JP2012197754A - Tube pump - Google Patents

Tube pump Download PDF

Info

Publication number
JP2012197754A
JP2012197754A JP2011063413A JP2011063413A JP2012197754A JP 2012197754 A JP2012197754 A JP 2012197754A JP 2011063413 A JP2011063413 A JP 2011063413A JP 2011063413 A JP2011063413 A JP 2011063413A JP 2012197754 A JP2012197754 A JP 2012197754A
Authority
JP
Japan
Prior art keywords
tube
pressure member
eccentric rotor
rotor
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011063413A
Other languages
Japanese (ja)
Inventor
Takayuki Sugihara
隆之 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquatech Corp
Original Assignee
Aquatech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatech Corp filed Critical Aquatech Corp
Priority to JP2011063413A priority Critical patent/JP2012197754A/en
Publication of JP2012197754A publication Critical patent/JP2012197754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce rotating torque applied on an eccentric rotor and reduce adverse effect due to pressing of a tube in a tube pump.SOLUTION: The tube pump 1 includes a housing 3 for forming a cylindrical inner wall face 21, a tube 4 arranged in the form of a ring, a pressure member 5 for pressing the tube 4, and the eccentric rotor 6 for eccentrically moving the pressure member 5. The eccentric rotor 6 has a contact part 62 movably held to a rotor body 61 and contacted on the pressure member, and an elastic member biased to push the contact part 62 on the pressure member 5. When the pressure member 5 passes a cylindrical terminal region of the cylindrical inner wall face 21, the rotating torque applied on the eccentric rotor 6 can be alleviated since reaction force acting on the eccentric rotor 6 is absorbed with elasticity of the elastic member. In addition, since a pressing load applied on the tube 4 is alleviated, a long life of the tube is contrived, and adverse effect such as breakdown of constituent molecules included in fluid in the tube is reduced.

Description

本発明は、チューブを順次圧迫してポンプ作用を行うチューブポンプに関する。   The present invention relates to a tube pump that performs a pumping action by sequentially pressing the tube.

従来より、ハウジングに形成された円筒形の内壁面に沿わせてリング状に配置したチューブを加圧部材の偏芯運動によって圧迫してチューブ内の流体を送出するチューブポンプが知られている(例えば、特許文献1参照)。加圧部材は、チューブのリング状内側に設けられたリング状部材であり、その内接する偏芯ロータがモータで回転されることによって偏芯運動する構造となっている。   2. Description of the Related Art Conventionally, a tube pump that sends a fluid in a tube by compressing a tube arranged in a ring shape along a cylindrical inner wall surface formed in a housing by an eccentric motion of a pressurizing member is known ( For example, see Patent Document 1). The pressure member is a ring-shaped member provided on the inner side of the ring shape of the tube, and has a structure that moves eccentrically by rotating the inscribed eccentric rotor with a motor.

特許第2860891号公報Japanese Patent No. 2860891

ところで、上記のようなチューブポンプでは、リング状の加圧部材によってチューブをハウジング内壁面に対して順次圧迫するために、ハウジング内壁面はチューブ引出し口へと繋がる円筒形終端領域において加圧部材との間に生じる間隙寸法が狭くなる構成となっている。そのため、加圧部材が上記内壁面の円筒形終端領域を通過する際、偏芯ロータ側に作用する反力によって偏芯ロータを回転させるための負荷トルクが一時的に増大し、モータの寿命を縮める要因となる。また、チューブが加圧部材によって強く圧迫されることになるので、チューブの劣化が生じ易く、チューブ内での圧力差も大きくなる。故に、上記のようなチューブポンプを人工透析用ポンプに用いようとすると、送出する血液に含まれる血球内の酸素などの成分がチューブの圧迫によって分離し、血球損傷を引き起こすなどの悪影響が生じる虞がある。このような問題に対して、加圧部材の外周面にゴムタイヤなどの弾性クッション材を設けた場合、その外形寸法や硬度などの精度バラツキによりチューブを弾性クッション材とハウジング内壁面間に押圧するための隙間寸法を高精度に保持することが難しくなる。   By the way, in the tube pump as described above, in order to press the tube sequentially against the inner wall surface of the housing by the ring-shaped pressurizing member, the inner wall surface of the housing is connected to the pressurizing member in the cylindrical end region connected to the tube outlet. The gap dimension generated between the two is narrowed. Therefore, when the pressure member passes through the cylindrical end region of the inner wall surface, the load torque for rotating the eccentric rotor is temporarily increased by the reaction force acting on the eccentric rotor side, and the life of the motor is shortened. It becomes a factor to shorten. Further, since the tube is strongly pressed by the pressurizing member, the tube is likely to be deteriorated, and the pressure difference in the tube is also increased. Therefore, when the tube pump as described above is used for an artificial dialysis pump, components such as oxygen in blood cells contained in the blood to be sent are separated by compression of the tube, which may cause adverse effects such as causing blood cell damage. There is. For such problems, when an elastic cushion material such as a rubber tire is provided on the outer peripheral surface of the pressure member, the tube is pressed between the elastic cushion material and the inner wall surface of the housing due to variations in accuracy such as the external dimensions and hardness. It is difficult to maintain the gap dimension with high accuracy.

本発明は、上記問題を解決するためになされたものであり、偏芯ロータに掛かる回転トルクを低減することができ、また、チューブ圧迫による悪影響を少なくすることができるチューブポンプを提供することを目的とする。   The present invention has been made to solve the above problems, and provides a tube pump that can reduce rotational torque applied to an eccentric rotor and can reduce adverse effects due to tube compression. Objective.

本発明のチューブポンプは、ハウジングに形成された円筒形の内壁面に沿わせてリング状に配置されたチューブと、前記チューブを前記内壁面に対して圧迫する加圧部材とを備え、前記加圧部材を偏芯ロータを用いて偏芯運動させて前記チューブの圧迫部分を一方向に移動させてチューブ内の流体を送出するチューブポンプにおいて、前記偏芯ロータは、該ロータ本体に対して移動可能に保持され、前記加圧部材に当接される当接部と、前記当接部と該ロータ本体との間に介在され、前記当接部を前記加圧部材に押し付けるように付勢する弾性部材と、を有することを特徴とする。   The tube pump of the present invention includes a tube arranged in a ring shape along a cylindrical inner wall surface formed in a housing, and a pressurizing member that presses the tube against the inner wall surface. In the tube pump that sends the fluid in the tube by moving the pressure portion of the tube in one direction by moving the pressure member eccentrically using an eccentric rotor, the eccentric rotor moves relative to the rotor body. An abutting portion that is held so as to be in contact with the pressure member, and is interposed between the abutting portion and the rotor body, and urges the abutting portion to be pressed against the pressure member. And an elastic member.

本発明のチューブポンプによれば、偏芯ロータの当接部とロータ本体間に介在された弾性部材により当接部が加圧部材に押し付けられていて、加圧部材が上記ハウジング内壁面の該加圧部材との間隙寸法を小さくしている領域を通過する際、偏芯ロータに作用する反力が弾性部材の弾性変形により吸収されるように工夫したので、偏芯ロータに掛かる回転トルクを軽減することができる。従って、ポンプ駆動用のモータに加わる負荷のバラツキを少なくすることができ、モータの長寿命化を図れる。また、チューブに掛かる圧迫負荷が軽減されるので、チューブの損傷を抑えてチューブの長寿命化が図れると共に、チューブ内の流体に含まれる構成分子が破壊されるなどの悪影響を低減することができる。   According to the tube pump of the present invention, the contact portion is pressed against the pressurizing member by the elastic member interposed between the contact portion of the eccentric rotor and the rotor body, and the pressurizing member is attached to the inner wall surface of the housing. Since the reaction force acting on the eccentric rotor is absorbed by the elastic deformation of the elastic member when passing through the region where the gap size with the pressure member is reduced, the rotational torque applied to the eccentric rotor is reduced. Can be reduced. Therefore, the variation in load applied to the pump driving motor can be reduced, and the life of the motor can be extended. In addition, since the compression load applied to the tube is reduced, the tube can be prevented from being damaged to extend the life of the tube, and adverse effects such as destruction of constituent molecules contained in the fluid in the tube can be reduced. .

本発明の一実施形態に係るチューブポンプにおいて、チューブのリング状部の中央付近が加圧部材によって圧迫された状態を示す平面図。The top view which shows the state by which the vicinity of the center of the ring-shaped part of the tube was compressed by the pressurization member in the tube pump which concerns on one Embodiment of this invention. 同チューブのリング状部の末端付近が加圧部材によって圧迫された状態を示す平面図。The top view which shows the state by which the vicinity of the terminal of the ring-shaped part of the tube was compressed with the pressurization member. 図1のA−A線断面図。AA sectional view taken on the line AA of FIG. (a)は上記チューブポンプの偏芯ロータをカバー部材を取り外して見た平面図、(a)同偏芯ロータの分解斜視図。(A) is the top view which removed the cover member from the eccentric rotor of the said tube pump, (a) The disassembled perspective view of the eccentric rotor. 上記チューブポンプの他の構成例において、チューブのリング状部の中央付近が加圧部材によって圧迫された状態を示す平面図。The top view which shows the state by which the center vicinity of the ring-shaped part of the tube was compressed by the pressurization member in the other structural example of the said tube pump. 同チューブのリング状部の末端付近が加圧部材によって圧迫された状態を示す平面図。The top view which shows the state by which the vicinity of the terminal of the ring-shaped part of the tube was compressed with the pressurization member.

本発明の一実施形態に係るチューブポンプについて図1乃至図4を参照して説明する。これらの図において、チューブポンプ1は、円筒室2が形成されたハウジング3と、チューブ4と、加圧部材5と、偏芯ロータ6と、モータ7とを備える。チューブ4は、円筒室2の内壁面21に沿わせてリング状に配置され、一端に流体の流入口41、他端に流体の流出口42を有する。加圧部材5は、チューブ4のリング状内側に設けられ、チューブ4を円筒形の内壁面21に対して圧迫するリング状の部材である。偏芯ロータ6は、リング状の加圧部材5に内接する円形状であり、加圧部材5を内壁面21に沿って偏芯運動させる。モータ7は、偏芯ロータ6を回転するものであり、モータ軸71が偏芯ロータ6にその円形中心から偏芯して取り付けられる。   A tube pump according to an embodiment of the present invention will be described with reference to FIGS. In these drawings, the tube pump 1 includes a housing 3 in which a cylindrical chamber 2 is formed, a tube 4, a pressurizing member 5, an eccentric rotor 6, and a motor 7. The tube 4 is arranged in a ring shape along the inner wall surface 21 of the cylindrical chamber 2, and has a fluid inlet 41 at one end and a fluid outlet 42 at the other end. The pressure member 5 is a ring-shaped member that is provided inside the ring 4 of the tube 4 and presses the tube 4 against the cylindrical inner wall surface 21. The eccentric rotor 6 has a circular shape inscribed in the ring-shaped pressure member 5, and causes the pressure member 5 to move eccentrically along the inner wall surface 21. The motor 7 rotates the eccentric rotor 6, and the motor shaft 71 is attached to the eccentric rotor 6 so as to be eccentric from the center of the circle.

円筒室2は、半円周よりも大きく、全円周よりも小さな内壁面21を有し、内壁面21が形成されていない間隙部分は、ハウジング3外に連通されてチューブ4の引出し口となっている。内壁面21は、リング状の加圧部材5によるチューブ4の圧迫動作が連続的に行われるように、チューブ引出し口へと繋がる円筒形終端領域において加圧部材5側に脹らむ凸面部21aを有し、加圧部材5との間に生じる間隙寸法を狭くしている。ハウジング3は、例えばABS樹脂等の成形品により構成され、円筒室2との連通部分には、チューブ4の両端部分を保持するための溝部8が形成されている。   The cylindrical chamber 2 has an inner wall surface 21 that is larger than the semicircular circumference and smaller than the entire circumference, and a gap portion in which the inner wall surface 21 is not formed is communicated to the outside of the housing 3 and is connected to the outlet of the tube 4. It has become. The inner wall surface 21 has a convex surface portion 21a that expands toward the pressing member 5 in the cylindrical terminal region connected to the tube outlet so that the pressing operation of the tube 4 by the ring-shaped pressing member 5 is continuously performed. The gap between the pressure member 5 and the pressure member 5 is narrowed. The housing 3 is formed of a molded product such as ABS resin, and a groove portion 8 for holding both end portions of the tube 4 is formed in a communicating portion with the cylindrical chamber 2.

チューブ4は、送出する流体に応じて選定された可撓性材料、例えばゴム又は合成樹脂から成り、円筒室2の内壁面21に沿うようにリング(開環形)状に配置される。チューブ4の両端(流入口41及び流出口42)は、溝部8を経てハウジング3外に延出され、配管(図示せず)を接続するためのニップル41a,42aが設けられる。   The tube 4 is made of a flexible material selected according to the fluid to be delivered, such as rubber or synthetic resin, and is arranged in a ring (ring-opening shape) along the inner wall surface 21 of the cylindrical chamber 2. Both ends (the inlet 41 and the outlet 42) of the tube 4 are extended out of the housing 3 through the groove 8, and nipples 41a and 42a for connecting pipes (not shown) are provided.

加圧部材5は、摩擦係数が小さい材料を、平面視形状が円環で一定厚のリング状に形成して成り、例えば、フッ素樹脂系の合成樹脂成形品により構成される。加圧部材5は、偏芯ロータ6が加圧部材5の内周面に摺接して回転することにより、チューブ4の一部を内壁面21に対し圧迫する。チューブ4において、図1の上側及び図2の下側に示される圧迫部分は、チューブ4内の流路が閉塞され、図1の下側及び図2の上側に示される非圧迫部分は、流路が確保される。   The pressing member 5 is formed by forming a material having a small friction coefficient into a ring shape having a circular shape in plan view and a constant thickness, and is made of, for example, a fluororesin-based synthetic resin molded product. The pressurizing member 5 presses a part of the tube 4 against the inner wall surface 21 when the eccentric rotor 6 rotates in sliding contact with the inner peripheral surface of the pressurizing member 5. In the tube 4, the compression portion shown on the upper side of FIG. 1 and the lower side of FIG. 2 blocks the flow path in the tube 4, and the non-compression portion shown on the lower side of FIG. 1 and the upper side of FIG. A road is secured.

モータ7は、小型の直流モータであり、チューブポンプ1外の直流電源(図示せず)から給電される。チューブポンプ1に電池を内蔵してモータ7に給電するように構成してもよい。ここではモータ7が、図3に示すようにハウジング3の偏芯ロータ6が取り付けられた反対面側(背面側)にあって、モータ軸71がハウジング3の開口3aを通して偏芯ロータ6に固定されている。   The motor 7 is a small DC motor and is supplied with power from a DC power source (not shown) outside the tube pump 1. A battery may be built in the tube pump 1 to supply power to the motor 7. Here, as shown in FIG. 3, the motor 7 is on the opposite side (rear side) of the housing 3 to which the eccentric rotor 6 is attached, and the motor shaft 71 is fixed to the eccentric rotor 6 through the opening 3 a of the housing 3. Has been.

モータ7の回転は偏芯ロータ6に伝達され、偏芯ロータ6の回転によって加圧部材5が偏芯運動することにより、チューブ4の圧迫部分が一方向に移動し、チューブ4内の流体が送出される。このようなポンプ作用により、流体が流入口41に流入し、流出口42から流出する。   The rotation of the motor 7 is transmitted to the eccentric rotor 6, and the pressing member 5 moves eccentrically by the rotation of the eccentric rotor 6, so that the compressed portion of the tube 4 moves in one direction, and the fluid in the tube 4 moves. Sent out. By such a pump action, the fluid flows into the inflow port 41 and flows out from the outflow port 42.

本実施形態において偏芯ロータ6は、図4に示すように、ロータ本体61と、ロータ本体61に対して移動可能に保持され、加圧部材5に当接される当接部62と、当接部62を加圧部材5に押し付けるように付勢する弾性部材63とで構成される。ロータ本体61は、略円筒形の外郭を成し、その内部に当接部62を円筒形径方向に移動可能に保持するための空間61aを有している。ロータ本体61には、空間61aを覆うカバー部材64が設けられ、このカバー部材64はビス65によりロータ本体61に固定される。また、ロータ本体61には、モータ7のモータ軸71が挿嵌される軸孔61bが形成されている。当接部62は、弾性部材63により付勢された状態でロータ本体61外周面から少なくとも一部が突出するように設けられ、この突出方向はロータ本体61の内壁面21に対する対向間隔が広がる反偏芯方向(モータ軸71側とは反対方向)とされる。弾性部材63は、当接部62とロータ本体61との間に介在された圧縮スプリングであり、ここでは、当接部62及びロータ本体61間に形成された溝部6aに保持される形となっている。   In the present embodiment, as shown in FIG. 4, the eccentric rotor 6 includes a rotor body 61, a contact portion 62 that is held movably with respect to the rotor body 61, and abuts against the pressurizing member 5. It is comprised with the elastic member 63 urged | biased so that the contact part 62 may be pressed on the pressurization member 5. FIG. The rotor body 61 has a substantially cylindrical outline, and has a space 61a for holding the contact portion 62 movably in the radial direction of the cylinder. The rotor body 61 is provided with a cover member 64 that covers the space 61 a, and the cover member 64 is fixed to the rotor body 61 by screws 65. The rotor body 61 is formed with a shaft hole 61b into which the motor shaft 71 of the motor 7 is inserted. The abutting portion 62 is provided so that at least a part thereof protrudes from the outer peripheral surface of the rotor body 61 in a state of being urged by the elastic member 63, and the protruding direction extends in the direction opposite to the inner wall surface 21 of the rotor body 61. The eccentric direction is the direction opposite to the motor shaft 71 side. The elastic member 63 is a compression spring interposed between the contact portion 62 and the rotor body 61, and here is held in a groove 6 a formed between the contact portion 62 and the rotor body 61. ing.

上記のように構成されたチューブポンプ1において、図1に示すように、加圧部材5が内壁面21に凸面部21aが形成されていない箇所で近接する位置関係にあるとき、偏芯ロータ6の当接部62は、加圧部材5側に最大限突出した状態で押し当てられる。このような状態から加圧部材5が偏芯ロータ6の回転により偏芯運動を行い、図2に示すように内壁面21の凸面部21a、つまり、内壁面21の円筒形終端領域に近接する位置関係になると、加圧部材5には凸面部21aから偏芯ロータ6側に押し戻されるような反力が作用する。このとき偏芯ロータ6の当接部62がロータ本体61内に押し込まれるように変位されるので、加圧部材5の内壁面21に対する対向間隔が、図1に示すような位置関係にある状態と同寸法に保持される。   In the tube pump 1 configured as described above, as shown in FIG. 1, when the pressurizing member 5 is in a positional relationship close to the inner wall surface 21 where the convex surface portion 21 a is not formed, the eccentric rotor 6. The abutting portion 62 is pressed against the pressing member 5 in a state of protruding to the maximum. From such a state, the pressing member 5 performs an eccentric movement by the rotation of the eccentric rotor 6 and approaches the convex surface portion 21a of the inner wall surface 21, that is, the cylindrical end region of the inner wall surface 21, as shown in FIG. When the positional relationship is reached, a reaction force is applied to the pressure member 5 so as to be pushed back from the convex surface portion 21a toward the eccentric rotor 6 side. At this time, the contact portion 62 of the eccentric rotor 6 is displaced so as to be pushed into the rotor main body 61, so that the distance between the pressure member 5 and the inner wall surface 21 is in a positional relationship as shown in FIG. And are kept in the same dimensions.

このように本実施形態に係るチューブポンプ1によれば、偏芯ロータ6の当接部62とロータ本体61間に介在された弾性部材63により当接部62が加圧部材5に押し付けられていて、加圧部材5が内壁面21の円筒形終端領域を通過する際、偏芯ロータ6に作用する反力が弾性部材63の弾性変形により吸収されるように工夫したので、偏芯ロータ6に掛かる回転トルクを軽減することができる。従って、ポンプ駆動用のモータ7に加わる負荷のバラツキを少なくすることができ、モータ7の長寿命化を図れる。また、チューブ4に掛かる圧迫負荷が軽減されるので、チューブ4の損傷を抑えてチューブ4の長寿命化が図れると共に、チューブ4内の流体に含まれる構成分子が破壊されるなどの悪影響を低減することができる。   As described above, according to the tube pump 1 according to the present embodiment, the contact portion 62 is pressed against the pressure member 5 by the elastic member 63 interposed between the contact portion 62 of the eccentric rotor 6 and the rotor main body 61. Since the reaction force acting on the eccentric rotor 6 is absorbed by the elastic deformation of the elastic member 63 when the pressure member 5 passes through the cylindrical end region of the inner wall surface 21, the eccentric rotor 6 is devised. Rotational torque applied to can be reduced. Accordingly, variation in load applied to the pump driving motor 7 can be reduced, and the life of the motor 7 can be extended. In addition, since the compression load applied to the tube 4 is reduced, the tube 4 can be prevented from being damaged and the life of the tube 4 can be extended, and adverse effects such as destruction of constituent molecules contained in the fluid in the tube 4 can be reduced. can do.

次に、図5及び図6を用いてチューブポンプの他の構成例を説明する。このチューブポンプ1において、偏芯ロータ6は、ロータ本体61と加圧部材5との間に弾性部材として板ばね63を介在され、この板バネ63が加圧部材5との当接部を兼ねるように構成されている。板バネ63は、図5に示すように、加圧部材5が内壁面21に凸面部21aが形成されていない箇所で近接する位置関係にあるとき、加圧部材5とロータ本体61の間に生じている隙間に沿って湾曲し、加圧部材5に押し当てられるように当接する。このような状態から加圧部材5が、図6に示すように、内壁面21の凸面部21aに近接する位置関係になると、板バネ63は引き伸ばされるように変位されるので、加圧部材5の内壁面21に対する対向間隔が、図6に示すような位置関係にある状態と同寸法に保持される。このようなチューブポンプ1においても、偏芯ロータ6に掛かる回転トルクを軽減でき、また、チューブ4への圧迫負荷を少なくすることができる。   Next, another configuration example of the tube pump will be described with reference to FIGS. 5 and 6. In the tube pump 1, the eccentric rotor 6 has a leaf spring 63 interposed as an elastic member between the rotor body 61 and the pressure member 5, and the leaf spring 63 also serves as a contact portion with the pressure member 5. It is configured as follows. As shown in FIG. 5, the leaf spring 63 is located between the pressure member 5 and the rotor body 61 when the pressure member 5 is close to the inner wall surface 21 where the convex surface portion 21 a is not formed. It curves along the generated gap and comes into contact with the pressure member 5 so as to be pressed against it. In this state, when the pressing member 5 is in a positional relationship close to the convex surface portion 21a of the inner wall surface 21 as shown in FIG. 6, the leaf spring 63 is displaced so as to be stretched. The facing distance with respect to the inner wall surface 21 is maintained at the same size as that in the positional relationship shown in FIG. Also in such a tube pump 1, the rotational torque applied to the eccentric rotor 6 can be reduced, and the compression load on the tube 4 can be reduced.

なお、本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、偏芯ロータ6が、加圧部材5との当接部を複数有し、これら当接部の各々に対応して弾性部材が設けられるような構成であってもよい。   In addition, this invention is not restricted to the structure of the said embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the eccentric rotor 6 may have a plurality of contact portions with the pressure member 5 and an elastic member may be provided for each of the contact portions.

1 チューブポンプ
21 内壁面
3 ハウジング
4 チューブ
5 加圧部材
6 偏芯ロータ
61 ロータ本体
62 当接部
63 弾性部材
DESCRIPTION OF SYMBOLS 1 Tube pump 21 Inner wall surface 3 Housing 4 Tube 5 Pressurization member 6 Eccentric rotor 61 Rotor main body 62 Contact part 63 Elastic member

Claims (1)

ハウジングに形成された円筒形の内壁面に沿わせてリング状に配置されたチューブと、前記チューブを前記内壁面に対して圧迫する加圧部材とを備え、前記加圧部材を偏芯ロータを用いて偏芯運動させて前記チューブの圧迫部分を一方向に移動させてチューブ内の流体を送出するチューブポンプにおいて、
前記偏芯ロータは、
該ロータ本体に対して移動可能に保持され、前記加圧部材に当接される当接部と、
前記当接部と該ロータ本体との間に介在され、前記当接部を前記加圧部材に押し付けるように付勢する弾性部材と、を有することを特徴とするチューブポンプ。
A tube disposed in a ring shape along a cylindrical inner wall surface formed in the housing; and a pressure member that presses the tube against the inner wall surface, the pressure member being an eccentric rotor In a tube pump that uses an eccentric motion to move the compressed portion of the tube in one direction to deliver fluid in the tube,
The eccentric rotor is
An abutting portion held movably with respect to the rotor body and abutted against the pressure member;
A tube pump comprising: an elastic member interposed between the contact portion and the rotor main body and biasing the contact portion against the pressure member.
JP2011063413A 2011-03-22 2011-03-22 Tube pump Pending JP2012197754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063413A JP2012197754A (en) 2011-03-22 2011-03-22 Tube pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063413A JP2012197754A (en) 2011-03-22 2011-03-22 Tube pump

Publications (1)

Publication Number Publication Date
JP2012197754A true JP2012197754A (en) 2012-10-18

Family

ID=47180220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063413A Pending JP2012197754A (en) 2011-03-22 2011-03-22 Tube pump

Country Status (1)

Country Link
JP (1) JP2012197754A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246505A (en) * 1975-10-11 1977-04-13 Iwaki:Kk Tubing pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246505A (en) * 1975-10-11 1977-04-13 Iwaki:Kk Tubing pump

Similar Documents

Publication Publication Date Title
RU2010117636A (en) VARIABLE PUMP WITH VARIABLE PRODUCTIVITY
KR20150136436A (en) Twin type Gerotor pump
JP4565564B2 (en) Low vibration pump
US9534595B2 (en) Variable displacement vane pump
JP2012197754A (en) Tube pump
JP5369068B2 (en) Pump device
CN111051696A (en) Rotary cylinder device
US20210190054A1 (en) Pump
TWI354734B (en) Vacuum pump
US2920573A (en) Diaphragm feed pump
CN111164306B (en) Improvements in and relating to pumps
JP2016023670A (en) Check valve and liquid supply device with the same
JP2009024664A (en) Scroll fluid machine
JP5419105B2 (en) Tube pump
CN210068472U (en) Rolling type sliding vane pump rotor
JP2005351117A (en) Vane pump
JP6480841B2 (en) Vane pump
JP2014206102A5 (en)
KR20110070818A (en) Fluid inlet device for feeding a fluid into a piston pump
KR101382073B1 (en) Engine oil variable vane pump for the engine oil according to engine speed
JP5545495B2 (en) Tube pump
JP2009068421A (en) Fluid suction delivery device
CN203235328U (en) Hand-operated filter
JP2011185431A (en) Wide-angle vane type rocking actuator
CN214836797U (en) Novel roller type diesel pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304