駆動トルクによる作動時に内燃機関2が第1クラッチ5の短時間の連結および電動モータ7の適宜な制御により付加的な引きずりトルクを供給するためにスタータなしの始動に適した位置に移動させられる。   For various reasons, the stationary state of an internal combustion engine may occur at an inconvenient camshaft position that is inappropriate for starting the internal combustion engine without a starter. In this case, in the hybrid drive system, when the internal combustion engine 2 is operated with a low drive torque supplied by the electric motor, that is, with a low drive torque that is lower than a predetermined threshold, In order to supply additional drag torque by appropriate control of the connection and the electric motor 7, it is moved to a position suitable for starting without a starter.

1 ハイブリッド駆動系
2 内燃機関
3 第1被駆動軸
4 動力伝達機構
5 第1クラッチ
6 第2被駆動軸
7 電動モータ
8 第2クラッチ
9 駆動ホイール
10 ギヤ
11 駆動制御ユニット
21,Z1,Z2,Z3,Z4 シリンダ
22 ピストン
23,24 排気弁
25 クランクシャフト
26 噴射弁
27 点火プラグ
40 カムシャフト
41 弁リフタ
42 弁調整器
43 弁ばね
44 遠心ウェイト
DESCRIPTION OF SYMBOLS 1 Hybrid drive system 2 Internal combustion engine 3 1st driven shaft 4 Power transmission mechanism 5 1st clutch 6 2nd driven shaft 7 Electric motor 8 Second clutch 9 Drive wheel 10 Gear 11 Drive control unit 21, Z1, Z2, Z3 , Z4 Cylinder 22 Piston 23, 24 Exhaust valve 25 Crankshaft 26 Injection valve 27 Spark plug 40 Camshaft 41 Valve lifter 42 Valve regulator 43 Valve spring 44 Centrifugal weight

Claims (9)

特にハイブリッド駆動系(1)で、内燃機関(2)をスタータなしに始動するための方法であって、前記内燃機関(2)のシリンダ(21)の一部が減圧可能なシリンダとして構成されており、該シリンダが圧縮行程で減圧可能である方法において、次のステップ:
前記内燃機関(2)の停止時に、クランクシャフト(25)の最終位置を調節し、停止時の最終位置で減圧可能なシリンダを圧縮行程に位置させるステップと;
前記内燃機関(2)の停止に続いて始動プロセスが要求された場合に、静止状態で燃焼サイクルに位置する前記内燃機関(2)の前記シリンダ(21)内で空気・燃料混合物を点火し、これにより、内燃機関(2)を始動するためのトルクを生成し、圧縮行程に位置する減圧可能なシリンダを減圧するステップとを備えることを特徴とする、内燃機関(2)をスタータなしに始動するための方法。
Particularly, in the hybrid drive system (1), a method for starting the internal combustion engine (2) without a starter, wherein a part of the cylinder (21) of the internal combustion engine (2) is configured as a depressurizable cylinder. In a method in which the cylinder can be depressurized in the compression stroke, the following steps:
Adjusting the final position of the crankshaft (25) when the internal combustion engine (2) is stopped, and positioning a cylinder that can be depressurized at the final position when the engine is stopped in the compression stroke;
Igniting the air / fuel mixture in the cylinder (21) of the internal combustion engine (2), which is stationary and in the combustion cycle, when a starting process is required following the stop of the internal combustion engine (2); And generating a torque for starting the internal combustion engine (2) and depressurizing a depressurizable cylinder located in the compression stroke, and starting the internal combustion engine (2) without a starter. How to do.
吸い込まれた外気の圧力の調節により、特に前記内燃機関(2)のスロットルバルブの調節により内燃機関(2)の停止時の最終位置を調整することによって前記クランクシャフト(25)の最終位置の調節を行う、請求項1に記載の方法。   Adjustment of the final position of the crankshaft (25) by adjusting the final position when the internal combustion engine (2) is stopped by adjusting the pressure of the sucked outside air, in particular by adjusting the throttle valve of the internal combustion engine (2). The method of claim 1, wherein: 前記内燃機関(2)の被駆動軸(3)を電動式に最終位置に移動することによって前記クランクシャフト(25)の最終位置の調節を行う、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the final position of the crankshaft (25) is adjusted by electrically driving the driven shaft (3) of the internal combustion engine (2) to the final position. 特にハイブリッド駆動系(1)で、内燃機関(2)をスタータなしに始動するための装置であって、前記内燃機関(2)のシリンダ(21)の一部が減圧可能なシリンダ(21)として構成されており、該シリンダ(21)が圧縮行程で減圧可能である装置において、該装置が制御ユニット(11)を備え、該制御ユニット(11)が:
前記内燃機関(2)の停止時に、クランクシャフト(25)の最終位置を調節し、停止時の最終位置で減圧可能なシリンダを圧縮行程に位置させ、
前記内燃機関(2)の停止に続く始動プロセスが要求された場合に、静止状態で燃焼サイクルに位置する前記内燃機関(2)の前記シリンダ(21)内で空気・燃料混合物を点火し、これにより、内燃機関(2)を始動するためのトルクを生成し、
圧縮行程に位置する減圧可能なシリンダを減圧するように構成されていることを特徴とする、内燃機関(2)をスタータなしに始動するための装置。
Particularly, in the hybrid drive system (1), a device for starting the internal combustion engine (2) without a starter, wherein a part of the cylinder (21) of the internal combustion engine (2) is a depressurizable cylinder (21). In an arrangement in which the cylinder (21) can be depressurized in the compression stroke, the apparatus comprises a control unit (11), the control unit (11) comprising:
When the internal combustion engine (2) is stopped, the final position of the crankshaft (25) is adjusted, and a cylinder that can be depressurized at the final position at the time of stop is positioned in the compression stroke;
When a start-up process following a stop of the internal combustion engine (2) is required, the air / fuel mixture is ignited in the cylinder (21) of the internal combustion engine (2) located in the combustion cycle in a stationary state, To generate torque for starting the internal combustion engine (2),
Device for starting the internal combustion engine (2) without a starter, characterized in that it is configured to depressurize a depressurizable cylinder located in the compression stroke.
複数のシリンダ(21)を有する内燃機関(2)であって、該内燃機関のシリンダ(21)の一部のみが減圧可能なシリンダとして構成されており、該シリンダが圧縮行程で減圧可能である内燃機関(2)と、
請求項4に記載の装置とを備えることを特徴とする、エンジンシステム(1)。
An internal combustion engine (2) having a plurality of cylinders (21), wherein only a part of the cylinder (21) of the internal combustion engine is configured as a depressurizable cylinder, and the cylinder can be depressurized in a compression stroke. An internal combustion engine (2);
Engine system (1), characterized in that it comprises a device according to claim 4.
1つのみの減圧可能なシリンダが設けられており、該減圧可能なシリンダの排気弁(24)が、減圧装置(41)によって制御されており、該減圧装置が、前記シリンダ(21)の吸気弁および排気弁(23,24)の機能を制御する前記内燃機関(2)のカムシャフト(40)に配置されている、請求項5に記載のエンジンシステム(1)。   Only one depressurizable cylinder is provided, the exhaust valve (24) of the depressurizable cylinder is controlled by a depressurization device (41), and the depressurization device is the intake of the cylinder (21). The engine system (1) according to claim 5, wherein the engine system (1) is arranged on a camshaft (40) of the internal combustion engine (2) for controlling the function of the valves and the exhaust valves (23, 24). 前記減圧装置が、前記カムシャフト(40)の端部に配置されており、弁リフタ(41)に遠心ウェイト(44)を備え、前記弁リフタ(41)が、前記カムシャフト(40)の回転数が回転数閾値を下回った場合に圧縮行程で前記排気弁(24)を開放し、カムシャフト(40)の回転数が回転数閾値を上回った場合に、圧縮行程で前記排気弁(24)が閉鎖状態に留まるように、弁リフタ(41)を遠心力により遠心ウェイト(44)へ移動させる、請求項6に記載のエンジンシステム。   The pressure reducing device is disposed at the end of the camshaft (40), the valve lifter (41) includes a centrifugal weight (44), and the valve lifter (41) rotates the camshaft (40). The exhaust valve (24) is opened in the compression stroke when the number falls below the rotation speed threshold, and the exhaust valve (24) in the compression stroke when the rotation speed of the camshaft (40) exceeds the rotation speed threshold. The engine system according to claim 6, wherein the valve lifter (41) is moved by centrifugal force to the centrifugal weight (44) such that the valve remains closed. 請求項6または7に記載のエンジンシステムと、
別の駆動部とを備えることを特徴とする、ハイブリッド駆動系(1)
The engine system according to claim 6 or 7,
A hybrid drive system (1) characterized by comprising another drive unit
データ処理装置に構成された場合に、請求項1から請求項3のいずれか一項に記載の方法を実施するプログラムコードを含むことを特徴とする、コンピュータプログラム製品。   A computer program product comprising program code for implementing the method according to any one of claims 1 to 3 when configured in a data processing device.
JP2012071722A 2011-03-29 2012-03-27 Method and device to start internal combustion engine especially by hybrid vehicle without starter Pending JP2012206713A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011006288.2 2011-03-29
DE102011006288A DE102011006288A1 (en) 2011-03-29 2011-03-29 Method for starting internal combustion engine in motor system of hybrid drive system without using starter, involves igniting air/fuel mixture in cylinder of internal combustion engine based on request to perform start operation of engine

Publications (1)

Publication Number Publication Date
JP2012206713A true JP2012206713A (en) 2012-10-25

Family

ID=46844705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071722A Pending JP2012206713A (en) 2011-03-29 2012-03-27 Method and device to start internal combustion engine especially by hybrid vehicle without starter

Country Status (3)

Country Link
JP (1) JP2012206713A (en)
CN (1) CN102733965B (en)
DE (1) DE102011006288A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239516A (en) * 2018-03-07 2019-09-17 丰田自动车株式会社 Hybrid vehicle
CN111433098A (en) * 2017-12-04 2020-07-17 舍弗勒技术股份两合公司 Method for controlling an internal combustion engine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213034A1 (en) * 2014-07-04 2016-01-07 Bayerische Motoren Werke Aktiengesellschaft Method for starting an internal combustion engine
DE102014224760A1 (en) 2014-12-03 2016-06-09 Robert Bosch Gmbh Method and apparatus for selecting a starting method for an internal combustion engine
DE102015213933A1 (en) 2015-07-23 2017-01-26 Robert Bosch Gmbh Method and a control device for operating an internal combustion engine
DE102015222612A1 (en) 2015-11-17 2017-05-18 Robert Bosch Gmbh Method for starting a combustion engine without starting
DE102015225446A1 (en) 2015-12-16 2017-06-22 Robert Bosch Gmbh Method for starting a combustion engine without starting
DE102015225607A1 (en) * 2015-12-17 2017-06-22 Robert Bosch Gmbh Method for restarting a multi-cylinder internal combustion engine with intake manifold injection without externally supplied torque
DE102015226623A1 (en) 2015-12-23 2017-06-29 Robert Bosch Gmbh Method for starting a combustion engine without starting
DE102016203237A1 (en) 2016-01-28 2017-08-03 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102016201234A1 (en) 2016-01-28 2017-08-03 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102016202343A1 (en) 2016-02-16 2017-08-31 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102016002051A1 (en) * 2016-02-22 2017-08-24 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Motor vehicle drive train control
DE102016204936A1 (en) * 2016-03-24 2017-09-28 Volkswagen Aktiengesellschaft Method for operating a drive device for a hybrid motor vehicle
CN107063698B (en) * 2016-12-30 2023-06-16 中国船舶集团有限公司第七一一研究所 Testing mechanism, platform and testing method for side-mounted variable valve of internal combustion engine
DE102022109743B3 (en) 2022-04-22 2022-10-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Procedure for preparing a simple start of an internal combustion engine and corresponding power train
DE102022111177B3 (en) 2022-05-05 2022-12-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for starting an internal combustion engine
DE102022112926B3 (en) 2022-05-23 2023-07-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine for a direct start
DE102022112921A1 (en) 2022-05-23 2023-11-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Multi-cylinder internal combustion engine for a motor vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039038A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Engine start device
JP2003301704A (en) * 2002-04-08 2003-10-24 Honda Motor Co Ltd Internal combustion engine provided with decompressing means
JP2008144608A (en) * 2006-12-06 2008-06-26 Toyota Motor Corp Vehicle and its control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107514A (en) * 1989-09-20 1991-05-07 Honda Motor Co Ltd Starting load reducing device for internal combustion engine
DE10028473B4 (en) 2000-06-08 2014-11-27 Schaeffler Technologies Gmbh & Co. Kg Device adapted for the decompression of a valve-controlled internal combustion engine
JP4346262B2 (en) * 2001-07-25 2009-10-21 本田技研工業株式会社 Method and apparatus for starting internal combustion engine
AU2003200190B2 (en) * 2002-02-06 2008-06-26 Honda Giken Kogyo Kabushiki Kaisha Internal Combustion Engine Provided with Decompressing Means
DE10342703B4 (en) 2003-09-16 2013-09-26 Robert Bosch Gmbh Method for starting a multi-cylinder internal combustion engine and internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039038A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Engine start device
JP2003301704A (en) * 2002-04-08 2003-10-24 Honda Motor Co Ltd Internal combustion engine provided with decompressing means
JP2008144608A (en) * 2006-12-06 2008-06-26 Toyota Motor Corp Vehicle and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433098A (en) * 2017-12-04 2020-07-17 舍弗勒技术股份两合公司 Method for controlling an internal combustion engine
CN111433098B (en) * 2017-12-04 2023-12-29 舍弗勒技术股份两合公司 Method for controlling an internal combustion engine
CN110239516A (en) * 2018-03-07 2019-09-17 丰田自动车株式会社 Hybrid vehicle
JP2019157641A (en) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 Hybrid vehicle
CN110239516B (en) * 2018-03-07 2022-02-25 丰田自动车株式会社 Hybrid vehicle

Also Published As

Publication number Publication date
CN102733965A (en) 2012-10-17
DE102011006288A1 (en) 2012-10-04
CN102733965B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP2012206713A (en) Method and device to start internal combustion engine especially by hybrid vehicle without starter
US7726270B2 (en) Engine start control apparatus and engine start control method
US7668642B2 (en) Control apparatus for internal combustion engine
JP5049933B2 (en) Method and apparatus for starting a direct injection internal combustion engine and automobile
US7500467B2 (en) Throttle opening control system and method for internal combustion engine
JP2004197745A (en) Method for operating multi-cylinder type internal combustion engine with variable compression ratio
JP2010195308A (en) Controller for hybrid vehicle
WO2014054434A1 (en) Engine starting device mounted on vehicle provided with motor generator and decompression device
JP2006511753A (en) Operation method of internal combustion engine
JP5255618B2 (en) Starting method for internal combustion engine
JP4589060B2 (en) Method for starting a multi-cylinder internal combustion engine and internal combustion engine
KR102059029B1 (en) Method and device for operating an internal combustion engine with reduced air charge
JP2011207289A (en) Control device of vehicle
US6962136B2 (en) Methods for starting a multi-cylinder internal combustion engine
CN109253011A (en) Method for starting internal combustion engine
JP6515710B2 (en) Control device for internal combustion engine
JP2006226353A (en) Damper, damper control system, and vehicle carrying this damper control system
KR102026367B1 (en) Valve control system for internal combustion engines and method of operation thereof
US10151251B1 (en) Method and controller for engine torque control in a vehicle during a default throttle condition
JP6877935B2 (en) Engine control unit
JP2003247448A (en) Method and apparatus for controlling device unit having internal combustion engine
WO2013035180A1 (en) Internal combustion engine control apparatus
JP3864720B2 (en) Intake compression detection method at engine start
JP2019173586A (en) Control device of internal combustion engine
CN108533388B (en) Method and system for vehicle propulsion system control

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160704