JP2012202950A - Flow sensor and manufacturing method of flow sensor - Google Patents

Flow sensor and manufacturing method of flow sensor Download PDF

Info

Publication number
JP2012202950A
JP2012202950A JP2011070483A JP2011070483A JP2012202950A JP 2012202950 A JP2012202950 A JP 2012202950A JP 2011070483 A JP2011070483 A JP 2011070483A JP 2011070483 A JP2011070483 A JP 2011070483A JP 2012202950 A JP2012202950 A JP 2012202950A
Authority
JP
Japan
Prior art keywords
substrate
recess
flow sensor
heating element
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011070483A
Other languages
Japanese (ja)
Inventor
Koichi Igarashi
康一 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2011070483A priority Critical patent/JP2012202950A/en
Publication of JP2012202950A publication Critical patent/JP2012202950A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow sensor having a high reliability.SOLUTION: A flow sensor comprises: a first substrate 1 of which top surface is provided with a recess 8; a heating element 6 disposed on the top surface of the first substrate 1 in such a manner that it covers a part of the recess 8 of the first substrate 1; a support film 40 which is disposed in such a manner that it surrounds the heating element 6 and has the same thickness as the heating element 6; and a second substrate 14 which is disposed in such a manner that it covers the recess 8 of the first substrate 1 and the heating element 6, is provided with a recess 11 on its bottom surface, and is provided with an inflow port and an outflow port which respectively communicate with the recess 8 of the first substrate 1. The opening shape of the recess 8 of the first substrate 1 is the same as the opening shape of the recess 11 of the second substrate 14, and the opening of the recess 8 of the first substrate 1 and the opening of the recess 11 of the second substrate 14 are in the same position in the directions parallel to the top surface of the first substrate 1.

Description

本発明は流体の検査技術に係り、フローセンサ及びフローセンサの製造方法に関する。   The present invention relates to a fluid inspection technique, and relates to a flow sensor and a method for manufacturing the flow sensor.

ガスの配管等においては、ガスの流量を正確に計測することが重要である。ガス等の流体の流量を計測する機器として、フローセンサがある。フローセンサを配管に設置する際に、必要となる工事を可能な限り省略するために、フローセンサそのものにパッケージ機能をもたせ、配管への設置を容易にしたものが提案されている(例えば、特許文献1参照。)。   In gas piping or the like, it is important to accurately measure the gas flow rate. There is a flow sensor as a device for measuring the flow rate of a fluid such as gas. In order to eliminate the necessary work as much as possible when installing the flow sensor on the pipe, a flow sensor has been proposed that has a package function to facilitate installation on the pipe (for example, patents). Reference 1).

特開2009−109349号公報JP 2009-109349 A

しかし、従来のフローセンサは、機械的強度が弱く、信頼性が低いという問題がある。そこで、本発明は、信頼性の高いフローセンサ及びフローセンサの製造方法を提供することを目的の一つとする。   However, the conventional flow sensor has a problem that mechanical strength is weak and reliability is low. Accordingly, an object of the present invention is to provide a highly reliable flow sensor and a flow sensor manufacturing method.

本発明者は、鋭意研究の結果、従来のフローセンサの機械的強度の弱さは、流路室の断面形状が、発熱素子の上下において非対象的であり、応力集中箇所ができる構造を有しているために生じていることを見出した。そこで、本発明の態様によれば、(a)上面に凹部が設けられた第1の基板と、(b)第1の基板の凹部の一部を覆うように配置された発熱素子と、(c)第1の基板の上面に、発熱素子を囲むように配置され、発熱素子と同じ厚みを有する支持膜と、(d)第1の基板の凹部及び発熱素子を覆うように配置され、底面に凹部が設けられており、それぞれ第1の基板の凹部に連通する流入口及び流出口が設けられた第2の基板と、を備え、(e)第1の基板の凹部の開口形状と、第2の基板の凹部の開口形状と、が等しく、(f)第1の基板の上面と平行な方向において、第1の基板の凹部の開口と、第2の基板の凹部の開口と、が同じ位置にある、フローセンサが提供される。   As a result of diligent research, the present inventor has found that the weakness of the mechanical strength of the conventional flow sensor has a structure in which the cross-sectional shape of the flow path chamber is non-targeted above and below the heating element, and stress concentration points can be formed. I found out that it was caused by doing. Therefore, according to an aspect of the present invention, (a) a first substrate provided with a recess on the upper surface, (b) a heating element disposed so as to cover a part of the recess of the first substrate, c) A support film disposed on the upper surface of the first substrate so as to surround the heat generating element and having the same thickness as the heat generating element; and (d) disposed so as to cover the recess and the heat generating element of the first substrate. And (e) an opening shape of the concave portion of the first substrate, and a second substrate provided with an inflow port and an outflow port respectively communicating with the concave portion of the first substrate. The opening shape of the concave portion of the second substrate is equal, and (f) the opening of the concave portion of the first substrate and the opening of the concave portion of the second substrate are in a direction parallel to the upper surface of the first substrate. A flow sensor in the same position is provided.

本発明の態様によれば、(a)第1の基板の上面に凹部が設けることと、(b)第1の基板の凹部の一部を覆うよう発熱素子を配置することと、(c)第1の基板の上面に、発熱素子を囲むように、発熱素子と同じ厚みを有する支持膜を形成することと、(d)底面に開口形状が第1の基板の凹部の開口形状と等しい凹部が設けられており、かつ流入口及び流出口が設けられた第2の基板を用意することと、(e)第2の基板の流入口及び流出口がそれぞれ第1の基板の凹部に連通し、第1の基板の上面と平行な方向において、第1の基板の凹部の開口と、第2の基板の凹部の開口と、が同じ位置になるよう、第1の基板の凹部及び発熱素子を覆うように第2の基板を配置することと、を含むフローセンサの製造方法が提供される。   According to an aspect of the present invention, (a) a recess is provided on the upper surface of the first substrate, (b) a heating element is disposed so as to cover a part of the recess of the first substrate, and (c). Forming a support film having the same thickness as the heat generating element on the top surface of the first substrate so as to surround the heat generating element; and (d) a concave portion having an opening shape on the bottom surface equal to the opening shape of the concave portion of the first substrate. And a second substrate provided with an inlet and an outlet, and (e) the inlet and the outlet of the second substrate communicate with the recesses of the first substrate, respectively. In the direction parallel to the top surface of the first substrate, the concave portion of the first substrate and the heating element are arranged so that the opening of the concave portion of the first substrate and the opening of the concave portion of the second substrate are in the same position. Disposing a second substrate so as to cover, a method of manufacturing a flow sensor is provided.

本発明によれば、信頼性の高いフローセンサ及びフローセンサの製造方法を提供可能である。   According to the present invention, it is possible to provide a highly reliable flow sensor and a flow sensor manufacturing method.

本発明の実施の形態に係るフローセンサの上面図である。It is a top view of the flow sensor which concerns on embodiment of this invention. 本発明の実施の形態に係るフローセンサの図1のII−II方向から見た断面図である。It is sectional drawing seen from the II-II direction of FIG. 1 of the flow sensor which concerns on embodiment of this invention. 本発明の実施の形態に係るフローセンサの図1のIII−III方向から見た断面図である。It is sectional drawing seen from the III-III direction of FIG. 1 of the flow sensor which concerns on embodiment of this invention. 本発明の実施の形態に係るフローセンサの第1の工程断面図である。It is a 1st process sectional view of a flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第2の工程断面図である。It is a 2nd process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第3の工程断面図である。It is a 3rd process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第4の工程断面図である。It is a 4th process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第5の工程断面図である。It is a 5th process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第6の工程断面図である。It is a 6th process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第7の工程断面図である。It is a 7th process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第8の工程断面図である。It is an 8th process sectional view of a flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第9の工程断面図である。It is a 9th process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第10の工程断面図である。It is a 10th process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第11の工程断面図である。It is an 11th process sectional view of a flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第12の工程断面図である。It is a 12th process sectional view of the flow sensor concerning an embodiment of the invention. 本発明の実施の形態に係るフローセンサの第13の工程断面図である。It is a 13th process sectional view of a flow sensor concerning an embodiment of the invention. 本発明の実施の形態の比較例に係るフローセンサの断面図である。It is sectional drawing of the flow sensor which concerns on the comparative example of embodiment of this invention. 本発明のその他の実施の形態に係るフローセンサの工程断面図である。It is process sectional drawing of the flow sensor which concerns on other embodiment of this invention.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

実施の形態に係るフローセンサは、図1乃至図3に示すように、上面に凹部8が設けられた第1の基板1と、第1の基板1の凹部8の一部を覆うように配置された発熱素子6と、第1の基板1の上面に、発熱素子6を囲むように配置され、発熱素子6と同じ厚みを有する支持膜40と、第1の基板1の凹部8及び発熱素子6を覆うように配置され、それぞれ第1の基板1の凹部8に連通する流入口12及び流出口13が設けられた第2の基板14と、を備える。   As shown in FIGS. 1 to 3, the flow sensor according to the embodiment is disposed so as to cover the first substrate 1 having the recess 8 on the upper surface and a part of the recess 8 of the first substrate 1. The heating element 6 and the support film 40 disposed on the upper surface of the first substrate 1 so as to surround the heating element 6 and having the same thickness as the heating element 6, the concave portion 8 of the first substrate 1, and the heating element 6 and a second substrate 14 provided with an inflow port 12 and an outflow port 13 respectively communicating with the recess 8 of the first substrate 1.

第1の基板1の材料としては、パイレックス(登録商標)ガラス等が使用可能である。第1の基板1には凹部8が設けられており、凹部8の両側で発熱素子6をブリッジ状に保持している。発熱素子6には、シリコンフィラメント等が使用可能である。第1の基板1には、それぞれ金属膜9を介して底面から上面に貫通する貫通電極2、3が設けられている。貫通電極2、3は、第1の基板1の凹部8の両側で、金属膜9を介して発熱素子6に接触している。   As a material of the first substrate 1, Pyrex (registered trademark) glass or the like can be used. A recess 8 is provided in the first substrate 1, and the heating element 6 is held in a bridge shape on both sides of the recess 8. A silicon filament or the like can be used for the heating element 6. The first substrate 1 is provided with through-electrodes 2 and 3 penetrating from the bottom surface to the top surface with the metal film 9 interposed therebetween. The through electrodes 2 and 3 are in contact with the heating element 6 via the metal film 9 on both sides of the recess 8 of the first substrate 1.

支持膜40は、例えば、第1の基板1の上面の、発熱素子6が配置されなった部分の総てに配置される。そのため、支持膜40は、発熱素子6の周囲に接している。支持膜40の材料としては、例えば酸化ケイ素(SiO2)等が使用可能である。 For example, the support film 40 is disposed on all the portions of the upper surface of the first substrate 1 where the heating elements 6 are not disposed. Therefore, the support film 40 is in contact with the periphery of the heating element 6. As a material of the support film 40, for example, silicon oxide (SiO 2 ) or the like can be used.

第2の基板14の材料としても、パイレックス(登録商標)ガラス等が使用可能である。第2の基板14の底面には、凹部11が設けられている。例えば、第1の基板1の凹部8の開口と、第2の基板14の凹部の開口と、は、形状が等しく、長さ及び幅が等しい。第1の基板1と、第2の基板14と、は、例えば熱圧着接合により結合されている。例えば、第1の基板1の上面と平行な方向において、第1の基板の凹部8の開口と、第2の基板14の凹部11の開口と、は同じ位置にある。第1の基板1に設けられた凹部8と、第2の基板14に設けられた凹部11と、は、発熱素子6の周囲に、流体室を形成している。   Pyrex (registered trademark) glass or the like can also be used as the material of the second substrate 14. A recess 11 is provided on the bottom surface of the second substrate 14. For example, the opening of the recess 8 of the first substrate 1 and the opening of the recess of the second substrate 14 have the same shape, and the same length and width. The first substrate 1 and the second substrate 14 are coupled by, for example, thermocompression bonding. For example, in the direction parallel to the upper surface of the first substrate 1, the opening of the recess 8 of the first substrate and the opening of the recess 11 of the second substrate 14 are at the same position. The recess 8 provided in the first substrate 1 and the recess 11 provided in the second substrate 14 form a fluid chamber around the heating element 6.

流体室内部には、第2の基板14に設けられた流入口12を介して流体が注入される。注入された流体は、発熱素子6の上下を流れ、第2の基板14に設けられた流出口13を介してフローセンサの外部に排出される。   A fluid is injected into the fluid chamber through an inlet 12 provided in the second substrate 14. The injected fluid flows above and below the heat generating element 6 and is discharged to the outside of the flow sensor through the outlet 13 provided in the second substrate 14.

ここで、貫通電極2、3間に電圧を印加すると、発熱素子6に電流が流れ、ジュール熱が発生する。発熱素子6が発する熱は、フローセンサに注入された流体の流速に応じて奪われる。発熱素子6の電気抵抗は、発熱素子6の発熱温度に相関する。したがって、発熱素子6の電気抵抗の変化を計測することによって、発熱素子6の発熱温度の変化を計測することが可能であり、ひいては、発熱素子6の周囲を流れる流体の流速の変化を計測することが可能となる。   Here, when a voltage is applied between the through electrodes 2 and 3, a current flows through the heating element 6 and Joule heat is generated. The heat generated by the heating element 6 is deprived according to the flow rate of the fluid injected into the flow sensor. The electrical resistance of the heating element 6 correlates with the heating temperature of the heating element 6. Therefore, it is possible to measure the change in the heat generation temperature of the heat generating element 6 by measuring the change in the electrical resistance of the heat generating element 6, and consequently measure the change in the flow velocity of the fluid flowing around the heat generating element 6. It becomes possible.

次に、実施の形態に係るフローセンサの製造方法を説明する。   Next, a method for manufacturing the flow sensor according to the embodiment will be described.

まず、図4に示すように、第1の基板1を用意し、エッチング法等により、第1の基板1の上面に凹部8を設ける。次に、図5に示すように、サンドブラスト法等により、第1の基板1に貫通孔16、17を設ける。また、図6に示すように、シリコン基板18を用意し、エピタキシャル成長により、シリコン基板18の表面にボロン高濃度層19を形成する。次に、図7に示すように、エッチング法等により、ボロン高濃度層19を適当な大きさに整形する。   First, as shown in FIG. 4, a first substrate 1 is prepared, and a recess 8 is provided on the upper surface of the first substrate 1 by an etching method or the like. Next, as shown in FIG. 5, through holes 16 and 17 are provided in the first substrate 1 by a sandblast method or the like. Further, as shown in FIG. 6, a silicon substrate 18 is prepared, and a boron high concentration layer 19 is formed on the surface of the silicon substrate 18 by epitaxial growth. Next, as shown in FIG. 7, the boron high concentration layer 19 is shaped to an appropriate size by an etching method or the like.

図8に示すように、ボロン高濃度層19が凹部8の一部、及び貫通孔16、17を覆うように、第1の基板1と、ボロン高濃度層19と、を陽極接合により結合する。なお、第1の基板1と、ボロン高濃度層19と、を直接接合で結合してもよい。次に、ヒドラジンや水酸化テトラメチルアンモニウム(TMAH)等のアルカリ液を用いて、シリコン基板18を除去し、図9に示すように、ボロン高濃度層19を発熱素子6とする。   As shown in FIG. 8, the first substrate 1 and the boron high concentration layer 19 are bonded by anodic bonding so that the boron high concentration layer 19 covers a part of the recess 8 and the through holes 16 and 17. . Note that the first substrate 1 and the boron high concentration layer 19 may be directly bonded. Next, the silicon substrate 18 is removed using an alkaline solution such as hydrazine or tetramethylammonium hydroxide (TMAH), and the boron high-concentration layer 19 is used as the heating element 6 as shown in FIG.

図10に示すように、第1の基板1の上面の発熱素子6が配置されなかった部分に、酸化ケイ素膜41を堆積させる。さらに、酸化ケイ素膜41を研磨して、図11に示すように、酸化ケイ素膜41の厚みを発熱素子6と同じにし、支持膜40とする。なお、酸化ケイ素膜41を研磨する際、同時に発熱素子6の表面を研磨してもよい。   As shown in FIG. 10, a silicon oxide film 41 is deposited on the portion of the upper surface of the first substrate 1 where the heating element 6 is not disposed. Further, the silicon oxide film 41 is polished so that the thickness of the silicon oxide film 41 is the same as that of the heating element 6 as shown in FIG. When the silicon oxide film 41 is polished, the surface of the heating element 6 may be polished at the same time.

第2の基板14を用意し、図12に示すように、エッチング法等により、第2の基板14の底面に凹部11を設ける。また、図13に示すように、サンドブラスト法等により、第2の基板14に流入口12及び流出口13を設ける。次に、図14に示すように、発熱素子6が配置された第1の基板1と、第2の基板14と、を、熱圧着接合により結合する。その後、図15に示すように、スパッタ法等により、第1の基板1の底面と、貫通孔16、17の内部と、に金属膜9を成膜する。   A second substrate 14 is prepared, and the recess 11 is provided on the bottom surface of the second substrate 14 by an etching method or the like as shown in FIG. Moreover, as shown in FIG. 13, the inflow port 12 and the outflow port 13 are provided in the 2nd board | substrate 14 by the sandblast method etc. As shown in FIG. Next, as shown in FIG. 14, the 1st board | substrate 1 with which the heat generating element 6 is arrange | positioned, and the 2nd board | substrate 14 are couple | bonded by thermocompression bonding. Thereafter, as shown in FIG. 15, a metal film 9 is formed on the bottom surface of the first substrate 1 and the insides of the through holes 16 and 17 by sputtering or the like.

図16に示すように、第1の基板1に溝10の加工をダイシング法等で行うことにより、金属膜9を分割し、電気的に分離する。その後、貫通孔16、17内部に金属を充填して、それぞれ発熱素子6に通電する図2に示した貫通電極2、3を形成し、実施の形態に係るフローセンサの製造方法を終了する。なお、この金属膜9の分離・分割は、フォトリソグラフィやハードマスクなどで行なうこともできる。   As shown in FIG. 16, the groove 10 is processed in the first substrate 1 by a dicing method or the like, so that the metal film 9 is divided and electrically separated. Thereafter, the through holes 16 and 17 are filled with metal to form the through electrodes 2 and 3 shown in FIG. 2 that respectively energize the heating elements 6, and the flow sensor manufacturing method according to the embodiment is completed. The separation / division of the metal film 9 can also be performed by photolithography or a hard mask.

ここで、支持膜40がない場合、図17に示すように、第1の基板1の凹部8の開口形状と、第2の基板14の凹部11の開口形状と、を等しくすることが困難となる。この場合、高圧の流体がフローセンサの内部に注入されると、第1の基板1と、第2の基板14と、の接合面に応力が集中する。したがって、支持膜40がないフローセンサは、耐圧性が低い。また、第1の基板1と、第2の基板14と、の接着面に応力が集中すると、曲げモーメントが生じ、発熱素子6が変形して、発熱素子6の抵抗値がドリフトする。   Here, when the supporting film 40 is not provided, it is difficult to make the opening shape of the concave portion 8 of the first substrate 1 equal to the opening shape of the concave portion 11 of the second substrate 14 as shown in FIG. Become. In this case, when high-pressure fluid is injected into the flow sensor, stress concentrates on the joint surface between the first substrate 1 and the second substrate 14. Therefore, the flow sensor without the support film 40 has low pressure resistance. Further, when stress is concentrated on the bonding surface between the first substrate 1 and the second substrate 14, a bending moment is generated, the heating element 6 is deformed, and the resistance value of the heating element 6 drifts.

これに対し、実施の形態に係るフローセンサによれば、支持膜40を設けることによって、第1の基板1の凹部8の開口形状と、第2の基板14の凹部11の開口形状と、を等しくすることができ、結果として第1の基板1と、第2の基板14と、の接合面に応力が集中することを緩和し、高い精度で流体の流量を計測することが可能となる。   On the other hand, according to the flow sensor according to the embodiment, by providing the support film 40, the opening shape of the concave portion 8 of the first substrate 1 and the opening shape of the concave portion 11 of the second substrate 14 are obtained. As a result, it is possible to relieve stress concentration on the joint surface between the first substrate 1 and the second substrate 14 and to measure the fluid flow rate with high accuracy.

上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施の形態及び運用技術が明らかになるはずである。例えば、フローセンサの製造工程において、図18に示すように、支持膜40を形成する前に第1の基板1と、第2の基板14と、を接着させ、第1の基板1と、第2の基板14と、の間の隙間に接着剤を注入して、図2に示す支持膜40を形成してもよい。本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。   As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, embodiments, and operation techniques should be apparent to those skilled in the art. For example, in the manufacturing process of the flow sensor, as shown in FIG. 18, the first substrate 1 and the second substrate 14 are bonded to each other before the support film 40 is formed. The support film 40 shown in FIG. 2 may be formed by injecting an adhesive into the gap between the two substrates 14. It should be understood that the present invention includes various embodiments and the like not described herein.

1 第1の基板
2、3 貫通電極
6 発熱素子
8、11 凹部
9 金属膜
10 ダイシング溝
12 流入口
13 流出口
14 第2の基板
16、17 貫通孔
18 シリコン基板
19 ボロン高濃度層
40 支持膜
41 酸化ケイ素膜
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2, 3 Through-electrode 6 Heating element 8, 11 Recess 9 Metal film 10 Dicing groove 12 Inlet 13 Outlet 14 Second board | substrates 16, 17 Through-hole 18 Silicon substrate 19 Boron high concentration layer 40 Support film 41 Silicon oxide film

Claims (3)

上面に凹部が設けられた第1の基板と、
前記第1の基板の凹部の一部を覆うように配置された発熱素子と、
前記第1の基板の上面に、前記発熱素子を囲むように配置され、前記発熱素子と同じ厚みを有する支持膜と、
前記第1の基板の凹部及び前記発熱素子を覆うように配置され、底面に凹部が設けられており、それぞれ前記第1の基板の凹部に連通する流入口及び流出口が設けられた第2の基板と、
を備え、
前記第1の基板の凹部の開口形状と、前記第2の基板の凹部の開口形状と、が等しく、
前記第1の基板の上面と平行な方向において、前記第1の基板の凹部の開口と、前記第2の基板の凹部の開口と、が同じ位置にある、
フローセンサ。
A first substrate having a recess on the upper surface;
A heating element arranged to cover a part of the recess of the first substrate;
A support film disposed on the upper surface of the first substrate so as to surround the heat generating element and having the same thickness as the heat generating element;
The second substrate is disposed so as to cover the concave portion of the first substrate and the heating element, the concave portion is provided on the bottom surface, and the inflow port and the outflow port respectively communicating with the concave portion of the first substrate are provided. A substrate,
With
The opening shape of the concave portion of the first substrate is equal to the opening shape of the concave portion of the second substrate,
In the direction parallel to the top surface of the first substrate, the opening of the recess of the first substrate and the opening of the recess of the second substrate are at the same position.
Flow sensor.
第1の基板の上面に凹部が設けることと、
前記第1の基板の凹部の一部を覆うよう発熱素子を配置することと、
前記第1の基板の上面に、前記発熱素子を囲むように、前記発熱素子と同じ厚みを有する支持膜を形成することと、
底面に開口形状が前記第1の基板の凹部の開口形状と等しい凹部が設けられており、かつ流入口及び流出口が設けられた第2の基板を用意することと、
前記第2の基板の前記流入口及び前記流出口がそれぞれ前記第1の基板の凹部に連通し、前記第1の基板の上面と平行な方向において、前記第1の基板の凹部の開口と、前記第2の基板の凹部の開口と、が同じ位置になるよう、前記第1の基板の凹部及び前記発熱素子を覆うように前記第2の基板を配置することと、
を含むフローセンサの製造方法。
Providing a recess on the upper surface of the first substrate;
Disposing a heating element so as to cover a part of the concave portion of the first substrate;
Forming a support film having the same thickness as the heating element on the upper surface of the first substrate so as to surround the heating element;
Providing a second substrate provided with a recess having an opening shape equal to the opening shape of the recess of the first substrate on the bottom surface and provided with an inlet and an outlet;
The inlet and outlet of the second substrate communicate with the recess of the first substrate, respectively, and in the direction parallel to the upper surface of the first substrate, the opening of the recess of the first substrate; Disposing the second substrate so as to cover the concave portion of the first substrate and the heating element so that the opening of the concave portion of the second substrate is in the same position;
The manufacturing method of the flow sensor containing this.
前記支持膜を形成することが、
前記第1の基板の上面に、前記発熱素子を囲むように、前記発熱素子の厚みより大きい厚みを有する堆積膜を形成することと、
前記堆積膜を研磨することと、
を含む、請求項2に記載のフローセンサの製造方法。
Forming the support film,
Forming a deposited film having a thickness larger than the thickness of the heating element on the upper surface of the first substrate so as to surround the heating element;
Polishing the deposited film;
The manufacturing method of the flow sensor of Claim 2 containing this.
JP2011070483A 2011-03-28 2011-03-28 Flow sensor and manufacturing method of flow sensor Withdrawn JP2012202950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070483A JP2012202950A (en) 2011-03-28 2011-03-28 Flow sensor and manufacturing method of flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070483A JP2012202950A (en) 2011-03-28 2011-03-28 Flow sensor and manufacturing method of flow sensor

Publications (1)

Publication Number Publication Date
JP2012202950A true JP2012202950A (en) 2012-10-22

Family

ID=47184096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070483A Withdrawn JP2012202950A (en) 2011-03-28 2011-03-28 Flow sensor and manufacturing method of flow sensor

Country Status (1)

Country Link
JP (1) JP2012202950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295224A (en) * 2021-05-25 2021-08-24 中国科学院上海微***与信息技术研究所 Gas-liquid dual-purpose thermal flow sensor and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295224A (en) * 2021-05-25 2021-08-24 中国科学院上海微***与信息技术研究所 Gas-liquid dual-purpose thermal flow sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5136868B2 (en) Thermal conductivity detector and gas chromatograph using the same
US20110252882A1 (en) Robust sensor with top cap
CN103616123B (en) Pressure transducer and preparation method thereof
CN101878526A (en) Robust MEMS flow die with integrated protective flow channel
JP5436404B2 (en) Semiconductor pressure sensor and manufacturing method thereof
WO2008014160A2 (en) Thermal fluid flow sensor and method of forming same
JP5477636B2 (en) Thermal conductivity detector
JP2012202950A (en) Flow sensor and manufacturing method of flow sensor
JP5081174B2 (en) Sensor and flow sensor
EP2685224A1 (en) Flow sensor
JP2012208061A (en) Flow sensor
JP2017020982A (en) Thermal air flowmeter
JP5907688B2 (en) Flow sensor and method of manufacturing flow sensor
JP2011179851A (en) Thermal conductivity detector
JP2010221073A (en) Microreactor
JP2009109349A (en) Flow sensor
JP2011075398A (en) Thermal flowmeter
JP4817287B2 (en) Method for manufacturing mechanical quantity sensor
JP2010230312A (en) Semiconductor sensor manufacturing method and semiconductor sensor
JP2007242445A (en) Micro-heater and flow sensor using it
EP2685223A1 (en) Flow Sensor
JP2007047100A (en) Electrostatic capacitive pressure sensor and its manufacturing method
CN108181415B (en) Thin film type micro heat conduction detector and preparation method thereof
JP6432314B2 (en) Physical quantity sensor and method of manufacturing physical quantity sensor
JP2016133367A (en) Thermal type air flowmeter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603