JP2012202565A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2012202565A
JP2012202565A JP2011065077A JP2011065077A JP2012202565A JP 2012202565 A JP2012202565 A JP 2012202565A JP 2011065077 A JP2011065077 A JP 2011065077A JP 2011065077 A JP2011065077 A JP 2011065077A JP 2012202565 A JP2012202565 A JP 2012202565A
Authority
JP
Japan
Prior art keywords
temperature
lubricating oil
expansion valve
refrigeration apparatus
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011065077A
Other languages
Japanese (ja)
Other versions
JP5669642B2 (en
Inventor
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011065077A priority Critical patent/JP5669642B2/en
Publication of JP2012202565A publication Critical patent/JP2012202565A/en
Application granted granted Critical
Publication of JP5669642B2 publication Critical patent/JP5669642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration device capable of suppressing abrupt rises in temperature of a lubricant and in temperature of a discharge gas due to abrupt change in operation condition.SOLUTION: In the refrigeration device having a two-stage screw compressor 1, a control unit 16, when detecting the abrupt change in operation condition based on the temperature of the lubricant that a temperature detection unit 17 detects, make adjustment of the opening degree of an electronic expansion valve 15 for lubricant cooling different from regular operation to abruptly increase the amount of a refrigerant for lubricant cooling so that the adjustment of the opening degree of the expansion valve for lubricant cooling follows. Consequently, the abrupt rises in temperature of the lubricant and in temperature of discharge gas due to the abrupt change in operation condition can be suppressed, and an abnormal stop of the two-stage screw compressor 1 due to abnormal conditions of the temperature of the discharge gas can be prevented.

Description

この発明は、冷凍装置に関するものであり、特に潤滑油の冷却に関する。   The present invention relates to a refrigeration apparatus, and more particularly to cooling of lubricating oil.

二段スクリュー圧縮機を有する冷凍装置は、圧縮機から吐出された冷媒ガス(以下、吐出ガスと呼ぶこともある)の温度の過度な上昇による潤滑油ならびに構成部品の劣化を防止するため、吐出ガス温度が許容上限温度以下になるように制御する。その手段として、冷媒を用いて潤滑油を冷却し、この冷却された潤滑油により圧縮途中の冷媒ガスの冷却を行う方法がある。
潤滑油の温度が低く、潤滑油の冷却が不要な状態で潤滑油を冷却し続けた際には、潤滑油に冷媒が多量に溶け込み、油分離効率が低下して油分離器から凝縮器への潤滑油の流出量が増加する「油上がり」という現象が発生する危険性が高くなる。この油上がりが発生すると、圧縮機の軸受に供給される潤滑油が不足し、圧縮機が故障する場合があった。
このため、潤滑油冷却後の潤滑油の温度が所定の値になるように冷却前の潤滑油の温度の大小に応じて複数の異なる容量の膨張弁を組み合わせて用いることで冷媒量を段階的に制御する技術が知られている(例えば、特許文献1参照)。
図14は特許文献1に示された従来の二段スクリュー圧縮機を有する冷凍装置の冷媒回路図であり、冷媒及び潤滑油の二段スクリュー圧縮機への供給部位をさらに詳しく示した図である。図中の矢印は冷媒および潤滑油の流れ方向を示す。冷媒は圧縮機1で高温高圧の吐出ガスとなって吐出され、油分離器2内で冷媒ガスと潤滑油に分離される。吐出ガスから分離された冷媒ガスは凝縮器3で凝縮液となり、主液膨張弁4により、低温低圧の湿りガスに変わり、蒸発器5内にて蒸発して被冷却物を冷却した後、圧縮機1の低段圧縮機構1aに注入される。
一方、油分離器2にて吐出ガスから分離された潤滑油は油冷却器7にて冷却され、圧縮機1の圧縮機中間圧室1cに注入される。
凝縮器3にて凝縮液となった液冷媒は、蒸発器5にて冷却作用を行う主液流れ、モーター冷却用膨張弁6にて低温で中間圧力の湿りガスに変化してモーター室1dのモーターを冷却する流れ、潤滑油冷却用の電子膨張弁である膨張弁10、11にて低温で中間圧力の湿りガスに変化して油分離器2からの潤滑油を油冷却器7にて冷却する流れに分岐する。膨張弁10、11および油冷却器7を流れる湿りガスは圧縮機中間圧室1cにて低段吐出ガスと混合され、高段圧縮機構1bに吸入される。
潤滑油冷却用の湿りガスの流量は、潤滑油開閉器12、13、14にて、この湿りガスによって冷却された潤滑油の温度を検知し、冷却後の潤滑油の温度が所定範囲に収まるように、膨張弁10、11を用いて制御する。
また、上記と同様の構成を備え、さらに始動時には容量の大きい潤滑油冷却用電子膨張弁のみを強制的に動作させる技術が知られている(例えば、特許文献2参照)。
A refrigeration apparatus having a two-stage screw compressor is used to prevent deterioration of lubricating oil and components due to excessive rise in the temperature of refrigerant gas discharged from the compressor (hereinafter also referred to as discharge gas). The gas temperature is controlled to be lower than the allowable upper limit temperature. As a means for this, there is a method of cooling the lubricating oil using a refrigerant and cooling the refrigerant gas being compressed by the cooled lubricating oil.
If the lubricating oil continues to be cooled when the temperature of the lubricating oil is low and the cooling of the lubricating oil is unnecessary, a large amount of refrigerant dissolves in the lubricating oil, reducing the oil separation efficiency and moving from the oil separator to the condenser. This increases the risk of occurrence of a phenomenon of “oil rise” in which the amount of lubricating oil flowing out increases. When this oil rise occurs, there is a case where the lubricating oil supplied to the bearings of the compressor is insufficient and the compressor breaks down.
For this reason, the refrigerant amount is stepwise by using a combination of expansion valves having different capacities according to the temperature of the lubricant before cooling so that the temperature of the lubricant after cooling becomes a predetermined value. There is known a technique for performing control (see, for example, Patent Document 1).
FIG. 14 is a refrigerant circuit diagram of a refrigeration apparatus having a conventional two-stage screw compressor disclosed in Patent Document 1, and is a diagram showing in more detail the supply site of refrigerant and lubricating oil to the two-stage screw compressor. . The arrows in the figure indicate the flow directions of the refrigerant and the lubricating oil. The refrigerant is discharged as high-temperature and high-pressure discharge gas in the compressor 1 and separated into refrigerant gas and lubricating oil in the oil separator 2. The refrigerant gas separated from the discharge gas becomes a condensate in the condenser 3 and is converted into a low-temperature and low-pressure wet gas by the main liquid expansion valve 4 and is evaporated in the evaporator 5 to cool the object to be cooled and then compressed. It is injected into the low-stage compression mechanism 1a of the machine 1.
On the other hand, the lubricating oil separated from the discharge gas by the oil separator 2 is cooled by the oil cooler 7 and injected into the compressor intermediate pressure chamber 1 c of the compressor 1.
The liquid refrigerant that has become the condensate in the condenser 3 flows into the main liquid that cools in the evaporator 5, and changes into a moist gas at a low temperature and an intermediate pressure in the motor cooling expansion valve 6. Flow of cooling motor, expansion valves 10 and 11 which are electronic expansion valves for cooling the lubricating oil are changed to wet gas at low temperature and intermediate pressure, and lubricating oil from the oil separator 2 is cooled by the oil cooler 7 Branches into the flow of The wet gas flowing through the expansion valves 10 and 11 and the oil cooler 7 is mixed with the low-stage discharge gas in the compressor intermediate pressure chamber 1c and sucked into the high-stage compression mechanism 1b.
As for the flow rate of the wet gas for cooling the lubricating oil, the temperature of the lubricating oil cooled by this wet gas is detected by the lubricating oil switches 12, 13, and 14, and the temperature of the lubricating oil after cooling falls within a predetermined range. Thus, the expansion valves 10 and 11 are used for control.
In addition, a technique is known that includes the same configuration as described above and forcibly operates only the electronic expansion valve for cooling the lubricating oil that has a large capacity at the time of starting (for example, see Patent Document 2).

特開平5−126416号公報(第2頁、第3図、表1)Japanese Patent Laid-Open No. 5-126416 (second page, FIG. 3, Table 1) 特開平7−091750号公報(第2〜3頁、第1〜3図)JP-A-7-091750 (pages 2 and 3, FIGS. 1 to 3)

上記特許文献1および特許文献2に記載された従来の冷凍装置では、運転条件の急変化による潤滑油の温度や吐出ガス温度の急上昇に対する対応手段を設けていなかった。従って、このような運転条件の急変化による潤滑油の温度や吐出ガス温度の急上昇に、潤滑油冷却用電子膨張弁の開度の調整が追従できず、吐出ガスの温度が異常停止温度に達し、圧縮機が異常停止するという課題があった。また、保護制御が追いつかずに圧縮機が損傷するという問題が発生することもあった。   In the conventional refrigeration apparatus described in Patent Document 1 and Patent Document 2, no means for responding to a sudden rise in the temperature of the lubricating oil or the discharge gas temperature due to a sudden change in operating conditions has been provided. Therefore, the adjustment of the opening of the electronic expansion valve for cooling the lubricating oil cannot follow the sudden rise in the temperature of the lubricating oil or the discharge gas due to such a sudden change in operating conditions, and the temperature of the discharge gas reaches the abnormal stop temperature. There was a problem that the compressor stopped abnormally. In addition, the protection control could not catch up and the compressor could be damaged.

この発明は上記のような課題を解決するためになされたものであり、運転条件の急変化による潤滑油の温度や吐出ガスの温度の急上昇を抑制可能な冷凍装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration apparatus capable of suppressing a sudden rise in the temperature of lubricating oil and the temperature of discharged gas due to a sudden change in operating conditions.

この発明に係る冷凍装置は、圧縮機、油分離器、凝縮器、第1の膨張弁、蒸発器を順次配管接続して成る冷凍サイクルと、凝縮器の出口と、圧縮機とを、第2の膨張弁、油冷却器を介して接続する潤滑油冷却回路と、油分離器の油出口と、圧縮機とを油冷却器を介して接続する潤滑油回路と、圧縮機、第1の膨張弁および第2の膨張弁を制御する制御部と、油冷却器の出口側を流れる潤滑油の温度を検出する温度検出部と、を備え、油分離器は、圧縮機から吐出された冷媒ガスから潤滑油を分離し、油冷却器は油分離器によって分離され潤滑油回路を流れて圧縮機へ流れ込む潤滑油を、凝縮器から流出し潤滑油冷却回路を流れる潤滑油冷却用の冷媒によって冷却し、制御部は温度検出部が検出した潤滑油の温度に基づいて運転条件の急変を検出したときに、第2の膨張弁の開度を制御して油冷却器に流れ込む潤滑油冷却用の冷媒の流量を定常運転時の冷媒の流量よりも所定量以上増加させるものである。   A refrigeration apparatus according to the present invention includes a refrigeration cycle formed by sequentially connecting a compressor, an oil separator, a condenser, a first expansion valve, and an evaporator, an outlet of the condenser, and a compressor. Expansion valve, lubricating oil cooling circuit connected via oil cooler, oil outlet of oil separator, lubricating oil circuit connecting compressor via oil cooler, compressor, first expansion A control unit that controls the valve and the second expansion valve, and a temperature detection unit that detects the temperature of the lubricating oil flowing on the outlet side of the oil cooler, and the oil separator is a refrigerant gas discharged from the compressor The oil cooler is separated by the oil separator and flows through the lubricating oil circuit and flows into the compressor, and is cooled by the lubricating oil cooling refrigerant flowing out of the condenser and flowing through the lubricating oil cooling circuit. The controller detects sudden changes in operating conditions based on the lubricant temperature detected by the temperature detector. When, in which increasing a predetermined amount or more than the flow rate of refrigerant during the second steady operation the flow rate of the refrigerant by controlling the opening degree of the expansion valve for the lubricating oil cooled flowing into the oil cooler.

この発明によれば、制御部は運転条件が急変し潤滑油の温度検知値が制御目標上限値を上回ったときに、第2の膨張弁の開度を定常時の開度よりも所定量以上大きくなるように制御して制御潤滑油冷却用の冷媒の流量を急増させることで、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。これにより、運転条件の急変に伴う吐出ガスの温度異常による圧縮機の異常停止を防止することができる。   According to this invention, when the operating condition changes suddenly and the temperature detection value of the lubricating oil exceeds the control target upper limit value, the opening of the second expansion valve is a predetermined amount or more than the opening at the steady state. By increasing the flow rate of the coolant for cooling the controlled lubricating oil by controlling it to be increased, it is possible to suppress a sudden increase in the temperature of the lubricating oil and the discharge gas temperature. As a result, it is possible to prevent the compressor from being abnormally stopped due to an abnormal temperature of the discharge gas due to a sudden change in operating conditions.

本発明に係る冷凍装置の実施の形態1〜6における要部冷媒回路を示す構成図である。It is a block diagram which shows the principal part refrigerant circuit in Embodiment 1-6 of the refrigeration apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態1における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 1 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態1〜4における温度変化特性図である。It is a temperature change characteristic view in Embodiments 1 to 4 of the refrigeration apparatus according to the present invention. 本発明に係る冷凍装置の実施の形態2における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 2 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態3における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 3 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態4における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 4 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態5における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 5 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態5〜6における温度変化特性図である。It is a temperature change characteristic view in Embodiments 5 to 6 of the refrigeration apparatus according to the present invention. 本発明に係る冷凍装置の実施の形態6における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 6 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態7における要部冷媒回路を示す構成図である。It is a block diagram which shows the principal part refrigerant circuit in Embodiment 7 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態7における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 7 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態8における要部冷媒回路を示す構成図である。It is a block diagram which shows the principal part refrigerant circuit in Embodiment 8 of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の実施の形態8における制御部16の潤滑油冷却の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of lubricating oil cooling of the control part 16 in Embodiment 8 of the freezing apparatus which concerns on this invention. 従来の要部冷媒回路を示す構成図である。It is a block diagram which shows the conventional principal part refrigerant circuit.

実施の形態1.
図1は本発明に係る冷凍装置の実施の形態1における要部冷媒回路を示す構成図である。図1に示すように冷凍装置の冷媒回路は、二段式スクリュー圧縮機1と、油分離器2と、凝縮器3と、主液膨張弁4(第1の膨張弁)と、蒸発器5とから構成される主冷媒回路と、潤滑油冷却用電子膨張弁15(第2の膨張弁)、油冷却器7、温度検出部17と制御部16とから成る潤滑油冷却系統とを備えている。二段式スクリュー圧縮機1(以下、単に圧縮機1と呼ぶ)は、低段圧縮機構1a、高段圧縮機構1b、圧縮機中間圧室1c、およびモーターを収容するモーター室1dから構成されている。
また、温度検出部17は、図示しないが、油冷却器7の出口側配管の温度を検出して信号を発生する温度センサーとこの温度センサーから信号を増幅し、A/D変換して制御部16へ送る変換部とから構成されている。制御部16は制御を行うものであり、マイクロコンピューターやDSPなどのプロセッサーから構成されている。
また、温度センサーはサーミスターや熱電対などで構成され、潤滑油の温度を検知し、信号を発する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a main refrigerant circuit in Embodiment 1 of the refrigeration apparatus according to the present invention. As shown in FIG. 1, the refrigerant circuit of the refrigeration apparatus includes a two-stage screw compressor 1, an oil separator 2, a condenser 3, a main liquid expansion valve 4 (first expansion valve), and an evaporator 5. And a lubricating oil cooling system comprising a lubricating oil cooling electronic expansion valve 15 (second expansion valve), an oil cooler 7, a temperature detection unit 17 and a control unit 16. Yes. A two-stage screw compressor 1 (hereinafter simply referred to as a compressor 1) is composed of a low-stage compression mechanism 1a, a high-stage compression mechanism 1b, a compressor intermediate pressure chamber 1c, and a motor chamber 1d that houses a motor. Yes.
Although not shown, the temperature detection unit 17 detects the temperature of the outlet side piping of the oil cooler 7 and generates a signal. The temperature detection unit 17 amplifies the signal from the temperature sensor, performs A / D conversion, and performs control. And a conversion unit to be sent to 16. The control unit 16 performs control and includes a processor such as a microcomputer or a DSP.
The temperature sensor is composed of a thermistor, a thermocouple, etc., and detects the temperature of the lubricating oil and emits a signal.

次に、本実施の形態1の動作を概説する。
圧縮機1において、冷媒ガスは圧縮されて高温高圧の吐出ガスとなって吐出される。この吐出ガスは、油分離器2において冷媒ガスと潤滑油に分離される。潤滑油と分離された冷媒ガスは凝縮器3で熱交換され、凝縮液となる。凝縮器3から出た液冷媒の内、主流の液冷媒は主液膨張弁4へ流れ込み、ここで液冷媒から低圧の湿りガスに変化する。湿りガスは蒸発器5内で冷凍室内の空気を冷却して蒸発し、低圧の冷媒ガスとなる。この後、冷媒ガスは圧縮機1の低圧側へ吸入される。
また、凝縮器3から流れ出た主流の液冷媒の内、一部はモーター冷却用膨張弁6を通過して中間圧力の湿りガスとなった後、圧縮機のモーター室1dへ吸入され、モーターの巻き線を冷却する。
一方、油分離器2で分離した潤滑油は油冷却器7で冷却された後、圧縮機1の中間圧室へ吸入され、圧縮機の各軸受へ供給される。
Next, the operation of the first embodiment will be outlined.
In the compressor 1, the refrigerant gas is compressed and discharged as a high-temperature and high-pressure discharge gas. The discharged gas is separated into refrigerant gas and lubricating oil in the oil separator 2. The refrigerant gas separated from the lubricating oil is heat-exchanged in the condenser 3 and becomes a condensate. Of the liquid refrigerant that has come out of the condenser 3, the main liquid refrigerant flows into the main liquid expansion valve 4, where it changes from liquid refrigerant to low-pressure wet gas. The wet gas evaporates by cooling the air in the freezer compartment in the evaporator 5 and becomes a low-pressure refrigerant gas. Thereafter, the refrigerant gas is sucked into the low pressure side of the compressor 1.
In addition, a part of the main liquid refrigerant flowing out of the condenser 3 passes through the motor cooling expansion valve 6 and becomes a moist gas having an intermediate pressure, and is then sucked into the motor chamber 1d of the compressor, Cool the windings.
On the other hand, the lubricating oil separated by the oil separator 2 is cooled by the oil cooler 7, and then sucked into the intermediate pressure chamber of the compressor 1 and supplied to each bearing of the compressor.

また、凝縮器3には、主流の液冷媒の回路とは別に、潤滑油冷却用の冷媒の回路が接続されている。潤滑油冷却用電子膨張弁15の開度が制御部16によって制御されることにより、凝縮器3から流れ出た液冷媒の内、主流以外の一部の液冷媒がこの潤滑油冷却用電子膨張弁15を通過する。この潤滑油冷却用電子膨張弁15を液冷媒が通過すると湿りガスに変化する。湿りガスは油冷却器7へ送られ、油冷却器7で潤滑油を熱交換によって冷却するとともに自身の乾き度が高まり、その後冷却された潤滑油と共に圧縮機1の中間圧室へ吸入される。   In addition to the mainstream liquid refrigerant circuit, the condenser 3 is connected with a refrigerant circuit for cooling the lubricating oil. The opening degree of the lubricating oil cooling electronic expansion valve 15 is controlled by the control unit 16, so that a part of the liquid refrigerant flowing out of the condenser 3 other than the main flow becomes the lubricating oil cooling electronic expansion valve. Pass through 15. When the liquid refrigerant passes through the lubricating oil cooling electronic expansion valve 15, it changes to wet gas. The wet gas is sent to the oil cooler 7, the lubricating oil is cooled by heat exchange in the oil cooler 7, and the dryness of the wet gas is increased. Thereafter, the wet gas is sucked into the intermediate pressure chamber of the compressor 1 together with the cooled lubricating oil. .

次に、油冷却系統の動作の概要について説明する。
油冷却器7の出口側配管に設けられた温度検出部17の内、図示しない温度センサーは潤滑油の温度を検知し、信号を発する。この信号は微弱な電圧信号であるため、図示しない変換部はこの信号を増幅しさらにA/D変換することにより制御部16が読み取れる温度データに変換する。制御部16は、温度検出部17から温度データを取得し、この温度データに基づいて、潤滑油の温度を検出し、この潤滑油の温度が制御範囲になるよう、潤滑油冷却用電子膨張弁15に開度制御信号(パルス信号)を送る。潤滑油冷却用電子膨張弁15のモーターは、この開度制御信号(パルス信号)を受信すると、パルス信号の数またはパルス信号のON時間に応じて回転することで弁の開度を調整し、潤滑油冷却用の冷媒の流量を制御する。
なお、制御部16による潤滑油冷却用電子膨張弁15の開度は、定常運転時よりも過渡運転時の方が大きくなる。
Next, an outline of the operation of the oil cooling system will be described.
Of the temperature detector 17 provided in the outlet side pipe of the oil cooler 7, a temperature sensor (not shown) detects the temperature of the lubricating oil and generates a signal. Since this signal is a weak voltage signal, a converter (not shown) amplifies this signal and further A / D converts it into temperature data that can be read by the controller 16. The control unit 16 acquires temperature data from the temperature detection unit 17, detects the temperature of the lubricating oil based on the temperature data, and controls the lubricating oil cooling electronic expansion valve so that the temperature of the lubricating oil falls within the control range. 15 sends an opening control signal (pulse signal). When receiving the opening control signal (pulse signal), the motor of the electronic expansion valve 15 for lubricating oil cooling adjusts the opening of the valve by rotating according to the number of pulse signals or the ON time of the pulse signals, Controls the flow rate of the coolant for cooling the lubricating oil.
Note that the opening degree of the lubricating oil cooling electronic expansion valve 15 by the control unit 16 is larger during transient operation than during steady operation.

図2は本発明に係る冷凍装置の実施の形態1における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図1及び図2を用いて説明する。
制御部16は起動されると、まずカウンタークリアやデータ類の初期値設定などの初期化処理を行う(ステップS201)。次に制御部16は温度検出部17から潤滑油の温度を取得し(ステップS202)、潤滑油の温度を予め設定した目標上限温度と比較し、潤滑油の温度が目標上限温度以下か否かを調べる(ステップS203)。潤滑油の温度が目標上限温度以下であれば、制御部16は潤滑油の温度が予め設定した目標下限温度以上であるか否かを調べる(ステップS210)。潤滑油の温度が目標下限温度以上であれば、正常なので、制御部16は潤滑油冷却用電子膨張弁15の開度をそのまま保持して運転を継続するとともに、所定時間t1が経過したか否か監視し(ステップS208)、所定時間t1が経過したらステップS202へ戻り、再び、潤滑油の温度取得を再開する。ステップS210において、潤滑油の温度が目標下限温度よりも低ければ、制御部16は、潤滑油冷却用電子膨張弁15の開度をダウン(閉じていく)させる(ステップS211)。これにより、潤滑油冷却用の冷媒の流量が減少するので、潤滑油の冷却が弱まり、潤滑油の温度は次第に上昇していく。
FIG. 2 is a flowchart showing the lubricating oil cooling operation of the control unit 16 in the first embodiment of the refrigeration apparatus according to the present invention. Next, the lubricating oil cooling operation of the control unit 16 will be described with reference to FIGS. 1 and 2.
When the control unit 16 is activated, it first performs initialization processing such as counter clearing and data initial value setting (step S201). Next, the control unit 16 acquires the temperature of the lubricating oil from the temperature detection unit 17 (step S202), compares the temperature of the lubricating oil with a preset target upper limit temperature, and determines whether the temperature of the lubricating oil is equal to or lower than the target upper limit temperature. (Step S203). If the temperature of the lubricating oil is equal to or lower than the target upper limit temperature, the control unit 16 checks whether the temperature of the lubricating oil is equal to or higher than a preset target lower limit temperature (step S210). If the temperature of the lubricating oil is equal to or higher than the target lower limit temperature, it is normal, and the control unit 16 continues the operation while maintaining the opening of the electronic expansion valve 15 for cooling the lubricating oil, and whether or not the predetermined time t1 has elapsed. (Step S208), when the predetermined time t1 has elapsed, the process returns to step S202, and the temperature acquisition of the lubricating oil is resumed. In step S210, if the temperature of the lubricating oil is lower than the target lower limit temperature, the control unit 16 decreases (closes) the opening degree of the lubricating oil cooling electronic expansion valve 15 (step S211). As a result, the flow rate of the coolant for cooling the lubricating oil decreases, so that the cooling of the lubricating oil is weakened, and the temperature of the lubricating oil gradually increases.

ステップS203の比較において、潤滑油の温度が目標上限温度を上回っていれば、制御部16は潤滑油冷却用電子膨張弁15の開度をアップ(開いていく)させる(ステップS204)。このときの開度制御を以下、開操作と呼ぶこともある。これにより、制御部16は定常運転から過渡運転に切り替わる。また、潤滑油は冷媒によって冷やされ、潤滑油の温度上昇を冷媒の冷却により吸収できれば、潤滑油の温度は次第に低下していく。   In the comparison in step S203, if the temperature of the lubricating oil exceeds the target upper limit temperature, the control unit 16 increases (opens) the opening of the lubricating oil cooling electronic expansion valve 15 (step S204). The opening degree control at this time may be hereinafter referred to as an opening operation. As a result, the control unit 16 switches from steady operation to transient operation. Moreover, if the lubricating oil is cooled by the refrigerant and the temperature rise of the lubricating oil can be absorbed by the cooling of the refrigerant, the temperature of the lubricating oil gradually decreases.

しかしながら、潤滑油冷却用電子膨張弁15を通過した湿りガスによる潤滑油の冷却が潤滑油の温度上昇に追従できないほど不足しているとき、潤滑油の温度は目標上限温度よりもさらに高くなって危険の状態に陥る虞がある。そこで、このような事態の発生を防止するために、潤滑油冷却用電子膨張弁15の開度調整量を定常運転時の開度調整量の範囲よりもさらに大きくし、油冷却器7を通過する冷媒の量を急激な温度変化に対応できるように増やす必要がある。これを実現するために、制御部16は所定時間t1が経過するまで待った(ステップS205)後、再び温度検出部17から潤滑油の温度を取得し(ステップS206)、潤滑油の温度が目標上限温度より高い所定値Tと比較し(ステップS207)、潤滑油の温度がT以上でなければ安全と判断し、所定時間t1が経過するまでステップS208を繰り返し実行して待った後ステップS202へ戻る。   However, when the cooling of the lubricating oil by the humid gas that has passed through the lubricating oil cooling electronic expansion valve 15 is insufficient to follow the temperature rise of the lubricating oil, the temperature of the lubricating oil becomes higher than the target upper limit temperature. Risk of danger. Therefore, in order to prevent such a situation from occurring, the opening adjustment amount of the lubricating oil cooling electronic expansion valve 15 is made larger than the range of the opening adjustment amount during steady operation and passes through the oil cooler 7. It is necessary to increase the amount of the refrigerant to be able to cope with a sudden temperature change. In order to realize this, the control unit 16 waits until the predetermined time t1 elapses (step S205), and then acquires the temperature of the lubricating oil from the temperature detection unit 17 again (step S206), and the temperature of the lubricating oil reaches the target upper limit. Compared with a predetermined value T higher than the temperature (step S207), if the temperature of the lubricating oil is not equal to or higher than T, it is determined that it is safe.

一方、ステップS207において、潤滑油の温度が所定値T以上であれば、制御部16はこのままでは危険と判断し、定常運転から過渡運転に切り替わる。また、潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせる(ステップS209)。この過渡運転時における開度調整量は定常運転時の開度調整量よりも大きい。例えば、定常運転時の開度調整量にさらに10パルス増加させて過渡運転時における開度調整量を算出し、この開度調整量を指令値としてパルスモーターに与えることにより、過渡運転時における過渡運転時における開度を定常運転時の開度よりも10パルス分だけ大きく開くことができる。
これにより、潤滑油冷却用の冷媒の流量は急増し、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。この結果、吐出ガス温度異常による圧縮機の異常停止を防止できる。この際の潤滑油の温度変化特性を図3に示す。図3に示すように、例えば目標上限温度を50℃、目標下限温度を40℃、所定温度(設定温度と呼ぶこともある)Tを55℃、異常停止温度を95℃とすると、潤滑油の温度が急上昇し、設定温度55℃を超えてしまうような場合、従来ならば、過渡運転時における膨張弁の制御方法は定常運転時と同様に開度の調整量および調整頻度が一定であったので、制御部16による潤滑油冷却用電子膨張弁15の開度制御では潤滑油の急激な温度上昇に追従できず異常停止温度に到達してしまい、圧縮機を異常停止せざるを得なかった。これに対して、本実施の形態によれば、潤滑油の急激な温度上昇に対して、制御部16は潤滑油冷却用電子膨張弁15の開度調整量をさらに大きく制御することで、潤滑油冷却用の冷媒流量を急増させることができ、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。
On the other hand, if the temperature of the lubricating oil is equal to or higher than the predetermined value T in step S207, the control unit 16 determines that it is dangerous as it is, and switches from steady operation to transient operation. Further, a control signal is sent to the lubricating oil cooling electronic expansion valve 15 to further increase the opening (step S209). The opening adjustment amount during the transient operation is larger than the opening adjustment amount during the steady operation. For example, the opening adjustment amount during steady operation is further increased by 10 pulses, the opening adjustment amount during transient operation is calculated, and this opening adjustment amount is given to the pulse motor as a command value. The opening during operation can be opened by 10 pulses larger than the opening during steady operation.
As a result, the flow rate of the coolant for cooling the lubricating oil increases rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas temperature can be suppressed. As a result, the abnormal stop of the compressor due to abnormal discharge gas temperature can be prevented. The temperature change characteristics of the lubricating oil at this time are shown in FIG. As shown in FIG. 3, for example, when the target upper limit temperature is 50 ° C., the target lower limit temperature is 40 ° C., the predetermined temperature (sometimes referred to as the set temperature) T is 55 ° C., and the abnormal stop temperature is 95 ° C. In the case where the temperature suddenly rises and exceeds the set temperature of 55 ° C., conventionally, the expansion valve control method during the transient operation has a constant opening adjustment amount and adjustment frequency as in the steady operation. Therefore, the opening degree control of the lubricating oil cooling electronic expansion valve 15 by the control unit 16 cannot follow the rapid temperature rise of the lubricating oil and reaches an abnormal stop temperature, and the compressor has to be stopped abnormally. . On the other hand, according to the present embodiment, the control unit 16 controls the opening adjustment amount of the lubricating oil cooling electronic expansion valve 15 to a greater degree in response to the rapid temperature rise of the lubricating oil. The coolant flow rate for oil cooling can be increased rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas temperature can be suppressed.

以上のように、本実施の形態によれば、潤滑油の急激な温度上昇に対して、制御部は潤滑油冷却用電子膨張弁の開度調整量を定常時の開度調整量よりも大きく制御することで、潤滑油冷却用の冷媒流量を急増させることができ、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。
この結果、吐出ガス温度異常による圧縮機の異常停止を防止できる。
As described above, according to the present embodiment, the controller adjusts the opening adjustment amount of the electronic expansion valve for cooling the lubricant larger than the opening adjustment amount in the steady state with respect to the rapid temperature rise of the lubricating oil. By controlling, the flow rate of the coolant for cooling the lubricating oil can be increased rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas temperature can be suppressed.
As a result, the abnormal stop of the compressor due to abnormal discharge gas temperature can be prevented.

実施の形態2.
実施の形態1では、潤滑油の温度上昇が定常時の温度に比べて急激となる過渡運転時の開度調整量を定常運転時の開度調整量よりも大きく制御し、開度調整頻度が定常時のそれとほぼ同じである場合について説明したが、過渡運転時の1回当たりの開度調整量は実施の形態1と同様であるが、開度調整頻度を定常時のそれよりも多くなるように制御しても良い。本実施の形態2では、このような場合について説明する。
図1の構成は本実施の形態でも用いられる。
図4は、本実施の形態2における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図1及び図4を用いて説明する。
ステップS201〜S208及びステップS210〜S211までは実施の形態1と同様に動作する。ステップS207において、潤滑油の温度が所定値T以上であれば、このままでは危険なので、制御部16は潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせる(ステップS401)。次に制御部16は定常運転時の所定時間t1よりも短い所定時間t2が経過するまで待ち(ステップS402)、所定時間t2が経過すると、制御部16は温度検出部17から潤滑油の温度を取得して(ステップS403)、ステップS205へ戻る。これにより、この過渡運転時における1回当たりの開度調整量は実施の形態1における開度調整量と変わりはないが、開度変更の時間間隔は実施の形態1における開度変更のそれよりも短くなるため、開度調整の頻度が実施の形態1よりも多くなる。例えば、定常運転時の開度調整の時間間隔が20秒とすると、過渡運転時の開度調整の時間間隔を10秒にする。これにより、所定時間当たりの潤滑油冷却用液冷媒の流量は定常運転時よりも増える。
例えば、開度の調整量を10パルスとすると、従来では運転初期は150パルス、さらに20秒経過後に160パルス、さらに20秒経過後に170パルス、さらに20秒経過後に180パルス、・・・というように20秒経過毎に10パルスずつ増えていくとすると、本発明では運転初期は150パルス、さらに10秒経過後に160パルス、さらに10秒経過後に170パルス、さらに10秒経過後に180パルス、・・・というように10秒経過毎に10パルスずつ増えていく。
なお、上記所定時間t2は周期的に行われる処理の所定時間t1とは別の周期である。
Embodiment 2. FIG.
In the first embodiment, the degree of opening adjustment during transient operation in which the temperature rise of the lubricating oil is abrupt compared to the temperature during steady operation is controlled to be larger than the amount of opening adjustment during steady operation, and the degree of opening adjustment frequency is Although the case where it is almost the same as that at the constant time has been described, the amount of opening adjustment per time at the time of transient operation is the same as that of the first embodiment, but the frequency of opening adjustment is higher than that at the time of steady operation. You may control as follows. In the second embodiment, such a case will be described.
The configuration of FIG. 1 is also used in this embodiment.
FIG. 4 is a flowchart showing the operation of cooling the lubricating oil by the control unit 16 in the second embodiment. Next, the lubricating oil cooling operation of the control unit 16 will be described with reference to FIGS.
Steps S201 to S208 and steps S210 to S211 operate in the same manner as in the first embodiment. In step S207, if the temperature of the lubricating oil is equal to or higher than the predetermined value T, it is dangerous as it is, so the control unit 16 sends a control signal to the lubricating oil cooling electronic expansion valve 15 to further increase the opening (step S401). . Next, the control unit 16 waits until a predetermined time t2 shorter than the predetermined time t1 during steady operation elapses (step S402). When the predetermined time t2 elapses, the control unit 16 determines the temperature of the lubricating oil from the temperature detection unit 17. Acquire (step S403) and return to step S205. Thereby, the opening adjustment amount per one time during this transient operation is not different from the opening adjustment amount in the first embodiment, but the time interval of the opening change is more than that of the opening change in the first embodiment. Therefore, the frequency of opening adjustment is higher than that in the first embodiment. For example, if the time interval for opening adjustment during steady operation is 20 seconds, the time interval for opening adjustment during transient operation is set to 10 seconds. As a result, the flow rate of the liquid coolant for cooling the lubricating oil per predetermined time is greater than that during steady operation.
For example, assuming that the adjustment amount of the opening is 10 pulses, conventionally, the initial operation is 150 pulses, 160 pulses after 20 seconds, 170 pulses after 20 seconds, 180 pulses after 20 seconds, and so on. In the present invention, if the pulse is increased by 10 pulses every 20 seconds, 150 pulses at the initial stage of operation, 160 pulses after 10 seconds, 170 pulses after 10 seconds, 180 pulses after 10 seconds,.・ Increase by 10 pulses every 10 seconds.
Note that the predetermined time t2 is a different period from the predetermined time t1 of processing performed periodically.

実施の形態3.
実施の形態1〜2では、潤滑油の温度上昇が定常時の温度に比べて急激となる過渡運転時の開度調整を定常運転時の開度調整よりも一定の割合で徐々に大きく制御する場合について説明したが、過渡運転時の開度調整頻度を潤滑油の温度が所定値を超える大きさに応じて変えるように制御しても良い。本実施の形態3では、このような場合について説明する。
図1の構成は本実施の形態でも用いられる。
図5は、本実施の形態3における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図1及び図5を用いて説明する。
ステップS201〜S208及びステップS210〜S211までは実施の形態1と同様に動作する。ステップS207において、潤滑油の温度が所定値T以上であれば、このままでは危険なので、制御部16は下記の式(1)に示すように潤滑油の温度Tjから所定値Tを減算して、潤滑油の温度が所定値を超過する温度(以下、超過温度と呼ぶ)Tovを算出する(ステップS501)。
Tov=Tj−T…………………………………………(1)
次に制御部16は算出した超過温度に応じて潤滑油冷却用電子膨張弁15の開度変更の時間間隔t2の値を変える。例えば、下記の式(2)を用いて時間間隔t2を算出する(ステップS502)。
t2=K1/Tov…………………………………………(2)
ここで、K1は定数、/は除算を示す。
なお、t2の算出に用いる数式は式(1)に限る必要はない。例えば下記の式(3)を用いても良い。
t2=1/(a*Tov+b*Tov^2)…………(3)
ここで、a、bはそれぞれ異なる定数、*は乗算、Tov^2はTovの2乗を示す。
Embodiment 3 FIG.
In the first and second embodiments, the degree of opening adjustment during transient operation in which the temperature rise of the lubricating oil is abrupt compared to the temperature during steady operation is gradually controlled to be larger at a constant rate than the degree of opening adjustment during steady operation. Although the case has been described, the frequency of opening adjustment during transient operation may be controlled so as to change according to the magnitude of the lubricating oil temperature exceeding a predetermined value. In the third embodiment, such a case will be described.
The configuration of FIG. 1 is also used in this embodiment.
FIG. 5 is a flowchart showing the operation of cooling the lubricant by the control unit 16 according to the third embodiment. Next, the lubricating oil cooling operation of the control unit 16 will be described with reference to FIGS.
Steps S201 to S208 and steps S210 to S211 operate in the same manner as in the first embodiment. In step S207, if the temperature of the lubricating oil is equal to or higher than the predetermined value T, it is dangerous as it is, so the control unit 16 subtracts the predetermined value T from the lubricating oil temperature Tj as shown in the following equation (1), A temperature Tov at which the temperature of the lubricating oil exceeds a predetermined value (hereinafter referred to as excess temperature) Tov is calculated (step S501).
Tov = Tj−T ………………………………………… (1)
Next, the control unit 16 changes the value of the time interval t2 for changing the opening of the lubricating oil cooling electronic expansion valve 15 according to the calculated excess temperature. For example, the time interval t2 is calculated using the following equation (2) (step S502).
t2 = K1 / Tov …………………………………… (2)
Here, K1 is a constant, and / is division.
Note that the mathematical formula used to calculate t2 need not be limited to formula (1). For example, the following formula (3) may be used.
t2 = 1 / (a * Tov + b * Tov ^ 2) (3)
Here, a and b are different constants, * is multiplication, and Tov ^ 2 is the square of Tov.

次に制御部16は潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせる(ステップS401)。次に制御部16は算出した所定時間t2が経過するまで待ち(ステップS402)、所定時間t2が経過すると、制御部16は温度検出部17から潤滑油の温度を取得して(ステップS403)、ステップS205へ戻る。これにより、この過渡運転時における開度調整頻度は潤滑油の温度が所定値を超える温度Tovの大きさに応じて変わる。即ち、超過温度Tovが大きいほどt2は小さくなり、Tovが小さいほどt2は大きくなる。従って、温度上昇が急激なときはt2を小さくすることで開度調整頻度を多くして潤滑油冷却用の冷媒の流量を増加させ、温度上昇が急激でないときはt2を大きくすることで開度調整頻度を少なくして潤滑油冷却用の冷媒の流量を減少させる。これにより、温度上昇が急激でないときは開度調整頻度が少ないので、その分オーバーシュートあるいはアンダーシュートの発生が実施の形態2よりも少なくなり、安定した制御が可能となる。この際の潤滑油の温度変化特性は図3と似た形となり、潤滑油の温度が目標上限温度を超えた後の潤滑油の温度が目標上下限温度範囲内に収束する速度が実施の形態1〜2よりもなだらかとなり、図示されていないが過渡応答によるオーバーシュートあるいはアンダーシュートの発生が少なくなる。   Next, the control unit 16 sends a control signal to the lubricating oil cooling electronic expansion valve 15 to further increase the opening degree (step S401). Next, the control unit 16 waits until the calculated predetermined time t2 elapses (step S402). When the predetermined time t2 elapses, the control unit 16 acquires the temperature of the lubricating oil from the temperature detection unit 17 (step S403). The process returns to step S205. As a result, the frequency of opening adjustment during the transient operation varies depending on the temperature Tov at which the temperature of the lubricating oil exceeds a predetermined value. That is, t2 becomes smaller as the excess temperature Tov becomes larger, and t2 becomes larger as Tov becomes smaller. Therefore, when the temperature rise is abrupt, the opening adjustment frequency is increased by decreasing t2 to increase the flow rate of the coolant for cooling the lubricating oil, and when the temperature rise is not abrupt, the opening is increased by increasing t2. Decrease the frequency of adjustment to reduce the flow rate of the coolant for cooling the lubricating oil. As a result, when the temperature rise is not rapid, the degree of opening adjustment is low, and accordingly, overshoot or undershoot is less generated than in the second embodiment, and stable control is possible. The temperature change characteristic of the lubricating oil at this time has a shape similar to that in FIG. 3, and the speed at which the lubricating oil temperature converges within the target upper and lower temperature range after the lubricating oil temperature exceeds the target upper limit temperature is shown in the embodiment. Although it is gentler than 1 and 2, although not shown, the occurrence of overshoot or undershoot due to transient response is reduced.

実施の形態4.
実施の形態3では、過渡運転時の開度調整頻度を潤滑油の温度が所定値を超える大きさに応じて変えるように制御したが、過渡運転時の開度調整頻度でなく、開度調整量を潤滑油の温度が所定値を超える大きさに応じて変えるように制御しても良い。本実施の形態4では、このような場合について説明する。
図1の構成は本実施の形態でも用いられる。
図6は、本実施の形態4における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図1及び図6を用いて説明する。
ステップS201〜S208及びステップS210〜S211までは実施の形態1と同様に動作する。ステップS207において、潤滑油の温度が所定値T以上であれば、このままでは危険なので、制御部16は下記の式(1)に示すように潤滑油の温度Tjから所定値Tを減算して、潤滑油の温度が所定値を超過する温度Tovを算出する(ステップS501)。
Tov=Tj−T…………………………………………(1)
次に制御部16は算出した超過温度に応じて潤滑油冷却用電子膨張弁15の開度OPを変える。例えば、下記の式(4)を用いて潤滑油冷却用電子膨張弁15の開度を算出する(ステップS1301)。
OP=K2*Tov………………………………………(4)
ここで、K2は比例定数、*は乗算を示す。
なお、開度OPの算出に用いる数式は式(1)に限る必要はない。例えば下記の式(5)を用いても良い。
OP=a*Tov+b*Tov^2……………………(5)
ここで、a、bはそれぞれ異なる定数、*は乗算、Tov^2はTovの2乗を示す。
次に制御部16は潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせた(ステップS209)後、ステップS205へ戻る。これにより、この過渡運転時における開度調整量は潤滑油の温度が所定値を超える温度Tovの大きさに応じて変わる。即ち、超過温度Tovが大きいほど潤滑油冷却用電子膨張弁15の開度OPは大きくなり、超過温度Tovが小さいほど潤滑油冷却用電子膨張弁15の開度OPは小さくなる。従って、温度上昇が急激なときは開度OPを大きくして潤滑油冷却用の冷媒の流量を増加させ、温度上昇が急激でないときは開度OPを小さくして潤滑油冷却用の液冷媒の流量を減少させる。これにより、温度上昇が急激でないときは開度調整量が少ないので、その分オーバーシュートあるいはアンダーシュートの発生が実施の形態2よりも少なくなり、安定した制御が可能となる。この際の潤滑油の温度変化特性は図3と似た形となり、潤滑油の温度が目標上限温度を超えた後の潤滑油の温度が目標上下限温度範囲内に収束する速度が実施の形態1〜2よりもなだらかとなり、図示されていないが過渡応答によるオーバーシュートあるいはアンダーシュートの発生が少なくなる。
Embodiment 4 FIG.
In the third embodiment, the frequency of opening adjustment at the time of transient operation is controlled so as to change according to the magnitude of the lubricating oil temperature exceeding the predetermined value. The amount may be controlled so as to change depending on the magnitude of the lubricating oil temperature exceeding a predetermined value. In the fourth embodiment, such a case will be described.
The configuration of FIG. 1 is also used in this embodiment.
FIG. 6 is a flowchart illustrating the operation of cooling the lubricant by the control unit 16 according to the fourth embodiment. Next, the lubricating oil cooling operation of the control unit 16 will be described with reference to FIGS.
Steps S201 to S208 and steps S210 to S211 operate in the same manner as in the first embodiment. In step S207, if the temperature of the lubricating oil is equal to or higher than the predetermined value T, it is dangerous as it is, so the control unit 16 subtracts the predetermined value T from the lubricating oil temperature Tj as shown in the following equation (1), A temperature Tov at which the temperature of the lubricating oil exceeds a predetermined value is calculated (step S501).
Tov = Tj−T ………………………………………… (1)
Next, the control unit 16 changes the opening OP of the lubricating oil cooling electronic expansion valve 15 in accordance with the calculated excess temperature. For example, the opening degree of the lubricating oil cooling electronic expansion valve 15 is calculated using the following equation (4) (step S1301).
OP = K2 * Tov ………………………………… (4)
Here, K2 is a proportionality constant, and * indicates multiplication.
The mathematical formula used for calculating the opening degree OP need not be limited to the formula (1). For example, the following formula (5) may be used.
OP = a * Tov + b * Tov ^ 2 …………………… (5)
Here, a and b are different constants, * is multiplication, and Tov ^ 2 is the square of Tov.
Next, the control unit 16 sends a control signal to the lubricating oil cooling electronic expansion valve 15 to further increase the opening (step S209), and then returns to step S205. Thereby, the opening adjustment amount at the time of the transient operation changes according to the magnitude of the temperature Tov at which the temperature of the lubricating oil exceeds a predetermined value. That is, the larger the excess temperature Tov, the larger the opening OP of the lubricating oil cooling electronic expansion valve 15, and the smaller the excess temperature Tov, the smaller the opening OP of the lubricating oil cooling electronic expansion valve 15. Accordingly, when the temperature rises suddenly, the opening degree OP is increased to increase the flow rate of the coolant for cooling the lubricating oil, and when the temperature rise is not sudden, the opening degree OP is decreased to reduce the liquid refrigerant for cooling the lubricant oil. Reduce the flow rate. Thereby, when the temperature rise is not abrupt, the amount of opening adjustment is small, and accordingly, the occurrence of overshoot or undershoot is less than that in the second embodiment, and stable control is possible. The temperature change characteristic of the lubricating oil at this time has a shape similar to that in FIG. 3, and the speed at which the lubricating oil temperature converges within the target upper and lower temperature range after the lubricating oil temperature exceeds the target upper limit temperature is shown in the embodiment. Although it is gentler than 1 and 2, although not shown, the occurrence of overshoot or undershoot due to transient response is reduced.

実施の形態5.
実施の形態1〜4では、潤滑油の温度の大小に基づいて潤滑油冷却用電子膨張弁15の開度を制御する場合について説明したが、潤滑油の温度の大小でなく、潤滑油の温度の単位時間当たりの上昇率に基づいて潤滑油冷却用電子膨張弁15の開度を制御しても良い。本実施の形態5では、このような場合について説明する。
図1の構成は本実施の形態でも用いられる。
図7は、本実施の形態5における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図1及び図7を用いて説明する。
ステップS201〜S202までは実施の形態1と同様に動作する。
次に制御部16は潤滑油の温度の単位時間当たりの上昇率を算出する(ステップS601)。この上昇率は1つ前の周期に取得した潤滑油の温度を制御部16が内蔵する図示しない記憶部に記憶させておき、今回取得した潤滑油の温度との差分を算出し、これを周期時間で除算することにより得られる。次に制御部16は算出した潤滑油の温度の単位時間当たりの上昇率を目標上限温度上昇率と比較し、潤滑油の温度の単位時間当たりの上昇率が目標上限温度上昇率以上か否か調べる(ステップS602)。潤滑油の温度の単位時間当たりの上昇率が目標上限温度上昇率よりも低ければ、制御部16は、定常運転と判断し、潤滑油の温度を予め設定した目標上限温度と比較し、潤滑油の温度が目標上限温度以下か否かを調べる(ステップS203)。潤滑油の温度が目標上限温度以下であれば、制御部16は潤滑油の温度が予め設定した目標下限温度以上であるか否かを調べる(ステップS210)。潤滑油の温度が目標下限温度以上であれば、正常なので、潤滑油冷却用電子膨張弁15の開度をそのまま保持して運転を行うとともに、所定時間t1が経過するまで待ち(ステップS208)、その後ステップS202へ戻る。ステップS210において、潤滑油の温度が目標下限温度よりも低ければ、制御部16は、潤滑油冷却用電子膨張弁15の開度をダウンさせ(ステップS211)、所定時間t1が経過するまで待ち、その後ステップS202へ戻る。これにより、潤滑油冷却用の冷媒の流量が減少するので、潤滑油の温度は上昇する。上記ステップS202〜S211の動作を繰り返し実行することにより、潤滑油の温度は目標下限温度以上になる。
Embodiment 5 FIG.
In the first to fourth embodiments, the case where the opening degree of the lubricating oil cooling electronic expansion valve 15 is controlled based on the temperature of the lubricating oil has been described. However, the temperature of the lubricating oil is not the magnitude of the lubricating oil. The opening degree of the lubricating oil cooling electronic expansion valve 15 may be controlled based on the rate of increase per unit time. In the fifth embodiment, such a case will be described.
The configuration of FIG. 1 is also used in this embodiment.
FIG. 7 is a flowchart showing the operation of cooling the lubricating oil by the control unit 16 in the fifth embodiment. Next, the lubricating oil cooling operation of the control unit 16 will be described with reference to FIGS.
Steps S201 to S202 operate in the same manner as in the first embodiment.
Next, the control unit 16 calculates the rate of increase in the temperature of the lubricating oil per unit time (step S601). As for this rate of increase, the temperature of the lubricating oil acquired in the previous cycle is stored in a storage unit (not shown) built in the control unit 16, a difference from the temperature of the lubricating oil acquired this time is calculated, and this is calculated as a cycle. It is obtained by dividing by time. Next, the control unit 16 compares the calculated increase rate of the lubricant temperature per unit time with the target upper limit temperature increase rate, and determines whether the increase rate of the lubricant temperature per unit time is equal to or higher than the target upper limit temperature increase rate. It investigates (step S602). If the rate of increase in the temperature of the lubricating oil per unit time is lower than the target upper limit temperature increase rate, the control unit 16 determines that the operation is steady, compares the temperature of the lubricating oil with a preset target upper limit temperature, and It is checked whether or not the temperature is equal to or lower than the target upper limit temperature (step S203). If the temperature of the lubricating oil is equal to or lower than the target upper limit temperature, the control unit 16 checks whether the temperature of the lubricating oil is equal to or higher than a preset target lower limit temperature (step S210). If the temperature of the lubricating oil is equal to or higher than the target lower limit temperature, it is normal, the operation is performed while maintaining the opening degree of the lubricating oil cooling electronic expansion valve 15 as it is, and waiting until a predetermined time t1 elapses (step S208). Thereafter, the process returns to step S202. In step S210, if the temperature of the lubricating oil is lower than the target lower limit temperature, the control unit 16 decreases the opening of the lubricating oil cooling electronic expansion valve 15 (step S211), and waits until a predetermined time t1 elapses. Thereafter, the process returns to step S202. As a result, the flow rate of the coolant for cooling the lubricating oil decreases, so the temperature of the lubricating oil rises. By repeatedly executing the operations in steps S202 to S211, the temperature of the lubricating oil becomes equal to or higher than the target lower limit temperature.

ステップS203の比較において、潤滑油の温度が目標上限温度を上回っていれば、制御部16は潤滑油冷却用電子膨張弁15の開度をアップさせる(ステップS204)。このときの開度制御を以下、開操作と呼ぶこともある。これにより、制御部16は定常運転から過渡運転に切り替わる。また、潤滑油は冷媒によって冷やされ、潤滑油の温度上昇を冷媒の冷却により吸収できれば、潤滑油の温度は次第に低下していく。   If the lubricating oil temperature exceeds the target upper limit temperature in the comparison in step S203, the control unit 16 increases the opening degree of the lubricating oil cooling electronic expansion valve 15 (step S204). The opening degree control at this time may be hereinafter referred to as an opening operation. As a result, the control unit 16 switches from steady operation to transient operation. Moreover, if the lubricating oil is cooled by the refrigerant and the temperature rise of the lubricating oil can be absorbed by the cooling of the refrigerant, the temperature of the lubricating oil gradually decreases.

ステップS602の比較において、潤滑油の温度の単位時間当たりの上昇率が目標上限温度上昇率以上ならば、制御部16は過渡運転であると判断する。過渡運転では危険な温度になる虞があるので、制御部16は潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせる(ステップS603)。この過渡運転時における開度調整量は定常運転時の開度調整量よりも大きい。例えば、定常運転時の開度調整量にさらに10パルス増加させて過渡運転時における開度調整量を算出し、この操作量を指令値としてパルスモーターに与えることにより、過渡運転時における過渡運転時における開度を定常運転時の開度よりも10パルス分だけ大きく開くことができる。
これにより、潤滑油冷却用の冷媒の流量は急増し、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。この結果、吐出ガス温度異常による圧縮機の異常停止を防止できる。この際の潤滑油の温度変化特性を図8に示す。図8に示すように、例えば目標上限温度を50℃、目標下限温度を40℃、所定温度(設定温度と呼ぶこともある)Tを55℃、異常停止温度を95℃とすると、潤滑油の温度が急上昇し、設定温度55℃を超えてしまうような場合、従来ならば、定常運転時の開度のみで対応していたので、制御部16による潤滑油冷却用電子膨張弁15の開度制御では潤滑油の急激な温度上昇に追従できず異常停止温度に到達してしまい、圧縮機を異常停止せざるを得なかった。これに対して、本実施の形態によれば、潤滑油の急激な温度上昇に対して、制御部16は潤滑油冷却用電子膨張弁15の開度をさらに大きく制御することで、潤滑油冷却用の冷媒の流量を急増させることができ、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。この潤滑油の急上昇は時間に対する温度の変化を捉えて検出するので、定常運転時でも検出可能であり、いち早く異常の発生を予測することが可能であり、異常停止の発生をより確実に防止できる。
If the increase rate per unit time of the temperature of the lubricating oil is equal to or higher than the target upper limit temperature increase rate in the comparison in step S602, the control unit 16 determines that the operation is transient. Since there is a risk of a dangerous temperature in the transient operation, the control unit 16 sends a control signal to the lubricating oil cooling electronic expansion valve 15 to further increase the opening (step S603). The opening adjustment amount during the transient operation is larger than the opening adjustment amount during the steady operation. For example, by increasing the opening adjustment amount during steady operation by 10 pulses and calculating the opening adjustment amount during transient operation, and giving this manipulated variable to the pulse motor as a command value, during transient operation during transient operation Can be opened by 10 pulses larger than the opening during steady operation.
As a result, the flow rate of the coolant for cooling the lubricating oil increases rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas temperature can be suppressed. As a result, the abnormal stop of the compressor due to abnormal discharge gas temperature can be prevented. The temperature change characteristic of the lubricating oil at this time is shown in FIG. As shown in FIG. 8, for example, when the target upper limit temperature is 50 ° C., the target lower limit temperature is 40 ° C., the predetermined temperature (sometimes referred to as the set temperature) T is 55 ° C., and the abnormal stop temperature is 95 ° C. In the case where the temperature suddenly rises and exceeds the set temperature 55 ° C., conventionally, only the opening at the time of steady operation was used, so the opening of the electronic expansion valve 15 for cooling the lubricating oil by the control unit 16 The control could not follow the sudden rise in the temperature of the lubricating oil and reached an abnormal stop temperature, which forced the compressor to stop abnormally. On the other hand, according to the present embodiment, the control unit 16 further controls the opening degree of the lubricating oil cooling electronic expansion valve 15 in response to a rapid temperature rise of the lubricating oil, thereby cooling the lubricating oil. Therefore, the flow rate of the refrigerant can be rapidly increased, and the rapid increase in the temperature of the lubricating oil and the discharge gas temperature can be suppressed. This sudden rise in lubricating oil is detected by detecting changes in temperature with respect to time, so it can be detected even during steady operation, and it is possible to predict the occurrence of an abnormality quickly and to more reliably prevent the occurrence of an abnormal stop. .

以上のように、本実施の形態によれば、潤滑油の急激な温度上昇が発生すると、制御部は温度上昇率に基づいてこの潤滑油の急激な温度上昇を検出し、潤滑油冷却用電子膨張弁の開度を定常時の開度よりも大きく制御することで、潤滑油冷却用の冷媒の流量を急増させることができ、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。
この結果、定常運転時においても傾きを検出することにより、吐出ガスの温度異常をいち早く検出することが可能であり、吐出ガスの温度異常による圧縮機の異常停止を上記実施の形態よりも確実に防止できる。
As described above, according to the present embodiment, when a sudden temperature rise of the lubricating oil occurs, the control unit detects the sudden temperature rise of the lubricating oil based on the temperature rise rate, and the lubricating oil cooling electron By controlling the opening of the expansion valve to be larger than the opening at the time of steady operation, the flow rate of the coolant for cooling the lubricating oil can be increased rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas temperature can be suppressed.
As a result, by detecting the inclination even during steady operation, it is possible to quickly detect an abnormal temperature of the discharge gas, and the abnormal stop of the compressor due to the abnormal temperature of the discharge gas can be detected more reliably than in the above embodiment. Can be prevented.

実施の形態6.
実施の形態5では、潤滑油の温度の単位時間当たりの上昇率に基づいて潤滑油冷却用電子膨張弁15の開度を制御する際に、潤滑油の温度上昇が定常時の温度に比べて急激となる過渡運転時の開度調整量を定常運転時の開度調整量よりも大きく制御し、開度調整頻度が定常時のそれとほぼ同じである場合について説明したが、過渡運転時の1回当たりの開度調整量は実施の形態1と同様であるが、開度調整頻度を定常時のそれよりも多くなるように制御しても良い。本実施の形態6では、このような場合について説明する。
図1の構成は本実施の形態でも用いられる。
図9は、本実施の形態6における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図1及び図9を用いて説明する。
ステップS201〜S602までは実施の形態5と同様に動作する。ステップS602の比較において、潤滑油の温度の単位時間当たりの上昇率が目標上限温度上昇率よりも低ければ、図2のステップS203〜S211及びステップS208と同様に動作する。ステップS602の比較において、潤滑油の温度の単位時間当たりの上昇率が目標上限温度上昇率以上ならば、制御部16は過渡運転であると判断する。過渡運転では危険な温度になる虞があるので、制御部16は潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせる(ステップS604)。次に制御部16は定常運転時の所定時間t1よりも短い所定時間t2が経過するまで待ち(ステップS402)、ステップS202へ戻る。これにより、この過渡運転時における1回当たりの開度調整量は定常運転時における開度調整量と変わりはないが、開度変更の時間間隔は実施の形態5における開度変更のそれよりも短くなるため、開度の調整頻度が実施の形態5よりも多くなる。
これにより、潤滑油の温度変化特性は図8と似た形となる。
Embodiment 6 FIG.
In the fifth embodiment, when the opening degree of the lubricating oil cooling electronic expansion valve 15 is controlled based on the rate of increase of the lubricating oil temperature per unit time, the temperature rise of the lubricating oil is higher than the steady-state temperature. The opening adjustment amount at the time of the transient operation that becomes abrupt is controlled to be larger than the opening adjustment amount at the time of the steady operation, and the opening adjustment frequency is almost the same as that at the steady operation. The amount of opening adjustment per rotation is the same as in the first embodiment, but the opening adjustment frequency may be controlled to be higher than that in the steady state. In the sixth embodiment, such a case will be described.
The configuration of FIG. 1 is also used in this embodiment.
FIG. 9 is a flowchart showing the operation of cooling the lubricating oil by the control unit 16 in the sixth embodiment. Next, the lubricating oil cooling operation of the control unit 16 will be described with reference to FIGS.
Steps S201 to S602 operate in the same manner as in the fifth embodiment. In the comparison in step S602, if the rate of increase in the temperature of the lubricating oil per unit time is lower than the target upper limit temperature increase rate, the operation is performed in the same manner as in steps S203 to S211 and step S208 in FIG. If the increase rate per unit time of the temperature of the lubricating oil is equal to or higher than the target upper limit temperature increase rate in the comparison in step S602, the control unit 16 determines that the operation is transient. Since there is a risk of a dangerous temperature during the transient operation, the control unit 16 sends a control signal to the lubricating oil cooling electronic expansion valve 15 to further increase the opening (step S604). Next, the control unit 16 waits until a predetermined time t2 shorter than the predetermined time t1 during steady operation has elapsed (step S402), and returns to step S202. Thereby, the opening adjustment amount per time at the time of the transient operation is not different from the opening adjustment amount at the time of steady operation, but the time interval of the opening change is larger than that of the opening change in the fifth embodiment. Since it becomes shorter, the adjustment frequency of the opening degree is higher than that in the fifth embodiment.
As a result, the temperature change characteristic of the lubricating oil is similar to that shown in FIG.

なお、上記の例では、制御部は、潤滑油の温度の単位時間当たりの上昇率が所定値を超えたときに、潤滑油冷却用電子膨張弁15の開度の調整頻度を増やすことについて説明したが、潤滑油の温度の単位時間当たりの上昇率が所定値を超えた量に基づいて、潤滑油冷却用電子膨張弁15の開度の調整頻度を変えるように構成しても良い。この場合も上記と同様の効果に加えて、オーバーシュートやアンダーシュートの発生頻度が少なくなり、より安定した運転が可能となる。
また、潤滑油の温度の単位時間当たりの上昇率が所定値を超えた量に基づいて、潤滑油冷却用電子膨張弁15の開度調整量を変えるように構成しても良い。この場合も上記と同様の効果に加えて、オーバーシュートやアンダーシュートの発生頻度が少なくなり、より安定した運転が可能となる。
In the above example, the control unit describes increasing the adjustment frequency of the opening degree of the lubricating oil cooling electronic expansion valve 15 when the rate of increase in the temperature of the lubricating oil per unit time exceeds a predetermined value. However, the adjustment frequency of the opening degree of the lubricating oil cooling electronic expansion valve 15 may be changed based on the amount by which the rate of increase in the lubricating oil temperature per unit time exceeds a predetermined value. In this case, in addition to the same effect as described above, the frequency of occurrence of overshoot and undershoot is reduced, and more stable operation is possible.
The opening adjustment amount of the lubricating oil cooling electronic expansion valve 15 may be changed based on the amount by which the rate of increase in the temperature of the lubricating oil per unit time exceeds a predetermined value. In this case, in addition to the same effect as described above, the frequency of occurrence of overshoot and undershoot is reduced, and more stable operation is possible.

実施の形態7.
実施の形態1〜6では、潤滑油の温度に基づいて潤滑油冷却用電子膨張弁15の開度を制御する場合について説明したが、吐出ガスの温度に基づいて潤滑油冷却用電子膨張弁15の開度を制御しても良い。本実施の形態7では、このような場合について説明する。
図10は本発明に係る冷凍装置の実施の形態7における要部冷媒回路を示す構成図である。図10において、図1と同符号は同一または相当部分を示す。潤滑油の温度を検出する温度検出部17に代えて、圧縮機1から吐出される吐出ガスの温度を検出する温度検出部18を設けた以外は図1と同一である。温度検出部17は、図示しないが、油冷却器7の出口側配管の温度を検出して信号を発生する温度センサーとこの温度センサーから信号を増幅し、A/D変換して制御部16へ送る変換部とから構成されている。また、温度センサーはサーミスターや熱電対などで構成され、潤滑油の温度を検知し、信号を発する。
Embodiment 7 FIG.
Although the first to sixth embodiments have described the case where the opening degree of the lubricating oil cooling electronic expansion valve 15 is controlled based on the temperature of the lubricating oil, the lubricating oil cooling electronic expansion valve 15 is controlled based on the temperature of the discharge gas. The degree of opening may be controlled. In the seventh embodiment, such a case will be described.
FIG. 10 is a configuration diagram showing a main refrigerant circuit in Embodiment 7 of the refrigeration apparatus according to the present invention. 10, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. 1 except that a temperature detector 18 for detecting the temperature of the discharge gas discharged from the compressor 1 is provided in place of the temperature detector 17 for detecting the temperature of the lubricating oil. Although not shown, the temperature detector 17 detects the temperature of the outlet side pipe of the oil cooler 7 and generates a signal, amplifies the signal from the temperature sensor, A / D converts it, and sends it to the controller 16. And a conversion unit for sending. The temperature sensor is composed of a thermistor, a thermocouple, etc., and detects the temperature of the lubricating oil and emits a signal.

図11は、本実施の形態7における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図10及び図11を用いて説明する。
制御部16は起動されると、まずカウンタークリアやデータ類の初期値設定などの初期化処理を行う(ステップS201)。次に制御部16は温度検出部18から吐出ガスの温度を取得し(ステップS1001)、吐出ガスの温度を予め設定した目標上限温度と比較し、吐出ガスの温度が目標上限温度以下か否かを調べる(ステップS1002)。吐出ガスの温度が目標上限温度以下であれば、制御部16は吐出ガスの温度が予め設定した目標下限温度以上であるか否かを調べる(ステップS1005)。吐出ガスの温度が目標下限温度以上であれば、正常なので、潤滑油冷却用電子膨張弁15の開度をそのまま保持して運転を行うとともに、所定時間t1が経過するまで待ち(ステップS208)、その後ステップS1001へ戻り、通常の処理を再開する。ステップS1005において、吐出ガスの温度が目標下限温度よりも低ければ、制御部16は、潤滑油冷却用電子膨張弁15の開度をダウンさせる(絞る)(ステップS211)。
FIG. 11 is a flowchart illustrating the operation of cooling the lubricating oil by the control unit 16 according to the seventh embodiment. Next, the lubricating oil cooling operation of the control unit 16 will be described with reference to FIGS.
When the control unit 16 is activated, it first performs initialization processing such as counter clearing and data initial value setting (step S201). Next, the control unit 16 acquires the temperature of the discharge gas from the temperature detection unit 18 (step S1001), compares the temperature of the discharge gas with a preset target upper limit temperature, and determines whether or not the temperature of the discharge gas is equal to or lower than the target upper limit temperature. (Step S1002). If the temperature of the discharge gas is equal to or lower than the target upper limit temperature, the control unit 16 checks whether or not the temperature of the discharge gas is equal to or higher than a preset target lower limit temperature (step S1005). If the temperature of the discharge gas is equal to or higher than the target lower limit temperature, it is normal, and the operation is performed while maintaining the opening degree of the lubricating oil cooling electronic expansion valve 15 as it is, and waits until a predetermined time t1 has elapsed (step S208). Thereafter, the process returns to step S1001, and normal processing is resumed. In step S1005, if the temperature of the discharge gas is lower than the target lower limit temperature, the control unit 16 reduces (squeezes) the opening degree of the lubricating oil cooling electronic expansion valve 15 (step S211).

ステップS1002の比較において、吐出ガスの温度が目標上限温度を上回っていれば、制御部16は潤滑油冷却用電子膨張弁15の開度をアップさせる(ステップS204)。これにより、制御部16は定常運転から過渡運転に切り替わる。また、油冷却器7において潤滑油は湿りガスによって冷やされ、潤滑油の温度上昇を湿りガスの冷却により吸収できれば、潤滑油の温度は次第に低下していく。この潤滑油の温度の低下に伴い、吐出ガスの温度も低下していく。   In the comparison in step S1002, if the temperature of the discharge gas exceeds the target upper limit temperature, the controller 16 increases the opening of the lubricating oil cooling electronic expansion valve 15 (step S204). As a result, the control unit 16 switches from steady operation to transient operation. Further, if the lubricating oil is cooled by the wet gas in the oil cooler 7 and the increase in the temperature of the lubricating oil can be absorbed by the cooling of the wet gas, the temperature of the lubricating oil gradually decreases. As the temperature of the lubricating oil decreases, the temperature of the discharge gas also decreases.

しかしながら、圧縮機1から吐出された吐出ガスの温度上昇が急激であり、潤滑油冷却用電子膨張弁15を通過した冷媒により冷却された潤滑油による圧縮機の吐出ガスの冷却が圧縮機の吐出ガスの冷却温度上昇に追従できないような不足の状態であるとき、吐出ガスの温度は目標上限温度よりも高くなり危険の状態となる。そこで、この状態を防止するために、潤滑油冷却用電子膨張弁15の開度をさらに大きくしてここを通過する冷媒の流量をさらに増やす必要がある。これを実現するために、制御部16は所定時間t1が経過するまでステップS205を繰り返し実行して待った後、再び温度検出部18から吐出ガスの温度を取得し(ステップS1003)、吐出ガスの温度が目標上限温度より高い所定値Tと比較する(ステップS1004)。比較の結果、吐出ガスの温度がT以上でなければ安全と判断し、所定時間t1が経過するまでステップS208を繰り返し実行して待った後ステップS202へ戻る。   However, the temperature rise of the discharge gas discharged from the compressor 1 is abrupt, and the cooling of the discharge gas of the compressor by the lubricating oil cooled by the refrigerant that has passed through the lubricating oil cooling electronic expansion valve 15 is the discharge of the compressor. When the state is insufficient such that the rise in the cooling temperature of the gas cannot be followed, the temperature of the discharge gas becomes higher than the target upper limit temperature, which is in a dangerous state. Therefore, in order to prevent this state, it is necessary to further increase the opening of the lubricating oil cooling electronic expansion valve 15 and further increase the flow rate of the refrigerant passing therethrough. In order to realize this, the control unit 16 repeatedly executes step S205 and waits until the predetermined time t1 elapses, and then obtains the temperature of the discharge gas from the temperature detection unit 18 again (step S1003). Is compared with a predetermined value T higher than the target upper limit temperature (step S1004). As a result of the comparison, if the temperature of the discharge gas is not T or higher, it is determined that it is safe.

ステップS1004において、吐出ガスの温度が所定値T以上であれば、このままでは危険なので、制御部16は潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせた(ステップS209)後、ステップS205へ戻る。この過渡運転時における開度調整量は定常運転時の開度調整量よりも大きい。例えば、定常運転時の開度調整量にさらに10パルス増加させて過渡運転時における開度調整量を算出し、この調整量を指令値としてパルスモーターに与えることにより、過渡運転時における過渡運転時における開度を定常運転時の開度よりも10パルス分だけ大きく開くことができる。
これにより、潤滑油冷却用の冷媒の流量は急増し、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。この結果、吐出ガス温度異常による圧縮機の異常停止を防止できる。
In step S1004, if the temperature of the discharge gas is equal to or higher than the predetermined value T, it is dangerous as it is, so the control unit 16 sends a control signal to the lubricating oil cooling electronic expansion valve 15 to further increase the opening (step S209). Then, the process returns to step S205. The opening adjustment amount during the transient operation is larger than the opening adjustment amount during the steady operation. For example, the opening adjustment amount during transient operation is further increased by 10 pulses to calculate the opening adjustment amount during transient operation, and this adjustment amount is given to the pulse motor as a command value. Can be opened by 10 pulses larger than the opening during steady operation.
As a result, the flow rate of the coolant for cooling the lubricating oil increases rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas temperature can be suppressed. As a result, the abnormal stop of the compressor due to abnormal discharge gas temperature can be prevented.

本実施の形態によれば、吐出ガスの急激な温度上昇に対して、制御部16は潤滑油冷却用電子膨張弁の開度調整量をさらに大きく制御することで、潤滑油冷却用の冷媒の流量を急増させることができ、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。   According to the present embodiment, the control unit 16 controls the opening adjustment amount of the lubricating oil cooling electronic expansion valve to a greater degree in response to the sudden rise in temperature of the discharge gas, so that the refrigerant for cooling the lubricating oil can be controlled. The flow rate can be increased rapidly, and rapid increases in the temperature of the lubricating oil and the temperature of the discharge gas can be suppressed.

なお、上記の例では、実施の形態1に潤滑油の温度に代えて、吐出ガスの温度を適用する場合について説明したが、実施の形態2〜6についても同様に潤滑油の温度に代えて、適用することができ、同様の効果を奏する。   In the above example, the case where the temperature of the discharge gas is applied to the first embodiment instead of the temperature of the lubricating oil has been described, but the temperature of the lubricating oil is similarly applied to the second to sixth embodiments. Can be applied and have the same effect.

実施の形態8.
実施の形態7では、吐出ガスの温度に基づいて潤滑油冷却用電子膨張弁15の開度を制御する場合について説明したが、油冷却器の出口から流出された潤滑油冷却後の冷媒ガスの過熱度に基づいて潤滑油冷却用電子膨張弁15の開度を制御しても良い。本実施の形態8では、このような場合について説明する。
図12は本発明に係る冷凍装置の実施の形態8における要部冷媒回路を示す構成図である。図12において、図1と同符号は同一または相当部分を示す。潤滑油の温度を検出する温度検出部17に代えて、油冷却器7の出口から流出する中間圧力の潤滑油冷却後の冷媒ガスの温度を検出する温度検出部19とこの潤滑油冷却後の冷媒ガスの圧力を検出する圧力検出部20とを油冷却器7の出口側配管に設けた以外は図1と同一である。温度検出部19は、図示しないが、油冷却器7の出口側配管内を流れる潤滑油冷却後の冷媒ガスの温度を検出して信号を発生する温度センサーと、この温度センサーから信号を増幅し、A/D変換して制御部16へ送る変換部とから構成されている。また、温度センサーはサーミスターや熱電対などで構成され、潤滑油の温度を検知し、信号を発する。圧力検出部20は、図示しないが、油冷却器7の出口側配管の圧力を検出して信号を発生する圧電検出器とこの圧電検出器から信号を増幅し、A/D変換して制御部16へ送る変換部とから構成されている。
Embodiment 8 FIG.
In the seventh embodiment, the case where the opening degree of the lubricating oil cooling electronic expansion valve 15 is controlled based on the temperature of the discharge gas has been described. However, the refrigerant gas after cooling the lubricating oil that has flowed out from the outlet of the oil cooler has been described. The opening degree of the lubricating oil cooling electronic expansion valve 15 may be controlled based on the degree of superheat. In the eighth embodiment, such a case will be described.
FIG. 12 is a block diagram showing a main refrigerant circuit in the eighth embodiment of the refrigeration apparatus according to the present invention. 12, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. Instead of the temperature detection unit 17 for detecting the temperature of the lubricating oil, a temperature detection unit 19 for detecting the temperature of the refrigerant gas after the cooling of the intermediate pressure lubricating oil flowing out from the outlet of the oil cooler 7 and the cooling oil after cooling 1 except that a pressure detector 20 for detecting the pressure of the refrigerant gas is provided on the outlet side pipe of the oil cooler 7. Although not shown, the temperature detector 19 detects a temperature of the refrigerant gas after cooling the lubricating oil flowing in the outlet side pipe of the oil cooler 7 and generates a signal, and amplifies the signal from the temperature sensor. And a conversion unit that performs A / D conversion and sends the result to the control unit 16. The temperature sensor is composed of a thermistor, a thermocouple, etc., and detects the temperature of the lubricating oil and emits a signal. Although not shown, the pressure detector 20 detects the pressure of the outlet side pipe of the oil cooler 7 and generates a signal, amplifies the signal from this piezoelectric detector, A / D converts it, and the control unit And a conversion unit to be sent to 16.

図13は、本実施の形態8における制御部16の潤滑油冷却の動作を示すフローチャートである。次に、制御部16の潤滑油冷却の動作を図12及び図13を用いて説明する。
制御部16は起動されると、まずカウンタークリアやデータ類の初期値設定などの初期化処理を行う(ステップS201)。次に制御部16は温度検出部19から潤滑油冷却後の冷媒ガスの温度を取得し(ステップS1201)、圧力検出部20から潤滑油冷却後の冷媒ガスの圧力を取得する(ステップS1202)。次に制御部16は取得した潤滑油冷却後の冷媒ガスの圧力を飽和温度に変換し、変換した飽和温度を取得した温度から減算することで潤滑油冷却後の冷媒ガガスの過熱度を算出する(ステップS1203)。次に制御部16は潤滑油冷却後の冷媒ガスの過熱度を予め設定した目標上限過熱度と比較し、潤滑油冷却後の冷媒ガスの過熱度が目標上限過熱度以下か否かを調べる(ステップS1204)。潤滑油冷却後の冷媒ガスの過熱度が目標上限過熱度以下であれば、制御部16は潤滑油冷却後の冷媒ガスの過熱度が予め設定した目標下限過熱度以上であるか否かを調べる(ステップS1209)。潤滑油冷却後の冷媒ガスの過熱度が目標下限過熱度以上であれば、正常なので、制御部16は潤滑油冷却用電子膨張弁15の開度をそのまま保持して運転を行うとともに、所定時間t1が経過するまで待ち(ステップS208)、その後ステップS1201へ戻る。ステップS1209において、潤滑油冷却後の冷媒ガスの過熱度が目標下限過熱度よりも低ければ、制御部16は、潤滑油冷却用電子膨張弁15の開度をダウンさせ(ステップS211)、ステップS208へ進む。
FIG. 13 is a flowchart showing the operation of cooling the lubricant by the control unit 16 according to the eighth embodiment. Next, the operation of cooling the lubricant by the control unit 16 will be described with reference to FIGS.
When the control unit 16 is activated, it first performs initialization processing such as counter clearing and data initial value setting (step S201). Next, the control unit 16 acquires the temperature of the refrigerant gas after cooling the lubricating oil from the temperature detection unit 19 (step S1201), and acquires the pressure of the refrigerant gas after cooling the lubricating oil from the pressure detection unit 20 (step S1202). Next, the control unit 16 converts the acquired pressure of the refrigerant gas after cooling the lubricating oil into a saturation temperature, and subtracts the converted saturation temperature from the acquired temperature to calculate the degree of superheat of the refrigerant gas after cooling the lubricating oil. (Step S1203). Next, the control unit 16 compares the superheat degree of the refrigerant gas after cooling the lubricating oil with a preset target upper limit superheat degree to check whether the superheat degree of the refrigerant gas after cooling the lubricating oil is equal to or lower than the target upper limit superheat degree ( Step S1204). If the superheat degree of the refrigerant gas after cooling the lubricating oil is less than or equal to the target upper limit superheat degree, the control unit 16 checks whether or not the superheat degree of the refrigerant gas after cooling the lubricating oil is greater than or equal to a preset target lower limit superheat degree. (Step S1209). If the superheat degree of the refrigerant gas after cooling the lubricating oil is equal to or higher than the target lower limit superheat degree, it is normal, and the control unit 16 operates while maintaining the opening degree of the lubricating oil cooling electronic expansion valve 15 as it is for a predetermined time. Wait until t1 has elapsed (step S208), and then return to step S1201. If the superheat degree of the refrigerant gas after cooling the lubricating oil is lower than the target lower limit superheat degree in step S1209, the control unit 16 reduces the opening of the lubricating oil cooling electronic expansion valve 15 (step S211), and step S208. Proceed to

ステップS1204の比較において、潤滑油冷却後の冷媒ガスの過熱度が目標上限過熱度を上回っていれば、制御部16は潤滑油冷却用電子膨張弁15の開度をアップさせる(ステップS204)。これにより、制御部16は定常運転から過渡運転に切り替わる。また、油冷却器7において潤滑油は冷媒によって冷やされ、潤滑油の温度上昇を冷媒の冷却により吸収できれば、潤滑油の温度は次第に低下していく。この潤滑油の温度の低下に伴い、吐出ガスの温度も低下していく。   In the comparison in step S1204, if the superheat degree of the refrigerant gas after cooling the lubricant oil exceeds the target upper limit superheat degree, the control unit 16 increases the opening degree of the lubricant oil cooling electronic expansion valve 15 (step S204). As a result, the control unit 16 switches from steady operation to transient operation. Further, if the lubricating oil is cooled by the refrigerant in the oil cooler 7 and the temperature rise of the lubricating oil can be absorbed by the cooling of the refrigerant, the temperature of the lubricating oil gradually decreases. As the temperature of the lubricating oil decreases, the temperature of the discharge gas also decreases.

しかしながら、圧縮機1から吐出された吐出ガスの温度上昇が急激であり、油冷却器7での冷媒による潤滑油の冷却がこの温度上昇を吸収できないとき、即ち、潤滑油冷却用電子膨張弁15を通過した冷媒の流量が圧縮機の温度上昇に追従できないような不足の状態に陥っているとき、潤滑油の温度は目標上限温度よりも高くなり危険の状態となる。そこで、この状態を防止するために、潤滑油冷却用電子膨張弁15の開度をさらに大きくしてここを通過する冷媒の流量をさらに増やす必要がある。これを実現するために、制御部16は所定時間t1が経過するまでステップS205を繰り返し実行して待った後、再び温度検出部19から潤滑油冷却後の冷媒ガスの温度を取得し(ステップS1205)、さらに圧力検出部20から潤滑油冷却後の冷媒ガスの圧力を取得し(ステップS1206)、取得した潤滑油冷却後の冷媒ガスの温度と圧力から潤滑油冷却後の冷媒ガスの過熱度を算出する(ステップS1207)。次に制御部16は潤滑油冷却後の冷媒ガスの過熱度が目標上限過熱度より高い所定値Tと比較する(ステップS1208)。比較の結果、潤滑油冷却後の冷媒ガスの過熱度がT以上でなければ安全と判断し、所定時間t1が経過するまでステップS208を繰り返し実行して待った後ステップS1201へ戻る。   However, when the temperature rise of the discharge gas discharged from the compressor 1 is rapid and the cooling of the lubricating oil by the refrigerant in the oil cooler 7 cannot absorb this temperature rise, that is, the lubricating oil cooling electronic expansion valve 15. When the flow rate of the refrigerant that has passed through is in a shortage state that cannot follow the temperature rise of the compressor, the temperature of the lubricating oil becomes higher than the target upper limit temperature, which is in a dangerous state. Therefore, in order to prevent this state, it is necessary to further increase the opening of the lubricating oil cooling electronic expansion valve 15 and further increase the flow rate of the refrigerant passing therethrough. In order to realize this, the control unit 16 repeatedly executes step S205 and waits until the predetermined time t1 elapses, and then obtains the temperature of the refrigerant gas after cooling the lubricating oil from the temperature detection unit 19 again (step S1205). Further, the pressure of the refrigerant gas after cooling the lubricating oil is acquired from the pressure detection unit 20 (step S1206), and the degree of superheat of the refrigerant gas after cooling the lubricating oil is calculated from the obtained temperature and pressure of the refrigerant gas after cooling the lubricating oil. (Step S1207). Next, the control part 16 compares with the predetermined value T whose superheat degree of the refrigerant gas after lubricating oil cooling is higher than a target upper limit superheat degree (step S1208). As a result of the comparison, if the superheat degree of the refrigerant gas after cooling the lubricating oil is not T or more, it is determined to be safe, and step S208 is repeatedly executed until a predetermined time t1 elapses, and then the process returns to step S1201.

ステップS1208において、潤滑油冷却後の冷媒ガスの過熱度が所定値T以上であれば、このままでは危険なので、制御部16は潤滑油冷却用電子膨張弁15に制御信号を送って開度をさらにアップさせた(ステップS209)後、ステップS205へ戻る。この過渡運転時における開度調整量は定常運転時の開度調整量よりも大きい。例えば、定常運転時の開度調整量にさらに10パルス増加させて過渡運転時における開度調整量を算出し、この調整量を指令値としてパルスモーターに与えることにより、過渡運転時における過渡運転時における開度を定常運転時の開度よりも10パルス分だけ大きく開くことができる。
これにより、潤滑油冷却用の冷媒の流量は急増し、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。この結果、吐出ガスの温度異常による圧縮機の異常停止を防止できる。
In step S1208, if the degree of superheat of the refrigerant gas after cooling the lubricating oil is equal to or greater than the predetermined value T, it is dangerous to do so, so the control unit 16 sends a control signal to the lubricating oil cooling electronic expansion valve 15 to further increase the opening degree. After the increase (step S209), the process returns to step S205. The opening adjustment amount during the transient operation is larger than the opening adjustment amount during the steady operation. For example, the opening adjustment amount during transient operation is further increased by 10 pulses to calculate the opening adjustment amount during transient operation, and this adjustment amount is given to the pulse motor as a command value. Can be opened by 10 pulses larger than the opening during steady operation.
As a result, the flow rate of the coolant for cooling the lubricating oil increases rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas temperature can be suppressed. As a result, the abnormal stop of the compressor due to the temperature abnormality of the discharge gas can be prevented.

本実施の形態によれば、吐出ガスの急激な温度上昇が発生すると、制御部16は潤滑油冷却後の冷媒ガスの過熱度に基づいて吐出ガスの急激な温度上昇を検出し、このとき潤滑油冷却用電子膨張弁の開度を定常運転時の開度よりも拡大させることで、潤滑油冷却用の湿りガスを急増させることができ、潤滑油の温度および吐出ガス温度の急上昇を抑制できる。   According to the present embodiment, when a sudden temperature rise of the discharge gas occurs, the control unit 16 detects a sudden temperature rise of the discharge gas based on the degree of superheat of the refrigerant gas after cooling the lubricating oil. By increasing the opening of the electronic expansion valve for oil cooling more than the opening during steady operation, the wet gas for lubricating oil cooling can be increased rapidly, and rapid increases in the temperature of the lubricating oil and the discharge gas can be suppressed. .

なお、上記の例では、実施の形態1に潤滑油の温度に代えて、潤滑油冷却後の冷媒ガスの過熱度を適用する場合について説明したが、実施の形態2〜6についても同様に潤滑油の温度に代えて、潤滑油冷却後の冷媒ガスの過熱度適用することができ、同様の効果を奏する。
また、上記の例では、二段スクリュー圧縮機を例に挙げて説明したが、二段スクリュー圧縮機に限る必要はなく、装置に油冷却器を有し、運転条件の急変化による潤滑油の温度や吐出ガス温度の急上昇が発生し得る圧縮機であれば、適用が可能である。
In the above example, the case where the degree of superheat of the refrigerant gas after cooling the lubricating oil is applied to the first embodiment instead of the temperature of the lubricating oil has been described. However, the same applies to the second to sixth embodiments. Instead of the temperature of the oil, the degree of superheat of the refrigerant gas after cooling the lubricating oil can be applied, and the same effect is produced.
In the above example, a two-stage screw compressor has been described as an example, but it is not necessary to be limited to a two-stage screw compressor. The present invention can be applied to any compressor that can cause a sudden rise in temperature and discharge gas temperature.

1 圧縮機、1a 低段圧縮機構、1b 高段圧縮機構、1c 圧縮機中間圧室、1d モーター室、2 油分離器、3 凝縮器、4 主液膨張弁、5 蒸発器、6 モーター冷却用膨張弁、7 油冷却器、8 潤滑油冷却主膨張弁用電磁弁、9 潤滑油冷却副膨張弁用電磁弁、10 膨張弁、11 膨張弁、12 潤滑油開閉器、13 潤滑油開閉器、14 潤滑油開閉器、15 潤滑油冷却用電子膨張弁、16 制御部、17 温度検出部、18 温度検出部、19 温度検出部、20 圧力検出部。   1 Compressor, 1a Low-stage compression mechanism, 1b High-stage compression mechanism, 1c Compressor intermediate pressure chamber, 1d Motor chamber, 2 Oil separator, 3 Condenser, 4 Main liquid expansion valve, 5 Evaporator, 6 For motor cooling Expansion valve, 7 Oil cooler, 8 Lubricating oil cooling main expansion valve solenoid valve, 9 Lubricating oil cooling sub expansion valve solenoid valve, 10 Expansion valve, 11 Expansion valve, 12 Lubricating oil switch, 13 Lubricating oil switch, DESCRIPTION OF SYMBOLS 14 Lubricating oil switch, 15 Electronic expansion valve for cooling lubricating oil, 16 Control part, 17 Temperature detection part, 18 Temperature detection part, 19 Temperature detection part, 20 Pressure detection part

Claims (27)

圧縮機、油分離器、凝縮器、第1の膨張弁、蒸発器を順次配管接続して成る冷凍サイクルと、
前記凝縮器の出口と、前記圧縮機とを、第2の膨張弁、油冷却器を介して接続する潤滑油冷却回路と、
前記油分離器の油出口と、前記圧縮機とを前記油冷却器を介して接続する潤滑油回路と、
前記圧縮機、前記第1の膨張弁および前記第2の膨張弁を制御する制御部と、
前記油冷却器の出口側を流れる潤滑油の温度を検出する温度検出部と、を備え、
前記油分離器は、前記圧縮機から吐出された冷媒ガスから潤滑油を分離し、
前記油冷却器は、前記油分離器によって分離され前記潤滑油回路を流れて前記圧縮機へ流れ込む潤滑油を、前記凝縮器から流出し前記潤滑油冷却回路を流れる潤滑油冷却用の冷媒によって冷却し、
前記制御部は、前記温度検出部が検出した潤滑油の温度に基づいて運転条件の急変を検出したときに、前記第2の膨張弁の開度を制御して前記油冷却器に流れ込む潤滑油冷却用の冷媒の流量を定常運転時の冷媒の流量よりも所定量以上増加させることを特徴とする冷凍装置。
A refrigerating cycle in which a compressor, an oil separator, a condenser, a first expansion valve, and an evaporator are sequentially connected by piping;
A lubricating oil cooling circuit connecting the outlet of the condenser and the compressor via a second expansion valve and an oil cooler;
A lubricating oil circuit for connecting the oil outlet of the oil separator and the compressor via the oil cooler;
A controller for controlling the compressor, the first expansion valve, and the second expansion valve;
A temperature detector for detecting the temperature of the lubricating oil flowing on the outlet side of the oil cooler,
The oil separator separates lubricating oil from the refrigerant gas discharged from the compressor,
The oil cooler cools the lubricating oil separated by the oil separator and flowing through the lubricating oil circuit and flowing into the compressor with a refrigerant for cooling the lubricating oil flowing out of the condenser and flowing through the lubricating oil cooling circuit. And
The controller controls the opening of the second expansion valve and flows into the oil cooler when detecting a sudden change in operating conditions based on the temperature of the lubricant detected by the temperature detector. A refrigeration apparatus characterized in that the flow rate of the cooling refrigerant is increased by a predetermined amount or more than the flow rate of the refrigerant during steady operation.
前記制御部は、前記潤滑油の温度が所定値を上回ったときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整量を定常運転時のそれよりも拡大することを特徴とする、請求項1に記載の冷凍装置。   When the temperature of the lubricating oil exceeds a predetermined value, the control unit determines that an abrupt change in operating conditions has occurred, and the amount of adjustment of the opening of the second expansion valve is larger than that during steady operation. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is enlarged. 前記制御部は、前記第2の膨張弁の開度の調整量を、前記潤滑油の温度が所定値を上回った温度に基づいて変えることを特徴とする、請求項2に記載の冷凍装置。   The refrigeration apparatus according to claim 2, wherein the control unit changes an adjustment amount of the opening degree of the second expansion valve based on a temperature at which the temperature of the lubricating oil exceeds a predetermined value. 前記制御部は、潤滑油の温度が所定値を上回ったときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整頻度を定常運転時のそれよりも多くなるように増やすことを特徴とする、請求項1に記載の冷凍装置。   When the temperature of the lubricating oil exceeds a predetermined value, the control unit determines that an abrupt change in the operating condition has occurred, and the frequency of adjusting the opening of the second expansion valve is greater than that during steady operation. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is increased as follows. 前記制御部は、前記潤滑油の温度が所定値を上回った温度に基づいて前記第2の膨張弁の開度の調整頻度を変えることを特徴とする、請求項4に記載の冷凍装置。   The refrigerating apparatus according to claim 4, wherein the control unit changes the adjustment frequency of the opening of the second expansion valve based on a temperature at which the temperature of the lubricating oil exceeds a predetermined value. 前記制御部は、潤滑油の温度の単位時間当たりの上昇率が所定値を超えたときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整量を定常運転時のそれよりも拡大することを特徴とする、請求項1〜5のいずれかに記載の冷凍装置。   The control unit determines that a sudden change in the operating condition has occurred when the rate of increase in the temperature of the lubricating oil per unit time exceeds a predetermined value, and constantly adjusts the amount of adjustment of the opening of the second expansion valve. The refrigeration apparatus according to any one of claims 1 to 5, wherein the refrigeration apparatus is larger than that during operation. 前記制御部は、前記第2の膨張弁の開度の調整量を、前記潤滑油の温度の単位時間当たりの上昇率が所定値を上回った比率に基づいて変えることを特徴とする、請求項6に記載の冷凍装置。   The said control part changes the adjustment amount of the opening degree of the said 2nd expansion valve based on the ratio by which the increase rate per unit time of the temperature of the said lubricating oil exceeded the predetermined value, It is characterized by the above-mentioned. 6. The refrigeration apparatus according to 6. 前記制御部は、潤滑油の温度の単位時間当たりの上昇率が所定値を超えたときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整頻度を増やすことを特徴とする、請求項1〜5のいずれかに記載の冷凍装置。   The control unit determines that a sudden change in the operating condition has occurred when the rate of increase in the temperature of the lubricating oil per unit time exceeds a predetermined value, and increases the adjustment frequency of the opening degree of the second expansion valve. The refrigeration apparatus according to any one of claims 1 to 5, wherein 前記制御部は、前記第2の膨張弁の開度の調整頻度を、前記潤滑油の温度の単位時間当たりの上昇率が所定値を上回った比率に基づいて変えることを特徴とする、請求項8に記載の冷凍装置。   The said control part changes the adjustment frequency of the opening degree of a said 2nd expansion valve based on the ratio that the increase rate per unit time of the temperature of the said lubricating oil exceeded a predetermined value, It is characterized by the above-mentioned. 9. The refrigeration apparatus according to 8. 圧縮機、油分離器、凝縮器、第1の膨張弁、蒸発器を順次配管接続して成る冷凍サイクルと、
前記凝縮器の出口と、前記圧縮機とを、第2の膨張弁、油冷却器を介して接続する潤滑油冷却回路と、
前記油分離器の油出口と、前記圧縮機とを前記油冷却器を介して接続する潤滑油回路と、
前記圧縮機、前記第1の膨張弁および前記第2の膨張弁を制御する制御部と、
前記圧縮機から吐出された冷媒ガス(以下、吐出ガスと呼ぶ)の温度を検出する温度検出部と、を備え、
前記油分離器は、前記吐出ガスから潤滑油を分離し、
前記油冷却器は、前記油分離器によって分離され前記潤滑油回路を流れて前記圧縮機へ流れ込む潤滑油を、前記凝縮器から流出し、前記潤滑油冷却回路を流れる潤滑油冷却用の冷媒によって冷却し、
前記制御部は、前記温度検出部が検出した吐出ガスの温度に基づいて運転条件の急変を検出したときに、前記第2の膨張弁の開度を制御して前記油冷却器に流れ込む潤滑油冷却用の冷媒の流量を定常運転時の冷媒の流量よりも所定量以上増加させることを特徴とする冷凍装置。
A refrigerating cycle in which a compressor, an oil separator, a condenser, a first expansion valve, and an evaporator are sequentially connected by piping;
A lubricating oil cooling circuit connecting the outlet of the condenser and the compressor via a second expansion valve and an oil cooler;
A lubricating oil circuit for connecting the oil outlet of the oil separator and the compressor via the oil cooler;
A controller for controlling the compressor, the first expansion valve, and the second expansion valve;
A temperature detection unit that detects the temperature of refrigerant gas discharged from the compressor (hereinafter referred to as discharge gas),
The oil separator separates lubricating oil from the discharge gas;
The oil cooler is separated by the oil separator and flows through the lubricating oil circuit and flows into the compressor. The lubricating oil flows out of the condenser and flows through the lubricating oil cooling circuit by a lubricant for cooling the lubricating oil. Cool down
The control unit controls the opening of the second expansion valve and flows into the oil cooler when detecting a sudden change in operating conditions based on the temperature of the discharge gas detected by the temperature detection unit. A refrigeration apparatus characterized in that the flow rate of the cooling refrigerant is increased by a predetermined amount or more than the flow rate of the refrigerant during steady operation.
前記制御部は、前記吐出ガスの温度が所定値を上回ったときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整量を定常運転のそれよりも拡大することを特徴とする、請求項10に記載の冷凍装置。   When the temperature of the discharge gas exceeds a predetermined value, the control unit determines that an abrupt change in operating condition has occurred, and increases the adjustment amount of the opening of the second expansion valve more than that in steady operation. The refrigeration apparatus according to claim 10, wherein: 前記制御部は、前記第2の膨張弁の開度の調整量を、前記吐出ガスの温度が所定値を上回った温度に基づいて変えることを特徴とする、請求項11に記載の冷凍装置。   The refrigeration apparatus according to claim 11, wherein the control unit changes an adjustment amount of the opening degree of the second expansion valve based on a temperature at which the temperature of the discharge gas exceeds a predetermined value. 前記制御部は、吐出ガスの温度が所定値を上回ったときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整頻度を定常運転時のそれよりも多くなるように増やすことを特徴とする、請求項10に記載の冷凍装置。   When the temperature of the discharge gas exceeds a predetermined value, the control unit determines that a sudden change in the operating condition has occurred, and the adjustment frequency of the opening degree of the second expansion valve is greater than that during steady operation. The refrigeration apparatus according to claim 10, wherein the refrigeration apparatus is increased as follows. 前記制御部は、前記第2の膨張弁の開度の調整頻度を、前記吐出ガスの温度が所定値を上回った温度に基づいて変えることを特徴とする、請求項13に記載の冷凍装置。   The refrigeration apparatus according to claim 13, wherein the control unit changes the adjustment frequency of the opening degree of the second expansion valve based on a temperature at which the temperature of the discharge gas exceeds a predetermined value. 前記制御部は、吐出ガスの温度の単位時間当たりの上昇率が所定値を超えたときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整量を定常運転のそれよりも拡大することを特徴とする、請求項10〜14のいずれかに記載の冷凍装置。   The controller determines that an abrupt change in the operating condition has occurred when the rate of increase in the temperature of the discharged gas per unit time exceeds a predetermined value, and makes the amount of adjustment of the opening of the second expansion valve steady. The refrigeration apparatus according to any one of claims 10 to 14, wherein the refrigeration apparatus is larger than that of operation. 前記制御部は、前記吐出ガスの温度の単位時間当たりの上昇率が所定値を上回った比率に基づいて前記第2の膨張弁の開度の調整量を変えることを特徴とする、請求項15に記載の冷凍装置。   The control unit changes an adjustment amount of the opening degree of the second expansion valve based on a ratio at which an increase rate per unit time of the temperature of the discharge gas exceeds a predetermined value. The refrigeration apparatus described in 1. 前記制御部は、吐出ガスの温度の単位時間当たりの上昇率が所定値を超えたときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整頻度を増やすことを特徴とする、請求項10〜14のいずれかに記載の冷凍装置。   The controller determines that a sudden change in the operating condition has occurred when the rate of increase in the temperature of the discharge gas per unit time exceeds a predetermined value, and increases the frequency of adjusting the opening of the second expansion valve. The refrigeration apparatus according to any one of claims 10 to 14, wherein 前記制御部は、前記第2の膨張弁の開度の調整頻度を、前記吐出ガスの温度の単位時間当たりの上昇率が所定値を上回った比率に基づいて変えることを特徴とする、請求項17に記載の冷凍装置。   The said control part changes the adjustment frequency of the opening degree of a said 2nd expansion valve based on the ratio by which the increase rate per unit time of the temperature of the said discharge gas exceeded a predetermined value, It is characterized by the above-mentioned. The refrigeration apparatus according to 17. 圧縮機、油分離器、凝縮器、第1の膨張弁、蒸発器を順次配管接続して成る冷凍サイクルと、
前記凝縮器の出口と、前記圧縮機とを、第2の膨張弁、油冷却器を介して接続する潤滑油冷却回路と、
前記油分離器の油出口と、前記圧縮機とを前記油冷却器を介して接続する潤滑油回路と、
前記圧縮機、前記第1の膨張弁および前記第2の膨張弁を制御する制御部と、
前記油冷却器の出口側を流れる潤滑油冷却用の冷媒の温度を検出する温度検出部と、
前記油冷却器の出口側を流れる潤滑油冷却用の冷媒の圧力を検出する圧力検出部と、を備え、
前記油分離器は、前記圧縮機から吐出された冷媒ガスから潤滑油を分離し、
前記油冷却器は、前記油分離器によって分離され前記潤滑油回路を流れて前記圧縮機へ流れ込む潤滑油を、前記凝縮器から流出し、前記潤滑油冷却回路を流れる潤滑油冷却用の冷媒によって冷却し、
前記制御部は、前記温度検出部が検出した冷媒の温度と前記圧力検出部が検出した前記冷媒の圧力に基づいて、前記冷媒の過熱度を算出し、算出された冷媒の過熱度に基づいて運転条件の急変を検出したときに、前記第2の膨張弁の開度を制御して前記油冷却器に流れ込む潤滑油冷却用の冷媒の流量を定常運転時の冷媒の流量よりも所定量以上増加させることを特徴とする冷凍装置。
A refrigerating cycle in which a compressor, an oil separator, a condenser, a first expansion valve, and an evaporator are sequentially connected by piping;
A lubricating oil cooling circuit connecting the outlet of the condenser and the compressor via a second expansion valve and an oil cooler;
A lubricating oil circuit for connecting the oil outlet of the oil separator and the compressor via the oil cooler;
A controller for controlling the compressor, the first expansion valve, and the second expansion valve;
A temperature detection unit for detecting the temperature of the coolant for cooling the lubricating oil flowing on the outlet side of the oil cooler;
A pressure detection unit that detects the pressure of the coolant for cooling the lubricating oil flowing on the outlet side of the oil cooler, and
The oil separator separates lubricating oil from the refrigerant gas discharged from the compressor,
The oil cooler is separated by the oil separator and flows through the lubricating oil circuit and flows into the compressor. The lubricating oil flows out of the condenser and flows through the lubricating oil cooling circuit by a lubricant for cooling the lubricating oil. Cool down
The control unit calculates the degree of superheat of the refrigerant based on the temperature of the refrigerant detected by the temperature detection unit and the pressure of the refrigerant detected by the pressure detection unit, and based on the calculated degree of superheat of the refrigerant When a sudden change in the operating condition is detected, the flow rate of the coolant for cooling the lubricating oil flowing into the oil cooler by controlling the opening of the second expansion valve is greater than a predetermined amount than the flow rate of the refrigerant during steady operation A refrigeration apparatus characterized by increasing.
前記制御部は、前記冷媒の過熱度が所定値を上回ったときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整量を定常運転時のそれよりも拡大することを特徴とする、請求項19に記載の冷凍装置。   The controller determines that an abrupt change in operating condition has occurred when the superheat degree of the refrigerant exceeds a predetermined value, and sets the adjustment amount of the opening of the second expansion valve to that during steady operation. The refrigeration apparatus according to claim 19, wherein the refrigeration apparatus is enlarged. 前記制御部は、前記第2の膨張弁の開度の調整量を、前記冷媒の過熱度が所定値を上回った温度に基づいて変えることを特徴とする、請求項20に記載の冷凍装置。   The refrigeration apparatus according to claim 20, wherein the control unit changes an adjustment amount of the opening degree of the second expansion valve based on a temperature at which a degree of superheat of the refrigerant exceeds a predetermined value. 前記制御部は、前記冷媒の過熱度が所定値を上回ったときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整頻度を定常運転時のそれよりも多くなるように増やすことを特徴とする、請求項19に記載の冷凍装置。   The control unit determines that an abrupt change in operating condition has occurred when the superheat degree of the refrigerant exceeds a predetermined value, and sets the frequency of adjustment of the opening of the second expansion valve to that during steady operation. The refrigeration apparatus according to claim 19, wherein the refrigeration apparatus is increased in number. 前記制御部は、前記第2の膨張弁の開度の調整頻度を、前記冷媒の過熱度が所定値を上回った温度に基づいて変えることを特徴とする、請求項22に記載の冷凍装置。   The refrigeration apparatus according to claim 22, wherein the control unit changes the adjustment frequency of the opening degree of the second expansion valve based on a temperature at which the degree of superheat of the refrigerant exceeds a predetermined value. 前記制御部は、前記冷媒の過熱度の単位時間当たりの上昇率が所定値を超えたときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整量を定常運転時のそれよりも拡大することを特徴とする、請求項19〜23のいずれかに記載の冷凍装置。   The control unit determines that an abrupt change in operating conditions has occurred when an increase rate per unit time of the degree of superheat of the refrigerant exceeds a predetermined value, and determines an adjustment amount of the opening of the second expansion valve. The refrigeration apparatus according to any one of claims 19 to 23, wherein the refrigeration apparatus is larger than that during steady operation. 前記制御部は、前記第2の膨張弁の開度の調整量を、前記冷媒の過熱度の単位時間当たりの上昇率が所定値を上回った比率に基づいて変えることを特徴とする、請求項24に記載の冷凍装置。   The said control part changes the adjustment amount of the opening degree of a said 2nd expansion valve based on the ratio by which the increase rate per unit time of the superheat degree of the said refrigerant | coolant exceeded the predetermined value, It is characterized by the above-mentioned. 24. The refrigeration apparatus according to 24. 前記制御部は、前記冷媒の過熱度の単位時間当たりの上昇率が所定値を超えたときに、運転条件の急変が発生したと判断し、前記第2の膨張弁の開度の調整頻度を増やすことを特徴とする、請求項19〜23のいずれかに記載の冷凍装置。   The controller determines that an abrupt change in operating conditions has occurred when the rate of increase in the degree of superheat of the refrigerant per unit time exceeds a predetermined value, and determines the frequency of adjustment of the opening of the second expansion valve. The refrigeration apparatus according to claim 19, wherein the refrigeration apparatus is increased. 前記制御部は、前記第2の膨張弁の開度の調整頻度を、前記冷媒の過熱度の単位時間当たりの上昇率が所定値を上回った比率に基づいて変えることを特徴とする、請求項26に記載の冷凍装置。   The said control part changes the adjustment frequency of the opening degree of a said 2nd expansion valve based on the ratio that the increase rate per unit time of the superheat degree of the said refrigerant | coolant exceeded the predetermined value, It is characterized by the above-mentioned. 26. The refrigeration apparatus according to 26.
JP2011065077A 2011-03-23 2011-03-23 Refrigeration equipment Active JP5669642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065077A JP5669642B2 (en) 2011-03-23 2011-03-23 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065077A JP5669642B2 (en) 2011-03-23 2011-03-23 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2012202565A true JP2012202565A (en) 2012-10-22
JP5669642B2 JP5669642B2 (en) 2015-02-12

Family

ID=47183764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065077A Active JP5669642B2 (en) 2011-03-23 2011-03-23 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5669642B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075473A (en) * 2013-03-27 2014-10-01 荏原冷热***株式会社 Turbine refrigerator
CN104896779A (en) * 2014-03-07 2015-09-09 荏原冷热***株式会社 Turbine refrigerator
WO2016117037A1 (en) * 2015-01-20 2016-07-28 三菱電機株式会社 Refrigeration device
KR20180131409A (en) * 2017-05-31 2018-12-10 한온시스템 주식회사 Cooling device with separate oil circulation system
JP2019035519A (en) * 2017-08-10 2019-03-07 三菱重工サーマルシステムズ株式会社 Heat pump and method for designing the same
KR20190082875A (en) * 2016-11-16 2019-07-10 에머슨 클라이미트 테크놀로지스 (쑤저우) 코., 엘티디. Compressor assembly and its control method and cooling / heating system
JPWO2019180982A1 (en) * 2018-03-19 2020-10-01 富士電機株式会社 Steam generation heat pump equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123418A (en) * 2016-06-30 2016-11-16 江苏金荣森制冷科技有限公司 The method of work of the industrial refrigeration machine of the hydraulic pressure bypass with ball-type relief valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379959A (en) * 1989-08-22 1991-04-04 Daikin Ind Ltd Refrigeration apparatus
JPH10246522A (en) * 1997-03-07 1998-09-14 Kobe Steel Ltd Screw type freezer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379959A (en) * 1989-08-22 1991-04-04 Daikin Ind Ltd Refrigeration apparatus
JPH10246522A (en) * 1997-03-07 1998-09-14 Kobe Steel Ltd Screw type freezer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075473A (en) * 2013-03-27 2014-10-01 荏原冷热***株式会社 Turbine refrigerator
JP2014190614A (en) * 2013-03-27 2014-10-06 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
CN104896779A (en) * 2014-03-07 2015-09-09 荏原冷热***株式会社 Turbine refrigerator
JP2015169380A (en) * 2014-03-07 2015-09-28 荏原冷熱システム株式会社 turbo refrigerator
WO2016117037A1 (en) * 2015-01-20 2016-07-28 三菱電機株式会社 Refrigeration device
KR20190082875A (en) * 2016-11-16 2019-07-10 에머슨 클라이미트 테크놀로지스 (쑤저우) 코., 엘티디. Compressor assembly and its control method and cooling / heating system
KR102189168B1 (en) * 2016-11-16 2020-12-09 에머슨 클라이미트 테크놀로지스 (쑤저우) 코., 엘티디. Compressor assembly and its control method and cooling/heating system
KR20180131409A (en) * 2017-05-31 2018-12-10 한온시스템 주식회사 Cooling device with separate oil circulation system
KR102120950B1 (en) * 2017-05-31 2020-06-10 한온시스템 주식회사 Cooling device with separate oil circulation system
JP2019035519A (en) * 2017-08-10 2019-03-07 三菱重工サーマルシステムズ株式会社 Heat pump and method for designing the same
US11441821B2 (en) 2017-08-10 2022-09-13 Mitsubishi Heavy Industries Thermal System, Ltd. Heat pump and method for designing the same
JPWO2019180982A1 (en) * 2018-03-19 2020-10-01 富士電機株式会社 Steam generation heat pump equipment

Also Published As

Publication number Publication date
JP5669642B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5669642B2 (en) Refrigeration equipment
JP5355016B2 (en) Refrigeration equipment and heat source machine
JP6264688B2 (en) Refrigeration equipment
KR101317541B1 (en) Two-stage compression refrigerating device
JP2016194389A (en) Refrigerating apparatus and refrigerator unit
JP2011133209A (en) Refrigerating apparatus
WO2016117037A1 (en) Refrigeration device
JP2015148406A (en) Refrigeration device
JP4767133B2 (en) Refrigeration cycle equipment
JP2017053598A (en) Refrigeration device
JP2013155972A (en) Refrigeration device
JP2009186033A (en) Two-stage compression type refrigerating device
JP2013167386A (en) Refrigeration device
JP5521924B2 (en) Container refrigeration equipment
JP6373034B2 (en) refrigerator
JP6094859B2 (en) Refrigeration equipment
JP2009092309A (en) Refrigerating appliance and operating method thereof
JP6206787B2 (en) Refrigeration equipment
JP2012242053A (en) Refrigeration air conditioning system
JP6112388B2 (en) Refrigeration equipment
JP6555584B2 (en) Refrigeration equipment
JP2014159950A (en) Freezer
JP6467682B2 (en) Refrigeration equipment
JP2017083032A (en) Control device, control method, and heat source system
KR102532023B1 (en) Supercritical refrigeration system and control method of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R150 Certificate of patent or registration of utility model

Ref document number: 5669642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250