JP2015148406A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2015148406A
JP2015148406A JP2014022511A JP2014022511A JP2015148406A JP 2015148406 A JP2015148406 A JP 2015148406A JP 2014022511 A JP2014022511 A JP 2014022511A JP 2014022511 A JP2014022511 A JP 2014022511A JP 2015148406 A JP2015148406 A JP 2015148406A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
electric expansion
throttle means
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014022511A
Other languages
Japanese (ja)
Inventor
隼次 岡村
Junji Okamura
隼次 岡村
轟 篤
Atsushi Todoroki
篤 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014022511A priority Critical patent/JP2015148406A/en
Priority to CN201510060907.1A priority patent/CN104833123B/en
Publication of JP2015148406A publication Critical patent/JP2015148406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/29High ambient temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration device capable of securing stable refrigeration capacity when a high pressure side becomes supercritical pressure.SOLUTION: A refrigeration device includes: an electric expansion valve 33 connected to a downstream side of a gas cooler 28 and an upstream side of an electric expansion valve 39; a liquid receiver 36 connected to the downstream side of the electric expansion valve 33 and the upstream side of the electric expansion valve 39; a heat exchanger 29 provided on the downstream side of the gas cooler and the upstream side of the electric expansion valve 33; an auxiliary circuit 48 which flows a refrigerant in the liquid receiver in a first flow passage 29A via electric expansion valves 43, 47 and then returns it to a compressor 11; a main circuit 38 which flows the refrigerant flowed out of the gas cooler into a second flow passage 29B, allows it to exchange heat with the refrigerant flowing in the first flow passage, and then, flows it into the electric expansion valve 33, flows out the refrigerant from a lower part of the liquid receiver, and flows it into the electric expansion valve 39; and solenoid valves 66, 67 which switch selectively between returning the refrigerant flowed out of the first flow passage to an intermediate pressure part of the compressor and returning it to a low pressure part.

Description

本発明は、圧縮手段、ガスクーラ、主絞り手段、及び、蒸発器から冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus in which a refrigerant circuit is configured by a compression unit, a gas cooler, a main throttle unit, and an evaporator, and a high pressure side is a supercritical pressure.

従来よりこの種冷凍装置は、圧縮手段、ガスクーラ、絞り手段等から冷凍サイクルが構成され、圧縮手段で圧縮された冷媒がガスクーラにて放熱し、絞り手段にて減圧された後、蒸発器にて冷媒を蒸発させて、このときの冷媒の蒸発により周囲の空気を冷却するものとされていた。近年、この種冷凍装置では、自然環境問題などからフロン系冷媒が使用できなくなってきている。このため、フロン冷媒の代替品として自然冷媒である二酸化炭素を使用するものが開発されている。当該二酸化炭素冷媒は、高低圧差の激しい冷媒で、臨界圧力が低く、圧縮により冷媒サイクルの高圧側が超臨界状態となることが知られている(例えば、特許文献1参照)。   Conventionally, this type of refrigeration apparatus has a refrigeration cycle composed of a compression means, a gas cooler, a throttle means, etc., and the refrigerant compressed by the compression means dissipates heat in the gas cooler and is depressurized by the throttle means, and then in an evaporator. The refrigerant was evaporated, and ambient air was cooled by evaporation of the refrigerant at this time. In recent years, chlorofluorocarbon refrigerants cannot be used in this type of refrigeration system due to natural environmental problems. For this reason, the thing using the carbon dioxide which is a natural refrigerant | coolant is developed as a substitute of a fluorocarbon refrigerant | coolant. The carbon dioxide refrigerant is a refrigerant having a high and low pressure difference, and has a low critical pressure. It is known that the high pressure side of the refrigerant cycle is brought into a supercritical state by compression (see, for example, Patent Document 1).

また、給湯機を構成するヒートポンプ装置では、ガスクーラにて優れた加熱作用が得られる二酸化炭素冷媒が使用されるようになってきており、その場合にガスクーラから出た冷媒を2段膨張させ、各膨張装置の間に気液分離器を介設して、圧縮機にガスインジェクションできるようにするものも開発されている(例えば、特許文献2参照)。   Moreover, in the heat pump device constituting the water heater, a carbon dioxide refrigerant capable of obtaining an excellent heating action in the gas cooler has been used. In that case, the refrigerant discharged from the gas cooler is expanded in two stages, There has also been developed an apparatus in which a gas-liquid separator is interposed between expansion devices to enable gas injection into a compressor (see, for example, Patent Document 2).

一方、例えばショーケース等に設置された蒸発器において吸熱作用を利用し、庫内を冷却する冷凍装置では、外気温度(ガスクーラ側の熱源温度)が高い等の原因により、ガスクーラ出口の冷媒温度が高くなる条件下においては、蒸発器入口の比エンタルピが大きくなるため、冷凍能力が著しく低下する問題がある。そのようなときに、冷凍能力を確保するため、圧縮手段の吐出圧力(高圧側圧力)を上昇させると、圧縮動力が増大して成績係数が低下してしまう。   On the other hand, for example, in an refrigeration system that uses an endothermic action in an evaporator installed in a showcase or the like to cool the interior, the refrigerant temperature at the outlet of the gas cooler is high due to factors such as high outside air temperature (heat source temperature on the gas cooler side). Under higher conditions, the specific enthalpy at the inlet of the evaporator increases, which causes a problem that the refrigerating capacity is remarkably reduced. In such a case, if the discharge pressure (high-pressure side pressure) of the compression means is increased in order to ensure the refrigeration capacity, the compression power increases and the coefficient of performance decreases.

そこで、ガスクーラで冷却された冷媒を二つの冷媒流に分流し、分流された一方の冷媒流を補助絞り手段で絞った後、スプリット熱交換器の一方の通路に流して圧縮機の中間圧部に戻し、他方の冷媒流をスプリット熱交換器の他方の流路に流して熱交換させた後、主絞り手段を介して蒸発器に流入させる所謂スプリットサイクルの冷凍装置が提案されている。係る冷凍装置によれば、減圧膨張された第1の冷媒流により第2の冷媒流を冷却でき、蒸発器入口の比エンタルピを小さくすることで、冷凍能力を改善することができるものであった(例えば、特許文献3参照)。   Therefore, the refrigerant cooled by the gas cooler is divided into two refrigerant flows, one of the divided refrigerant flows is squeezed by the auxiliary throttle means, and then flows into one passage of the split heat exchanger, and the intermediate pressure portion of the compressor In other words, a so-called split-cycle refrigeration apparatus is proposed in which the other refrigerant flow is caused to flow through the other flow path of the split heat exchanger to exchange heat, and then flows into the evaporator via the main throttle means. According to such a refrigeration apparatus, the second refrigerant flow can be cooled by the first refrigerant flow expanded under reduced pressure, and the refrigeration capacity can be improved by reducing the specific enthalpy at the inlet of the evaporator. (For example, refer to Patent Document 3).

特公平7−18602号公報Japanese Patent Publication No. 7-18602 特開2007−178042号公報JP 2007-178042 A 特開2011−133207号公報JP 2011-133207 A

しかしながら、外気温度が高い環境下で運転を開始した場合、蒸発温度が高い冷媒回路では第1の冷媒流が液化しなくなり、前述のようなスプリットサイクルを構成しても第1の冷媒流による第2の冷媒流の冷却効果が殆ど期待できなくなる。その場合、前述した二段膨張装置を採用し、膨張後に気液分離器で分流した冷媒をスプリット熱交換器の一方の通路に流し、気液分離器内の液冷媒を過冷却して蒸発器に流す構成としても、高外気温時には気液分離器内の圧力と圧縮機の中間圧部の圧力が略同じになってしまうため、スプリット熱交換器において冷媒を過冷却できなくなる。そのため、主絞り手段に液冷媒を送ることができなくなり、冷凍能力が低下するという問題があった。   However, when the operation is started in an environment where the outside air temperature is high, the first refrigerant flow is not liquefied in the refrigerant circuit having a high evaporation temperature, and even if the split cycle as described above is configured, the first refrigerant flow is not liquefied. The cooling effect of the refrigerant flow 2 can hardly be expected. In that case, the above-described two-stage expansion device is adopted, the refrigerant that has been diverted by the gas-liquid separator after the expansion is caused to flow through one passage of the split heat exchanger, the liquid refrigerant in the gas-liquid separator is supercooled, and the evaporator Even in a configuration in which the refrigerant flows in the split heat exchanger, the pressure in the gas-liquid separator and the pressure in the intermediate pressure portion of the compressor become substantially the same at a high outside air temperature, so that the refrigerant cannot be supercooled in the split heat exchanger. Therefore, there is a problem that the liquid refrigerant cannot be sent to the main throttle means, and the refrigerating capacity is lowered.

また、外気温度が変動すると主絞り手段に流入する冷媒の圧力が大きく変動し、主絞り手段の制御と冷凍能力が安定しなくなる。更に、スーパーマーケット等の店舗において、圧縮手段やガスクーラが設置された冷凍機から主絞り手段や蒸発器が設けられた店舗内のショーケースに冷媒を供給する場合、ショーケース側の主絞り手段までの高圧側圧力が高いため、長い冷媒配管(液管)として耐圧の高いものを使用しなければならなくなり、施工コスト的に不利となる。   Further, when the outside air temperature fluctuates, the pressure of the refrigerant flowing into the main throttle means fluctuates greatly, and the control of the main throttle means and the refrigeration capacity become unstable. Furthermore, in a store such as a supermarket, when supplying a refrigerant from a refrigerator equipped with a compression means or a gas cooler to a showcase in a store provided with a main throttle means or an evaporator, the main throttle means on the showcase side Since the high-pressure side pressure is high, it is necessary to use a long refrigerant pipe (liquid pipe) with a high pressure resistance, which is disadvantageous in terms of construction cost.

本発明は、係る従来の技術的課題を解決するために成されたものであり、高圧側が超臨界圧力となる場合に、安定した冷凍能力を確保することができる冷凍装置を提供することを目的とする。   The present invention has been made to solve the conventional technical problem, and an object of the present invention is to provide a refrigeration apparatus capable of ensuring a stable refrigeration capacity when the high pressure side becomes a supercritical pressure. And

本発明は、圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、ガスクーラの下流側であって、主絞り手段の上流側の冷媒回路に接続された圧力調整用絞り手段と、この圧力調整用絞り手段の下流側であって、主絞り手段の上流側の冷媒回路に接続された受液器と、ガスクーラの下流側であって、圧力調整用絞り手段の上流側の冷媒回路に設けられた熱交換器と、受液器内の冷媒を、補助絞り手段を介して熱交換器の第1の流路に流した後、圧縮手段に戻す補助回路と、ガスクーラから出た冷媒を熱交換器の第2の流路に流し、第1の流路を流れる冷媒と熱交換させた後、圧力調整用絞り手段に流入させ、受液器下部から冷媒を流出させて主絞り手段に流入させる主回路と、熱交換器の第1の流路を出た補助回路の冷媒を、圧縮手段の中間圧部に戻すか、圧縮手段の低圧部に戻すかを択一的に切り換える流路切換手段と、これら圧力調整用絞り手段、補助絞り手段、及び、流路切換手段を制御する制御手段と、を備えたことを特徴とする。   The present invention relates to a refrigeration apparatus in which a refrigerant circuit is configured by a compression unit, a gas cooler, a main throttle unit, and an evaporator, and the high pressure side is at a supercritical pressure, and is downstream of the gas cooler and upstream of the main throttle unit. Pressure adjusting throttle means connected to the refrigerant circuit on the side, a receiver downstream of the pressure adjusting throttle means, connected to the refrigerant circuit upstream of the main throttle means, and downstream of the gas cooler The heat exchanger provided in the refrigerant circuit on the upstream side of the pressure adjusting throttle means and the refrigerant in the liquid receiver flowed to the first flow path of the heat exchanger via the auxiliary throttle means. After that, the auxiliary circuit for returning to the compression means and the refrigerant discharged from the gas cooler are passed through the second flow path of the heat exchanger to exchange heat with the refrigerant flowing through the first flow path, and then flow into the pressure adjusting throttle means. The main flow to let the refrigerant flow out from the lower part of the receiver and into the main throttle means And a flow path switching means for selectively switching whether the refrigerant of the auxiliary circuit that has exited the first flow path of the heat exchanger is returned to the intermediate pressure portion of the compression means or the low pressure portion of the compression means, These pressure adjusting throttle means, auxiliary throttle means, and control means for controlling the flow path switching means are provided.

請求項2の発明の冷凍装置は、上記発明において制御手段は、外気温度が低い場合、流路切換手段により、熱交換器の第1の流路を出た補助回路の冷媒を圧縮手段の中間圧部に戻し、外気温度が高い場合は、圧縮手段の低圧部に戻すことを特徴とする。   In the refrigeration apparatus according to the second aspect of the present invention, in the above invention, when the outside air temperature is low, the control means causes the flow path switching means to cause the refrigerant in the auxiliary circuit that has exited the first flow path of the heat exchanger to be intermediate between the compression means. It returns to a pressure part, and when outside temperature is high, it returns to the low pressure part of a compression means, It is characterized by the above-mentioned.

請求項3の発明の冷凍装置は、上記各発明において制御手段は、圧力調整用絞り手段により、当該圧力調整用絞り手段より上流側の冷媒回路の高圧側圧力を所定の目標値に制御することを特徴とする。   In the refrigeration apparatus according to a third aspect of the present invention, in each of the above inventions, the control means controls the high-pressure side pressure of the refrigerant circuit upstream of the pressure adjustment throttle means to a predetermined target value by the pressure adjustment throttle means. It is characterized by.

請求項4の発明の冷凍装置は、上記各発明において補助絞り手段は、第1の補助回路用絞り手段を有すると共に、補助回路は、受液器上部から冷媒を流出させ、第1の補助回路用絞り手段に流入させるガス配管を有し、制御手段は、第1の補助回路用絞り手段により、受液器内の冷媒の圧力を所定の目標値に制御することを特徴とする。   In the refrigeration apparatus according to a fourth aspect of the present invention, in the above inventions, the auxiliary throttle means has a first auxiliary circuit throttle means, and the auxiliary circuit causes the refrigerant to flow out from the upper part of the liquid receiver, so that the first auxiliary circuit The control means controls the pressure of the refrigerant in the liquid receiver to a predetermined target value by the first auxiliary circuit throttle means.

請求項5の発明の冷凍装置は、上記各発明において補助絞り手段は、第2の補助回路用絞り手段を有すると共に、補助回路は、受液器下部から冷媒を流出させ、第2の補助回路用絞り手段に流入させる液配管を有し、制御手段は、第2の補助回路用絞り手段により、熱交換器の第1の流路に流す液冷媒量を調整し、第2の流路を流れる冷媒の過冷却度を所定の目標値に制御することを特徴とする。   In the refrigeration apparatus according to a fifth aspect of the present invention, in each of the above-mentioned inventions, the auxiliary throttle means has a second auxiliary circuit throttle means, and the auxiliary circuit causes the refrigerant to flow out from the lower part of the liquid receiver, and the second auxiliary circuit. And a control means for adjusting the amount of liquid refrigerant flowing through the first flow path of the heat exchanger by means of the second auxiliary circuit throttling means, and for controlling the second flow path. The degree of supercooling of the flowing refrigerant is controlled to a predetermined target value.

請求項6の発明の冷凍装置は、上記各発明においてガスクーラを空冷する送風機を備え、制御手段は、ガスクーラを出た冷媒の温度が、外気温度に対して決定される所定の目標値となるように送風機の運転を制御することを特徴とする。   According to a sixth aspect of the present invention, there is provided a refrigeration apparatus comprising a blower that air-cools the gas cooler in each of the above-mentioned inventions, and the control means is such that the temperature of the refrigerant that has exited the gas cooler becomes a predetermined target value determined with respect to the outside air temperature. And controlling the operation of the blower.

請求項7の発明の冷凍装置は、上記各発明において冷媒として二酸化炭素を使用したことを特徴とする。   The refrigeration apparatus of the invention of claim 7 is characterized in that carbon dioxide is used as a refrigerant in each of the above inventions.

本発明によれば、圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、ガスクーラの下流側であって、主絞り手段の上流側の冷媒回路に接続された圧力調整用絞り手段と、この圧力調整用絞り手段の下流側であって、主絞り手段の上流側の冷媒回路に接続された受液器と、ガスクーラの下流側であって、圧力調整用絞り手段の上流側の冷媒回路に設けられた熱交換器と、受液器内の冷媒を、補助絞り手段を介して熱交換器の第1の流路に流した後、圧縮手段に戻す補助回路と、ガスクーラから出た冷媒を熱交換器の第2の流路に流し、第1の流路を流れる冷媒と熱交換させた後、圧力調整用絞り手段に流入させ、受液器下部から冷媒を流出させて主絞り手段に流入させる主回路とを備えているので、補助回路を構成する熱交換器の第1の流路に流れる冷媒を補助絞り手段で膨張させ、主回路を構成する熱交換器の第2の流路を流れる冷媒を過冷却することができるようになる。   According to the present invention, in the refrigerating apparatus in which the refrigerant circuit is configured by the compression means, the gas cooler, the main throttle means, and the evaporator, and the high pressure side becomes the supercritical pressure, the downstream side of the gas cooler, the main throttle means A pressure adjusting throttle means connected to the upstream refrigerant circuit, a receiver downstream of the pressure adjusting throttle means upstream of the main throttle means, and a gas cooler The heat exchanger provided in the refrigerant circuit on the downstream side and upstream of the pressure adjusting throttle means and the refrigerant in the liquid receiver are passed to the first flow path of the heat exchanger via the auxiliary throttle means. After the flow, the auxiliary circuit for returning to the compression means, the refrigerant discharged from the gas cooler is caused to flow through the second flow path of the heat exchanger, the heat exchange with the refrigerant flowing through the first flow path, and then the pressure adjusting throttle means Into the main throttle means. And the main circuit, the refrigerant flowing in the first flow path of the heat exchanger constituting the auxiliary circuit is expanded by the auxiliary throttle means, and flows through the second flow path of the heat exchanger constituting the main circuit. The refrigerant can be supercooled.

この第2の流路を流れる冷媒は、圧力調整用絞り手段を経て受液器に入り、受液器下部から流出し、主絞り手段により絞られた後、蒸発器に流入するので、熱交換器における過冷却によって電動膨張弁33の出口の冷媒の乾き度が小さくなり、電動膨張弁39に搬送される冷媒の液相割合が高くなるため、冷凍能力を効果的に改善することができるようになる。   The refrigerant flowing through the second flow path enters the liquid receiver through the pressure adjusting throttle means, flows out from the lower part of the liquid receiver, is throttled by the main throttle means, and then flows into the evaporator. Since the degree of dryness of the refrigerant at the outlet of the electric expansion valve 33 is reduced by the supercooling in the cooler and the liquid phase ratio of the refrigerant conveyed to the electric expansion valve 39 is increased, the refrigeration capacity can be effectively improved. become.

また、圧力調整用絞り手段で膨張されることで液化した冷媒の一部は受液器内で蒸発し、温度が低下したガス冷媒となり、残りは液冷媒となって受液器内下部に一旦貯留されるかたちとなる。そして、この受液器内下部の液冷媒が主絞り手段に流入することになるので、満液状態で主絞り手段に冷媒を流入させることが可能となり、特に蒸発器における蒸発温度が高い冷蔵条件における冷凍能力の向上を図ることができるようになる。   Also, a part of the refrigerant liquefied by expansion by the pressure adjusting throttle means evaporates in the receiver and becomes a gas refrigerant whose temperature is lowered, and the rest becomes a liquid refrigerant once in the lower part of the receiver. It will be stored. Then, since the liquid refrigerant in the lower part in the liquid receiver flows into the main throttle means, it is possible to allow the refrigerant to flow into the main throttle means in a full liquid state, particularly in refrigeration conditions where the evaporation temperature in the evaporator is high. The refrigeration capacity can be improved.

更に、受液器にて冷媒回路内の循環冷媒量の変動が吸収される効果もあるので、冷媒充填量の誤差も吸収される効果もある。   Furthermore, since the liquid receiver also has the effect of absorbing fluctuations in the amount of circulating refrigerant in the refrigerant circuit, it also has the effect of absorbing errors in the refrigerant charge amount.

特に、本発明では熱交換器の第1の流路を出た補助回路の冷媒を、圧縮手段の中間圧部に戻すか、圧縮手段の低圧部に戻すかを択一的に切り換える流路切換手段を設け、制御手段によって、前述した圧力調整用絞り手段、補助絞り手段や、この流路切換手段を制御するようにしたので、例えば、請求項2の発明の如く制御手段が、外気温度が低い場合、流路切換手段により、熱交換器の第1の流路を出た補助回路の冷媒を圧縮手段の中間圧部に戻すことにより、冬場のように外気温度が低く、熱交換器における過冷却によって圧力調整用絞り手段の出口における冷媒の乾き度が小さくなる状況では、補助回路の冷媒を圧縮手段の中間圧部に戻して圧縮手段の低圧部に吸い込まれる冷媒量を減少させ、低圧から中間圧まで圧縮するための圧縮手段における圧縮仕事量を減少させることができる。これにより、圧縮手段における圧縮動力を低下させて成績係数を向上させることが可能となる。   In particular, in the present invention, the flow path switching for selectively switching whether the refrigerant in the auxiliary circuit that has exited the first flow path of the heat exchanger is returned to the intermediate pressure portion of the compression means or the low pressure portion of the compression means. Since the control means controls the pressure adjusting throttle means, the auxiliary throttle means, and the flow path switching means described above, for example, the control means as in the invention of claim 2 can control the outside air temperature. When the temperature is low, the refrigerant temperature in the auxiliary circuit that has exited the first flow path of the heat exchanger is returned to the intermediate pressure portion of the compression means by the flow path switching means, so that the outside air temperature is low as in winter and the heat exchanger In a situation where the dryness of the refrigerant at the outlet of the pressure adjusting throttle means decreases due to overcooling, the refrigerant in the auxiliary circuit is returned to the intermediate pressure part of the compression means to reduce the amount of refrigerant sucked into the low pressure part of the compression means, and the low pressure Compressor for compressing to intermediate pressure It is possible to reduce the compression work amount of. As a result, the coefficient of performance can be improved by reducing the compression power in the compression means.

一方、外気温度が高い場合は、制御手段が流路切換手段によって熱交換器の第1の流路を出た補助回路の冷媒を、圧縮手段の低圧部に戻すようにすることで、夏場のように外気温度が高く、熱交換器における熱交換によっても圧力調整用絞り手段の出口における冷媒の乾き度が大きくなり、受液器内の圧力と圧縮手段の中間圧部の圧力差も無くなってくる状況では、補助回路の冷媒を圧縮手段の低圧部に戻して補助回路に冷媒が流れるようにし、熱交換器における主回路の冷媒の過冷却を確保することができるようになる。   On the other hand, when the outside air temperature is high, the control means returns the refrigerant of the auxiliary circuit that has exited the first flow path of the heat exchanger by the flow path switching means to the low pressure portion of the compression means, so that As described above, the temperature of the outside air is high, and heat exchange in the heat exchanger also increases the dryness of the refrigerant at the outlet of the pressure adjusting throttle means, eliminating the pressure difference between the pressure in the liquid receiver and the intermediate pressure portion of the compression means. In this situation, the refrigerant in the auxiliary circuit is returned to the low-pressure portion of the compression means so that the refrigerant flows through the auxiliary circuit, so that it is possible to ensure overcooling of the refrigerant in the main circuit in the heat exchanger.

これらにより、外気温度にかかわらず熱交換器における主絞り手段に向かう冷媒の過冷却を支障無く実現し、安定した冷凍能力を確保することが可能となる。   Accordingly, it is possible to realize the supercooling of the refrigerant toward the main throttle means in the heat exchanger without any trouble regardless of the outside air temperature, and to secure a stable refrigerating capacity.

また、請求項3の発明によれば、上記各発明に加えて制御手段が、圧力調整用絞り手段により、当該圧力調整用絞り手段より上流側の冷媒回路の高圧側圧力を所定の目標値に制御するので、圧縮手段から冷媒が吐出される高圧側圧力が高くなって圧縮手段の運転効率が低下し、或いは、圧縮手段に損傷を来す不都合を未然に回避することが可能となる。   According to the invention of claim 3, in addition to each of the above inventions, the control means uses the pressure adjusting throttle means to set the high pressure side pressure of the refrigerant circuit upstream of the pressure adjusting throttle means to a predetermined target value. Since the control is performed, the high pressure side pressure at which the refrigerant is discharged from the compression means is increased, so that the operation efficiency of the compression means is reduced, or the inconvenience of damaging the compression means can be avoided.

また、請求項4の発明によれば、上記各発明に加えて補助絞り手段が、第1の補助回路用絞り手段を有すると共に、補助回路が、受液器上部から冷媒を流出させ、第1の補助回路用絞り手段に流入させるガス配管を有し、制御手段が、第1の補助回路用絞り手段により、受液器内の冷媒の圧力を所定の目標値に制御するので、この第1の補助回路用絞り手段によって、高圧側圧力の変動の影響を抑制して、受液器下部から主絞り手段に搬送される冷媒の圧力を制御することができるようになる。   According to the invention of claim 4, in addition to each of the above inventions, the auxiliary throttle means has a first auxiliary circuit throttle means, and the auxiliary circuit causes the refrigerant to flow out from the upper part of the receiver, and the first The control circuit controls the pressure of the refrigerant in the liquid receiver to a predetermined target value by the first auxiliary circuit throttle means. With this auxiliary circuit throttling means, it is possible to control the pressure of the refrigerant conveyed from the lower part of the receiver to the main throttling means while suppressing the influence of fluctuations in the high pressure side pressure.

また、第1の補助回路用絞り手段によって主絞り手段に流入する冷媒の圧力を下げることにより、主絞り手段に至る配管として耐圧強度が低いものを使用することができるようになる。これにより、施工性や施工コストの改善を図ることが可能となる。   Further, by lowering the pressure of the refrigerant flowing into the main throttle means by the first auxiliary circuit throttle means, it is possible to use a pipe having a low pressure resistance as a pipe leading to the main throttle means. Thereby, it becomes possible to improve workability and construction cost.

特に、受液器上部から第1の補助回路用絞り手段を介して低温のガスを抜くことで、受液器内の圧力が低下する。これにより、受液器内では温度が低下するので、冷媒の凝縮作用が生じ、当該受液器内に液状態の冷媒を効果的に貯めることができるようになる。   In particular, when the low temperature gas is extracted from the upper part of the liquid receiver through the first auxiliary circuit throttle means, the pressure in the liquid receiver decreases. As a result, the temperature is lowered in the liquid receiver, so that the refrigerant condenses, and the liquid refrigerant can be effectively stored in the liquid receiver.

また、請求項5の発明によれば、上記各発明に加えて補助絞り手段が、第2の補助回路用絞り手段を有すると共に、補助回路が、受液器下部から冷媒を流出させ、第2の補助回路用絞り手段に流入させる液配管を有し、制御手段が、第2の補助回路用絞り手段により、熱交換器の第1の流路に流す液冷媒量を調整し、第2の流路を流れる冷媒の過冷却度を所定の目標値に制御するので、第2の補助回路用絞り手段を介して熱交換器の第1の流路に受液器内下部の液冷媒を流し、熱交換器の第2の流路を流れる主回路の冷媒の過冷却を増大させることができる。   According to the invention of claim 5, in addition to the above inventions, the auxiliary throttle means has a second auxiliary circuit throttle means, and the auxiliary circuit causes the refrigerant to flow out from the lower part of the receiver, and the second A liquid pipe for flowing into the auxiliary circuit throttle means, and the control means adjusts the amount of liquid refrigerant flowing through the first flow path of the heat exchanger by the second auxiliary circuit throttle means, Since the degree of supercooling of the refrigerant flowing in the flow path is controlled to a predetermined target value, the liquid refrigerant in the lower part in the receiver is flowed to the first flow path of the heat exchanger via the second auxiliary circuit throttle means. The supercooling of the refrigerant in the main circuit flowing through the second flow path of the heat exchanger can be increased.

これにより、受液器内下部から主絞り手段に搬送される冷媒の液相割合を高め、より一層効果的に満液状態で主絞り手段に流入させることができるようになり、冷凍能力の向上を図ることが可能となる。   As a result, the liquid phase ratio of the refrigerant conveyed from the lower part in the liquid receiver to the main throttle means can be increased, and the refrigerant can be more effectively made to flow into the main throttle means in a full state, thereby improving the refrigeration capacity. Can be achieved.

更に、請求項6の発明によれば、上記各発明に加えてガスクーラを空冷する送風機を備え、制御手段が、ガスクーラを出た冷媒の温度が、外気温度に対して決定される所定の目標値となるように送風機の運転を制御するので、ガスクーラを空冷する送風機の過剰な運転を抑制しながら、ガスクーラ出口の冷媒の温度を適正な値に維持することが可能となる。一方、高圧側圧力は請求項3の如く圧力調整用絞り手段で制御すれば良く、これらにより圧縮手段の保護を図って安定した運転を維持することができるようになる。   Further, according to the invention of claim 6, in addition to the above inventions, a blower for air-cooling the gas cooler is provided, and the control means has a predetermined target value at which the temperature of the refrigerant that has exited the gas cooler is determined with respect to the outside air temperature. Therefore, the temperature of the refrigerant at the outlet of the gas cooler can be maintained at an appropriate value while suppressing excessive operation of the blower that air-cools the gas cooler. On the other hand, the high-pressure side pressure may be controlled by the pressure adjusting throttle means as in claim 3, so that the compression means can be protected and stable operation can be maintained.

特に、請求項7の発明の如く冷媒として二酸化炭素を使用した場合に、上記各発明により冷凍能力を効果的に改善し、性能の向上を図ることができるようになるものである。   In particular, when carbon dioxide is used as the refrigerant as in the seventh aspect of the invention, the above inventions can effectively improve the refrigerating capacity and improve the performance.

本発明を適用した一実施例の冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating device of one example to which the present invention is applied. 図1の冷凍装置の補助回路の冷媒を圧縮機の中間圧部に戻すときの冷媒回路のP−h線図である。It is a Ph diagram of a refrigerant circuit when returning the refrigerant of the auxiliary circuit of the refrigeration apparatus of FIG. 1 to the intermediate pressure part of the compressor. 図1の冷凍装置の補助回路の冷媒を圧縮機の低圧部に戻すときの冷媒回路のP−h線図である。It is a Ph diagram of a refrigerant circuit when returning the refrigerant of the auxiliary circuit of the refrigerating device of Drawing 1 to the low-pressure part of a compressor.

(1)冷凍装置Rの構成
以下、図面を参照しながら本発明の実施形態を説明する。図1は本発明を適用する一実施例にかかる冷凍装置Rの冷媒回路図である。本実施例における冷凍装置Rは、スーパーマーケット等の店舗の機械室等に設置された冷凍機ユニット3と、店舗の売り場内に設置された一台若しくは複数台(図面では一台のみ示す)のショーケース4とを備え、これら冷凍機ユニット3とショーケース4とが、ユニット出口6とユニット入口7を介して、冷媒配管(液管)8及び冷媒配管9により連結されて所定の冷媒回路1を構成している。
(1) Configuration of Refrigeration Apparatus R Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus R according to an embodiment to which the present invention is applied. The refrigeration apparatus R in this embodiment is a show of a refrigerator unit 3 installed in a machine room or the like of a store such as a supermarket, and one or a plurality of units (only one is shown in the drawing) installed in the store sales area. The refrigerator unit 3 and the showcase 4 are connected by a refrigerant pipe (liquid pipe) 8 and a refrigerant pipe 9 via a unit outlet 6 and a unit inlet 7 so that a predetermined refrigerant circuit 1 is provided. It is composed.

実施例の冷媒回路1は、高圧側の冷媒圧力がその臨界圧力以上(超臨界)となる二酸化炭素(R744)を冷媒として用いる。この二酸化炭素冷媒は、地球環境に優しく、可燃性及び毒性等を考慮した自然冷媒である。また、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等、既存のオイルが使用される。   The refrigerant circuit 1 according to the embodiment uses carbon dioxide (R744) whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure (supercritical) as the refrigerant. This carbon dioxide refrigerant is a natural refrigerant that is friendly to the global environment and takes into consideration flammability and toxicity. As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.

冷凍機ユニット3は、圧縮手段としての圧縮機11を備える。本実施例において、圧縮機11は、内部中間圧型2段圧縮式ロータリコンプレッサであり、密閉容器12と、この密閉容器12の内部に配置収納された電動要素(駆動要素)13及びこの電動要素13の回転軸により駆動される第1の(低段側)回転圧縮要素(第1の圧縮要素)14及び第2の(高段側)回転圧縮要素(第2の圧縮要素)16から成る回転圧縮機構部にて構成されている。   The refrigerator unit 3 includes a compressor 11 as compression means. In the present embodiment, the compressor 11 is an internal intermediate pressure type two-stage compression rotary compressor, and includes a hermetic container 12, an electric element (drive element) 13 disposed and housed in the hermetic container 12, and the electric element 13. Rotational compression comprising a first (low-stage side) rotary compression element (first compression element) 14 and a second (high-stage side) rotary compression element (second compression element) 16 driven by the rotary shaft It consists of a mechanism part.

圧縮機11の第1の回転圧縮要素14は、冷媒配管9を介して冷媒回路1の低圧側から圧縮機11に吸い込まれる低圧冷媒を圧縮して中間圧まで昇圧して吐出し、第2の回転圧縮要素16は、第1の回転圧縮要素14で圧縮されて吐出された中間圧の冷媒を更に吸い込み、圧縮して高圧まで昇圧し、冷媒回路1の高圧側に吐出する。圧縮機11は、周波数可変型の圧縮機であり、電動要素13の運転周波数を変更することで、第1の回転圧縮要素14及び第2の回転圧縮要素16の回転数を制御可能とする。   The first rotary compression element 14 of the compressor 11 compresses the low-pressure refrigerant sucked into the compressor 11 from the low-pressure side of the refrigerant circuit 1 through the refrigerant pipe 9 and raises it to an intermediate pressure for discharge. The rotary compression element 16 further sucks in the intermediate pressure refrigerant compressed and discharged by the first rotary compression element 14, compresses it to a high pressure, and discharges it to the high pressure side of the refrigerant circuit 1. The compressor 11 is a variable frequency compressor, and the rotational frequency of the first rotary compression element 14 and the second rotary compression element 16 can be controlled by changing the operating frequency of the electric element 13.

圧縮機11の密閉容器12の側面には、第1の回転圧縮要素14に連通する低段側吸込口17と、密閉容器12内に連通する低段側吐出口18と、第2の回転圧縮要素16に連通する高段側吸込口19及び高段側吐出口21が形成されている。圧縮機11の低段側吸込口17には、冷媒導入配管22の一端が接続され、その他端はユニット入口7にて冷媒配管9に接続されている。この冷媒導入配管22が接続される低段側吸込口17が圧縮機11の低圧部である第1の回転圧縮要素14の吸込側に連通されている。   On the side surface of the sealed container 12 of the compressor 11, a low-stage suction port 17 communicating with the first rotary compression element 14, a low-stage discharge port 18 communicating with the inside of the sealed container 12, and a second rotational compression A high-stage suction port 19 and a high-stage discharge port 21 communicating with the element 16 are formed. One end of the refrigerant introduction pipe 22 is connected to the lower stage side suction port 17 of the compressor 11, and the other end is connected to the refrigerant pipe 9 at the unit inlet 7. A low-stage suction port 17 to which the refrigerant introduction pipe 22 is connected communicates with the suction side of the first rotary compression element 14 that is a low-pressure portion of the compressor 11.

この低段側吸込口17より第1の回転圧縮要素14の吸込側(圧縮機11の低圧部)に吸い込まれた低圧(LP:通常運転状態で2.6MPa程)の冷媒ガスは、当該第1の回転圧縮要素14により中間圧(MP:通常運転状態で5.5MPa程度)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となり、ここが圧縮機11の中間圧部となる。   The refrigerant gas having a low pressure (LP: about 2.6 MPa in a normal operation state) sucked into the suction side (low pressure portion of the compressor 11) of the first rotary compression element 14 from the low stage side suction port 17 The pressure is increased to an intermediate pressure (MP: about 5.5 MPa in a normal operation state) by one rotary compression element 14 and discharged into the sealed container 12. As a result, the inside of the sealed container 12 becomes an intermediate pressure (MP), which becomes an intermediate pressure portion of the compressor 11.

そして、密閉容器12内の中間圧の冷媒ガスが吐出される圧縮機11の低段側吐出口18には、中間圧吐出配管23の一端が接続され、その他端はインタークーラ24の入口に接続されている。このインタークーラ24は、第1の回転圧縮要素14から吐出された中間圧の冷媒を空冷するものであり、当該インタークーラ24の出口には、中間圧吸入配管26の一端が接続され、この中間圧吸入配管26の他端は圧縮機11の高段側吸込口19に接続されている。   One end of the intermediate pressure discharge pipe 23 is connected to the low-stage discharge port 18 of the compressor 11 from which the intermediate pressure refrigerant gas in the sealed container 12 is discharged, and the other end is connected to the inlet of the intercooler 24. Has been. The intercooler 24 air-cools the intermediate pressure refrigerant discharged from the first rotary compression element 14, and one end of an intermediate pressure suction pipe 26 is connected to the outlet of the intercooler 24. The other end of the pressure suction pipe 26 is connected to the higher stage suction port 19 of the compressor 11.

高段側吸込口19より第2の回転圧縮要素16に吸い込まれた中間圧(MP)の冷媒ガスは、当該第2の回転圧縮要素16により2段目の圧縮が行われて高温高圧(HP:通常運転状態で9MPa程の超臨界圧力)の冷媒ガスとなる。   The intermediate pressure (MP) refrigerant gas sucked into the second rotary compression element 16 from the high-stage side suction port 19 is compressed in the second stage by the second rotary compression element 16 to generate a high temperature and high pressure (HP). : Supercritical pressure of about 9 MPa in a normal operation state).

そして、圧縮機11の第2の回転圧縮要素16の高圧室側に連通する高段側吐出口21には、高圧吐出配管27の一端が接続され、その他端はガスクーラ(放熱器)28の入口に接続されている。20はこの高圧吐出配管27内に介設された逆止弁であり、ガスクーラ28方向が順方向とされている。   One end of a high-pressure discharge pipe 27 is connected to the high-stage discharge port 21 communicating with the high-pressure chamber side of the second rotary compression element 16 of the compressor 11, and the other end is an inlet of a gas cooler (heat radiator) 28. It is connected to the. Reference numeral 20 denotes a check valve interposed in the high-pressure discharge pipe 27, and the direction of the gas cooler 28 is the forward direction.

ガスクーラ28は、圧縮機11から吐出された高圧の吐出冷媒を冷却するものであり、ガスクーラ28の近傍には当該ガスクーラ28を空冷するガスクーラ用送風機31が配設されている。本実施例では、ガスクーラ28は上述したインタークーラ24と並設されており、これらは同一の風路に配設されている。   The gas cooler 28 cools the high-pressure discharged refrigerant discharged from the compressor 11, and a gas cooler blower 31 for air-cooling the gas cooler 28 is disposed in the vicinity of the gas cooler 28. In the present embodiment, the gas cooler 28 is juxtaposed with the intercooler 24 described above, and these are disposed in the same air passage.

ガスクーラ28の出口にはガスクーラ出口配管32の一端が接続され、このガスクーラ出口配管32の他端は圧力調整用絞り手段としての電動膨張弁33の入口に接続されている。この電動膨張弁33はガスクーラ28から出た冷媒を絞って膨張させると共に、電動膨張弁33から上流側の冷媒回路1の高圧側圧力の調整を行うためのもので、その出口は受液器入口配管34を介して受液器36の上部に接続されている。   One end of a gas cooler outlet pipe 32 is connected to the outlet of the gas cooler 28, and the other end of the gas cooler outlet pipe 32 is connected to an inlet of an electric expansion valve 33 as a pressure adjusting throttle means. The electric expansion valve 33 squeezes and expands the refrigerant discharged from the gas cooler 28, and adjusts the high-pressure side pressure of the refrigerant circuit 1 upstream from the electric expansion valve 33. The outlet of the electric expansion valve 33 is the receiver inlet. It is connected to the upper part of the liquid receiver 36 through a pipe 34.

この受液器36は内部に所定容積の空間を有する容積体(タンク)であり、その下部には受液器出口配管37の一端が接続され、この受液器出口配管37の他端がユニット出口6にて冷媒配管8に接続されている。また、ガスクーラ出口配管32中には熱交換器29の第2の流路29Bが介設され、このガスクーラ出口配管32、熱交換器29の第2の流路29B、電動膨張弁33、受液器入口配管34、受液器36、受液器出口配管37が本発明における主回路38を構成する。   The liquid receiver 36 is a volume body (tank) having a space of a predetermined volume inside, and one end of a liquid receiver outlet pipe 37 is connected to the lower part thereof, and the other end of the liquid receiver outlet pipe 37 is a unit. The outlet 6 is connected to the refrigerant pipe 8. In addition, a second flow path 29B of the heat exchanger 29 is interposed in the gas cooler outlet pipe 32. The gas cooler outlet pipe 32, the second flow path 29B of the heat exchanger 29, the electric expansion valve 33, the liquid receiver The receiver inlet pipe 34, the receiver 36 and the receiver outlet pipe 37 constitute the main circuit 38 in the present invention.

一方、店舗内に設置されるショーケース4は、冷媒配管8及び9に接続される。ショーケース4には、主絞り手段としての電動膨張弁39と蒸発器41が設けられており、冷媒配管8と冷媒配管9との間に順次接続されて直列回路を構成している(電動膨張弁39が冷媒配管8側、蒸発器41が冷媒配管9側)。蒸発器41には、当該蒸発器41に送風する図示しない冷気循環用送風機が隣設されている。そして、冷媒配管9は、上述したように冷媒導入配管22を介して圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に接続されている。   On the other hand, the showcase 4 installed in the store is connected to the refrigerant pipes 8 and 9. The showcase 4 is provided with an electric expansion valve 39 and an evaporator 41 as main throttle means, which are sequentially connected between the refrigerant pipe 8 and the refrigerant pipe 9 to constitute a series circuit (electric expansion). The valve 39 is on the refrigerant pipe 8 side, and the evaporator 41 is on the refrigerant pipe 9 side). The evaporator 41 is provided with a cool air circulation blower (not shown) that blows air to the evaporator 41. The refrigerant pipe 9 is connected to the low-stage suction port 17 that communicates with the first rotary compression element 14 of the compressor 11 via the refrigerant introduction pipe 22 as described above.

他方、受液器36の上部にはガス配管42の一端が接続されており、このガス配管42の他端は第1の補助回路用絞り手段としての電動膨張弁43の入口に接続されている。ガス配管42は受液器36上部からガス冷媒を流出させ、電動膨張弁43に流入させる。この電動膨張弁43の出口には、戻り配管44の一端が接続され、この戻り配管44中に熱交換器29の第1の流路29Aが介設されている。   On the other hand, one end of a gas pipe 42 is connected to the upper portion of the liquid receiver 36, and the other end of the gas pipe 42 is connected to an inlet of an electric expansion valve 43 as a first auxiliary circuit throttle means. . The gas pipe 42 causes the gas refrigerant to flow out from the upper part of the liquid receiver 36 and flow into the electric expansion valve 43. One end of a return pipe 44 is connected to the outlet of the electric expansion valve 43, and the first flow path 29 </ b> A of the heat exchanger 29 is interposed in the return pipe 44.

また、受液器出口配管37には、当該受液器出口配管37を介して受液器36下部に連通する液配管46の一端が接続されており、この液配管46の他端は電動膨張弁43の下流側で、且つ、熱交換器29の第1の流路29Aより上流側の戻り配管44に連通されている。また、この液配管46中には第2の補助回路用絞り手段としての電動膨張弁47が介設されている。これら電動膨張弁43(第1の補助回路用絞り手段)と電動膨張弁47(第2の補助回路用絞り手段)が本出願における補助絞り手段を構成する。また、液配管46は受液器36下部から液冷媒を流出させ、電動膨張弁47に流入させる。   In addition, one end of a liquid pipe 46 communicating with the lower part of the liquid receiver 36 is connected to the liquid receiver outlet pipe 37 via the liquid receiver outlet pipe 37, and the other end of the liquid pipe 46 is electrically expanded. The return pipe 44 communicates with the downstream side of the valve 43 and upstream of the first flow path 29 </ b> A of the heat exchanger 29. Further, an electric expansion valve 47 as a second auxiliary circuit throttle means is interposed in the liquid pipe 46. The electric expansion valve 43 (first auxiliary circuit throttle means) and the electric expansion valve 47 (second auxiliary circuit throttle means) constitute auxiliary throttle means in the present application. Further, the liquid pipe 46 causes liquid refrigerant to flow out from the lower part of the liquid receiver 36 and flow into the electric expansion valve 47.

更に、戻り配管44の他端は中間圧戻り配管63と低圧戻り配管64とに分岐しており、中間圧戻り配管63は圧縮機11の中間圧部に繋がる中間圧領域の一例として中間圧吸入配管26の途中に連通されており、低圧戻り配管64は圧縮機11の低圧部に繋がる低圧側領域の一例として冷媒導入配管22の途中に連通されている。また、中間圧戻り配管63中には、電磁弁66(電動弁でも良い)が介設されており、低圧戻り配管64中にも電磁弁67(電動弁でも良い)が介設され、これら電磁弁66、67が本発明における流路切換手段を構成する。   Further, the other end of the return pipe 44 is branched into an intermediate pressure return pipe 63 and a low pressure return pipe 64, and the intermediate pressure return pipe 63 is an intermediate pressure suction as an example of an intermediate pressure region connected to the intermediate pressure portion of the compressor 11. The low-pressure return pipe 64 communicates with the refrigerant introduction pipe 22 as an example of a low-pressure side region connected to the low-pressure portion of the compressor 11. Further, an electromagnetic valve 66 (which may be an electric valve) is interposed in the intermediate pressure return pipe 63, and an electromagnetic valve 67 (which may be an electric valve) is also provided in the low pressure return pipe 64. The valves 66 and 67 constitute the flow path switching means in the present invention.

そして、これら戻り配管44、中間圧戻り配管63、低圧戻り配管64、電磁弁66、67、電動膨張弁43、47、ガス配管42、及び、液配管46が本発明における補助回路48を構成する。   The return pipe 44, the intermediate pressure return pipe 63, the low pressure return pipe 64, the electromagnetic valves 66 and 67, the electric expansion valves 43 and 47, the gas pipe 42, and the liquid pipe 46 constitute the auxiliary circuit 48 in the present invention. .

このような構成により、電動膨張弁33はガスクーラ28の下流側であって電動膨張弁39の上流側に位置する。また、受液器36は電動膨張弁33の下流側であって電動膨張弁39の上流側に位置する。更に、熱交換器29はガスクーラ28の下流側であって電動膨張弁33の上流側に位置することになり、以上により本実施例における冷凍装置Rの冷媒回路1が構成される。   With such a configuration, the electric expansion valve 33 is located downstream of the gas cooler 28 and upstream of the electric expansion valve 39. The liquid receiver 36 is located downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39. Furthermore, the heat exchanger 29 is positioned downstream of the gas cooler 28 and upstream of the electric expansion valve 33, and the refrigerant circuit 1 of the refrigeration apparatus R in this embodiment is configured as described above.

この冷媒回路1の各所には種々のセンサが取り付けられている。即ち、熱交換器29の第2の流路29Bの下流側で電動膨張弁33の上流側のガスクーラ出口配管32には高圧センサ49が取り付けられて冷媒回路1の高圧側圧力HP(圧縮機11の高段側吐出口21と電動膨張弁33の入口の間の圧力)を検出する。また、冷媒導入配管22には低圧センサ51が取り付けられて冷媒回路1の低圧側圧力LP(電動膨張弁39の出口と低段側吸込口17の間の圧力)を検出する。また、中間圧吸入配管26には中間圧センサ52が取り付けられて冷媒回路の1の中間圧領域の圧力である中間圧MP(密閉容器12内、インタークーラ24、中間圧吸入配管26、高段側吸込口19の圧力)を検出する。   Various sensors are attached to various portions of the refrigerant circuit 1. That is, a high-pressure sensor 49 is attached to the gas cooler outlet pipe 32 downstream of the second flow path 29B of the heat exchanger 29 and upstream of the electric expansion valve 33, and the high-pressure side pressure HP (compressor 11) of the refrigerant circuit 1 is attached. The pressure between the high-stage discharge port 21 and the inlet of the electric expansion valve 33 is detected. A low pressure sensor 51 is attached to the refrigerant introduction pipe 22 to detect a low pressure LP of the refrigerant circuit 1 (pressure between the outlet of the electric expansion valve 39 and the low stage suction port 17). Further, an intermediate pressure sensor 52 is attached to the intermediate pressure suction pipe 26 and an intermediate pressure MP (in the sealed container 12, the intercooler 24, the intermediate pressure suction pipe 26, a high stage, which is the pressure in the intermediate pressure region 1 of the refrigerant circuit). The pressure of the side suction port 19) is detected.

また、ガス配管42には受液器内圧力センサ53が取り付けられており、この受液器内圧力センサ53は受液器36内の圧力TPを検出する。この受液器36内の圧力は、即ち、冷凍機ユニット3を出て冷媒配管8を経由し、電動膨張弁39に流入する冷媒の圧力となる。また、ガスクーラ28の下流側で熱交換器29の第2の流路29Bの上流側のガスクーラ出口配管32にはガスクーラ出口温度センサ54が取り付けられ、ガスクーラ28を出て熱交換器29の第2の流路29Bに流入する冷媒の温度ITを検出する。   In addition, a receiver pressure sensor 53 is attached to the gas pipe 42, and the receiver pressure sensor 53 detects the pressure TP in the receiver 36. That is, the pressure in the liquid receiver 36 becomes the pressure of the refrigerant that leaves the refrigerator unit 3 and flows into the electric expansion valve 39 via the refrigerant pipe 8. A gas cooler outlet temperature sensor 54 is attached to the gas cooler outlet pipe 32 downstream of the gas cooler 28 and upstream of the second flow path 29B of the heat exchanger 29. The temperature IT of the refrigerant flowing into the flow path 29B is detected.

また、熱交換器29の第2の流路29Bの下流側で電動膨張弁33の上流側のガスクーラ出口配管32には電動膨張弁入口温度センサ56が取り付けられ、熱交換器29の第2の流路29Bを出た冷媒の温度OTを検出する。更にまた、ガスクーラ28の空気入口側には、外気温度センサ61が取り付けられて外気温度ATを検出する。   An electric expansion valve inlet temperature sensor 56 is attached to the gas cooler outlet pipe 32 downstream of the second flow path 29B of the heat exchanger 29 and upstream of the electric expansion valve 33, so that the second The temperature OT of the refrigerant exiting the flow path 29B is detected. Furthermore, an outside air temperature sensor 61 is attached to the air inlet side of the gas cooler 28 to detect the outside air temperature AT.

そして、これらセンサ49、51、52、53、54、56、61はマイクロコンピュータから構成された冷凍機ユニット3の制御手段を構成する制御装置57の入力に接続されている。また、制御装置57の出力には圧縮機11の電動要素13、送風機31、電動膨張弁(圧力調整用絞り手段)33、電動膨張弁(第1の補助回路用絞り手段)43、電動膨張弁(第2の補助回路用絞り手段)47、電磁弁66、67、電動膨張弁(主絞り手段)39が接続され、制御装置57は各センサの出力と設定データ等に基づいてこれらを制御する。   These sensors 49, 51, 52, 53, 54, 56, 61 are connected to the input of a control device 57 that constitutes the control means of the refrigerator unit 3 composed of a microcomputer. The output of the control device 57 includes an electric element 13 of the compressor 11, a blower 31, an electric expansion valve (pressure adjusting throttle means) 33, an electric expansion valve (first auxiliary circuit throttle means) 43, and an electric expansion valve. (Second auxiliary circuit throttle means) 47, electromagnetic valves 66 and 67, and electric expansion valve (main throttle means) 39 are connected, and the control device 57 controls them based on the output of each sensor, setting data, and the like. .

尚、以後はショーケース4側の電動膨張弁(主絞り手段)39や前述した冷気循環用送風機も制御装置57が制御するものとして説明するが、それらは実際には店舗の主制御装置(図示せず)を介し、制御装置57と連携して動作するショーケース4側の制御装置(図示せず)により制御される。従って、本発明における制御手段は制御装置57やショーケース4側の制御装置、前述した主制御装置等を含めた概念とする。   In the following description, it is assumed that the control device 57 controls the electric expansion valve (main throttle means) 39 on the showcase 4 side and the above-mentioned cool air circulation blower. Through a control device (not shown) on the side of the showcase 4 that operates in cooperation with the control device 57. Therefore, the control means in the present invention has a concept including the control device 57, the control device on the showcase 4 side, the main control device described above, and the like.

(2)冷凍装置Rの動作
以上の構成で、次に冷凍装置Rの動作を説明する。制御装置57により圧縮機11の電動要素13が駆動されると、第1の回転圧縮要素14及び第2の回転圧縮要素16が回転し、低段側吸込口17より第1の回転圧縮要素14の吸込側(低圧部)に低圧(前述したLP:通常運転状態で2.6MPa程)の冷媒ガスが吸い込まれる。そして、第1の回転圧縮要素14により中間圧(前述したMP:通常運転状態で5.5MPa程度)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる(中間圧部)。
(2) Operation of Refrigeration Apparatus R Next, the operation of the refrigeration apparatus R with the above configuration will be described. When the electric element 13 of the compressor 11 is driven by the control device 57, the first rotary compression element 14 and the second rotary compression element 16 rotate and the first rotary compression element 14 is rotated from the low-stage suction port 17. The refrigerant gas at a low pressure (LP mentioned above: about 2.6 MPa in the normal operation state) is sucked into the suction side (low pressure portion). Then, the pressure is increased to an intermediate pressure (MP described above: about 5.5 MPa in the normal operation state) by the first rotary compression element 14 and discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP) (intermediate pressure part).

そして、密閉容器12内の中間圧の冷媒ガスは低段側吐出口18から中間圧吐出配管23を経てインタークーラ24に入り、そこで空冷された後、中間圧吸入配管26を経て高段側吸込口19に戻る。この高段側吸込口19に戻った中間圧(MP)の冷媒ガスは、第2の回転圧縮要素16に吸い込まれ、この第2の回転圧縮要素16により2段目の圧縮が行われて高温高圧(HP:前述した通常運転状態で9MPa程の超臨界圧力)の冷媒ガスとなり、高段側吐出口21から高圧吐出配管27に吐出される。   Then, the intermediate-pressure refrigerant gas in the sealed container 12 enters the intercooler 24 from the low-stage discharge port 18 through the intermediate-pressure discharge pipe 23, and is then air-cooled there, and then through the intermediate-pressure suction pipe 26 to the high-stage suction. Return to mouth 19. The intermediate pressure (MP) refrigerant gas that has returned to the high-stage suction port 19 is sucked into the second rotary compression element 16, and the second stage compression is performed by the second rotary compression element 16, resulting in a high temperature. The refrigerant gas becomes high-pressure (HP: supercritical pressure of about 9 MPa in the above-described normal operation state) and is discharged from the high-stage discharge port 21 to the high-pressure discharge pipe 27.

(2−1)電動膨張弁33の制御
高圧吐出配管27に吐出された冷媒ガスは逆止弁20を経てガスクーラ28に流入し、そこで空冷された後、ガスクーラ出口配管32から流出する。ガスクーラ出口配管32に入った冷媒ガスは熱交換器29の第2の流路29Bで後述する如く過冷却された後、電動膨張弁(圧力調整用絞り手段)33に至る。この電動膨張弁33は、当該電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPを所定の目標値THP(例えば前述した9MPa等)に制御するために設けられており、高圧センサ49の出力に基づき、高圧側圧力HPが前記目標値THPとなるように制御装置57によりその弁開度が制御される。
(2-1) Control of the electric expansion valve 33 The refrigerant gas discharged to the high-pressure discharge pipe 27 flows into the gas cooler 28 through the check valve 20, is air-cooled there, and then flows out from the gas cooler outlet pipe 32. The refrigerant gas that has entered the gas cooler outlet pipe 32 is supercooled in the second flow path 29B of the heat exchanger 29 as will be described later, and then reaches the electric expansion valve (pressure adjusting throttle means) 33. The electric expansion valve 33 is provided to control the high pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 to a predetermined target value THP (for example, 9 MPa described above). Is controlled by the control device 57 so that the high pressure side pressure HP becomes the target value THP.

この目標値THPは、電動膨張弁入口温度センサ56が検出する電動膨張弁33に流入する冷媒の温度に基づいて決定される。目標値THPは、電動膨張弁33に流入する冷媒の温度に応じた高圧側圧力HPの適正値であり、冷媒の温度が高い程、目標値THPは高くなる。   This target value THP is determined based on the temperature of the refrigerant flowing into the electric expansion valve 33 detected by the electric expansion valve inlet temperature sensor 56. The target value THP is an appropriate value of the high-pressure side pressure HP corresponding to the temperature of the refrigerant flowing into the electric expansion valve 33. The higher the refrigerant temperature, the higher the target value THP.

このように電動膨張弁33により、それより上流側の高圧側圧力HPを目標値THPに制御することにより、圧縮機11から冷媒が吐出される高圧側圧力HPが高くなって圧縮機11の運転効率が低下し、或いは、圧縮機11に損傷を来す不都合を未然に回避することが可能となる。   Thus, by controlling the high-pressure side pressure HP upstream from the electric expansion valve 33 to the target value THP, the high-pressure side pressure HP at which the refrigerant is discharged from the compressor 11 is increased, and the operation of the compressor 11 is performed. It is possible to avoid inconvenience that the efficiency is reduced or the compressor 11 is damaged.

ガスクーラ28から出た超臨界状態の冷媒ガスは、熱交換器29の第2の流路29Bにて後述するように第1の流路29A(補助回路48)を流れる冷媒により冷却(過冷却)された後、電動膨張弁33で絞られて膨張することにより液化していき、受液器入口配管34を経て上部から受液器36内に流入して一部が蒸発する。この受液器36は電動膨張弁33を出た液/ガスの冷媒を一旦貯留し、分離する役割と、電動膨張弁39の動作による圧力変動や冷媒循環量の変動を吸収する役割を果たす。   The supercritical refrigerant gas emitted from the gas cooler 28 is cooled (supercooled) by the refrigerant flowing through the first flow path 29A (auxiliary circuit 48) in the second flow path 29B of the heat exchanger 29 as will be described later. Then, the liquid is liquefied by being throttled and expanded by the electric expansion valve 33, and flows into the liquid receiver 36 from the upper part via the liquid receiver inlet pipe 34, and a part thereof is evaporated. The liquid receiver 36 temporarily stores and separates the liquid / gas refrigerant exiting the electric expansion valve 33, and plays a role of absorbing pressure fluctuations and refrigerant circulation amount fluctuations due to the operation of the electric expansion valve 39.

この受液器36内下部に溜まった液冷媒は、受液器出口配管37から流出し(主回路38)、冷凍機ユニット3から出て冷媒配管8から電動膨張弁(主絞り手段)39に流入する。電動膨張弁39に流入した冷媒はそこで絞られて膨張することで更に液分が増え、蒸発器41に流入して蒸発する。これによる吸熱作用により冷却効果が発揮される。制御装置57は蒸発器41の入口側と出口側の温度を検出する図示しない温度センサの出力に基づき、電動膨張弁39の弁開度を制御して蒸発器41における冷媒の過熱度を適正値に調整する。   The liquid refrigerant accumulated in the lower part of the liquid receiver 36 flows out from the liquid receiver outlet pipe 37 (main circuit 38), exits the refrigerator unit 3, and passes from the refrigerant pipe 8 to the electric expansion valve (main throttle means) 39. Inflow. The refrigerant that has flowed into the electric expansion valve 39 is squeezed there and expanded to further increase the liquid content, and flow into the evaporator 41 to evaporate. The cooling effect is exhibited by the endothermic action. The control device 57 controls the valve opening degree of the electric expansion valve 39 based on the output of a temperature sensor (not shown) that detects the temperatures of the inlet side and the outlet side of the evaporator 41 and sets the superheat degree of the refrigerant in the evaporator 41 to an appropriate value. Adjust to.

蒸発器41から出た低温のガス冷媒は冷媒配管9から冷凍機ユニット3に戻り、冷媒導入配管22を経て圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に吸い込まれる。以上が主回路38の流れである。   The low-temperature gas refrigerant discharged from the evaporator 41 returns from the refrigerant pipe 9 to the refrigerator unit 3, and is sucked into the low-stage suction port 17 communicating with the first rotary compression element 14 of the compressor 11 through the refrigerant introduction pipe 22. It is. The above is the flow of the main circuit 38.

(2−2)電動膨張弁43の制御
次に補助回路48の流れを説明する。前述した如く受液器36の上部に接続されたガス配管42には電動膨張弁43(第1の補助回路用絞り手段)が接続されており、この電動膨張弁43を介して受液器36上部からガス冷媒が流出し、熱交換器29の第1の流路29Aに流される。
(2-2) Control of Electric Expansion Valve 43 Next, the flow of the auxiliary circuit 48 will be described. As described above, an electric expansion valve 43 (first auxiliary circuit throttle means) is connected to the gas pipe 42 connected to the upper portion of the liquid receiver 36, and the liquid receiver 36 is connected via the electric expansion valve 43. The gas refrigerant flows out from the upper part and flows into the first flow path 29A of the heat exchanger 29.

受液器36内上部に溜まるガス冷媒は、受液器36内での蒸発により温度が低下している。この受液器36内上部のガス冷媒は、上部に接続された補助回路48を構成するガス配管42から流出し、電動膨張弁43を経て絞られた後、戻り配管44中の熱交換器29の第1の流路29Aに流入する。そこで第2の流路29Bを流れる冷媒を冷却(過冷却)した後、戻り配管44に流出する。   The temperature of the gas refrigerant accumulated in the upper part of the liquid receiver 36 is lowered due to evaporation in the liquid receiver 36. The gas refrigerant in the upper part of the liquid receiver 36 flows out from the gas pipe 42 constituting the auxiliary circuit 48 connected to the upper part, is throttled through the electric expansion valve 43, and then the heat exchanger 29 in the return pipe 44. Into the first flow path 29A. Therefore, the refrigerant flowing through the second flow path 29B is cooled (supercooled) and then flows out to the return pipe 44.

また、電動膨張弁43は受液器36の上部から流出する冷媒を絞る機能の他に、受液器36内の圧力(電動膨張弁39に流入する冷媒の圧力)を所定の目標値SPに調整する役割を果たす。そして、制御装置57は受液器内圧力センサ53の出力に基づき、電動膨張弁43の弁開度を制御する。電動膨張弁43の弁開度が増大すれば、受液器36内からのガス冷媒の流出量が増大し、受液器36内の圧力は低下するからである。   In addition to the function of restricting the refrigerant flowing out from the upper part of the liquid receiver 36, the electric expansion valve 43 has the pressure in the liquid receiver 36 (the pressure of the refrigerant flowing into the electric expansion valve 39) at a predetermined target value SP. Play a role to coordinate. The control device 57 controls the valve opening degree of the electric expansion valve 43 based on the output of the receiver pressure sensor 53. This is because if the valve opening degree of the electric expansion valve 43 increases, the amount of gas refrigerant flowing out from the liquid receiver 36 increases and the pressure in the liquid receiver 36 decreases.

実施例では、この目標値SPは高圧側圧力HPよりも低く、中間圧MPよりも高い、例えば6MPaに設定されている。そして、制御装置57は受液器内圧力センサ53が検出する受液器36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)と目標値SPの差から、例えば電動膨張弁39の弁開度の調整値(ステップ数)を算出し、始動時の弁開度に加算して受液器36内の圧力TIP(電動膨張弁39に流入する冷媒の圧力)を目標値SPに制御する。即ち、受液器36内の圧力TIPが目標値SPより上昇した場合には電動膨張弁43の弁開度を増大させて受液器36内からガス冷媒をガス配管42に流出させ、逆に目標値SPより降下した場合には弁開度を縮小させて閉じる方向に制御する。   In the embodiment, the target value SP is set to be lower than the high pressure side pressure HP and higher than the intermediate pressure MP, for example, 6 MPa. Then, the control device 57 determines, for example, that of the electric expansion valve 39 from the difference between the pressure TIP (pressure of the refrigerant flowing into the electric expansion valve 39) in the liquid receiver 36 detected by the liquid receiver internal pressure sensor 53 and the target value SP. An adjustment value (number of steps) of the valve opening is calculated and added to the valve opening at the time of starting to control the pressure TIP (pressure of the refrigerant flowing into the electric expansion valve 39) in the liquid receiver 36 to the target value SP. To do. That is, when the pressure TIP in the liquid receiver 36 rises above the target value SP, the valve opening degree of the electric expansion valve 43 is increased and the gas refrigerant flows out of the liquid receiver 36 into the gas pipe 42. When it falls below the target value SP, the valve opening is reduced and controlled to close.

この電動膨張弁43により、受液器36内の冷媒の圧力TIPを目標値SPに制御することで、高圧側圧力HPの変動の影響を受けることなく、受液器36下部から電動膨張弁39に搬送される冷媒の圧力を制御することができる。また、電動膨張弁43によって電動膨張弁39に流入する冷媒の圧力を下げることにより、冷媒配管8として耐圧強度が低いものを使用することができるようになる。更に、受液器36上部から電動膨張弁43を介して低温のガスを抜くことで、受液器36内の圧力が低下し、温度が低下するので、冷媒の凝縮作用が生じ、受液器36内に液状態の冷媒を効果的に貯めることができる。   By controlling the pressure TIP of the refrigerant in the liquid receiver 36 to the target value SP by the electric expansion valve 43, the electric expansion valve 39 can be operated from the lower part of the liquid receiver 36 without being affected by the fluctuation of the high pressure side pressure HP. It is possible to control the pressure of the refrigerant conveyed to the tank. Further, by reducing the pressure of the refrigerant flowing into the electric expansion valve 39 by the electric expansion valve 43, it is possible to use the refrigerant pipe 8 having a low pressure resistance. Further, by extracting the low-temperature gas from the upper part of the liquid receiver 36 via the electric expansion valve 43, the pressure in the liquid receiver 36 is lowered and the temperature is lowered, so that the refrigerant condenses and the liquid receiver is received. The liquid refrigerant can be effectively stored in 36.

(2−3)電動膨張弁47の制御
また、前述した如く受液器36の下部の受液器出口配管37に接続された液配管46には電動膨張弁47(第2の補助回路用絞り手段)が接続されており、この電動膨張弁47を介して受液器36下部から流出した液冷媒の一部が、戻り配管44でガス配管42からのガス冷媒に合流して熱交換器29の第1の流路29Aに流される。
(2-3) Control of the electric expansion valve 47 Further, as described above, the electric expansion valve 47 (second auxiliary circuit throttle) is connected to the liquid pipe 46 connected to the liquid receiver outlet pipe 37 below the liquid receiver 36. A part of the liquid refrigerant that has flowed out from the lower part of the liquid receiver 36 via the electric expansion valve 47 is joined to the gas refrigerant from the gas pipe 42 through the return pipe 44, and the heat exchanger 29. To the first flow path 29A.

即ち、受液器36内下部に溜まる液冷媒は、下部に接続された受液器出口配管37から分かれて補助回路48を構成する液配管46に流れ、電動膨張弁47を経て絞られた後、熱交換器29の第1の流路29Aに流入、そこで蒸発する。このときの吸熱作用により、第2の流路29Bを流れる冷媒の過冷却を増大させた後、戻り配管44に流出する。   That is, the liquid refrigerant accumulated in the lower part of the liquid receiver 36 is separated from the liquid receiver outlet pipe 37 connected to the lower part, flows into the liquid pipe 46 constituting the auxiliary circuit 48, and is throttled through the electric expansion valve 47. , Flows into the first flow path 29A of the heat exchanger 29 and evaporates there. The heat absorption at this time increases the supercooling of the refrigerant flowing through the second flow path 29 </ b> B, and then flows out to the return pipe 44.

このように、電動膨張弁47は受液器36の下部から流出する液冷媒を絞って熱交換器29の第1の流路29Aで蒸発させ、第2の流路29Bに流れる主回路38の冷媒を過冷却するものであるが、制御装置57は電動膨張弁47の弁開度を制御することにより、熱交換器29の第1の流路29Aに流す液冷媒の量を調整する。   Thus, the electric expansion valve 47 squeezes the liquid refrigerant flowing out from the lower portion of the liquid receiver 36, evaporates it in the first flow path 29A of the heat exchanger 29, and the main circuit 38 that flows into the second flow path 29B. Although the refrigerant is supercooled, the control device 57 controls the valve opening degree of the electric expansion valve 47 to adjust the amount of the liquid refrigerant flowing through the first flow path 29 </ b> A of the heat exchanger 29.

熱交換器29の第2の流路29Bを流れる冷媒の過冷却の量が増大すれば、電動膨張弁33の出口の冷媒の乾き度が小さくなり、電動膨張弁39に搬送される冷媒の液相割合が高くなるため、電動膨張弁39には満液状態の冷媒が流入するようになり、それにより、冷凍能力が増大する。   If the amount of supercooling of the refrigerant flowing through the second flow path 29B of the heat exchanger 29 increases, the dryness of the refrigerant at the outlet of the electric expansion valve 33 decreases, and the refrigerant liquid conveyed to the electric expansion valve 39 is reduced. Since the phase ratio is increased, a full refrigerant flows into the electric expansion valve 39, thereby increasing the refrigeration capacity.

この場合、制御装置57はガスクーラ出口温度センサ54が検出する冷媒の温度(熱交換器29の第2の流路29Bに流入する冷媒の温度)と、電動膨張弁入口温度センサ56が検出する冷媒の温度(熱交換器29の第2の流路29Bから流出した冷媒の温度)に基づいて熱交換器29の第2の流路29Bを流れる冷媒の過冷却度(第2の流路29Bに流入する冷媒の温度と第2の流路29Bから流出した冷媒の温度との差)が、所定の目標値となるように電動膨張弁47の弁開度を制御することにより、熱交換器29の第1の流路29Aに流す液冷媒の量を調整する。   In this case, the controller 57 detects the temperature of the refrigerant detected by the gas cooler outlet temperature sensor 54 (the temperature of the refrigerant flowing into the second flow path 29B of the heat exchanger 29) and the refrigerant detected by the electric expansion valve inlet temperature sensor 56. Of the refrigerant flowing through the second flow path 29B of the heat exchanger 29 based on the temperature (the temperature of the refrigerant flowing out of the second flow path 29B of the heat exchanger 29) (in the second flow path 29B) The heat exchanger 29 is controlled by controlling the valve opening of the electric expansion valve 47 so that the difference between the temperature of the refrigerant flowing in and the temperature of the refrigerant flowing out of the second flow path 29B becomes a predetermined target value. The amount of liquid refrigerant flowing through the first flow path 29A is adjusted.

これにより、電動膨張弁47を介して熱交換器29の第1の流路29Aに受液器36内下部の液冷媒を流し、熱交換器29の第2の流路29Bを流れる冷媒の過冷却を増大させ、受液器36内下部から電動膨張弁39に搬送される冷媒の液相割合を高めて、より一層効果的に満液状態で電動膨張弁39に冷媒を流入させることができるようになり、冷凍能力の向上を図る。   As a result, the liquid refrigerant in the lower part of the liquid receiver 36 flows through the first flow path 29A of the heat exchanger 29 via the electric expansion valve 47, and excess refrigerant flowing through the second flow path 29B of the heat exchanger 29 flows. The cooling can be increased, and the liquid phase ratio of the refrigerant conveyed from the lower part in the liquid receiver 36 to the electric expansion valve 39 can be increased, so that the refrigerant can flow into the electric expansion valve 39 more effectively in the full state. To improve refrigeration capacity.

また、熱交換器29の第2の流路29Bの冷媒の過冷却度を目標値に制御することにより、熱交換器29の第2の流路29Bの冷媒の過冷却を確保し、冷凍能力を安定して維持する。   Further, by controlling the degree of supercooling of the refrigerant in the second flow path 29B of the heat exchanger 29 to a target value, the refrigerant is ensured to be overcooled in the second flow path 29B of the heat exchanger 29, and the refrigerating capacity To keep it stable.

(2−4)電磁弁66、67の制御
次に、制御装置57による電磁弁66及び電磁弁67の制御について図2、図3のP−h線図を参照しながら説明する。前述した如く受液器36内上部のガス冷媒は補助回路48の電動膨張弁43を経て熱交換器29の第1の流路29Aに流され、受液器36内下部から出た液冷媒の一部が電動膨張弁47を経て戻り配管44に入り、電動膨張弁43からの冷媒と合流して熱交換器29の第1の流路29Aに流れる。そして、この第1の流路29Aで蒸発し、第2の流路29Bを流れる主回路38の冷媒を過冷却した後、冷媒は中間圧戻り配管63と低圧戻り配管64との分岐点に至る。
(2-4) Control of Electromagnetic Valves 66 and 67 Next, control of the electromagnetic valve 66 and the electromagnetic valve 67 by the control device 57 will be described with reference to the Ph diagrams of FIGS. As described above, the gas refrigerant in the upper part of the liquid receiver 36 flows into the first flow path 29A of the heat exchanger 29 via the electric expansion valve 43 of the auxiliary circuit 48, and the liquid refrigerant that has flowed out from the lower part in the liquid receiver 36. A part enters the return pipe 44 through the electric expansion valve 47, merges with the refrigerant from the electric expansion valve 43, and flows into the first flow path 29 </ b> A of the heat exchanger 29. And after evaporating in this 1st flow path 29A and subcooling the refrigerant | coolant of the main circuit 38 which flows through the 2nd flow path 29B, a refrigerant | coolant reaches the branching point of the intermediate pressure return piping 63 and the low pressure return piping 64. .

実施例の場合、制御装置57は電磁弁66及び電磁弁67を択一的に開くことにより、この補助回路48を流れる冷媒を圧縮機11の中間圧部に戻すか、低圧部に戻すかを切り換える。即ち、制御装置57は電磁弁66と67の何れか一方が開いているときは他方を必ず閉じる。また、制御装置57は電動膨張弁33の出口における冷媒の乾き度の状態によって、電磁弁66を開くか、電磁弁67を開くかを決定するが、この乾き度の判断は外気温度センサ61が検出する外気温度ATによって判断する。   In the case of the embodiment, the control device 57 selectively opens the solenoid valve 66 and the solenoid valve 67 to return the refrigerant flowing through the auxiliary circuit 48 to the intermediate pressure portion or the low pressure portion of the compressor 11. Switch. That is, when either one of the electromagnetic valves 66 and 67 is open, the control device 57 always closes the other. Further, the control device 57 determines whether to open the electromagnetic valve 66 or the electromagnetic valve 67 according to the state of the dryness of the refrigerant at the outlet of the electric expansion valve 33. The determination of the dryness is performed by the outside air temperature sensor 61. Judgment is based on the detected outside air temperature AT.

(2−4−1)補助回路48の冷媒を圧縮機11の中間圧部に戻す状態
実施例では、制御装置48は外気温度センサ61が検出する外気温度ATが所定の温度(例えば、+30℃等)より低い値であるとき(外気温度ATが低い場合)、電磁弁67を閉じ、電磁弁66を開いて、熱交換器29の第1の流路29Aを経た補助回路48の冷媒を中間圧吸入配管26から圧縮機11の中間圧部に戻す。
(2-4-1) State in which the refrigerant of the auxiliary circuit 48 is returned to the intermediate pressure portion of the compressor 11 In the embodiment, the control device 48 detects that the outside air temperature AT detected by the outside air temperature sensor 61 is a predetermined temperature (for example, + 30 ° C.). Etc.) When the value is lower (when the outside air temperature AT is lower), the electromagnetic valve 67 is closed, the electromagnetic valve 66 is opened, and the refrigerant in the auxiliary circuit 48 passed through the first flow path 29A of the heat exchanger 29 is intermediate. The pressure is returned from the pressure suction pipe 26 to the intermediate pressure portion of the compressor 11.

図2は係る外気温度ATが低い環境下での冷凍装置RのP−h線図を示している。図中MPは圧縮機11の中間圧部の圧力である中間圧、TIPは前述した受液器36内の圧力である。また、矢印X1が熱交換器29の第2の流路29Bにおける主回路38の冷媒の過冷却効果を示し、矢印X2及びX3は電動膨張弁43を経て熱交換器29の第1の流路29Aに流れるガス冷媒及び電磁弁47を経て流れる液冷媒の冷凍効果をそれぞれ示している。   FIG. 2 shows a Ph diagram of the refrigeration apparatus R in an environment where the outside air temperature AT is low. In the figure, MP is an intermediate pressure which is the pressure of the intermediate pressure portion of the compressor 11, and TIP is the pressure in the liquid receiver 36 described above. An arrow X1 indicates the effect of subcooling of the refrigerant in the main circuit 38 in the second flow path 29B of the heat exchanger 29, and arrows X2 and X3 indicate the first flow path of the heat exchanger 29 via the electric expansion valve 43. The refrigeration effect of the gas refrigerant flowing through 29A and the liquid refrigerant flowing through the electromagnetic valve 47 is shown.

例えば、冬場のように外気温度ATが比較的低い環境下では、熱交換器29で主回路38の冷媒が過冷却されることによって電動膨張弁33の出口における冷媒の乾き度が小さくなる。また、中間圧MPも比較的低く、受液器36内の圧力TIPとの差(MP<TIP)生じるため、受液器36内から圧縮機11の中間圧部に冷媒を流すことができる。   For example, in an environment where the outside air temperature AT is relatively low, such as in winter, the refrigerant in the main circuit 38 is supercooled by the heat exchanger 29, thereby reducing the dryness of the refrigerant at the outlet of the electric expansion valve 33. Further, since the intermediate pressure MP is also relatively low and a difference from the pressure TIP in the liquid receiver 36 (MP <TIP) occurs, the refrigerant can flow from the liquid receiver 36 to the intermediate pressure portion of the compressor 11.

そこで、このような場合には制御装置57は前述した如く電磁弁66を開き、熱交換器29の第1の流路29Aを経た補助回路48の冷媒を中間圧吸入配管26から圧縮機11の中間圧部に戻す。補助回路48の冷媒を圧縮機11の中間圧部に戻せば、圧縮機11の低圧部に吸い込まれる冷媒量が減少するので、低圧から中間圧まで圧縮するための圧縮機11における圧縮仕事量が減少する。これにより、圧縮機11における圧縮動力を低下させて成績係数を向上させることが可能となる。   Therefore, in such a case, the control device 57 opens the electromagnetic valve 66 as described above, and the refrigerant of the auxiliary circuit 48 that has passed through the first flow path 29A of the heat exchanger 29 is passed from the intermediate pressure suction pipe 26 to the compressor 11. Return to the intermediate pressure section. If the refrigerant in the auxiliary circuit 48 is returned to the intermediate pressure portion of the compressor 11, the amount of refrigerant sucked into the low pressure portion of the compressor 11 decreases, so that the compression work in the compressor 11 for compressing from the low pressure to the intermediate pressure is reduced. Decrease. Thereby, it becomes possible to reduce the compression power in the compressor 11 and to improve a coefficient of performance.

尚、この場合受液器36内の圧力TIPは中間圧MP以上で高圧側圧力HPより低い範囲で制御することが可能となる。   In this case, the pressure TIP in the liquid receiver 36 can be controlled in a range that is equal to or higher than the intermediate pressure MP and lower than the high-pressure side pressure HP.

(2−4−2)補助回路48の冷媒を圧縮機11の低圧部に戻す状態
一方、外気温度センサ61が検出する外気温度ATが前記所定の温度(+30℃等)以上の高い値であるとき(外気温度ATが高い場合)、制御装置57は電磁弁66を閉じ、電磁弁67を開いて、熱交換器29の第1の流路29Aを経た補助回路48の冷媒を冷媒導入配管22から圧縮機11の低圧部に戻す。
(2-4-2) State in which the refrigerant of the auxiliary circuit 48 is returned to the low pressure portion of the compressor 11 On the other hand, the outside air temperature AT detected by the outside air temperature sensor 61 is higher than the predetermined temperature (+ 30 ° C. or the like). When the outside air temperature AT is high, the control device 57 closes the electromagnetic valve 66, opens the electromagnetic valve 67, and supplies the refrigerant in the auxiliary circuit 48 that has passed through the first flow path 29A of the heat exchanger 29 to the refrigerant introduction pipe 22. To the low pressure part of the compressor 11.

図3は係る外気温度ATが高い環境下での冷凍装置RのP−h線図を示している。同様に図中MPはこの場合の圧縮機11の中間圧部の圧力である中間圧、TIPはこの場合の受液器36内の圧力である。また、矢印X1が熱交換器29の第2の流路29Bにおける主回路38の冷媒の過冷却効果を示し、矢印X2及びX3がこの場合の電動膨張弁43を経て熱交換器29の第1の流路29Aに流れるガス冷媒及び電磁弁47を経て流れる液冷媒の冷凍効果をそれぞれ示す。   FIG. 3 shows a Ph diagram of the refrigeration apparatus R in an environment where the outside air temperature AT is high. Similarly, in the figure, MP is an intermediate pressure that is the pressure of the intermediate pressure portion of the compressor 11 in this case, and TIP is the pressure in the liquid receiver 36 in this case. An arrow X1 indicates the effect of subcooling of the refrigerant in the main circuit 38 in the second flow path 29B of the heat exchanger 29, and arrows X2 and X3 indicate the first of the heat exchanger 29 via the electric expansion valve 43 in this case. The refrigeration effect of the gas refrigerant flowing through the flow path 29A and the liquid refrigerant flowing through the electromagnetic valve 47 is shown.

例えば、夏場のように外気温度ATが高い環境下では、熱交換器29における主回路38の冷媒の過冷却によっても電動膨張弁33の出口における冷媒の乾き度が大きくなる。また、中間圧MPも高くなり、受液器36内の圧力TIPとの差も無くなって略同じ値になるため、受液器36内から圧縮機11の中間圧部に冷媒を流せなくなる。   For example, in an environment where the outside air temperature AT is high, such as in summer, the dryness of the refrigerant at the outlet of the electric expansion valve 33 is also increased by the supercooling of the refrigerant in the main circuit 38 in the heat exchanger 29. Further, the intermediate pressure MP is also increased and the difference from the pressure TIP in the liquid receiver 36 is eliminated and becomes substantially the same value. Therefore, the refrigerant cannot flow from the liquid receiver 36 to the intermediate pressure portion of the compressor 11.

そこで、このような場合には制御装置57は前述した如く電磁弁67を開き、熱交換器29の第1の流路29Aを経た補助回路48の冷媒を冷媒導入配管22から圧縮機11の低圧部に戻す。即ち、受液器36内の圧力TIPと中間圧MPとの差が無くなる状況では、補助回路48の冷媒を圧縮機11の低圧部に戻して補助回路48に冷媒が流れるようにし、熱交換器29の第2の流路29Bにおける主回路38の冷媒の過冷却を確保する。   Therefore, in such a case, the control device 57 opens the electromagnetic valve 67 as described above, and the refrigerant of the auxiliary circuit 48 that has passed through the first flow path 29A of the heat exchanger 29 is supplied from the refrigerant introduction pipe 22 to the low pressure of the compressor 11. Return to the department. That is, in a situation where there is no difference between the pressure TIP in the liquid receiver 36 and the intermediate pressure MP, the refrigerant in the auxiliary circuit 48 is returned to the low pressure portion of the compressor 11 so that the refrigerant flows through the auxiliary circuit 48, and the heat exchanger The subcooling of the refrigerant in the main circuit 38 in the 29 second flow path 29B is ensured.

尚、この場合受液器36内の圧力TIPは低圧LPより高く、高圧側圧力HPより低い範囲で制御することが可能となる。   In this case, the pressure TIP in the liquid receiver 36 can be controlled in a range higher than the low pressure LP and lower than the high pressure HP.

このようにして本発明では、制御装置57は外気温度ATにかかわらず熱交換器29における電動膨張弁39に向かう冷媒の過冷却を支障無く実現し、安定した冷凍能力を確保する。   In this way, in the present invention, the control device 57 realizes supercooling of the refrigerant toward the electric expansion valve 39 in the heat exchanger 29 without any trouble regardless of the outside air temperature AT, and ensures a stable refrigeration capacity.

(2−5)ガスクーラ用送風機31の制御
次に、制御装置57によるガスクーラ用送風機31の制御について説明する。実施例の制御装置57は、ガスクーラ出口温度センサ54が検出する冷媒の温度(ガスクーラ28を出た冷媒の温度)に基づき、この冷媒の温度が所定の目標値となるようにガスクーラ用送風機31の回転数を制御する。その場合、制御装置57は外気温度センサ61が検出する外気温度ATに基づき、ガスクーラ28を出た冷媒の温度の目標値を設定する。この目標値は、外気温度毎に予め決定された冷媒(ガスクーラ28を出た冷媒)の温度の適正値である。
(2-5) Control of Gas Cooler Blower 31 Next, control of the gas cooler blower 31 by the control device 57 will be described. The control device 57 of the embodiment is based on the temperature of the refrigerant detected by the gas cooler outlet temperature sensor 54 (the temperature of the refrigerant that has exited the gas cooler 28), so that the temperature of the refrigerant reaches a predetermined target value. Control the number of revolutions. In this case, the control device 57 sets a target value for the temperature of the refrigerant that has exited the gas cooler 28 based on the outside air temperature AT detected by the outside air temperature sensor 61. This target value is an appropriate value of the temperature of the refrigerant (the refrigerant that has exited the gas cooler 28) that is predetermined for each outside air temperature.

このように、制御装置57が、ガスクーラ28を出た冷媒の温度が、外気温度ATに対して決定される所定の目標値となるようにガスクーラ用送風機31の運転(回転数)を制御することにより、ガスクーラ28を空冷するガスクーラ用送風機31の過剰な運転を抑制しながら、ガスクーラ28の出口の冷媒の温度を適正な値に維持することができるようになる。   In this way, the control device 57 controls the operation (rotation speed) of the gas cooler blower 31 so that the temperature of the refrigerant that has exited the gas cooler 28 becomes a predetermined target value determined with respect to the outside air temperature AT. Thus, the temperature of the refrigerant at the outlet of the gas cooler 28 can be maintained at an appropriate value while suppressing excessive operation of the gas cooler blower 31 that air-cools the gas cooler 28.

一方で制御装置57は、前述した如く受液器36の上流側の電動膨張弁33で高圧側圧力HPを目標値に制御するので、これら電動膨張弁33による高圧側圧力HPの制御とガスクーラ用送風機31による冷媒温度(ガスクーラ28を出た冷媒の温度)の制御によって圧縮機11の保護を図り、安定した運転を維持する。   On the other hand, the control device 57 controls the high pressure side pressure HP to the target value by the electric expansion valve 33 upstream of the liquid receiver 36 as described above. The compressor 11 is protected by controlling the refrigerant temperature (the temperature of the refrigerant that has exited the gas cooler 28) by the blower 31, and a stable operation is maintained.

以上詳述したように本発明では、圧縮機11と、ガスクーラ28と、電動膨張弁39と、蒸発器41とから冷媒回路1が構成され、高圧側が超臨界圧力となる冷凍装置Rにおいて、ガスクーラ28の下流側であって、電動膨張弁39の上流側の冷媒回路1に接続された電動膨張弁33と、この電動膨張弁33の下流側であって電動膨張弁39の上流側の冷媒回路1に接続された受液器36と、ガスクーラ28の下流側であって電動膨張弁33の上流側の冷媒回路1に設けられた熱交換器29と、受液器36内の冷媒を、電動膨張弁43や47を介して熱交換器29の第1の流路29Aに流した後、圧縮機11に戻す補助回路48と、ガスクーラ28から出た冷媒を熱交換器29の第2の流路29Bに流し、第1の流路29Aを流れる冷媒と熱交換させた後、電動膨張弁33に流入させ、受液器36下部から冷媒を流出させて電動膨張弁39に流入させる主回路38とを備えているので、補助回路48を構成する熱交換器29の第1の流路29Aに流れる冷媒を電動膨張弁43や47で膨張させ、主回路38を構成する熱交換器29の第2の流路29Bを流れる冷媒を過冷却することができるようになる。   As described in detail above, in the present invention, in the refrigerating apparatus R in which the refrigerant circuit 1 is configured by the compressor 11, the gas cooler 28, the electric expansion valve 39, and the evaporator 41, and the high pressure side is at the supercritical pressure, the gas cooler 28, an electric expansion valve 33 connected to the refrigerant circuit 1 upstream of the electric expansion valve 39, and a refrigerant circuit downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39. 1, the heat exchanger 29 provided in the refrigerant circuit 1 downstream of the gas cooler 28 and upstream of the electric expansion valve 33, and the refrigerant in the liquid receiver 36 are electrically After flowing into the first flow path 29A of the heat exchanger 29 through the expansion valves 43 and 47, the auxiliary circuit 48 returning to the compressor 11 and the refrigerant discharged from the gas cooler 28 are supplied to the second flow of the heat exchanger 29. The refrigerant and heat flowing in the channel 29B and flowing in the first channel 29A And the main circuit 38 that flows into the electric expansion valve 33, flows out the refrigerant from the lower part of the liquid receiver 36, and flows into the electric expansion valve 39. Therefore, the heat exchanger that constitutes the auxiliary circuit 48 is provided. 29, the refrigerant flowing in the first flow path 29A of the 29 is expanded by the electric expansion valves 43 and 47, so that the refrigerant flowing in the second flow path 29B of the heat exchanger 29 constituting the main circuit 38 can be supercooled. become.

この第2の流路29Bを流れる冷媒は、電動膨張弁33を経て受液器36に入り、受液器36下部から流出し、電動膨張弁39により絞られた後、蒸発器41に流入するので、熱交換器29における過冷却によって蒸発器41の入口の比エンタルピを小さくし、冷凍能力を効果的に改善することができるようになる。   The refrigerant flowing through the second flow path 29B enters the liquid receiver 36 through the electric expansion valve 33, flows out from the lower part of the liquid receiver 36, is throttled by the electric expansion valve 39, and then flows into the evaporator 41. Therefore, the specific enthalpy at the inlet of the evaporator 41 can be reduced by the supercooling in the heat exchanger 29, and the refrigerating capacity can be effectively improved.

また、電動膨張弁33で膨張されることで液化した冷媒の一部は受液器36内で蒸発し、温度が低下したガス冷媒となり、残りは液冷媒となって受液器36内下部に一旦貯留されるかたちとなる。そして、この受液器36内下部の液冷媒が電動膨張弁39に流入することになるので、満液状態で電動膨張弁39に冷媒を流入させることが可能となり、特に蒸発器41における蒸発温度が高い冷蔵条件における冷凍能力の向上を図ることができるようになる。更に、受液器36にて冷媒回路1内の循環冷媒量の変動が吸収される効果もあるので、冷媒充填量の誤差も吸収される。   In addition, a part of the refrigerant liquefied by being expanded by the electric expansion valve 33 is evaporated in the liquid receiver 36 to become a gas refrigerant having a lowered temperature, and the rest becomes a liquid refrigerant in the lower part of the liquid receiver 36. Once it is stored. Then, since the liquid refrigerant in the lower part of the liquid receiver 36 flows into the electric expansion valve 39, the refrigerant can flow into the electric expansion valve 39 in a full liquid state, and in particular, the evaporation temperature in the evaporator 41. However, it is possible to improve the refrigeration capacity under high refrigeration conditions. Further, since the liquid receiver 36 has an effect of absorbing the fluctuation of the circulating refrigerant amount in the refrigerant circuit 1, an error in the refrigerant charging amount is also absorbed.

特に、熱交換器29の第1の流路29Aを出た補助回路48の冷媒を、圧縮機11の中間圧部に戻すか、圧縮機11の低圧部に戻すかを択一的に切り換える電磁弁66、67を設け、制御装置57によって、前述した電動膨張弁33、電動膨張弁43、47や、この電磁弁66、67を制御するようにし、制御装置57が、外気温度ATが低い場合、電磁弁67を閉じ、電磁弁66を開いて熱交換器29の第1の流路29Aを出た補助回路48の冷媒を圧縮機11の中間圧部に戻すので、冬場のように外気温度ATが低く、熱交換器29における過冷却によって電動膨張弁33の出口における冷媒の乾き度が小さくなる状況では、補助回路48の冷媒を圧縮機11の中間圧部に戻して圧縮機11の低圧部に吸い込まれる冷媒量を減少させ、低圧から中間圧まで圧縮するための圧縮機11における圧縮仕事量を減少させることができる。これにより、圧縮機11における圧縮動力を低下させて成績係数を向上させることが可能となる。   In particular, an electromagnetic that selectively switches whether the refrigerant in the auxiliary circuit 48 exiting the first flow path 29A of the heat exchanger 29 is returned to the intermediate pressure portion of the compressor 11 or to the low pressure portion of the compressor 11. When the control device 57 controls the electric expansion valve 33, the electric expansion valves 43 and 47, and the electromagnetic valves 66 and 67, and the control device 57 has a low outside air temperature AT. Then, the electromagnetic valve 67 is closed, the electromagnetic valve 66 is opened, and the refrigerant in the auxiliary circuit 48 that has exited the first flow path 29A of the heat exchanger 29 is returned to the intermediate pressure portion of the compressor 11, so that the outside air temperature is as in winter. In a situation where the AT is low and the dryness of the refrigerant at the outlet of the electric expansion valve 33 is reduced due to the supercooling in the heat exchanger 29, the refrigerant in the auxiliary circuit 48 is returned to the intermediate pressure portion of the compressor 11 to reduce the low pressure of the compressor 11. Reduces the amount of refrigerant sucked into the It is possible to reduce the compression work amount of the compressor 11 for compressing to an intermediate pressure from. Thereby, it becomes possible to reduce the compression power in the compressor 11 and to improve a coefficient of performance.

一方、外気温度ATが高い場合は、制御装置57が電磁弁66を閉じ、電磁弁67を開いて熱交換器29の第1の流路29Aを出た補助回路48の冷媒を、圧縮機11の低圧部に戻すようにしたので、夏場のように外気温度ATが高く、熱交換器29における熱交換によっても電動膨張弁33の出口における冷媒の乾き度が大きくなり、受液器36内の圧力と圧縮機11の中間圧部の圧力差も無くなってくる状況では、補助回路48の冷媒を圧縮機11の低圧部に戻して補助回路48に冷媒が流れるようにし、熱交換器29における主回路38の冷媒の過冷却を確保することができるようになる。   On the other hand, when the outside air temperature AT is high, the control device 57 closes the electromagnetic valve 66 and opens the electromagnetic valve 67, and the refrigerant in the auxiliary circuit 48 that has exited the first flow path 29A of the heat exchanger 29 is used as the compressor 11. Therefore, the outside air temperature AT is high as in summer, and the degree of dryness of the refrigerant at the outlet of the electric expansion valve 33 is increased by heat exchange in the heat exchanger 29, so that the temperature in the liquid receiver 36 is increased. In a situation where the pressure and the pressure difference between the intermediate pressure parts of the compressor 11 disappear, the refrigerant in the auxiliary circuit 48 is returned to the low pressure part of the compressor 11 so that the refrigerant flows into the auxiliary circuit 48, and It becomes possible to ensure supercooling of the refrigerant in the circuit 38.

これらにより、外気温度にかかわらず熱交換器29における電動膨張弁39に向かう冷媒の過冷却を支障無く実現し、安定した冷凍能力を確保することが可能となる。   As a result, the refrigerant can be supercooled toward the electric expansion valve 39 in the heat exchanger 29 regardless of the outside air temperature without any trouble, and a stable refrigeration capacity can be secured.

また、制御装置57は電動膨張弁33により、当該電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPを所定の目標値に制御するので、圧縮機11から冷媒が吐出される高圧側圧力HPが高くなって圧縮機11の運転効率が低下し、或いは、圧縮機11に損傷を来す不都合を未然に回避することが可能となる。   Further, the control device 57 controls the high pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 to a predetermined target value by the electric expansion valve 33, so that the high pressure side from which the refrigerant is discharged from the compressor 11 is controlled. It becomes possible to avoid inconvenience that the pressure HP is increased and the operation efficiency of the compressor 11 is lowered or the compressor 11 is damaged.

また、補助回路48は受液器36上部から冷媒を流出させ、電動膨張弁43に流入させるガス配管42を有し、制御装置57は電動膨張弁43により、受液器36内の冷媒の圧力を所定の目標値に制御するので、この電動膨張弁43によって、高圧側圧力HPの変動の影響を抑制して、受液器36下部から電動膨張弁39に搬送される冷媒の圧力を制御することができるようになる。   Further, the auxiliary circuit 48 has a gas pipe 42 that allows the refrigerant to flow out from the upper part of the liquid receiver 36 and flow into the electric expansion valve 43, and the control device 57 uses the electric expansion valve 43 to adjust the pressure of the refrigerant in the liquid receiver 36. Therefore, the electric expansion valve 43 controls the pressure of the refrigerant conveyed from the lower part of the liquid receiver 36 to the electric expansion valve 39 by the electric expansion valve 43. Will be able to.

また、電動膨張弁43によって電動膨張弁39に流入する冷媒の圧力を下げることにより、電動膨張弁39に至る冷媒配管8として耐圧強度が低いものを使用することができるようになる。これにより、施工性や施工コストの改善を図ることが可能となる。   Further, by lowering the pressure of the refrigerant flowing into the electric expansion valve 39 by the electric expansion valve 43, it is possible to use a refrigerant pipe 8 having a low pressure resistance strength that reaches the electric expansion valve 39. Thereby, it becomes possible to improve workability and construction cost.

特に、受液器36の上部から電動膨張弁43を介して低温のガスを抜くことで、受液器36内の圧力が低下する。これにより、受液器36内では温度が低下するので、冷媒の凝縮作用が生じ、当該受液器36内に液状態の冷媒を効果的に貯めることができるようになる。   In particular, when the low-temperature gas is extracted from the upper part of the liquid receiver 36 via the electric expansion valve 43, the pressure in the liquid receiver 36 decreases. As a result, the temperature is lowered in the liquid receiver 36, so that the refrigerant condenses, and the liquid refrigerant can be effectively stored in the liquid receiver 36.

また、補助回路48は受液器36の下部から冷媒を流出させ、電動膨張弁47に流入させる液配管46を有し、制御装置57は電動膨張弁47により、熱交換器29の第1の流路29Aに流す液冷媒量を調整し、第2の流路29Bを流れる冷媒の過冷却度を所定の目標値に制御するので、電動膨張弁47を介して熱交換器29の第1の流路29Aに受液器36内下部の液冷媒を流し、熱交換器29の第2の流路29Bを流れる主回路38の冷媒の過冷却を増大させることができる。   Further, the auxiliary circuit 48 has a liquid pipe 46 that allows the refrigerant to flow out from the lower portion of the liquid receiver 36 and flow into the electric expansion valve 47, and the control device 57 uses the electric expansion valve 47 to perform the first operation of the heat exchanger 29. Since the amount of liquid refrigerant flowing through the flow path 29A is adjusted and the degree of supercooling of the refrigerant flowing through the second flow path 29B is controlled to a predetermined target value, the first of the heat exchanger 29 is connected via the electric expansion valve 47. The liquid refrigerant in the lower part of the liquid receiver 36 is caused to flow through the flow path 29A, and the supercooling of the refrigerant in the main circuit 38 flowing through the second flow path 29B of the heat exchanger 29 can be increased.

これにより、受液器36内下部から電動膨張弁39に搬送される冷媒の液相割合を高め、より一層効果的に満液状態で主絞り手段に流入させることができるようになり、冷凍能力の向上を図ることが可能となる。   As a result, the liquid phase ratio of the refrigerant conveyed from the lower part in the liquid receiver 36 to the electric expansion valve 39 can be increased, and the refrigerant can be flowed into the main throttle means in a full liquid state more effectively. Can be improved.

更に、制御装置57はガスクーラ28を出た冷媒の温度が、外気温度ATに対して決定される所定の目標値となるようにガスクーラ用送風機31の運転を制御するので、ガスクーラ28を空冷するガスクーラ用送風機31の過剰な運転を抑制しながら、ガスクーラ28出口の冷媒の温度を適正な値に維持することが可能となる。一方、高圧側圧力HPは電動膨張弁33で制御されるので、これらにより圧縮機11の保護を図って安定した運転を維持することができるようになる。特に、実施例のように冷媒として二酸化炭素を使用した場合に、本発明によれば冷凍能力を効果的に改善し、性能の向上を図ることができるようになる。   Further, the control device 57 controls the operation of the gas cooler blower 31 so that the temperature of the refrigerant exiting the gas cooler 28 becomes a predetermined target value determined with respect to the outside air temperature AT. It becomes possible to maintain the temperature of the refrigerant at the outlet of the gas cooler 28 at an appropriate value while suppressing excessive operation of the blower 31. On the other hand, since the high-pressure side pressure HP is controlled by the electric expansion valve 33, it is possible to protect the compressor 11 and maintain a stable operation. In particular, when carbon dioxide is used as a refrigerant as in the embodiment, according to the present invention, the refrigerating capacity can be effectively improved and the performance can be improved.

R 冷凍装置
1 冷媒回路
3 冷凍機ユニット
4 ショーケース
8、9 冷媒配管
11 圧縮機
22 冷媒導入配管
26 中間圧吸入配管
28 ガスクーラ
29 熱交換器
29A 第1の流路
29B 第2の流路
32 ガスクーラ出口配管
33 電動膨張弁(圧力調整用絞り手段)
36 受液器
37 ガスクーラ出口配管
38 主回路
39 電動膨張弁(主絞り手段)
41 蒸発器
42 ガス配管
43 電動膨張弁(第1の補助回路用絞り手段)
44 中間圧戻り配管
46 液配管
47 電動膨張弁(第2の補助回路用絞り手段)
48 補助回路
63 中間圧戻り配管
64 低圧戻り配管
66、67 電磁弁(流路切換手段)
57 制御装置(制御手段)
R Refrigeration apparatus 1 Refrigerant circuit 3 Refrigerator unit 4 Showcase 8, 9 Refrigerant pipe 11 Compressor 22 Refrigerant introduction pipe 26 Intermediate pressure suction pipe 28 Gas cooler 29 Heat exchanger 29A First flow path 29B Second flow path 32 Gas cooler Outlet piping 33 Electric expansion valve (throttle means for pressure adjustment)
36 Liquid receiver 37 Gas cooler outlet piping 38 Main circuit 39 Electric expansion valve (main throttle means)
41 Evaporator 42 Gas piping 43 Electric expansion valve (first auxiliary circuit throttle means)
44 Intermediate pressure return pipe 46 Liquid pipe 47 Electric expansion valve (second auxiliary circuit throttle means)
48 Auxiliary circuit 63 Intermediate pressure return pipe 64 Low pressure return pipe 66, 67 Solenoid valve (flow path switching means)
57 Control device (control means)

Claims (7)

圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、
前記ガスクーラの下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続された圧力調整用絞り手段と、
該圧力調整用絞り手段の下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続された受液器と、
前記ガスクーラの下流側であって、前記圧力調整用絞り手段の上流側の前記冷媒回路に設けられた熱交換器と、
前記受液器内の冷媒を、補助絞り手段を介して前記熱交換器の第1の流路に流した後、前記圧縮手段に戻す補助回路と、
前記ガスクーラから出た冷媒を前記熱交換器の第2の流路に流し、前記第1の流路を流れる冷媒と熱交換させた後、前記圧力調整用絞り手段に流入させ、前記受液器下部から冷媒を流出させて前記主絞り手段に流入させる主回路と、
前記熱交換器の第1の流路を出た前記補助回路の冷媒を、前記圧縮手段の中間圧部に戻すか、該圧縮手段の低圧部に戻すかを択一的に切り換える流路切換手段と、
前記圧力調整用絞り手段、前記補助絞り手段、及び、前記流路切換手段を制御する制御手段と、
を備えたことを特徴とする冷凍装置。
In the refrigerating apparatus in which the refrigerant circuit is configured by the compression means, the gas cooler, the main throttle means, and the evaporator, and the high pressure side is the supercritical pressure,
A pressure adjusting throttle means connected to the refrigerant circuit downstream of the gas cooler and upstream of the main throttle means;
A liquid receiver connected to the refrigerant circuit downstream of the pressure adjusting throttle means and upstream of the main throttle means;
A heat exchanger provided in the refrigerant circuit downstream of the gas cooler and upstream of the pressure adjusting throttle means;
An auxiliary circuit for returning the refrigerant in the liquid receiver to the compression means after flowing through the first flow path of the heat exchanger via auxiliary throttle means;
The refrigerant that has flowed out of the gas cooler flows through the second flow path of the heat exchanger, exchanges heat with the refrigerant that flows through the first flow path, and then flows into the pressure adjusting throttle means, and the liquid receiver A main circuit for causing the refrigerant to flow out from the lower part and into the main throttle means;
Flow path switching means for selectively switching whether the refrigerant of the auxiliary circuit that has exited the first flow path of the heat exchanger is returned to the intermediate pressure part of the compression means or to the low pressure part of the compression means When,
Control means for controlling the pressure adjusting throttle means, the auxiliary throttle means, and the flow path switching means;
A refrigeration apparatus comprising:
前記制御手段は、外気温度が低い場合、前記流路切換手段により、前記熱交換器の第1の流路を出た前記補助回路の冷媒を前記圧縮手段の中間圧部に戻し、外気温度が高い場合は、前記圧縮手段の低圧部に戻すことを特徴とする請求項1に記載の冷凍装置。   When the outside air temperature is low, the control means returns the refrigerant of the auxiliary circuit that has exited the first flow path of the heat exchanger to the intermediate pressure portion of the compression means by the flow path switching means. The refrigeration apparatus according to claim 1, wherein when it is high, the pressure is returned to the low pressure portion of the compression means. 前記制御手段は、前記圧力調整用絞り手段により、当該圧力調整用絞り手段より上流側の前記冷媒回路の高圧側圧力を所定の目標値に制御することを特徴とする請求項1又は請求項2に記載の冷凍装置。   The control means controls the high-pressure side pressure of the refrigerant circuit upstream of the pressure adjusting throttle means to a predetermined target value by the pressure adjusting throttle means. The refrigeration apparatus described in 1. 前記補助絞り手段は、第1の補助回路用絞り手段を有すると共に、
前記補助回路は、前記受液器上部から冷媒を流出させ、前記第1の補助回路用絞り手段に流入させるガス配管を有し、
前記制御手段は、前記第1の補助回路用絞り手段により、前記受液器内の冷媒の圧力を所定の目標値に制御することを特徴とする請求項1乃至請求項3のうちの何れかに記載の冷凍装置。
The auxiliary throttle means has a first auxiliary circuit throttle means,
The auxiliary circuit has a gas pipe that causes the refrigerant to flow out from the upper part of the receiver and to flow into the first auxiliary circuit throttle means,
4. The control device according to claim 1, wherein the control means controls the pressure of the refrigerant in the liquid receiver to a predetermined target value by the first auxiliary circuit throttle means. The refrigeration apparatus described in 1.
前記補助絞り手段は、第2の補助回路用絞り手段を有すると共に、
前記補助回路は、前記受液器下部から冷媒を流出させ、前記第2の補助回路用絞り手段に流入させる液配管を有し、
前記制御手段は、前記第2の補助回路用絞り手段により、前記熱交換器の第1の流路に流す液冷媒量を調整し、前記第2の流路を流れる冷媒の過冷却度を所定の目標値に制御することを特徴とする請求項1乃至請求項4のうちの何れかに記載の冷凍装置。
The auxiliary throttle means has second auxiliary circuit throttle means,
The auxiliary circuit has a liquid pipe that causes the refrigerant to flow out from the lower part of the receiver and to flow into the second auxiliary circuit throttle means,
The control means adjusts the amount of liquid refrigerant flowing through the first flow path of the heat exchanger by the second auxiliary circuit throttle means, and sets the degree of supercooling of the refrigerant flowing through the second flow path to a predetermined level. The refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigeration apparatus is controlled to a target value.
前記ガスクーラを空冷する送風機を備え、
前記制御手段は、前記ガスクーラを出た冷媒の温度が、外気温度に対して決定される所定の目標値となるように前記送風機の運転を制御することを特徴とする請求項1乃至請求項5のうちの何れかに記載の冷凍装置。
A blower for air-cooling the gas cooler;
The said control means controls the operation | movement of the said air blower so that the temperature of the refrigerant | coolant which came out of the said gas cooler may become the predetermined target value determined with respect to external temperature. The refrigeration apparatus according to any one of the above.
前記冷媒として二酸化炭素を使用したことを特徴とする請求項1乃至請求項6のうちの何れかに記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 6, wherein carbon dioxide is used as the refrigerant.
JP2014022511A 2014-02-07 2014-02-07 Refrigeration device Pending JP2015148406A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014022511A JP2015148406A (en) 2014-02-07 2014-02-07 Refrigeration device
CN201510060907.1A CN104833123B (en) 2014-02-07 2015-02-05 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022511A JP2015148406A (en) 2014-02-07 2014-02-07 Refrigeration device

Publications (1)

Publication Number Publication Date
JP2015148406A true JP2015148406A (en) 2015-08-20

Family

ID=53811180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022511A Pending JP2015148406A (en) 2014-02-07 2014-02-07 Refrigeration device

Country Status (2)

Country Link
JP (1) JP2015148406A (en)
CN (1) CN104833123B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053599A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
CN106895519A (en) * 2017-02-06 2017-06-27 美的集团股份有限公司 Air-conditioning system and air-conditioner control method
JP2020153651A (en) * 2019-03-22 2020-09-24 サンデン・リテールシステム株式会社 Cooler
CN113465198A (en) * 2021-05-19 2021-10-01 浙江国祥股份有限公司 Evaporative condensing water chilling unit with super-cooling liquid reservoir

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278376B2 (en) * 2019-06-20 2023-05-19 三菱電機株式会社 Outdoor unit, refrigeration cycle device and refrigerator
FR3099815B1 (en) * 2019-08-05 2021-09-10 Air Liquide Refrigeration device and installation
JP6849036B1 (en) * 2019-09-30 2021-03-24 ダイキン工業株式会社 Heat source unit and refrigeration equipment
JP6989808B1 (en) * 2020-11-24 2022-01-12 ダイキン工業株式会社 Refrigerant and Refrigerant Amount Determination Method for Refrigerator
CN116026052B (en) * 2023-02-15 2023-05-30 中联云港数据科技股份有限公司 Air conditioner refrigerating system with dehumidification function

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144945U (en) * 1980-03-27 1980-10-17
JPH0545007A (en) * 1991-08-09 1993-02-23 Nippondenso Co Ltd Freezing cycle
JPH0545011A (en) * 1991-08-09 1993-02-23 Fuji Facom Corp Cooling device of automatic vending machine
JPH1114167A (en) * 1997-06-23 1999-01-22 Matsushita Electric Ind Co Ltd Air conditioner
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2001241780A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Refrigerating air conditioner
JP2007139269A (en) * 2005-11-16 2007-06-07 Denso Corp Supercritical refrigerating cycle
JP2008051369A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Refrigerating system and cold storage comprising the same
JP2009180426A (en) * 2008-01-30 2009-08-13 Daikin Ind Ltd Refrigerating device
JP2010525292A (en) * 2007-04-24 2010-07-22 キャリア コーポレイション Refrigerant vapor compression system and method in transcritical operation
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
JP2012504747A (en) * 2008-10-01 2012-02-23 キャリア コーポレイション Liquid and vapor separation in a transcritical refrigerant cycle.
JP2013142487A (en) * 2012-01-10 2013-07-22 Hitachi Appliances Inc Refrigeration device and refrigeration unit
JP2014001917A (en) * 2012-05-23 2014-01-09 Daikin Ind Ltd Refrigerator
JP2014016079A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8769982B2 (en) * 2006-10-02 2014-07-08 Emerson Climate Technologies, Inc. Injection system and method for refrigeration system compressor
CN101749909B (en) * 2008-11-28 2012-07-25 财团法人工业技术研究院 Refrigerator and temperature control method thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144945U (en) * 1980-03-27 1980-10-17
JPH0545007A (en) * 1991-08-09 1993-02-23 Nippondenso Co Ltd Freezing cycle
JPH0545011A (en) * 1991-08-09 1993-02-23 Fuji Facom Corp Cooling device of automatic vending machine
JPH1114167A (en) * 1997-06-23 1999-01-22 Matsushita Electric Ind Co Ltd Air conditioner
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2001241780A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Refrigerating air conditioner
JP2007139269A (en) * 2005-11-16 2007-06-07 Denso Corp Supercritical refrigerating cycle
JP2008051369A (en) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Refrigerating system and cold storage comprising the same
JP2010525292A (en) * 2007-04-24 2010-07-22 キャリア コーポレイション Refrigerant vapor compression system and method in transcritical operation
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
JP2009180426A (en) * 2008-01-30 2009-08-13 Daikin Ind Ltd Refrigerating device
JP2012504747A (en) * 2008-10-01 2012-02-23 キャリア コーポレイション Liquid and vapor separation in a transcritical refrigerant cycle.
JP2013142487A (en) * 2012-01-10 2013-07-22 Hitachi Appliances Inc Refrigeration device and refrigeration unit
JP2014001917A (en) * 2012-05-23 2014-01-09 Daikin Ind Ltd Refrigerator
JP2014016079A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053599A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
CN106524545A (en) * 2015-09-11 2017-03-22 松下知识产权经营株式会社 Refrigeration apparatus
CN106524545B (en) * 2015-09-11 2020-01-14 松下知识产权经营株式会社 Refrigerating device
CN106895519A (en) * 2017-02-06 2017-06-27 美的集团股份有限公司 Air-conditioning system and air-conditioner control method
CN106895519B (en) * 2017-02-06 2019-11-22 美的集团股份有限公司 Air-conditioning system and air-conditioner control method
JP2020153651A (en) * 2019-03-22 2020-09-24 サンデン・リテールシステム株式会社 Cooler
JP7229057B2 (en) 2019-03-22 2023-02-27 サンデン・リテールシステム株式会社 Cooling system
CN113465198A (en) * 2021-05-19 2021-10-01 浙江国祥股份有限公司 Evaporative condensing water chilling unit with super-cooling liquid reservoir

Also Published As

Publication number Publication date
CN104833123B (en) 2018-04-17
CN104833123A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP6292480B2 (en) Refrigeration equipment
JP2015148406A (en) Refrigeration device
JP6264688B2 (en) Refrigeration equipment
JP2015148407A (en) Refrigeration device
JP6814974B2 (en) Refrigeration equipment
JP6388260B2 (en) Refrigeration equipment
JP6080031B2 (en) Refrigeration equipment
JP2011133207A (en) Refrigerating apparatus
JP2013155972A (en) Refrigeration device
JP6653463B2 (en) Refrigeration equipment
JP2018132224A (en) Binary refrigeration system
JP2011133210A (en) Refrigerating apparatus
JP6253370B2 (en) Refrigeration cycle equipment
JP6534062B2 (en) Refrigerator unit
JP6467682B2 (en) Refrigeration equipment
JP6765086B2 (en) Refrigeration equipment
JP6094859B2 (en) Refrigeration equipment
JP6206787B2 (en) Refrigeration equipment
JP6555584B2 (en) Refrigeration equipment
JP6497582B2 (en) Refrigerator unit
JP2009293887A (en) Refrigerating device
JP6653464B2 (en) Refrigeration equipment
JP2013164242A (en) Refrigerating apparatus
JP6497581B2 (en) Refrigerator unit
JP7179445B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926