JP2012197580A - Suction pipe for underwater deposit transportation, transportation device of underwater deposit and transportation method of underwater deposit using the same - Google Patents

Suction pipe for underwater deposit transportation, transportation device of underwater deposit and transportation method of underwater deposit using the same Download PDF

Info

Publication number
JP2012197580A
JP2012197580A JP2011061393A JP2011061393A JP2012197580A JP 2012197580 A JP2012197580 A JP 2012197580A JP 2011061393 A JP2011061393 A JP 2011061393A JP 2011061393 A JP2011061393 A JP 2011061393A JP 2012197580 A JP2012197580 A JP 2012197580A
Authority
JP
Japan
Prior art keywords
underwater
pipe
suction
water
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011061393A
Other languages
Japanese (ja)
Other versions
JP5599069B2 (en
Inventor
Noriaki Hakoishi
憲昭 箱石
Toshiyuki Sakurai
寿之 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute filed Critical Public Works Research Institute
Priority to JP2011061393A priority Critical patent/JP5599069B2/en
Publication of JP2012197580A publication Critical patent/JP2012197580A/en
Application granted granted Critical
Publication of JP5599069B2 publication Critical patent/JP5599069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Barrages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a suction pipe for underwater deposit transportation, capable of efficiently and stably transporting underwater deposit deposited at a water bottom to another area even when a deposition depth of the underwater deposit is deep, and a transportation device and a transportation method of the underwater deposit using the suction pipe.SOLUTION: For the suction pipe of this invention, one end of a pipe body 50 is turned to a water intake 2a, the other end is turned to a connection end 51, a turn-back part 52 is formed at the middle part of both ends, and a sheet member 53 is closely attached to the lower part of the turn-back part 52. At the sheet member 53 and a part where the sheet member 53 is closely attached, lower suction holes 54 are consecutively perforated. At the side part of a pipe material corresponding to a distal end 52a of the turn-back part 52 at the upper part of a water surface side from the sheet member 53, a side part suction hole 55 is perforated. Further, on a lower side of an extension part 60 of the pipe material extending from the part where the sheet member 53 is closely attached to the water intake 2a, a plurality of suction assisting holes 61 are arranged side by side in the extension direction.

Description

本発明は、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して下流域などの他の領域に流送するための水中堆積物流送用の吸引パイプ、及びその吸引パイプを備えた水中堆積物の流送装置、並びにその流送装置を用いた水中堆積物の流送方法に関するものである。   The present invention relates to a suction pipe for transporting an underwater sedimentary stream for sucking together an underwater sediment deposited on the bottom of a closed water area together with water and flowing it to another area such as a downstream area, and the suction pipe thereof The present invention relates to an underwater sediment inflow apparatus, and an underwater sediment inflow method using the inflow apparatus.

ダム、溜池、下水処理場などの貯水施設や、自然の河川、湖沼、池、又は運河などの閉鎖的な水域では、その水底に土砂などの堆積物が沈殿・堆積し、貯水機能の低下、船舶の運航などへの支障、水質・環境汚染などを引き起こすため、定期的に又は必要に応じて水底に溜まった堆積物を浚って除去する浚渫作業を行う必要がある。   In water storage facilities such as dams, ponds, sewage treatment plants, and closed water areas such as natural rivers, lakes, ponds, and canals, sediment such as sediment settles on the bottom of the water, reducing the water storage function, In order to cause hindrance to ship operations, water quality, environmental pollution, etc., it is necessary to perform dredging work to remove and remove sediment accumulated on the bottom of the water periodically or as necessary.

例えば、治水、利水、或いは発電を目的として河川を堰き止めたダムの貯水池では、上流域から河川により運ばれる土砂等がダムの底に堆積してゆき、ダムの有効貯水量が減少してしまうという問題が発生すると共に、下流域への土砂の供給が減り、下流域での河床低下や海岸浸食(砂浜痩せ)などの問題も発生する。   For example, in a dam reservoir where the river has been blocked for the purpose of flood control, water use, or power generation, earth and sand carried by the river from the upstream area will accumulate on the bottom of the dam, reducing the effective amount of water stored in the dam. In addition, the supply of earth and sand to the downstream area is reduced, and problems such as river bed deterioration and coastal erosion (sand beach thinning) occur in the downstream area.

このため、従来、台船などに設置されたクレーン等を用いて、バケットなどで堆積土砂等を浚って陸上に汲み上げ、トラックなどの陸上輸送手段で河川の当該ダムより下流域に移送して排出したり、他の場所に廃棄したりしていた。或いは、土砂交じりの泥土を吸引可能な浚渫ポンプで堆積土砂等を水と共に吸引して下流域に放出することも行われていた。しかし、これらの浚渫作業は、いずれも大掛かりな施設や動力が必要であり、交通の便の悪い山間部などでは、装置そのものを設置することが困難なことや、コストが掛かり過ぎるといった問題があった。   For this reason, conventionally, using a crane installed on a trolley or the like, the sediments and the like are crushed with a bucket or the like and pumped to the land, and transported to the downstream area from the river dam by land transportation means such as a truck. It was discharged or disposed of elsewhere. Alternatively, sedimentary sand and the like are sucked together with water by a dredging pump capable of sucking mud mixed with earth and sand and discharged to the downstream area. However, these dredging operations all require large-scale facilities and power, and there are problems such as difficult installation of the device itself and excessive costs in mountainous areas where transportation is not convenient. It was.

このような問題を解決するために、特許文献1には、水中の沈殿物、堆積物、又は集積物の中に、開口付きパイプを埋設し、上流端または上流部の開口部を水中に位置させることにより、上流端または上流部の水中にある開口から入った水が管路内を流れるに伴い生じる管路内の負圧により開口周囲の沈澱物、堆積物又は集積物を管内に吸引しながら出口へと送り出すようにする水中堆積物の流送方法、及びその装置等が開示されている。   In order to solve such a problem, Patent Document 1 discloses that a pipe with an opening is embedded in an underwater sediment, sediment, or accumulation, and the upstream end or the upstream opening is located in the water. As a result, the sediment, sediment or accumulation around the opening is sucked into the pipe by the negative pressure generated in the pipe as water entering from the opening in the upstream end or upstream water flows in the pipe. An underwater sediment inflow method, an apparatus thereof, and the like are disclosed.

しかし、特許文献1に記載の水中堆積物の流送装置は、あまり大掛かりな施設や動力を必要としない点でメリットがあるが、開口付きパイプを水中の堆積物に埋設する必要があり、既存のダム等に適用することが難しいという問題があった。   However, the underwater sediment flow feeding device described in Patent Document 1 is advantageous in that it does not require a very large facility or power, but it is necessary to embed an open pipe in the underwater sediment. There was a problem that it was difficult to apply to other dams.

また、本願の出願人らが出願した特許文献2には、側面部に開口部を備えた可撓性の掃流管を堆積した土砂の上に開口部が塞がるように置き、この掃流管の基端部に吸引管を連結して先端開口から基端部に水流形成手段で水流を形成して開口部に面する堆積土砂を掃流しながら吸引輸送することで、この掃流管の先端開口を中心に形成される堆積土砂の円錐状の窪みにその可撓性で追随させ、先端の大きな沈み込みと周囲の土砂の崩れ落ちにより、2次元形状の掃流管で、円錐状の3次元的な広範囲に亘って排砂できるようにした水底堆積土砂の輸送方法及びその装置が開示されている(特許文献2参照)。   In addition, in Patent Document 2 filed by the applicants of the present application, a flexible scavenging tube having an opening on a side surface portion is placed on the earth and sand so that the opening is blocked, and this scavenging tube By connecting the suction pipe to the base end of the tube and forming the water flow from the opening at the tip to the base end by the water flow forming means, and carrying out suction transport while sweeping the sediment that faces the opening, The cone-shaped depression of sedimentary earth and sand formed around the opening is allowed to follow with its flexibility, and the two-dimensional shape of the conical three-dimensional scavenging pipe is created by the large sinking of the tip and collapse of the surrounding earth and sand. A method and apparatus for transporting submarine sediment that can be discharged over a wide area is disclosed (see Patent Document 2).

しかし、特許文献2に記載の水底堆積土砂の輸送方法及びその装置では、水位差を利用して経済的に堆積土砂の移送を行うことができるものの、(1)土砂吸引の進行につれ、堆積土砂等にすり鉢状の窪みが形成され、この窪みの斜面から土砂等が崩落して水の取り入れ口である先端開口が埋まってしまい、先端開口が閉塞して水流及び堆積土砂等の輸送がストップしてしまう。(2)シート状部材が大きいので、土砂吸引の進行につれ、シート状部材に浮き上がりや折れ曲がり、皺などが発生し、シート状部材と堆積土砂との間に空間ができ、その空間が水みちとなって、土砂等の吸引力が減少してしまう。(3)シート状部材の水中での展開が困難であるという問題点があった。   However, although the bottom sediment transport method and apparatus described in Patent Document 2 can economically transport sediment sediment using the difference in water level, (1) sediment sediment as the sediment suction progresses. A mortar-shaped depression is formed in the pit, etc., and earth and sand etc. collapse from the slope of this depression and the tip opening which is a water intake is buried, and the tip opening is blocked and transportation of water flow and sedimentary earth and sand is stopped. End up. (2) Since the sheet-like member is large, the sheet-like member floats, bends, and wrinkles occur as the earth and sand suction progresses, creating a space between the sheet-like member and the accumulated earth and sand. As a result, the suction force of earth and sand is reduced. (3) There is a problem that it is difficult to expand the sheet-like member in water.

このような問題点を解決するものとして、本願の出願人が出願した特許文献3には、効率良く大量に、水底に堆積した水中堆積物を他の領域に流送する水中堆積物の流送方法及び流送装置に用いられる吸引パイプが開示されている。この吸引パイプの概要を図1及び図2に示す。吸引パイプ100は、両端が開口した可撓性を有する管本体150から形成され、一端が水の取り入れ口である取水口102aとされ、他端が堆積物及び水を吐き出す吐出口を有する流送管102に対する接続端151とされる。管本体150は、前記両端の中間で折り返されて形成される。その折返し部152では、下部が切り欠かれており、この切り欠かれた部分にシート部材153が接着されている。また、シート部材153より上方であって折返し部152の先端部分にあたる管本体150の側面部分に管本体150内と連通する側部吸引孔155が穿設され、シート部材153には、管本体150内と連通する下部吸引口154が複数穿設されている。なお、取水口102aには、任意部材としてエルボー管157が接続され、このエルボー管157の取水口102と接続される側と反対側の開口端を取水口102a’として、該取水口102a’が上向きになるように配されている。   In order to solve such a problem, Patent Document 3 filed by the applicant of the present application discloses that an underwater sediment that efficiently deposits a large amount of the underwater sediment deposited on the bottom of the water is sent to another region. A suction pipe for use in the method and flow apparatus is disclosed. An outline of the suction pipe is shown in FIGS. The suction pipe 100 is formed of a flexible pipe body 150 having both ends opened, and one end is a water intake port 102a that is a water intake port, and the other end has a discharge port that discharges sediment and water. The connection end 151 is connected to the tube 102. The tube body 150 is formed by being folded back at the middle between the both ends. The folded portion 152 has a lower portion cut out, and the sheet member 153 is bonded to the cut-out portion. Further, a side suction hole 155 that communicates with the inside of the tube main body 150 is formed in the side surface portion of the tube main body 150 that is above the sheet member 153 and that corresponds to the tip portion of the folded portion 152, and the sheet member 153 has a tube main body 150. A plurality of lower suction ports 154 communicating with the inside are formed. An elbow pipe 157 is connected to the water intake port 102a as an optional member. The opening end of the elbow pipe 157 opposite to the side connected to the water intake port 102 is taken as the water intake port 102a ', and the water intake port 102a' is It is arranged to face upward.

このように構成される吸引パイプ100によれば、水中堆積物の吸引の進行につれ、すり鉢状の窪みが形成され、この窪みの斜面から堆積物が崩落して、吸引パイプ100の先端に位置する側部吸引孔155から一度に高濃度の堆積物を吸引して詰まってしまったような場合でも、取水口102a(102a’)からの取水により、吸引パイプ100の管内の水流がストップせず、すり鉢状の窪みの中心部分が水底に到達するまで、堆積物を吸引することが可能とされる。また、すり鉢状の窪みの形成過程において、窪みの表面形状がなだらかな形状でなくなっても、その表面形状の変化に追随可能なシート部材で覆って、その覆った範囲の水中堆積物を吸引パイプの管内に発生する負圧で下部吸引孔154から効率良く吸引することが可能とされる。
しかしながら、この吸引パイプ100を用いた水中堆積物の移送においては、水中堆積物の堆積深さが比較的浅い場合には、側部吸引孔155及び下部吸引孔154から水中堆積物を効率良く吸引することが可能であるものの、水中堆積物の堆積深さが深くなると、水中堆積物の吸引が困難となるという問題があった。
According to the suction pipe 100 configured in this way, a mortar-shaped depression is formed as the underwater deposit is aspirated, and the deposit collapses from the slope of the depression and is positioned at the tip of the suction pipe 100. Even when a high-concentration sediment is sucked and clogged from the side suction hole 155 at once, the water flow in the pipe of the suction pipe 100 does not stop due to water intake from the water intake 102a (102a ′), Sediment can be sucked in until the central portion of the mortar-shaped depression reaches the bottom of the water. In addition, in the process of forming a mortar-shaped dent, even if the surface shape of the dent is not a gentle shape, it is covered with a sheet member that can follow the change in the surface shape, and the underwater sediment in the covered range is sucked into the suction pipe. Therefore, it is possible to efficiently suction from the lower suction hole 154 with the negative pressure generated in the pipe.
However, in the transfer of the underwater sediment using the suction pipe 100, the underwater sediment is efficiently sucked from the side suction holes 155 and the lower suction holes 154 when the deposition depth of the underwater sediment is relatively shallow. Although it is possible to do so, there is a problem that suction of the underwater deposits becomes difficult as the accumulation depth of the underwater deposits increases.

特開2002−294677号公報Japanese Patent Application Laid-Open No. 2002-294677 特開2006−214092号公報JP 2006-214092 A 特開2010−144359号公報JP 2010-144359 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、大掛かりな施設や動力を必要とせず、単純な構造により実現可能であり、設置が容易なうえ経済的であり、天候に左右されず、水中堆積物の堆積深さが深い場合であっても、水底に堆積した水中堆積物を効率良く安定的に他の領域に流送可能とする水中堆積物流送用の吸引パイプ、並びに該吸引パイプを用いた水中堆積物の流送装置及び流送方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention does not require large-scale facilities and power, can be realized by a simple structure, is easy to install, is economical, is not affected by the weather, and has a deep deposition depth of underwater sediments. Even in this case, the suction pipe for transporting the submerged sediment that enables the sediment deposited on the bottom of the water to be efficiently and stably transported to other areas, and the transport of the submerged sediment using the suction pipe An object is to provide an apparatus and a flow method.

前記課題を解決するために、本発明者らが鋭意検討を行ったところ、以下の知見が得られた。
先ず、水中堆積物の堆積深さが比較的深い状況を設定した模擬試験において、出願人が先に出願した特許文献3に開示される吸引パイプを用いて水中堆積物の流送を行うと、流送を開始後、形成されるすり鉢状の窪みが浅い初期の段階では、水中堆積物の流送が可能であるものの、吸引パイプの折返し部に穿設される側部吸引孔及び下部吸引孔から水中堆積物の吸引が進むにつれ、吸引パイプの折返し部側が水中堆積物の中に潜行し、その潜行深さが水中堆積物の表面からある程度深くなった段階に至ると、側部吸引孔及び下部吸引孔からの水中堆積物の吸引がなくなり、吸引パイプからは、取水口から取水される水のみが流送される状況となることが確認された。
そのため、すり鉢状の窪みが深くなるにつれ、水中堆積物の吸引がなくなる問題を新たな技術的課題として、これを解決するべく本発明者らが試行錯誤した結果、折返し部で折り返された吸引パイプのシート部材が接着された部分から取水口に向けて延在する延在部において、その延在方向の下部に複数の孔を並設すると、吸引パイプの折返し部側が水中堆積物の中に潜行し、すり鉢状の窪みが深く進行した段階に至っても、安定して水中堆積物を吸引可能であることの知見が得られた。
このような吸引が可能となる要因としては、必ずしも定かではないが、以下のように推察される。即ち、すり鉢状の窪みが深く進行した段階において、吸引パイプに設けられる吸引孔が水中堆積物中に深く潜行した位置における吸引孔だけであると、管材内に水流を形成する負圧は維持されるものの、吸引孔近傍において水中堆積物を吸引するだけの負圧がなくなり、取水口から取り入れられる水のみが流送される。そのため、水中堆積物の吸引過程において、水中堆積物に深く潜行しない位置に吸引孔が常に存在するよう、シート部材が密着された部分から取水口に向けて延在する管材の延在部の延在方向に複数の孔を並設すると、水中堆積物に深く潜行していない位置の孔の働きにより、管材内に水中堆積物を吸引する負圧が維持され、吸引パイプの先端側に設けられる側部吸引孔をはじめとする水中堆積物に潜行した位置の各孔からの水中堆積物の吸引が補助されることとなり、水中堆積物の堆積深さが深い場合であっても、安定して水中堆積物の吸引・流送が可能になるものと推察される。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and the following knowledge was obtained.
First, in the simulation test in which the deposition depth of the underwater sediment is set to be relatively deep, when the underwater sediment is flowed using the suction pipe disclosed in Patent Document 3 previously filed by the applicant, In the initial stage where the mortar-shaped depression formed is shallow after the start of the flow, the underwater sediment can be flowed, but the side suction hole and the lower suction hole drilled in the folded portion of the suction pipe As the suction of the underwater sediment proceeds, the folded portion side of the suction pipe goes into the underwater sediment, and when the submergence depth reaches a certain level from the surface of the underwater sediment, the side suction holes and It was confirmed that underwater sediments were not sucked from the lower suction holes, and only the water taken from the intake port was sent from the suction pipe.
Therefore, as the mortar-shaped depression becomes deeper, the problem that the suction of the underwater deposits disappears is a new technical problem, and as a result of the trial and error by the present inventors to solve this, the suction pipe folded at the folded portion In the extension part that extends from the part where the sheet member is bonded to the water intake, if a plurality of holes are arranged in parallel in the lower part of the extension direction, the folded part side of the suction pipe is submerged in the underwater sediment And even if it reached the stage where the mortar-shaped hollow progressed deeply, the knowledge that the underwater deposit could be attracted | sucked stably was acquired.
The factor that enables such suction is not necessarily clear, but is presumed as follows. That is, at the stage where the mortar-shaped depression has advanced deeply, if the suction hole provided in the suction pipe is only the suction hole at a position where it is deeply submerged in the underwater sediment, the negative pressure that forms the water flow in the pipe is maintained. However, there is no negative pressure for sucking underwater sediment in the vicinity of the suction hole, and only water taken from the intake port is flowed. For this reason, in the suction process of the underwater sediment, the extension of the extending portion of the pipe member extending from the portion where the sheet member is in close contact to the intake port so that the suction hole always exists at a position where the underwater sediment does not submerge deeply. When a plurality of holes are arranged side by side in the current direction, the negative pressure for sucking the underwater deposit in the pipe is maintained by the action of the hole not deeply submerged in the underwater deposit, and is provided on the tip side of the suction pipe. The suction of the underwater sediment from each hole in the position where the underwater sediment has been submerged, such as the side suction holes, will be assisted, and even if the accumulation depth of the underwater sediment is deep, it will be stable. It is assumed that underwater sediments can be sucked and transported.

本発明は、前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送するための水中堆積物流送用の吸引パイプであって、両端が開口した可撓性を有する管材から形成され、該管材の一端が水の取り入れ口である取水口とされ、他端が前記水中堆積物及び前記水を吐き出す吐出口側の接続端とされ、前記両端の中間部には、前記管材を折返して固定した折返し部が形成され、この折返し部を含む前記管材の水底側に位置する下部にシート部材が密着されており、前記シート部材及び該シート部材が密着される部分の前記管材には、下部吸引孔が連穿されるとともに、前記シート部材より水面側の上方にあって前記折返し部の先端部分にあたる前記管材の側部には、側部吸引孔が穿設され、更に、前記シート部材が密着された部分から前記取水口に向けて延在する前記管材の延在部の下部側には、その延在方向に複数の吸引補助孔が並設されていることを特徴とする水中堆積物流送用の吸引パイプ。
<2> 折返し部のある管材の下部が切り欠かれ、この切り欠かれた部分にシート部材が密着される前記<1>に記載の水中堆積物流送用の吸引パイプ。
<3> 吸引補助孔の孔径が、管材の管径をdとしたとき、0.2d〜0.7dである前記<1>から<2>のいずれかに記載の水中堆積物流送用の吸引パイプ。
<4> 管材の延在部に吸引補助孔を並設する間隔が、管材の管径をdとしたとき、2d〜5dである前記<1>から<3>のいずれかに記載の水中堆積物流送用の吸引パイプ。
<5> シート部材の外縁部には、その縁沿いに水中堆積物の表面形状の変化に追随可能な可撓性を有する錘が配設される前記<1>から<4>のいずれかに記載の水中堆積物流送用の吸引パイプ。
<6> 折返し部の先端部分からのシート部材の張出し長さが、管材の管径をdとしたとき、2.5d以下である前記<1>から<5>に記載の水中堆積物流送用の吸引パイプ。
<7> 折返し部の側面部分からのシート部材の張出し長さが、管材の管径をdとしたとき、1d〜3dであり、前記シート部材の前記管材の長手方向に沿った長さが、5d〜15dである前記<1>から<6>のいずれかに記載の水中堆積物流送用の吸引パイプ。
<8> 水中堆積物の堆積深さを予め把握し、その深さ及び前記水中堆積物の水中安息角から吸引終了時に前記水中堆積物に形成されるすり鉢状の窪みの最大形状を割り出して算出される前記最大形状の斜面長さに対し、延在部の管長が長く設定されるとともに、その長く設定された部分又はその部分の近傍まで吸引補助孔が並設される前記<1>から前記<7>のいずれかに記載の水中堆積物流送用の吸引パイプ。
<9> 取水口に屈曲したエルボー管が接続され、該エルボー管の開口端が上向きに設置される前記<1>から<8>のいずれかに記載の水中堆積物流送用の吸引パイプ。
<10> 閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送装置であって、前記<1>から<9>のいずれかに記載の吸引パイプと、該吸引パイプの管内に前記水中堆積物を吸引するための水流を発生させる水流発生手段と、を有することを特徴とする水中堆積物の流送装置。
<11> 前記<10>に記載の水中堆積物流送装置を用い、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送方法であって、吸引パイプを前記水中堆積物の上に設置し、水流発生手段で前記吸引パイプの管内に水流を発生させ、その水流で前記吸引パイプの管内を負圧にすることにより、下部吸引孔、側部吸引孔及び吸引補助孔から前記水と一緒に前記水中堆積物を吸引させ、その負圧で前記吸引パイプの折返し部を先端として前記水中堆積物に潜行させ、該先端を中心に前記水中堆積物にすり鉢状の窪みを形成しながら前記水中堆積物を浚渫することを特徴とする水中堆積物の流送方法。
The present invention is based on the above knowledge, and means for solving the above problems are as follows. That is,
<1> A suction pipe for transporting underwater sediments for sucking underwater sediment deposited on the bottom of a closed water area together with water and feeding it to other areas. Formed from a tube material having the properties, one end of the tube material is a water intake port that is a water intake port, and the other end is a connection end on the discharge port side for discharging the underwater deposits and the water, Is formed with a folded portion where the tube material is folded and fixed, and a sheet member is in close contact with the lower portion of the tube material including the folded portion, and the sheet member and the sheet member are in close contact with each other. A lower suction hole is continuously drilled in the tube material of the portion, and a side suction hole is drilled in a side portion of the tube material that is above the water surface side of the sheet member and corresponds to a tip portion of the folded portion. And the sheet member is in close contact A plurality of suction auxiliary holes are provided in parallel in the extending direction on the lower side of the extending portion of the pipe material extending from the portion toward the water intake port. Suction pipe.
<2> The suction pipe for transporting an underwater sedimentary stream according to <1>, wherein a lower portion of a pipe member having a turn-back portion is cut out, and a sheet member is in close contact with the cut-out portion.
<3> The suction for transporting an underwater sedimentary stream according to any one of <1> to <2>, wherein the diameter of the suction auxiliary hole is 0.2 d to 0.7 d, where d is the pipe diameter of the pipe material. pipe.
<4> The underwater deposition according to any one of <1> to <3>, wherein an interval in which the suction auxiliary holes are arranged in parallel in the extending portion of the pipe material is 2d to 5d when the pipe diameter of the pipe material is d. Suction pipe for logistics.
<5> The <1> to <4>, wherein a flexible weight capable of following a change in the surface shape of the underwater deposit is disposed along the edge of the outer edge portion of the sheet member. Suction pipe for sending underwater sediment logistics as described.
<6> The length of the sheet member protruding from the tip of the folded portion is 2.5 d or less when the pipe diameter of the pipe material is d. Suction pipe.
<7> The extension length of the sheet member from the side surface portion of the folded portion is 1d to 3d when the tube diameter of the tube material is d, and the length of the sheet member along the longitudinal direction of the tube material is The suction pipe for transporting an underwater sedimentary stream according to any one of <1> to <6>, which is 5d to 15d.
<8> The depth of the underwater deposit is grasped in advance, and the maximum shape of the mortar-shaped depression formed in the underwater deposit at the end of suction is calculated from the depth and the angle of repose of the underwater deposit. From the <1> to the above, the tube length of the extending portion is set to be longer than the maximum slope length, and the suction auxiliary holes are juxtaposed to the long set portion or the vicinity of the portion. <7> The suction pipe for sending an underwater sediment logistics according to any one of the above.
<9> The suction pipe for sending an underwater sedimentary logistics according to any one of <1> to <8>, wherein an elbow pipe bent at the intake port is connected, and an open end of the elbow pipe is installed upward.
<10> An apparatus for feeding underwater sediments, wherein the underwater sediments deposited on the bottom of a closed water area are sucked together with water and sent to other areas. An underwater sediment feeding apparatus comprising: the suction pipe according to any one of the above, and a water flow generating means for generating a water flow for sucking the underwater sediment into a pipe of the suction pipe.
<11> Flow of underwater sediments using the underwater sediment distribution and feeding device according to <10> above, wherein the underwater sediments deposited on the bottom of a closed water area are sucked together with the water and then flowed to other areas. In this method, a suction pipe is installed on the underwater deposit, a water flow is generated in the pipe of the suction pipe by water flow generation means, and the inside of the pipe of the suction pipe is made negative pressure by the water flow. The underwater deposit is sucked together with the water from the lower suction hole, the side suction hole, and the suction auxiliary hole, and is submerged in the underwater deposit with the folded portion of the suction pipe as a tip by the negative pressure. A method for feeding an underwater deposit, wherein the underwater deposit is dredged while forming a mortar-shaped depression in the underwater deposit at the center.

本発明によれば、従来における前記諸問題を解決することができ、大掛かりな施設や動力を必要とせず、単純な構造により実現可能であり、設置が容易なうえ経済的であり、天候に左右されず、水中堆積物の堆積深さが深い場合であっても、水底に堆積した水中堆積物を効率良く安定的に他の領域に流送可能とする水中堆積物流送用の吸引パイプ、並びに該吸引パイプを用いた水中堆積物の流送装置及び流送方法を提供することができる。   According to the present invention, it is possible to solve the above-described problems, which does not require large-scale facilities and power, can be realized with a simple structure, is easy to install, is economical, and depends on the weather. A suction pipe for transporting an underwater sediment stream that allows the underwater sediment deposited on the bottom of the water to be efficiently and stably transported to other areas even when the depth of the underwater sediment is deep, and It is possible to provide an underwater sediment inflow apparatus and an inflow method using the suction pipe.

従来例に係る吸引パイプの平面図である。It is a top view of the suction pipe which concerns on a prior art example. 図1に示す吸引パイプの側面図である。It is a side view of the suction pipe shown in FIG. この発明の実施の形態に係る水中堆積物の流送装置の概略構成と、水中堆積物及び流送装置の作業開始前の状況を鉛直断面で表す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which represents the schematic structure of the submerged sediment inflow apparatus which concerns on embodiment of this invention, and the condition before the work start of a submerged sediment and the inflow apparatus with a vertical cross section. 図3に示す流送装置の作業中の状況を表す説明図である。It is explanatory drawing showing the condition in operation | work of the flow apparatus shown in FIG. 図3に示す流送装置の作業終了時の状況を表す説明図である。It is explanatory drawing showing the condition at the time of the completion | finish of work of the flow apparatus shown in FIG. 本発明の一実施の形態に係る吸引パイプの平面図である。It is a top view of the suction pipe which concerns on one embodiment of this invention. 図6に示す吸引パイプの側面図である。It is a side view of the suction pipe shown in FIG. 図6に示す吸引パイプの折返し部を主に示す拡大平面図である。FIG. 7 is an enlarged plan view mainly showing a folded portion of the suction pipe shown in FIG. 6. 図8に示す折返し部の底面図である。It is a bottom view of the folding | turning part shown in FIG. 図6に示す折返し部のX−X線切断端面図である。FIG. 7 is an end view taken along line XX of the folded portion shown in FIG. 6. 図6に示す折返し部の先端部分の側面図である。It is a side view of the front-end | tip part of the folding | turning part shown in FIG. 本発明の他の実施形態に係る吸引パイプの平面図である。It is a top view of the suction pipe concerning other embodiments of the present invention. 図12に示す吸引パイプの側面図である。It is a side view of the suction pipe shown in FIG. 比較例に係る吸引パイプを用いた水中堆積物の流送実験の実験結果を示すものであり、(a)は水中堆積物の流送実験終了時の水中堆積物の標高位置をその横断方向の距離に応じてプロットしたグラフ、(b)は(a)でプロットされる実験結果を数値として示す表である。The experiment result of the flow experiment of the underwater sediment using the suction pipe which concerns on a comparative example is shown, (a) shows the altitude position of the underwater sediment at the end of the underwater sediment flow experiment in the transverse direction. The graph plotted according to distance, (b) is a table | surface which shows the experimental result plotted by (a) as a numerical value. 実施例に係る吸引パイプを用いた水中堆積物の流送実験の実験結果を示すものであり、(a)は水中堆積物の流送実験終了時の水中堆積物の標高位置をその横断方向の距離に応じてプロットしたグラフ、(b)は(a)でプロットされる実験結果を数値として示す表である。The experiment result of the submerged sediment inflow experiment using the suction pipe which concerns on an Example is shown, (a) shows the altitude position of the underwater sediment at the time of the end of the underwater sediment inflow experiment of the cross direction. The graph plotted according to distance, (b) is a table | surface which shows the experimental result plotted by (a) as a numerical value.

この発明の一実施の形態を、図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

(水中堆積物の流送装置)
先ず、本発明に係る水中堆積物の流送装置の実施の形態について図3〜5を用いて説明する。図3〜5は、本発明に係る水中堆積物の流送装置の一実施の形態である流送装置の概略構成と、その浚渫作業の進行状況を鉛直断面で示す説明図であり、図3は、吸引開始前を、図4は、吸引作業中を、図5は、吸引終了時を示し、各図の(A)は、鉛直断面図、(B)は、平面図をそれぞれ示している。
(Underwater sediment flow device)
First, an embodiment of an underwater sediment inflow device according to the present invention will be described with reference to FIGS. 3-5 is explanatory drawing which shows the schematic structure of the feeding apparatus which is one Embodiment of the feeding apparatus of the underwater sediment based on this invention, and the progress condition of the dredging work in a vertical cross section, FIG. 4 shows the state before the start of suction, FIG. 4 shows the state during the suction operation, FIG. 5 shows the end of the suction, (A) in each figure shows a vertical sectional view, and (B) shows a plan view. .

図中の符号Aは、閉鎖的な水域の一例として挙げるダム貯水池であり、符号Dは、そのダムを、符号Sは、水中堆積物を示し、符号1は、本発明に係る水中堆積物の流送装置の一実施の形態として例示する流送装置である。この流送装置1は、ダム貯水池Aから水中堆積物Sを水と一緒に吸引して下流域Bへ放出(排出)するための水中堆積物Sの移送経路である流送管2と、この流送管2の内部に水流を発生させる水流発生手段3と、流送管2から放出する水中堆積物S及び水の流量を制御する流量制御手段4とから主に構成され、ダム貯水池Aの底に堆積した水中堆積物Sを水と一緒に吸引して浚渫し、下流域Bに放出する機能を有した装置である。   Reference symbol A in the figure is a dam reservoir as an example of a closed water area, reference symbol D indicates the dam, reference symbol S indicates an underwater sediment, reference symbol 1 indicates an underwater sediment according to the present invention. It is a flow apparatus illustrated as one embodiment of a flow apparatus. The inflow apparatus 1 includes an inflow pipe 2 that is a transfer path of the underwater sediment S for sucking the underwater sediment S together with water from the dam reservoir A and discharging (discharging) the downstream sediment B to the downstream area B. The dam reservoir A is mainly composed of a water flow generating means 3 for generating a water flow inside the flow pipe 2 and a flow rate control means 4 for controlling the flow rate of the water deposit S and water discharged from the flow pipe 2. This is a device having a function of sucking and sucking underwater sediment S deposited on the bottom together with water and discharging it to the downstream area B.

流送管2は、ダム貯水池A側の端部が取水口2aに、下流域B側の端部が吐出口2bとなっており、ダム貯水池Aから下流域Bに亘ってダムDを貫通して配管され、その取水口2a側(吸引側)の先端(図中のダム貯水池A側の端)部分が、本発明に係る後述の吸引パイプ5となっている。この流送管2の管材としては、高密度ポリエチレン管、塩化ビニル管などの樹脂製管や、鋼管、鋳鉄管、ステンレス管などの金属製管などを使用できるが、後述の水流発生手段3で発生させた水流による負圧を維持できるだけの水密性、気密性、及び耐圧性を有している管材であればよい。
なお、流送管2は、必ずしもダムDを貫通する必要はなく、ダムDの上端の上方に迂回するように配管されていても構わないが、サイホン現象を利用する場合には、取水口2aより所定の水頭圧が得られる分だけ上方に迂回して下流域B側へ配管される必要がある。
The end of the dam reservoir A side is the intake port 2a and the end of the downstream region B side is the discharge port 2b. The flow pipe 2 penetrates the dam D from the dam reservoir A to the downstream region B. The tip of the intake port 2a side (suction side) (the end on the dam reservoir A side in the figure) is a suction pipe 5 described later according to the present invention. As the pipe material of the flow pipe 2, resin pipes such as high density polyethylene pipes and vinyl chloride pipes, and metal pipes such as steel pipes, cast iron pipes and stainless steel pipes can be used. Any pipe material having water tightness, air tightness, and pressure resistance that can maintain the negative pressure due to the generated water flow may be used.
The flow pipe 2 does not necessarily pass through the dam D and may be piped so as to bypass the upper end of the dam D. However, when the siphon phenomenon is used, the water intake port 2a is used. It is necessary to make a detour upward by the amount that allows a predetermined water head pressure to be obtained, and to be piped to the downstream region B side.

水流発生手段3は、流送管2の途中に一般的な流体ポンプ30を備え、この流体ポンプ30でダム貯水池Aから水と水中堆積物Sを吸引してサイホン現象を誘引する初期水流を発生させ、一旦水流が流れ出した後は流体ポンプ30を停止して、流送管2の頂部を超えた水流が落下する水頭圧でダム貯水池Aから水を吸引し、水流が持続するようになっている。勿論、サイホン現象を利用するのではなく、流体ポンプ30の動力だけで水流を発生させてもよく、また、流体ポンプ30を設けず、流送管2の取水口2aが吐出口2bより高く、且つ、流送管2を直線的に配管して、取水口2aと吐出口2bとの水位差(高低差)を利用して水流が発生するようにしても構わない。即ち、水流発生手段3は、流送管2の管内に水流を発生させることができる構成であればよい。但し、流体ポンプ30を稼動するには動力(電力や軽油等を用いた発動機など)が必要であり、ランニングコストが嵩むため、本実施の形態のように、サイホン現象を利用することが好ましい。   The water flow generating means 3 includes a general fluid pump 30 in the middle of the flow pipe 2, and generates an initial water flow that attracts water and underwater sediments S from the dam reservoir A and induces siphon phenomenon. Once the water flow has started, the fluid pump 30 is stopped, and water is sucked from the dam reservoir A with the head pressure at which the water flow over the top of the flow pipe 2 falls, so that the water flow continues. Yes. Of course, instead of using the siphon phenomenon, the water flow may be generated only by the power of the fluid pump 30. Also, the fluid pump 30 is not provided, and the intake port 2a of the flow pipe 2 is higher than the discharge port 2b. In addition, the flow pipe 2 may be provided in a straight line, and a water flow may be generated by utilizing a water level difference (level difference) between the water intake port 2a and the discharge port 2b. In other words, the water flow generation means 3 may be configured to generate a water flow in the pipe of the flow pipe 2. However, in order to operate the fluid pump 30, power (such as a motor using electric power or light oil) is required, and the running cost increases. Therefore, it is preferable to use the siphon phenomenon as in the present embodiment. .

流量制御手段4は、吐出口2b付近に吐出ゲート40を有し、この吐出ゲート40を開閉することで流送管2の管内の有効開口面積を調整可能に構成されており、この吐出ゲート40の開閉を制御することで、吸引パイプ5からの水中堆積物Sの吸引量も調節することができ、完全に吐出ゲート40を閉じることで、吸引パイプ5からの水中堆積物Sの吸引も止めることができる。また、この吐出ゲート40は、吐出口2b付近(即ち、頂部から十分な距離を置いた下方)に設置されているので、この吐出ゲート40を再び開くだけで、流送管2の頂部から吐出ゲート40までに溜まっていた水が落下して、その水頭圧で吸引パイプ5からの水中堆積物Sの再吸引が可能である。つまり、吐出ゲート40を閉鎖して吐出ゲート40から流送管2の頂部まで一旦水を溜めることができれば、前記流体ポンプ30を作動させなくても、吸引パイプ5からの吸引を何時でも再開することができる。
なお、吐出ゲート40は、勿論、バルブなどの調整弁であってもよく、流送管2の管内の有効開口面積を調整可能な機構であればよい。
The flow rate control means 4 has a discharge gate 40 in the vicinity of the discharge port 2b, and is configured to be able to adjust the effective opening area in the pipe of the flow pipe 2 by opening and closing the discharge gate 40. The suction amount of the underwater deposit S from the suction pipe 5 can be adjusted by controlling the opening / closing of the suction pipe 5, and the suction of the underwater sediment S from the suction pipe 5 is also stopped by completely closing the discharge gate 40. be able to. Further, since the discharge gate 40 is installed in the vicinity of the discharge port 2b (that is, below a sufficient distance from the top), the discharge gate 40 is discharged from the top of the flow pipe 2 only by reopening the discharge gate 40. The water accumulated up to the gate 40 falls, and the water head pressure allows the underwater sediment S to be re-sucked from the suction pipe 5. In other words, once the discharge gate 40 is closed and water can be accumulated from the discharge gate 40 to the top of the flow pipe 2, the suction from the suction pipe 5 can be resumed at any time without operating the fluid pump 30. be able to.
The discharge gate 40 may of course be an adjustment valve such as a valve, and may be any mechanism that can adjust the effective opening area in the pipe of the flow pipe 2.

(吸引パイプ)
次に、本発明に係る吸引パイプの一実施の形態について、図6〜図11を用いて説明する。図6は、本発明の一実施の形態に係る吸引パイプの平面図、図7は、図6に示す吸引パイプの側面図、図8は、図6に示す吸引パイプの折返し部を主に示す拡大平面図、図9は、図8に示す折返し部の底面図、図10は、図6に示す折返し部のX−X線切断端面図、図11は、図6に示す折返し部の先端部分の側面図である。
(Suction pipe)
Next, an embodiment of a suction pipe according to the present invention will be described with reference to FIGS. 6 is a plan view of a suction pipe according to an embodiment of the present invention, FIG. 7 is a side view of the suction pipe shown in FIG. 6, and FIG. 8 mainly shows a folded portion of the suction pipe shown in FIG. FIG. 9 is a bottom view of the folded portion shown in FIG. 8, FIG. 10 is an end view taken along the line XX of the folded portion shown in FIG. 6, and FIG. 11 is a front end portion of the folded portion shown in FIG. FIG.

図示する吸引パイプ5は、両端が開口した可撓性を有する管材を主材とする管本体50から主に構成され、一方の開口端が、取水口2aに、他方の開口端が、水流発生手段3や吐出口2bに続く接続端51となっている。また、取水口2aと接続端51との略中央に位置する中間部には、管本体50の管材を平面視でU字状又は馬蹄形状に折返して固定した折返し部52が形成され、この折返し部52を含む管本体50の水底側に位置する下部に沿ってシート部材53が密着されている。また、折返し部52で折返され、シート部材53が密着された部分から取水口2aに向けて延在する管本体50の部分として、延在部60が形成されている。
なお、折返し部52の管材の折返し形状は、平面視で楕円形や円形であってもよく、取水口2aと連通した管材が折返し固定されていればよい。
The suction pipe 5 shown in the figure is mainly composed of a pipe main body 50 whose main material is a flexible pipe material having both ends opened. One open end is at the water intake port 2a and the other open end is a water flow. It is a connection end 51 following the means 3 and the discharge port 2b. Further, a folded portion 52 is formed at the intermediate portion located substantially at the center between the water intake port 2a and the connection end 51, and the folded portion 52 is formed by folding and fixing the tube material of the tube body 50 in a U shape or a horseshoe shape in plan view. A sheet member 53 is in close contact with a lower portion located on the water bottom side of the pipe body 50 including the portion 52. Moreover, the extension part 60 is formed as a part of the pipe | tube main body 50 which is turned up by the folding | turning part 52 and extends toward the water intake 2a from the part to which the sheet | seat member 53 contact | adhered.
Note that the folded shape of the tube material of the folded portion 52 may be elliptical or circular in a plan view, and it is only necessary that the tube material communicating with the water intake port 2a is folded and fixed.

管本体50は、本実施の形態では、硬質高密度ポリエチレンの螺旋状の線材と、この線材間を繋ぐ軟質高密度ポリエチレンの膜とからなる蛇腹状のフレキシブル管から構成されているが、水流発生手段3で発生させた水流による負圧を維持できるだけの水密性、気密性、及び耐圧性と、浚渫作業の進行につれて変化する水中堆積物Sの後述の「すり鉢状」の窪みの深さや表面形状の変化(図3〜図5参照)に追随可能な可撓性を有している管材から構成されていればよい。なお、本実施の形態に係る管本体50の管径としては、実際の閉鎖水域に適用する場合には、200mm〜1,000mm程度のものを想定しているが、流送装置1を設置する閉鎖水域(例えば、ダム貯水池)の規模や、浚渫作業の期間などを考慮して適宜選択可能であることは云うまでもない。   In the present embodiment, the pipe body 50 is composed of a bellows-like flexible pipe made of a hard high-density polyethylene helical wire and a soft high-density polyethylene film that connects the wires. The watertightness, airtightness, and pressure resistance that can maintain the negative pressure due to the water flow generated by the means 3, and the depth and surface shape of the “mortar-shaped” depression of the underwater sediment S that changes as the dredging operation progresses What is necessary is just to be comprised from the pipe material which has the flexibility which can follow the change (refer FIGS. 3-5). In addition, as a pipe diameter of the pipe main body 50 which concerns on this Embodiment, when applying to an actual closed water area, the thing of about 200 mm-1,000 mm is assumed, However, The flow feeder 1 is installed. Needless to say, it can be selected as appropriate in consideration of the size of the closed water area (for example, a dam reservoir) and the period of dredging work.

折返し部52では、図7,11に示すように、管本体50の下部にシート部材53が密着され、シート部材53と該シート部材53が密着された部分の管本体50に、図6,9に示すように、水中堆積物Sの吸引用の複数の下部吸引孔54が連穿されている。また、取水口2aに最も近い位置に設けられる下部吸引孔54に隣接して、折返し部52の先端52a側から取水口2a側に向けた位置に、下部吸引孔54’が下部吸引孔54と同様に連穿されている。また、図11に示すように、折返し部52の先端52aには、水中堆積物Sの吸引用の側部吸引孔55がシート部材53の水面側となる上方に穿設されている。本実施の形態の下部吸引孔54,54’としては、管材の管径をdとして、1/2dの大きさのものが7個(下部吸引孔54が5個、取水口2a側の下部吸引孔54’が2個)設けられ、側部吸引孔55としては、1/3dの大きさのものが1個設けられている。なお、本実施の形態では、管本体50の下部にシート部材53が形成されている例を示しているが、管本体50の管径dに応じて、管本体50と同材などの所定の強度や剛性を有した材料からなる底板を設けて補強し、その底板の外部からシート部材を密着してもよい。また、シート部材53と管本体50との密着方法としては、接着、熱溶着、超音波溶着等の固着方法など、一般的な密着方法を適用することができる。   As shown in FIGS. 7 and 11, in the folded portion 52, the sheet member 53 is in close contact with the lower portion of the tube main body 50, and the sheet main body 50 and the portion of the pipe main body 50 in close contact with the sheet member 53 are As shown in FIG. 2, a plurality of lower suction holes 54 for sucking the underwater deposit S are continuously formed. Further, adjacent to the lower suction hole 54 provided at the position closest to the water intake port 2 a, the lower suction hole 54 ′ and the lower suction hole 54 are located at a position from the tip 52 a side of the folded portion 52 toward the water intake port 2 a side. Similarly, they are continuously drilled. Further, as shown in FIG. 11, a side suction hole 55 for sucking the underwater deposit S is formed at the tip 52 a of the folded portion 52 above the water surface side of the sheet member 53. As the lower suction holes 54 and 54 'of the present embodiment, the pipe diameter of the pipe material is d, and there are seven 1 / 2d-sized (5 lower suction holes 54, lower suction on the intake port 2a side). Two side holes 54 'are provided, and one side suction hole 55 having a size of 1 / 3d is provided. In the present embodiment, an example in which the sheet member 53 is formed in the lower portion of the pipe body 50 is shown, but depending on the pipe diameter d of the pipe body 50, a predetermined material such as the same material as the pipe body 50 is used. A bottom plate made of a material having strength and rigidity may be provided and reinforced, and the sheet member may be in close contact with the outside of the bottom plate. In addition, as a method for adhering the sheet member 53 and the tube main body 50, a general adhering method such as an adhering method such as adhesion, thermal welding, or ultrasonic welding can be applied.

シート部材53は、柔軟性と不透水性を有するビニールシートなどの樹脂シートからなる。この柔軟性と不透水性を有することで、水中堆積物Sの吸引を開始して吸引パイプ5が水中堆積物Sに潜行するまでの吸引初期段階に、吸引作業の進行につれて変化する水中堆積物Sのすり鉢状の窪みSaの表面形状に追随し、水中堆積物Sとシート部材53との間に水みちができることを抑制することができる。
また、シート部材53は、管本体50の管径をdとして、図6〜8に示す管本体50の長手方向に沿った長さL1が5d〜15d、折返し部52の先端52aからの張出し長さL2が2.5d以下、図6,8に示す折返し部52の側面部分からの張出し長さL3が1d〜3dの大きさに設定されている。
L1及びL3の大きさとしては、模型実験等から管径dに対する水中堆積物Sの吸引量が最も多くなるように試行錯誤して設定されたものであり、シート部材53が水中堆積物Sの表面形状の変化に追随して吸引力を維持し続けることができるとともに、吸引パイプ5が水中堆積物Sに潜行する(潜り込む)のを妨げない最適な大きさとなっている。
また、L2が2.5d以下であると、シート部材53の折返し部52の先端52aからの張出し部分が、側部吸引孔55の吸引力で捲れ上がって側部吸引孔55を塞いでしまうおそれがなくなる。
また、L2としては、1/3d以下が特に好ましい。L2の長さが1/3dを超える場合、水中堆積物の堆積状況によっては、シート部材53の前記張出し部分が依然として側部吸引孔55を塞いでしまうおそれがあり、1/3d以下とすることで、より確実に側部吸引孔55の塞ぎ込みを抑制することができる。
なお、変形例として後述する、管本体50’の下部を切り欠いてシート部材53’を配する吸引パイプ5’(図12及び図13参照)においては、シート部材53’が管本体50’の下部に安定的に配されるため、L2の長さが1/3dを超える場合であっても、側部吸引孔55の塞ぎ込みを抑制することができる。
The sheet member 53 is made of a resin sheet such as a vinyl sheet having flexibility and water impermeability. Due to this flexibility and water impermeability, the underwater sediment that changes with the progress of the suction operation in the initial suction stage from when the suction of the underwater sediment S is started until the suction pipe 5 is submerged in the underwater sediment S. It is possible to follow the surface shape of the mortar-shaped depression Sa of S and prevent water from forming between the underwater deposit S and the sheet member 53.
The sheet member 53 has a tube diameter of the tube body 50 as d, a length L1 along the longitudinal direction of the tube body 50 shown in FIGS. 6 to 8 is 5d to 15d, and the overhang length from the tip 52a of the folded portion 52. The length L2 is set to 2.5d or less, and the overhang length L3 from the side surface portion of the folded portion 52 shown in FIGS. 6 and 8 is set to a size of 1d to 3d.
The sizes of L1 and L3 are set by trial and error so that the suction amount of the underwater sediment S with respect to the pipe diameter d is maximized from a model experiment or the like, and the sheet member 53 is formed of the underwater sediment S. The suction force can be maintained following the change in the surface shape, and the suction pipe 5 has an optimum size that does not prevent the submerged sediment S from submerging (submerge).
Further, when L2 is 2.5 d or less, the protruding portion from the leading end 52a of the folded portion 52 of the sheet member 53 may be rolled up by the suction force of the side suction hole 55 and block the side suction hole 55. Disappears.
L2 is particularly preferably 1 / 3d or less. When the length of L2 exceeds 1 / 3d, the overhanging portion of the sheet member 53 may still block the side suction hole 55 depending on the accumulation state of the underwater deposit, and should be 1 / 3d or less. Thus, the side suction hole 55 can be more reliably prevented from being blocked.
In a suction pipe 5 ′ (see FIGS. 12 and 13) in which a sheet member 53 ′ is arranged by cutting out a lower portion of the tube body 50 ′, which will be described later as a modified example, the sheet member 53 ′ of the tube body 50 ′ is provided. Since it is stably arranged in the lower part, even if the length of L2 exceeds 1 / 3d, the side suction hole 55 can be prevented from being blocked.

このシート部材53の外縁部は、樹脂シートがその縁沿いに袋状に折返して固着されており、その袋状部分53aにチェーン材からなる錘56が内包されている。このため、ダム貯水池A(閉鎖的な水域)内を流れる水流や、吸引の際に吸引パイプ5の周りに発生する水流によりシート部材53が捲れ上がったり、皺などが発生したりすることがない。また、シート部材53は、水中堆積物Sの表面形状の変化に追随可能な柔軟性を有しているので、シート部材53と水中堆積物Sとの間に空間ができ、そこが水みちとなって吸引力が低下してしまうおそれが少なくなる。そのうえ、シート部材53の水中での展開も、錘56の重力により何ら労力を掛けることなく自然に展開することができる。
勿論、この錘56は、チェーン材に限られるものではなく、例えば、シート部材53の縁の周りに小さな所定間隔を空けて取り付けられたトビトビの錘などでもよく、水中堆積物Sの表面形状の変化に追随可能な可撓性を有し、シート部材53の縁を押えて下部吸引孔54の吸引力を密封できる錘であればよい。
The outer edge portion of the sheet member 53 has a resin sheet folded back and secured along the edge thereof, and a weight 56 made of a chain material is included in the bag-like portion 53a. For this reason, the sheet member 53 is not swollen or wrinkled due to a water flow flowing in the dam reservoir A (closed water area) or a water flow generated around the suction pipe 5 at the time of suction. Further, since the sheet member 53 has flexibility that can follow the change in the surface shape of the underwater deposit S, a space is formed between the sheet member 53 and the underwater deposit S, and there is a water channel. This reduces the possibility that the suction force will decrease. Moreover, the deployment of the sheet member 53 in water can also be naturally deployed without any effort due to the gravity of the weight 56.
Of course, the weight 56 is not limited to the chain material, and may be, for example, a weight of a kite that is attached around the edge of the sheet member 53 with a small predetermined interval. Any weight may be used as long as it has flexibility capable of following the change and can seal the suction force of the lower suction hole 54 by pressing the edge of the sheet member 53.

延在部60は、図6及び図7に示すように、シート部材53が密着された部分から取水口2aに向けて延在し、図6の破線で示すように、その下部側の延在方向に複数の吸引補助孔61が並設されている。この吸引補助孔61は、水中堆積物Sの吸引作業中、吸引パイプ5が水中堆積物S中に潜行した際、側部吸引孔55をはじめとして潜行した位置に存在する各孔からの吸引を補助し、水中堆積物Sの堆積深さT1(図3〜5参照)が深い場合であっても、安定した水中堆積物の吸引・流送を可能とする。
なお、延在部60に対して吸引補助孔61を並設する箇所としては、下部側であれば特に制限はなく、具体的には、管状の延在部60を半割りしたときに、水底側であればよい。
As shown in FIGS. 6 and 7, the extending portion 60 extends from the portion where the sheet member 53 is in close contact toward the water intake port 2 a, and extends on the lower side as shown by the broken line in FIG. 6. A plurality of suction auxiliary holes 61 are arranged in the direction. The suction auxiliary hole 61 sucks from each hole existing at the submerged position including the side suction hole 55 when the suction pipe 5 is submerged in the underwater deposit S during the suction operation of the underwater deposit S. Even when the accumulation depth T1 (see FIGS. 3 to 5) of the underwater sediment S is deep, it is possible to stably suck and flow the underwater sediment.
The place where the suction auxiliary hole 61 is arranged in parallel with the extending portion 60 is not particularly limited as long as it is on the lower side. Specifically, when the tubular extending portion 60 is divided in half, It only has to be the side.

延在部60が配される、折返し部52の先端52aから取水口2a(2a’)までの管材の長さD1は、すり鉢状の窪みSaの最大形状の斜面長さD2(図5参照)よりも長く設定されており、延在部60には、その長く設定された部分又はその部分の近傍まで吸引補助孔61が並設されている。
このように延在部60を設定することで、水中堆積物Sの吸引作業の進行状況に応じて形状が変化するすり鉢状の窪みSaに対して、いずれかの吸引補助孔61が常に水中堆積物S中に潜り込まない位置に存在させることができ、潜行した位置に存在する各孔に対する水中堆積物Sの吸引補助を期待することができる。
また、延在部60の端部をなす取水口2aがすり鉢状の窪みSaより常に外に設置されていることとなり、崩落土砂等が詰まって吸引パイプ5の管内の水流がストップしてしますことを抑制することができる。
なお、D1は、以下の手順で設定することができる。先ず、水中堆積物Sの堆積深さT1をボーリング調査等で直接測定したり、土砂堆積の年平均の厚さなどから予測したりするなどして何らかの方法で予め把握しておく。水中堆積物Sの水中安息角θは、水中堆積物Sの組成などからある程度予測がつくので、図5に示すように、堆積深さT1と水中安息角θとから吸引終了時に形成されるすり鉢状の窪みSaの最大形状を割り出す。次に、そのすり鉢状の窪みSaの最大形状の斜面長さD2を算出する。そして、D1が斜面長さD2より長くなるよう設定する。
The length D1 of the pipe material from the tip 52a of the folded portion 52 to the water intake port 2a (2a ′) where the extending portion 60 is disposed is the maximum slope length D2 of the mortar-shaped depression Sa (see FIG. 5). The extension portion 60 is provided with a suction assisting hole 61 in parallel to the long set portion or the vicinity thereof.
By setting the extending portion 60 in this manner, any one of the suction auxiliary holes 61 is always deposited in the water with respect to the mortar-shaped depression Sa whose shape changes according to the progress of the suction operation of the underwater sediment S. It can exist in the position which does not dig into the thing S, and the suction assistance of the underwater deposit S with respect to each hole which exists in the submerged position can be anticipated.
In addition, the water intake 2a that forms the end of the extension 60 is always installed outside the mortar-shaped depression Sa, and crushing soil and the like are clogged, and the water flow in the suction pipe 5 stops. This can be suppressed.
D1 can be set by the following procedure. First, the deposition depth T1 of the underwater sediment S is directly grasped by some method, for example, by directly measuring it by a boring survey or predicting it based on the annual average thickness of sediment deposition. The underwater repose angle θ of the underwater sediment S can be predicted to some extent from the composition of the underwater sediment S and so on, as shown in FIG. 5, a mortar formed at the end of suction from the accumulation depth T1 and the underwater repose angle θ. The maximum shape of the dent Sa is determined. Next, the slope length D2 of the maximum shape of the mortar-shaped depression Sa is calculated. And it sets so that D1 may become longer than slope length D2.

吸引補助孔61の孔径φ(図6の拡大部参照)としては、管材の管径をdとしたとき、0.2d〜0.7dの範囲とされることが好ましい。この孔径φが0.2d未満であると、潜行した位置に存在する各孔に対する水中堆積物Sの吸引補助が十分期待に期待できないことがあり、孔径φが0.7dを超えると、吸引パイプ61の強度が損なわれるおそれがある。
また、延在部60に吸引補助孔61を並設する間隔p(図6参照)としては、2d〜5dの範囲とされることが好ましい。即ち、吸引補助孔61は、延在部60の延在方向になるべく密に並設されることが好ましく、間隔pが5dを超えて疎になると、吸引作業が進行するにつれて、水中堆積物Sに潜り込まない位置に存在する数が少なくなり、十分な吸引補助の働きを確保できなくなることがあり、間隔pが2d未満で密に過ぎると、吸引パイプ61の強度が損なわれるおそれがある。
The hole diameter φ (see the enlarged portion in FIG. 6) of the suction auxiliary hole 61 is preferably in the range of 0.2d to 0.7d, where d is the pipe diameter of the pipe material. If the hole diameter φ is less than 0.2d, the suction assistance of the underwater sediment S to each hole existing at the submerged position may not be expected sufficiently. If the hole diameter φ exceeds 0.7d, the suction pipe The strength of 61 may be impaired.
Moreover, it is preferable to set it as the range of 2d-5d as the space | interval p (refer FIG. 6) which arranges the suction assistance hole 61 in the extension part 60 side by side. That is, the suction auxiliary holes 61 are preferably arranged as densely as possible in the extending direction of the extending portion 60. When the interval p becomes sparse beyond 5d, the underwater sediment S as the suction operation proceeds. If the distance p is less than 2d and too dense, the strength of the suction pipe 61 may be impaired.

吸引パイプ5は、図6,7に示すように、取水口2aの先に、屈曲したエルボー管57を接続し、図示しない台座などを取り付けて、このエルボー管57の開口端が上向きになるよう設置して、その開口端を取水口2a’とすることが好ましく、そうすることにより、水中堆積部Sに取水口2aが埋没して、一度に高濃度の土砂等を吸引し、吸引パイプ5の管内が詰まって水流がストップすることを抑制することができる。   As shown in FIGS. 6 and 7, the suction pipe 5 is connected to a bent elbow pipe 57 at the end of the water intake port 2a, and a pedestal (not shown) is attached so that the open end of the elbow pipe 57 faces upward. It is preferable to install and take the opening end as a water inlet 2a '. By doing so, the water intake 2a is buried in the underwater accumulation part S, and high-concentration earth and sand etc. are sucked at a time, and the suction pipe 5 It is possible to prevent the water flow from stopping due to clogging of the pipe.

(変形例)
前記実施の形態の変形例として、吸引パイプの他の実施の形態を図12,13に示す。図12は、この実施の形態に係る吸引パイプの平面図であり、図13は、その側面図である。
この変形例に係る吸引パイプ5’では、折返し部52’のある管本体50’の下部が切り欠かれ、この切り欠かれた部分にシート部材53’が密着される構成とされる。
このように構成することで、吸引の初期段階において、すり鉢状の窪みSaの表面形状の変化に対し、安定した状態で追随し易くなるとともに、その後、折返し部52’のある先端側から吸引パイプ5’が水中堆積物Sに潜行し易くすることができる。
なお、これ以外の構成については、吸引パイプ50と同様の構成であるため、説明を省略する。
(Modification)
As a modification of the above embodiment, other embodiments of the suction pipe are shown in FIGS. FIG. 12 is a plan view of the suction pipe according to this embodiment, and FIG. 13 is a side view thereof.
In the suction pipe 5 ′ according to this modification, the lower portion of the pipe body 50 ′ having the folded portion 52 ′ is cut out, and the sheet member 53 ′ is in close contact with the cut-out portion.
With this configuration, in the initial stage of suction, it becomes easy to follow a change in the surface shape of the mortar-shaped depression Sa in a stable state, and thereafter, the suction pipe from the tip side where the folded portion 52 ′ is located. 5 'can be easily submerged in the underwater sediment S.
In addition, since it is the structure similar to the suction pipe 50 about another structure, description is abbreviate | omitted.

(水中堆積物の流送装置の動作及び水中堆積物の流送方法)
次に、流送装置1の動作及び水中堆積物の流送方法について、図3〜図5を用いて説明する。先ず、図3に示すように、流送管2の先端部分である吸引パイプ5をダム貯水池Aの底に溜まった水中堆積物Sの上に設置する。そして、水流発生手段3で吸引パイプ5(流送管2)の管内に水流を発生させる。水流が発生すると吸引パイプ5(流送管2)の管内は、周りと比べて負圧となるため、下部吸引孔54が穿設されているシート部材53が水中堆積物Sに吸い付きこれと密着して、水中堆積物Sの吸引が開始される。このとき、取水口2aからは、水流のもととなる清水(水中堆積物Sを含まないダム貯水池Aの水)を取水され、吐出口2bからは、水中堆積物Sと水との混合物を下流域Bへ排出される。
(Operation of underwater sediment feeding device and underwater sediment feeding method)
Next, the operation of the flow feeding device 1 and the method for feeding underwater sediments will be described with reference to FIGS. First, as shown in FIG. 3, the suction pipe 5, which is the tip portion of the flow pipe 2, is installed on the underwater deposit S accumulated at the bottom of the dam reservoir A. Then, a water flow is generated in the pipe of the suction pipe 5 (flow pipe 2) by the water flow generating means 3. When a water flow occurs, the inside of the suction pipe 5 (flow pipe 2) has a negative pressure compared to the surroundings, so that the sheet member 53 having the lower suction hole 54 is attracted to the underwater deposit S. In close contact, suction of the underwater deposit S is started. At this time, fresh water (water of the dam reservoir A that does not include the underwater sediment S) is taken from the water intake 2a, and a mixture of the underwater sediment S and water is taken from the discharge port 2b. It is discharged to the downstream area B.

次に、ある程度水中堆積物Sの浚渫が進行すると、図4に示すように、吸引パイプ5の先端が水中堆積物Sに潜行してゆき、側部吸引孔55からも水中堆積物Sの吸引が始まる。すると、水中堆積物Sの表面には、吸引パイプ5の先端を中心に水中堆積物Sが浚渫された残痕であるすり鉢状の窪みSaが形成されてゆき、その斜面上部からの水中堆積物Sの崩落と、側部吸引孔55をはじめとする各吸引孔からの水中堆積物Sの吸引を繰り返し、徐々にこのすり鉢状の窪みSaがすり鉢状に大きく成長してゆく。
この際、側部吸引孔55をはじめとする水中堆積物S中に潜行する位置における各吸引孔に対し、水中堆積物Sに深く潜行しない位置に吸引補助孔61が常に存在することで、水中堆積物Sに潜行する位置の各吸引孔による吸引が補助され、吸引パイプ5からの水中堆積物Sの吸引がストップすることなく、すり鉢状の窪みSaが成長してゆく。
Next, when the dredging of the underwater deposit S proceeds to some extent, the tip of the suction pipe 5 goes under the underwater deposit S as shown in FIG. 4, and the underwater deposit S is also sucked from the side suction holes 55. Begins. Then, on the surface of the underwater sediment S, a mortar-shaped depression Sa, which is a remnant of the underwater sediment S centered on the tip of the suction pipe 5, is formed, and the underwater sediment from the upper part of the slope is formed. The collapse of S and the suction of the underwater deposit S from each suction hole including the side suction holes 55 are repeated, and this mortar-shaped depression Sa gradually grows into a mortar shape.
At this time, with respect to each suction hole at a position where the underwater sediment S including the side suction hole 55 is submerged, the suction auxiliary hole 61 is always present at a position where it does not submerge deeply in the underwater sediment S. Suction by each suction hole at a position submerging in the deposit S is assisted, and the mortar-shaped depression Sa grows without stopping the suction of the underwater deposit S from the suction pipe 5.

最終的には、図5に示すように、吸引パイプ5の先端がダム貯水池Aの底に達し、下部吸引孔54からの水中堆積物Sの吸引がストップし、最後に、水中堆積物Sに埋没・潜行していた側部吸引孔55が水中堆積物Sから姿を現し、完全に水中堆積物Sの吸引が終了する。なお、前述のように、この流送装置1は、流量制御手段4の吐出ゲート40を開閉するだけで、水中堆積物Sの吸引を何時でも停止することができるだけでなく、何時でも再開することができる。このため、台船などを出航させる必要がなく、ダム貯水池A(閉鎖的な水域)の天候や、波浪などの気象状況に影響されず何時でも安全、且つ、極めて容易に水中堆積物Sを下流域Bへ移送することができる。   Finally, as shown in FIG. 5, the tip of the suction pipe 5 reaches the bottom of the dam reservoir A, the suction of the underwater sediment S from the lower suction hole 54 is stopped, and finally the underwater sediment S The side suction holes 55 that have been buried and submerged appear from the underwater sediment S, and the suction of the underwater sediment S is completely completed. As described above, the flow feeding device 1 can not only stop the suction of the underwater sediment S at any time, but can restart it at any time by simply opening and closing the discharge gate 40 of the flow rate control means 4. Can do. For this reason, it is not necessary to leave a trolley or the like, and it is safe and easy to descend the underwater sediment S at any time without being affected by the weather in the dam reservoir A (closed water area) or weather conditions such as waves. It can be transferred to basin B.

以上のように、本実施の形態に係る流送装置1によれば、水中堆積物Sの吸引の進行につれ、水中堆積物Sにすり鉢状の窪みが形成され、この窪みの斜面から水中堆積物Sが崩落して、吸引パイプ5の先端に位置する側部吸引孔55から一度に高濃度の水中堆積物Sを吸引して詰まってしまったような場合でも、取水口2a(2a’)から常に清水(水中堆積物Sを含まないダム貯水池Aの水)を取水可能なため、吸引パイプの管内の水流がストップしてしまうようなことがない。また、水中堆積物Sの堆積深さT1が深い場合であっても、水中堆積物Sに深く潜行しない位置に吸引補助孔61が常に存在することで、水中堆積物Sに潜行する位置の各吸引孔による吸引が補助され、吸引パイプ5からの水中堆積物Sの吸引がストップしてしまうことがない。このため、大掛かりな施設や動力を必要とせず継続して水中堆積物Sの浚渫作業を継続することができ、結果的に、水中堆積物Sの堆積深さT1が深い場合であっても、この水中堆積物Sを安定して効率良く、大量に移送等が可能である。また、単純な構造により実現しているので経済的で壊れ難く、そのうえ、吸引パイプ5を運搬して水中堆積物Sの上に設置するだけなので、極めて容易に設置することができる。このため、天候に左右されずに作業が可能であり、安全である。   As described above, according to the flow feeding device 1 according to the present embodiment, a mortar-shaped depression is formed in the underwater deposit S as the underwater deposit S advances, and the underwater deposit is formed from the slope of the depression. Even when S collapses and the high-concentration underwater deposit S is sucked and clogged at a time from the side suction hole 55 located at the tip of the suction pipe 5, the water intake 2 a (2 a ′) Since fresh water (water of the dam reservoir A that does not include the underwater sediment S) can always be taken, the water flow in the pipe of the suction pipe does not stop. Further, even when the accumulation depth T1 of the underwater sediment S is deep, the suction auxiliary holes 61 are always present at positions where the underwater sediment S does not submerge deeply. The suction by the suction hole is assisted, and the suction of the underwater sediment S from the suction pipe 5 is not stopped. For this reason, it is possible to continue dredging the underwater sediment S without requiring large facilities and power, and as a result, even when the accumulation depth T1 of the underwater sediment S is deep, This underwater deposit S can be stably and efficiently transferred in large quantities. Moreover, since it is realized by a simple structure, it is economical and difficult to break. Moreover, since the suction pipe 5 is transported and installed on the underwater sediment S, it can be installed very easily. For this reason, work is possible regardless of the weather, and it is safe.

この発明の実施の形態を、閉鎖的な水域としてダムの貯水池を例に挙げて説明したが、本発明の適用範囲は、ダム貯水池に限られるものではなく、ダム、溜池、下水処理場などの貯水施設や、自然の河川、湖沼、池、又は運河など浚渫作業が必要な閉鎖的な水域には適用することができるものである。また、堆積物を下流域に流送・放出する場合で説明したが、流送とは、他の領域(他の水域や他の場所)に移送することだけでなく、廃棄する場合も含むものである。なお、実施の形態を説明するのに使用した、流送管(吸引パイプ以外の部分)の構成や、水流発生手段、流量制御手段などは、あくまでも好ましい一例を示すものであり、他の公知技術と置換可能である。その場合であっても、前記効果を奏することは明らかである。勿論、図面で示した各構成の形状や寸法等も、好ましい一例を示すものであり、その実施に際しては特許請求の範囲に記載した範囲内で、任意に設計変更・修正ができることは云うまでもない。   Although the embodiment of the present invention has been described by taking a dam reservoir as an example of a closed water area, the scope of the present invention is not limited to a dam reservoir, but a dam, a reservoir, a sewage treatment plant, etc. It can be applied to water storage facilities and closed waters that require dredging work such as natural rivers, lakes, ponds, or canals. Moreover, although the case where the sediment was transported / released to the downstream area was described, the transport includes not only the transfer to other areas (other water areas and other places) but also the case of disposal. . The configuration of the flow pipe (portion other than the suction pipe), the water flow generation means, the flow rate control means, etc. used to describe the embodiments are merely preferred examples, and other known techniques. Can be substituted. Even in such a case, it is clear that the above-described effect is achieved. Of course, the shapes, dimensions, and the like of the respective components shown in the drawings show a preferable example, and it is needless to say that design changes and modifications can be arbitrarily made within the scope described in the claims. Absent.

(比較例)
本発明の実施例との比較を行うための比較例として、図1及び図2に示す吸引パイプ100と同様の構成からなる吸引パイプを作製した。
この吸引パイプにおいては、後述する水中堆積物の流送実験のために作製した水槽の大きさに合わせ、管材の管径を10cmとし、折返し部から吐出口側の接続端までの管材長さを4mとし、折返し部から取水口までの管材長さを4m弱とし、取水口に接続されるエルボー管の湾曲高さを底部から40cmとした。ここで、シート部材が密着された部分から取水口に向けて延在する管材の延在部の長さは、水中堆積物の堆積深さと水中堆積物の水中安息角に基づき、吸引終了時に水中堆積物に形成されるすり鉢状の窪みの最大形状を割り出して算出される、該最大形状の斜面長さよりも長くなるように設定した。
なお、シート部材の大きさは、管材の長手方向における長さを1mとし、幅を60cmとした。また、この吸引パイプに穿設される側部吸引孔の孔径を33mm、下部吸引孔の孔径を45mmとした。
(Comparative example)
As a comparative example for comparison with the example of the present invention, a suction pipe having the same configuration as the suction pipe 100 shown in FIGS. 1 and 2 was produced.
In this suction pipe, the pipe diameter of the pipe material is set to 10 cm in accordance with the size of the water tank prepared for an underwater sediment flow test described later, and the length of the pipe material from the folded portion to the connection end on the discharge port side is set to The length of the pipe from the turn-up part to the water intake was set to a little less than 4 m, and the bending height of the elbow pipe connected to the water intake was set to 40 cm from the bottom. Here, the length of the extending portion of the pipe member extending from the portion where the sheet member is in close contact toward the water intake is based on the accumulation depth of the underwater deposit and the underwater angle of repose of the underwater deposit. It was set to be longer than the slope length of the maximum shape calculated by calculating the maximum shape of the mortar-shaped depression formed in the deposit.
In addition, the magnitude | size of the sheet member made the length in the longitudinal direction of a pipe material 1 m, and made the width | variety 60 cm. The diameter of the side suction hole formed in the suction pipe was 33 mm, and the diameter of the lower suction hole was 45 mm.

<水中堆積物の流送実験>
閉鎖水域のモデルとして、実際の閉鎖水域から中規模程度に縮尺した模擬実験水槽を準備した。模擬実験水槽の大きさは、長さ7.5m、幅7.5m、深さ3.5mとした。
この模擬実験水槽に水と水中堆積物とを流し入れ、表面が略水平で、堆積深さが2mとなるように水中堆積物を調整し、水面高さが水中堆積物の表面に対し、1.3m程度高くなるように調整した。
また、この実験系では、模擬実験水槽の側面上部に流送管を貫通させ、その流送管の一端を吸引パイプの接続端と接続するため模擬実験水槽の内部に配置し、他端(吐出口)を吸引パイプから吸引される水中堆積物及び水を吐出すため模擬実験水槽の外部に配置し、同時に水位差(高低差)を利用して水流が形成されるように流送管の配管調整を行った。
<In-water sediment flow experiment>
As a model of the closed water area, a simulated experimental water tank scaled to a medium scale from the actual closed water area was prepared. The size of the simulated experimental water tank was 7.5 m long, 7.5 m wide, and 3.5 m deep.
Water and underwater sediments are poured into this simulated experimental water tank, and the underwater sediments are adjusted so that the surface is substantially horizontal and the deposition depth is 2 m. The height was adjusted to about 3 m.
Also, in this experimental system, a flow pipe is passed through the upper part of the side surface of the simulated experimental water tank, and one end of the flow pipe is arranged inside the simulated experimental water tank to connect to the connection end of the suction pipe, and the other end (discharge) The outlet) is placed outside the simulated experimental water tank to discharge the underwater sediment and water sucked from the suction pipe, and at the same time, the pipe of the flow pipe is formed so that the water flow is formed using the water level difference (height difference) Adjustments were made.

このような模擬実験水槽に対し、吸引パイプの一端(吐出口側)を流送管に接続し、吸引パイプの折返し部を有する側の先端を水中堆積物表面の中心位置に配置し、吸引パイプの他端(取水口)が水中に存するように配置して、比較例に係る吸引パイプを設置した。
この状態で流送管の吐出ゲートを開いて吸引パイプ及び流送管内に水流を形成させ、吸引パイプから流送管を介して模擬実験水槽内の水中堆積物を水とともに模擬実験水槽外に流送する水中堆積物の流送実験を行った。その結果を図14に示す。
For such a simulated experimental water tank, one end (discharge port side) of the suction pipe is connected to the flow pipe, and the tip of the suction pipe having the folded portion is disposed at the center position of the underwater sediment surface. The suction pipe according to the comparative example was installed so that the other end (water intake port) of the tube was in water.
In this state, the discharge gate of the flow pipe is opened to form a water flow in the suction pipe and the flow pipe, and the submerged sediment in the simulated experimental water tank flows along with the water from the suction pipe through the flow pipe. Experiments were conducted on the flow of sediments in the water. The result is shown in FIG.

図14の(a)は、比較例における水中堆積物の流送実験終了時の水中堆積物の標高位置をその横断方向の距離に応じてプロットしたグラフである。なお、横断方向の距離は、模擬実験水槽の中心を基準(0cm)とした水中堆積物の横断方向との距離を表したものである。また、標高は、流送実験開始前の水中堆積物の堆積深さを基準(0cm)とした水中堆積物表面の高さ位置を表したものである。また、図14の(b)は、(a)でプロットされる実験結果を数値として示した表である。
この図14に示されるように、比較例に係る吸引パイプを用いた水中堆積物の流送実験においては、水中堆積物にすり鉢状の窪みを形成するように水中堆積物を吸引・流送することができているものの、すり鉢状の窪みが最深部で標高−125.6cmにとどまり、水中堆積物の堆積深さである−200cmまで到達しない結果となった。
この実験では、吸引パイプの先端が模擬実験水槽の底面近くまで潜行していたことが確認され、その上方に60cm以上の水中堆積物が残存する状態であったが、すり鉢状の窪みが最深部で標高−125.6cmとなった時点で、水中堆積物の吸引が確認されなくなり、水のみの流送となることが確認された。
FIG. 14A is a graph in which the altitude position of the underwater sediment at the end of the underwater sediment flow experiment in the comparative example is plotted according to the distance in the transverse direction. The distance in the transverse direction represents the distance from the transverse direction of the underwater sediment with the center of the simulated experimental water tank as the reference (0 cm). The altitude indicates the height position of the surface of the underwater sediment based on the deposition depth of the underwater sediment before the start of the flow experiment (0 cm). FIG. 14B is a table showing the experimental results plotted in FIG. 14A as numerical values.
As shown in FIG. 14, in the underwater sediment flow experiment using the suction pipe according to the comparative example, the underwater sediment is sucked and flowed so as to form a mortar-shaped depression in the underwater sediment. Although it was possible, the mortar-shaped depression remained at an altitude of 125.6 cm at the deepest part, and the result was that it did not reach -200 cm, which is the deposition depth of the underwater sediment.
In this experiment, it was confirmed that the tip of the suction pipe was submerged to the bottom of the simulated experimental water tank, and underwater deposits of 60 cm or more remained above, but the mortar-shaped depression was the deepest part. When the altitude reached 125.6 cm, it was confirmed that suction of underwater sediments was not confirmed and only water was sent.

(実施例)
比較例の吸引パイプにおいて、シート部材が密着された部分から取水口に向けて延在する管材の延在部の下部側に、その延在方向にかけて複数の吸引補助孔を並設したこと以外は、略同様の構成として、実施例に係る吸引パイプを作製した。なお、その他の相違点としてこの実施例に係る吸引パイプにおいては、折返し部を有する管材の下部を切り欠かずに、シート部材を密着させることとし、折返し部から取水口に向けて2つの下部吸引孔を増設した(図6参照)。
また、吸引パイプにおける管材の管径と、折返し部から取水口までの管材長さとの関係から、吸引補助孔の孔径を4.5cm(管材の管径(10cm)をdとして、0.45d)とし、吸引補助孔を設ける間隔を25cm(管材の管径(10cm)をdとして、2.5d)とし、更に、この間隔で10箇所に吸引補助孔を並設し、最も取水口に近い位置に穿設される吸引補助孔がすり鉢状の窪みの最大形状の斜面長さよりも長く設定された管材延在部の部分に穿設されるように設定した。
(Example)
In the suction pipe of the comparative example, except that a plurality of suction auxiliary holes are juxtaposed in the extending direction on the lower side of the extending portion of the pipe material extending from the portion where the sheet member is closely attached to the water intake port. As a substantially similar configuration, a suction pipe according to the example was manufactured. As another difference, in the suction pipe according to this embodiment, the sheet member is brought into close contact with the lower part of the pipe member having the folded part, and the two lower suctions are made from the folded part to the water intake. A hole was added (see FIG. 6).
In addition, from the relationship between the pipe diameter of the pipe in the suction pipe and the pipe length from the turn-up portion to the water intake, the hole diameter of the suction auxiliary hole is 4.5 cm (the pipe diameter (10 cm) of the pipe is 0.45d). The suction auxiliary hole is provided at an interval of 25 cm (the tube diameter (10 cm) of the pipe material is 2.5 d), and the suction auxiliary holes are arranged in parallel at 10 intervals at a position closest to the water intake port. The suction auxiliary hole drilled in the tube was set so as to be drilled in the portion of the tube extending portion set longer than the maximum slope length of the mortar-shaped depression.

<水中堆積物の流送実験>
模擬実験水槽に対し、比較例に係る吸引パイプと同様に実施例に係る吸引パイプを設置し、実施例に係る吸引パイプを用いた水中堆積物の流送実験を行った。その結果を図15に示す。
<In-water sediment flow experiment>
The suction pipe according to the example was installed in the simulated experimental water tank in the same manner as the suction pipe according to the comparative example, and an underwater sediment flow experiment was performed using the suction pipe according to the example. The result is shown in FIG.

図15の(a)は、実施例における水中堆積物の流送実験終了時の水中堆積物の標高位置をその横断方向の距離に応じてプロットしたグラフである。また、図15の(b)は、(a)でプロットされる実験結果を数値として示した表である。
この図15に示されるように、実施例に係る吸引パイプを用いた水中堆積物の流送実験においては、水中堆積物にすり鉢状の窪みを形成するように水中堆積物を吸引・流送することができ、更に、すり鉢状の窪みが最深部で−195.0cmに到達し、水中堆積物の堆積深さである−200cmに略到達する結果となった。なお、すり鉢状の窪みが水中堆積物の堆積深さに到達しなかったのは、吸引パイプの先端側が模擬実験水槽の底面に到達したためであり、水中堆積物の堆積深さが−200cmを超える場合であっても、吸引パイプの先端が更に深い位置に潜行することで、その深さにおける水中堆積物の吸引・流送を十分期待することができる。
(A) of FIG. 15 is the graph which plotted the altitude position of the underwater sediment at the time of the completion | finish experiment of the underwater sediment in an Example according to the distance of the cross direction. FIG. 15B is a table showing the experimental results plotted in FIG. 15A as numerical values.
As shown in FIG. 15, in the underwater sediment flow experiment using the suction pipe according to the example, the underwater sediment is sucked and flowed so as to form a mortar-shaped depression in the underwater sediment. In addition, the mortar-shaped depression reached -195.0 cm at the deepest part, and the result reached approximately -200 cm, which is the deposition depth of the underwater deposit. The reason why the mortar-shaped depression did not reach the accumulation depth of the underwater deposit was that the tip side of the suction pipe reached the bottom surface of the simulated experimental water tank, and the accumulation depth of the underwater deposit exceeded -200 cm. Even in this case, since the tip of the suction pipe is submerged at a deeper position, it is possible to sufficiently expect suction and flow of the underwater sediment at that depth.

(実験結果について)
これらの結果から、比較例に係る吸引パイプを用いた水中堆積物の流送実験と比べて実施例に係る吸引パイプを用いた水中体積物の流送実験の方が、より深い位置の水中堆積物を吸引・流送可能であることが確認され、吸引パイプに吸引補助孔を設けると、水中堆積物の堆積深さが深い閉鎖水域中の水中堆積物の吸引が困難となる問題を解決できることが明らかとなった。
このような結果が得られる要因としては、以下のように推察される。即ち、水中堆積物の吸引を開始し、すり鉢状の窪みが形成されるにつれ、折返し部のある先端側から吸引パイプが水中堆積物の中に潜行していくが、この場合に吸引パイプに設けられる吸引孔が水中堆積物中に深く潜行した位置における吸引孔だけであると、管材内に水流を形成する負圧は維持されるものの、吸引孔近傍において水中堆積物を吸引するだけの負圧がなくなり、取水口から取り入れられる水のみが流送される。そのため、水中堆積物の吸引過程において、水中堆積物に深く潜行しない位置に吸引孔が常に存在するよう、シート部材が密着された部分から取水口に向けて延在する管材の延在部の延在方向に複数の吸引補助孔を並設すると、水中堆積物に深く潜行していない位置の吸引補助孔の働きにより、管材内に水中堆積物を吸引する負圧が維持され、吸引パイプの先端側に設けられる側部吸引孔をはじめとする水中堆積物に潜行した位置の各孔からの水中堆積物の吸引が補助されることとなり、水中堆積物の堆積深さが深い場合であっても、安定して水中堆積物の吸引・流送が可能になるものと推察される。
(Experimental results)
From these results, the underwater sediment flow experiment using the suction pipe according to the example compared to the underwater sediment flow experiment using the suction pipe according to the comparative example, the deeper position underwater deposition. If it is confirmed that objects can be sucked and flowed, and suction suction holes are provided in the suction pipe, it is possible to solve the problem that it is difficult to suck the underwater sediments in closed water areas where the depth of the underwater sediments is deep Became clear.
The reason why such a result can be obtained is assumed as follows. In other words, as the suction of the underwater sediment starts and the mortar-shaped depression is formed, the suction pipe goes into the underwater sediment from the tip side with the folded portion. If the suction hole is only at the position where it is deeply submerged in the underwater sediment, the negative pressure that forms the water flow in the pipe is maintained, but the negative pressure that only sucks the underwater sediment in the vicinity of the suction hole And only the water taken from the intake will be sent. For this reason, in the suction process of the underwater sediment, the extension of the extending portion of the pipe member extending from the portion where the sheet member is in close contact to the intake port so that the suction hole always exists at a position where the underwater sediment does not submerge deeply. When a plurality of suction auxiliary holes are arranged side by side in the current direction, the suction auxiliary hole at a position not deeply submerged in the underwater sediment maintains a negative pressure for sucking the underwater sediment into the pipe material, and the tip of the suction pipe The suction of the underwater sediment from each hole in the position where the underwater sediment including the side suction hole provided on the side is submerged is assisted, even if the accumulation depth of the underwater sediment is deep It is assumed that it is possible to stably suck and flow underwater sediments.

1 流送装置
2,102 流送管
2a,2a’,102a,102a’ 取水口
2b 吐出口
3 水流発生手段
30 流体ポンプ
4 流量制御手段
40 吐出ゲート
5,5’,100 吸引パイプ
50,50’,150 管本体
51,151 接続端
52,52’,152 折返し部
52a 先端
53,53’,153 シート部材
54,54’,154 下部吸引孔
55,155 側部吸引孔
56 錘
57,157 エルボー管
60 延在部
61 吸引補助孔
S 水中堆積物
Sa すり鉢状の窪み
D ダム
A ダム貯水池(閉鎖的な水域)
B 下流域(他の領域)
DESCRIPTION OF SYMBOLS 1 Flow apparatus 2,102 Flow pipe 2a, 2a ', 102a, 102a' Water intake port 2b Discharge port 3 Water flow generation means 30 Fluid pump 4 Flow rate control means 40 Discharge gate 5, 5 ', 100 Suction pipe 50, 50' , 150 Pipe body 51, 151 Connection end 52, 52 ', 152 Folded portion 52a Tip 53, 53', 153 Sheet member 54, 54 ', 154 Lower suction hole 55, 155 Side suction hole 56 Weight 57, 157 Elbow tube 60 Extension part 61 Suction auxiliary hole S Submerged sediment Sa Mortar-shaped depression D Dam A Dam reservoir (closed water area)
B Downstream area (other areas)

Claims (11)

閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送するための水中堆積物流送用の吸引パイプであって、
両端が開口した可撓性を有する管材から形成され、該管材の一端が水の取り入れ口である取水口とされ、他端が前記水中堆積物及び前記水を吐き出す吐出口側の接続端とされ、
前記両端の中間部には、前記管材を折返して固定した折返し部が形成され、この折返し部を含む前記管材の水底側に位置する下部にシート部材が密着されており、
前記シート部材及び該シート部材が密着される部分の前記管材には、下部吸引孔が連穿されるとともに、前記シート部材より水面側の上方にあって前記折返し部の先端部分にあたる前記管材の側部には、側部吸引孔が穿設され、
更に、前記シート部材が密着された部分から前記取水口に向けて延在する前記管材の延在部の下部側には、その延在方向に複数の吸引補助孔が並設されていることを特徴とする水中堆積物流送用の吸引パイプ。
A suction pipe for transporting an underwater sediment stream for sucking together with water the underwater sediment deposited on the bottom of a closed body of water and flowing it to another area,
The pipe is formed of a flexible pipe having both ends opened, and one end of the pipe is a water intake that is a water intake, and the other end is a connection end on the discharge outlet side that discharges the underwater deposit and the water. ,
In the middle part of the both ends, a folded part is formed by folding and fixing the pipe material, and a sheet member is in close contact with the lower part located on the water bottom side of the pipe material including the folded part,
A lower suction hole is continuously formed in the tube member in a portion where the sheet member and the sheet member are in close contact with each other, and a side of the tube member which is above the water surface side of the sheet member and corresponds to a tip portion of the folded portion. In the part, side suction holes are drilled,
Further, a plurality of suction auxiliary holes are provided in parallel in the extending direction on the lower side of the extending portion of the pipe material extending from the portion where the sheet member is in close contact toward the intake port. A suction pipe for transporting underwater sedimentary logistics.
折返し部のある管材の下部が切り欠かれ、この切り欠かれた部分にシート部材が密着される請求項1に記載の水中堆積物流送用の吸引パイプ。   The suction pipe for transporting underwater sedimentary logistics according to claim 1, wherein a lower portion of the pipe material having the folded portion is cut out, and the sheet member is in close contact with the cut-out portion. 吸引補助孔の孔径が、管材の管径をdとしたとき、0.2d〜0.7dである請求項1から2のいずれかに記載の水中堆積物流送用の吸引パイプ。   The suction pipe for transporting an underwater sedimentary stream according to any one of claims 1 to 2, wherein a diameter of the suction auxiliary hole is 0.2d to 0.7d, where d is a pipe diameter of the pipe material. 管材の延在部に吸引補助孔を並設する間隔が、管材の管径をdとしたとき、2d〜5dである請求項1から3のいずれかに記載の水中堆積物流送用の吸引パイプ。   The suction pipe for transporting an underwater sedimentary stream according to any one of claims 1 to 3, wherein an interval at which the suction auxiliary holes are provided in parallel in the extending portion of the pipe is 2d to 5d, where d is the pipe diameter of the pipe. . シート部材の外縁部には、その縁沿いに水中堆積物の表面形状の変化に追随可能な可撓性を有する錘が配設される請求項1から4のいずれかに記載の水中堆積物流送用の吸引パイプ。   5. The underwater sediment flow feed according to claim 1, wherein a flexible weight capable of following a change in the surface shape of the underwater sediment is disposed along an edge of the outer edge portion of the sheet member. Suction pipe. 折返し部の先端部分からのシート部材の張出し長さが、管材の管径をdとしたとき、2.5d以下である請求項1から5に記載の水中堆積物流送用の吸引パイプ。   6. The suction pipe for sending an underwater sedimentary stream according to claim 1, wherein the length of the sheet member protruding from the tip of the folded portion is 2.5 d or less, where d is the pipe diameter of the pipe material. 折返し部の側面部分からのシート部材の張出し長さが、管材の管径をdとしたとき、1d〜3dであり、前記シート部材の前記管材の長手方向に沿った長さが、5d〜15dである請求項1から6のいずれかに記載の水中堆積物流送用の吸引パイプ。   The extension length of the sheet member from the side surface portion of the folded portion is 1d to 3d when the tube diameter of the tube material is d, and the length of the sheet member along the longitudinal direction of the tube material is 5d to 15d. The suction pipe for sending an underwater sedimentary stream according to any one of claims 1 to 6. 水中堆積物の堆積深さを予め把握し、その深さ及び前記水中堆積物の水中安息角から吸引終了時に前記水中堆積物に形成されるすり鉢状の窪みの最大形状を割り出して算出される前記最大形状の斜面長さに対し、延在部の管長が長く設定されるとともに、その長く設定された部分又はその部分の近傍まで吸引補助孔が並設される請求項1から7のいずれかに記載の水中堆積物流送用の吸引パイプ。   The depth of the underwater deposit is grasped in advance, and the maximum shape of the mortar-shaped depression formed in the underwater deposit at the end of suction is calculated from the depth and the angle of repose of the underwater deposit. 8. The suction auxiliary hole is arranged in parallel to the length of the long portion or the vicinity of the long portion, and the tube length of the extending portion is set to be longer than the maximum slope length. Suction pipe for sending underwater sediment logistics as described. 取水口に屈曲したエルボー管が接続され、該エルボー管の開口端が上向きに設置される請求項1から8のいずれかに記載の水中堆積物流送用の吸引パイプ。   The suction pipe for sending an underwater sedimentary stream according to any one of claims 1 to 8, wherein an elbow pipe bent at the intake port is connected, and an open end of the elbow pipe is installed upward. 閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送装置であって、
請求項1から9のいずれかに記載の吸引パイプと、該吸引パイプの管内に前記水中堆積物を吸引するための水流を発生させる水流発生手段と、を有することを特徴とする水中堆積物の流送装置。
An underwater sediment feeding device that sucks the underwater sediment deposited on the bottom of a closed body of water together with water and sends it to other areas,
A suction pipe according to any one of claims 1 to 9, and water flow generating means for generating a water flow for sucking the underwater deposit in a pipe of the suction pipe. Inflow device.
請求項10に記載の水中堆積物流送装置を用い、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送方法であって、
吸引パイプを前記水中堆積物の上に設置し、水流発生手段で前記吸引パイプの管内に水流を発生させ、その水流で前記吸引パイプの管内を負圧にすることにより、下部吸引孔、側部吸引孔及び吸引補助孔から前記水と一緒に前記水中堆積物を吸引させ、その負圧で前記吸引パイプの折返し部を先端として前記水中堆積物に潜行させ、該先端を中心に前記水中堆積物にすり鉢状の窪みを形成しながら前記水中堆積物を浚渫することを特徴とする水中堆積物の流送方法。
An underwater sediment transport method in which the underwater sediment distribution apparatus according to claim 10 is used to suck the underwater sediment deposited on the bottom of a closed water area together with water and flow it to another area. And
A suction pipe is installed on the underwater deposit, and a water flow is generated in the pipe of the suction pipe by water flow generating means, and the negative pressure is generated in the pipe of the suction pipe by the water flow. The underwater deposit is sucked together with the water from the suction hole and the suction auxiliary hole, and is submerged in the underwater deposit with the folded portion of the suction pipe as a tip by the negative pressure, and the underwater deposit is centered on the tip. A method for feeding underwater sediments, wherein the underwater sediments are dredged while forming a mortar-shaped depression.
JP2011061393A 2011-03-18 2011-03-18 Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same Active JP5599069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061393A JP5599069B2 (en) 2011-03-18 2011-03-18 Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061393A JP5599069B2 (en) 2011-03-18 2011-03-18 Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same

Publications (2)

Publication Number Publication Date
JP2012197580A true JP2012197580A (en) 2012-10-18
JP5599069B2 JP5599069B2 (en) 2014-10-01

Family

ID=47180072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061393A Active JP5599069B2 (en) 2011-03-18 2011-03-18 Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same

Country Status (1)

Country Link
JP (1) JP5599069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483033A (en) * 2016-12-05 2017-03-08 西南石油大学 90 ° of elbow erosion circuit experimental provisions of Dual-Phrase Distribution of Gas olid based on different flow directions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016294A (en) * 2003-06-02 2005-01-20 Tom Jacobsen Suction flowing facility for deposit
JP2006089945A (en) * 2004-09-21 2006-04-06 Tom Jacobsen Running-down facility for underwater deposit
JP2010144359A (en) * 2008-12-17 2010-07-01 Public Works Research Institute Suction pipe for flow-transporting underwater sediment, flow-transport apparatus for underwater sediment, and method for flow-transporting underwater sediment using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016294A (en) * 2003-06-02 2005-01-20 Tom Jacobsen Suction flowing facility for deposit
JP2006089945A (en) * 2004-09-21 2006-04-06 Tom Jacobsen Running-down facility for underwater deposit
JP2010144359A (en) * 2008-12-17 2010-07-01 Public Works Research Institute Suction pipe for flow-transporting underwater sediment, flow-transport apparatus for underwater sediment, and method for flow-transporting underwater sediment using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483033A (en) * 2016-12-05 2017-03-08 西南石油大学 90 ° of elbow erosion circuit experimental provisions of Dual-Phrase Distribution of Gas olid based on different flow directions

Also Published As

Publication number Publication date
JP5599069B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5305439B2 (en) Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same
FI74760B (en) FOERFARANDE FOER SEDIMENTERING AV FASTA AEMNEN SOM DRIVS MED NATURLIGA VATTEN, SAOSOM SJOEAR, HAV ELLER OCEANER.
CN102995686B (en) Pool dredging system
JP4663145B2 (en) Underwater sediment flow method using hydrostatic pressure, pipe with opening and underwater sediment flow facility
JP4030389B2 (en) Dredging system and dredging method for large capacity reservoir
JP4195214B2 (en) A dredge apparatus using a pipe having an opening at a bent portion
JP5599069B2 (en) Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same
JP4636985B2 (en) Pollution prevention device
WO2006137193A1 (en) System for transporting dredged earth and sand
JP4461275B2 (en) Earth and sand discharge method and earth and sand discharge work ship
JP3723852B2 (en) Bottom sediment removal apparatus and bottom sediment removal method
JP4411418B2 (en) Transportation method and apparatus for bottom sediment
JP5703110B2 (en) Fixed dredging equipment and construction method with buried perforated pipe
JP4610292B2 (en) Method and apparatus for transporting earth and sand in a reservoir
JP5208056B2 (en) Equipment for transporting and discharging sediments in liquids
JP4675061B2 (en) Sediment flow transfer equipment
JP6395392B2 (en) Earth and sand discharging device and earth and sand discharging method
JP2008127787A (en) Dredging apparatus of dam
KR20140070125A (en) Suction apparatus for marine deposite
JP2005220598A (en) Equipment for cleaning accumulated sediment on bottom of river
JPH11324008A (en) Removing method for sediment in dam
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
JP5100705B2 (en) Sediment flow transfer equipment
JP4114512B2 (en) Reservoir sand discharging method and sand discharging device
JPH06264432A (en) Ground solidification device of sea bottom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R150 Certificate of patent or registration of utility model

Ref document number: 5599069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250