JP2005016294A - Suction flowing facility for deposit - Google Patents

Suction flowing facility for deposit Download PDF

Info

Publication number
JP2005016294A
JP2005016294A JP2004164063A JP2004164063A JP2005016294A JP 2005016294 A JP2005016294 A JP 2005016294A JP 2004164063 A JP2004164063 A JP 2004164063A JP 2004164063 A JP2004164063 A JP 2004164063A JP 2005016294 A JP2005016294 A JP 2005016294A
Authority
JP
Japan
Prior art keywords
opening
circular
channel
water channel
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004164063A
Other languages
Japanese (ja)
Other versions
JP4675061B2 (en
Inventor
Tom Jacobsen
ヤコブセン トム
Toru Hashimoto
徹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOWA ENGINEERING KK
Original Assignee
KOWA ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOWA ENGINEERING KK filed Critical KOWA ENGINEERING KK
Priority to JP2004164063A priority Critical patent/JP4675061B2/en
Publication of JP2005016294A publication Critical patent/JP2005016294A/en
Application granted granted Critical
Publication of JP4675061B2 publication Critical patent/JP4675061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suction flowing facility for a deposit, by which a sediment sucked into a closed water way is made to flow more efficiently, a flowing water way is not closed even when the flowing water way sucks soil and sands and dusts, a hydraulically advantageous structure is formed and the strength of the water way is increased. <P>SOLUTION: In the suction flowing facility for the deposit with the circular water way 1, in which an opening terminal 1c at the place of an upstream is projected from the deposits 6a and 6b in a liquid, an opening section 1a is formed on the lower side and the deposit is sucked and made to flow from the opening section, and the closed water way 1b being continuously connected to the circular water way and making the deposit flow, an opening width ratio B/D is kept within a range of 0.1 to 0.7 when a width orthogonal to the water-way axis of the opening section of the circular water way is represented by B and the inside diameter of the circular water way by D. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、堆積物の吸引流送設備に関するものである。さらに詳しくは、この出願の発明は、大型タンクや、浄水場及び下水処理場、溜池、堆砂池、貯水池、ダム湖、湖、海水トンネル、河川送水路など、流体を貯留、送水する設備に溜まった堆積物、集積物、堆砂などの沈殿物を吸引・浚渫・流送するための浚渫設備として有用な、静水圧を利用して又は吸引装置による強制吸引作用によって水中堆積物を吸引流送する、開口堆積物の新しい吸引流送設備に関するものである。   The invention of this application relates to a deposit suction flow facility. More specifically, the invention of this application is a large tank, a water purification plant and a sewage treatment plant, a basin, a sedimentation basin, a reservoir, a dam lake, a lake, a seawater tunnel, a river channel, etc. Suction flow of underwater sediments using hydrostatic pressure or forced suction by suction device, useful as dredging equipment for sucking, dredging and transporting sediments such as accumulated sediments, accumulations and sediments The present invention relates to a new suction flow facility for opening deposits.

液体を貯蔵する設備などでは、沈殿物、堆積物の排出作業が施設維持の効率上や、運用上欠かせないものとなっている。特に近年、ダムの堆砂問題は深刻であり、ダムの利用容量の維持や、利用寿命を延ばす必要からも、堆砂の効率的な除去処理が強く望まれてきた。   In facilities that store liquids, the operation of discharging sediments and deposits is indispensable for the efficiency of facility maintenance and operation. Particularly in recent years, the problem of sedimentation in dams has been serious, and efficient removal treatment of sedimentation has been strongly desired from the viewpoint of maintaining the capacity of the dam and extending its service life.

このような従来のダムの堆砂問題の解決策として、(a)フラッシング排砂方法(時期を選んで貯留された堆砂をフラッシングして放流する)、(b)水位低下露出堆砂流下式排砂方法(一時的にダムの水位を部分的に低下させて堆砂を露出した状態をつくり、露出した堆砂上を水が流れることにより、中流域の堆砂をダム近傍の死水域へと移動させ、又はダム湖外に排出する)、(c)バイパストンネル排砂方法(ダム上流部に貯砂ダムを造成し、土砂混じりの水を直接下流に放流するためのバイパストンネルにより排砂する)、(d)掘削式排砂方法(浚渫船による掘削や、水位低下で露出した堆砂を直接掘削して排砂する)が知られている。   As a solution to the conventional sedimentation problem of dams, (a) flushing sand removal method (flushing and discharging stored sand at a selected time), (b) water level lowering exposed sediment sedimentation type Sand removal method (by temporarily lowering the water level of the dam to create a state where the sediment is exposed, and by flowing water over the exposed sediment, the sediment in the middle basin is moved to the dead water area near the dam. (C) Bypass tunnel sand discharge method (to create a sand storage dam upstream of the dam, and to discharge sand through a bypass tunnel to discharge water mixed with sediment directly downstream) (D) Excavation-type sand removal methods (excavation by dredgers and direct excavation of sediments exposed by lowering water levels are known).

しかし、従来のフラッシング排砂方法(a)では、実施時期が制限される、実施に当って大量の消費水を必要とする、フラッシング期間中、都市用水、農業用水、発電用水などの本来的生活用水の供給に影響を与えるので問題があった。   However, in the conventional flushing sand removal method (a), the implementation period is limited, and a large amount of water is required for the implementation. During the flushing period, natural life such as city water, agricultural water, and power generation water is used. There was a problem because it affected the supply of water.

一方、水位低下露出堆砂流下式排砂方法(b)では、一時的にダムの水位を部分的に低下させる場合に実施時期に制限を受け時期が選べない、実施に当って大量の水を消費する、本来の水利用で使用する水質を悪化させるという問題がある。   On the other hand, in the low sedimentation exposure sedimentation method (b), when the water level of the dam is temporarily lowered, the implementation time is limited and the time cannot be selected. There is a problem of deteriorating the quality of water consumed by the original water use.

バイパストンネル排砂方法(c)では、排出できる範囲は、排出口近傍に限られ、また、初期設備の設備投資額が非常に大きくなるなど問題があった。   In the bypass tunnel sand discharge method (c), the discharge range is limited to the vicinity of the discharge port, and the capital investment of the initial equipment is very large.

さらには、掘削式排砂方法(d)では、ダム湖への浚渫用の大型機械の分解帆走に加え、浚渫後の土砂輸送、水切り用土は必要になり、処理経費が嵩む、濁水が発生するなどの問題があった。   Furthermore, in the excavation-type sand removal method (d), in addition to the dismantling sailing of the large-sized machine for dredging to the dam lake, soil transport and draining soil after dredging are necessary, which increases the processing costs and generates muddy water. There were problems such as.

このため、大型機械のダム湖への分解搬送を行うことなく、広範囲の堆砂の掘削排出が可能であって、堆砂の流送にヘテロジーニアス流を実現し、管材の磨耗の低減に加え、何ら制御装置を用いることなく混泥率を効率的に高めた排砂が可能であり、しかも、貯水池の濁流発生を抑えるとともに、低コスト化を図ることのできる、新しい技術手段として、管路内に低圧又は負圧を発生させて、沈殿物等を吸引し流送する装置が、この出願の発明者らにより提案されている(たとえば非特許文献1を参照)。
「大ダム」(社団法人 日本大ダム会議) No.183,2003−4,P.85−89
For this reason, it is possible to excavate and discharge a wide range of sediments without disassembling and transporting large machines to a dam lake, realizing a heterogeneous flow for sediment transport, and reducing pipe wear. As a new technical means, it is possible to discharge sand efficiently increasing the mud content without using any control device, and to suppress the generation of muddy flow in the reservoir and to reduce the cost. An apparatus for generating a low pressure or a negative pressure therein to suck and flow a precipitate or the like has been proposed by the inventors of this application (see, for example, Non-Patent Document 1).
“Large Dam” (Japan Large Dam Conference) 183, 2003-4, P.I. 85-89

この出願の発明は、以上のとおりの背景から、上記の発明者らの新しい提案について、閉水路内に吸引する堆積土砂の送流をさらに一層効率的なものとし、また、流送水路が土砂、ゴミ類を吸引しても閉塞することがないようにし、水理的に有利な構造をもつものとして、さらには水路の強度を大きなものとすることもできる、堆積物の新しい吸引流送設備を提供することを課題としている。   The invention of this application is based on the background as described above, and in regard to the above-mentioned new proposals by the inventors, makes it possible to more efficiently transport sediment sediment sucked into a closed channel, and the flow channel is a sediment. A new suction and flow facility for deposits that does not block even if dust is sucked in, has a hydraulically advantageous structure, and can also increase the strength of the water channel It is an issue to provide.

この出願は、上記の課題を解決するものとして、以下の発明を提供する。
〔1〕上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。
〔2〕上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、円形水路およびこれに連設された閉水路の敷設勾配が堆積物の水中安息角(Phi)よりも小さいことを特徴とする堆積物の吸引流送設備。
〔3〕上記設備において、円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。
〔4〕上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、
次式(1);
This application provides the following invention as a solution to the above problems.
[1] A circular water channel in which an open terminal at an upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and flowed from the opening, and this A sediment suction and flow facility having a closed water channel connected to a circular water channel to flow the sediment, where B is a width perpendicular to the water channel axis of the opening of the circular water channel, and D is an inner diameter of the circular water channel The deposit suction and flow equipment is characterized in that the opening width ratio: B / D is in the range of 0.1 to 0.7.
[2] A circular water channel in which the open terminal at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and flowed from the opening, and this This is a sediment suction and flow facility with a closed water channel connected to a circular water channel to flow sediment, and the laying gradient of the circular water channel and the closed water channel connected to the circular water channel is the angle of repose of the sediment ( Sediment flow equipment for deposits, which is smaller than Phi).
[3] In the above equipment, when the width orthogonal to the channel axis of the opening of the circular water channel is B and the inner diameter of the circular water channel is D, the opening width ratio: B / D is in the range of 0.1 to 0.7. A facility for sucking and flowing sediments.
[4] A circular water channel in which the open end at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and sent from the opening, and this A sediment suction and flow facility comprising a closed channel that is connected to a circular water channel to flow the sediment,
Following formula (1);

Figure 2005016294
Figure 2005016294

(D=円形水路の内径
B=開口部の幅
L=開口部の円形水路の軸線に沿った長さ)
の値が、0.2よりも小さいことを特徴とする堆積物の吸引流送設備。
〔5〕上記の設備において、円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。
〔6〕円形水路およびこれに連設された閉水路の敷設勾配が堆積物の水中安息角(Phi)よりも小さいことを特徴とする堆積物の吸引流送設備。
〔7〕上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、円形水路において隣接する開口部間の水路軸線に沿った間隔(L1)が、次式(2);
(D = inner diameter of circular channel B = width of opening L = length along the axis of circular channel of opening)
The sediment suction flow facility, wherein the value of is less than 0.2.
[5] In the above equipment, when the width orthogonal to the water channel axis of the opening of the circular water channel is B and the inner diameter of the circular water channel is D, the opening width ratio: B / D is in the range of 0.1 to 0.7. Sediment suction and flow equipment characterized by
[6] A deposit suction and flow facility characterized in that the laying gradient of the circular channel and the closed channel connected to the circular channel is smaller than the underwater angle of repose (Phi) of the deposit.
[7] A circular water channel in which the open terminal at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and sent from the opening, and this It is a sediment suction flow facility having a closed water channel connected to a circular water channel to flow the sediment, and the interval (L1) along the water channel axis between adjacent openings in the circular water channel is expressed by the following equation: (2);

Figure 2005016294
Figure 2005016294

(L1=開口部間の間隔、すなわち開口部間の閉断面区間の長さ
Phi=堆積土砂の水中安息角
D=円形水路の内径
B=開口部の幅)
で与えられる円形水路の内径(D)との比率以下とされていることを特徴とする堆積物の吸引流送設備。
〔8〕円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。
〔9〕円形水路およびこれに連設された閉水路の敷設勾配が堆積物の水中安息角(Phi)よりも小さいことを特徴とする堆積物の吸引流送設備。
〔10〕これらの設備において、
次式(1);
(L1 = interval between openings, that is, length of closed section between openings Phi = water repose angle of sedimentary sediment D = inner diameter of circular channel B = width of opening)
The sediment suction and flow equipment, wherein the ratio is equal to or less than the ratio of the inner diameter (D) of the circular water channel given in (1).
[8] When the width orthogonal to the channel axis of the opening of the circular water channel is B and the inner diameter of the circular water channel is D, the opening width ratio: B / D is in the range of 0.1 to 0.7. Sediment inflow and flow equipment characterized by
[9] A deposit suction and flow facility characterized in that the laying gradient of the circular channel and the closed channel connected thereto is smaller than the underwater angle of repose (Phi) of the deposit.
[10] In these facilities,
Following formula (1);

Figure 2005016294
Figure 2005016294

(D=円形水路の内径
B=開口部の幅
L=開口部の円形水路の軸線に沿った長さ)
の値が、0.2よりも小さいことを特徴とする堆積物の吸引流送設備。
〔11〕上記のいずれかの設備について、円形水路下側の開口部は、水路軸線に垂直の直下位置ではなく、側方に配置されていることを特徴とする堆積物の吸引流送設備。
〔12〕円形水路下側の開口部は、水路軸線に沿って千鳥に配置されていることを特徴とする堆積物の吸引流送設備。
〔13〕円形水路の閉断面部の下側に枕木が配設されていることを特徴とする堆積物の吸引流送設備。
〔14〕以上いずれかの設備であって、閉水路もしくは円形水路に接続されて、その上流端が水面以下で、開閉手段によって開閉自在とされている取水管が配設されていることを特徴とする堆積物の吸引流送設備。
〔15〕上流開放端末を液体中の堆積物より上に突出させ、下側に開口部を有する円形水路とその円形水路の下流端に続く閉水路とからなる液体中の堆積物を流送する設備において、閉水路もしくは円形水路に接続されて、その上流端が水面以下で開閉手段によって開閉自在とされている取水管が配設されていることを特徴とする堆積物の吸引流送設備。
〔16〕上記設備において、水圧、流量および液体密度の少なくともいずれかの測定手段が配置されていることを特徴とする堆積物の吸引流送設備。
〔17〕上記測定手段の検知にともなって、開閉手段による開閉が自動制御される機構を備えていることを特徴とする堆積物の吸引流送設備。
(D = inner diameter of circular channel B = width of opening L = length along the axis of circular channel of opening)
The sediment suction flow facility, wherein the value of is less than 0.2.
[11] In any one of the above facilities, the sediment suction flow facility is characterized in that the opening on the lower side of the circular water channel is disposed not on the position directly below the axis of the water channel but on the side.
[12] The deposit suction and flow facility, wherein the openings below the circular water channel are arranged in a staggered manner along the water channel axis.
[13] A facility for sucking and flowing sediment, wherein sleepers are disposed below the closed cross section of the circular water channel.
[14] One of the above-mentioned facilities, characterized in that a water intake pipe connected to a closed water channel or a circular water channel, whose upstream end is below the water surface and which can be opened and closed by an opening / closing means, is provided. Sediment suction and flow equipment.
[15] The upstream open terminal protrudes above the deposit in the liquid, and the deposit in the liquid consisting of a circular water channel having an opening on the lower side and a closed water channel following the downstream end of the circular water channel is fed. A facility for sucking and flowing sediments, characterized in that a water intake pipe connected to a closed water channel or a circular water channel and whose upstream end is below the water surface and can be opened and closed by an opening / closing means is disposed.
[16] A deposit suction and flow facility characterized in that in the above facility, at least one of measuring means for water pressure, flow rate and liquid density is arranged.
[17] A deposit suction and flow facility comprising a mechanism that automatically controls opening and closing by the opening and closing means in accordance with the detection of the measuring means.

以上のとおりの開口部を有する円形水路と閉水路について特有の要件をもって設置された吸引流送設備に係わるこの出願の発明によって、従来の問題点を解消し、閉水路内に吸引する堆積土砂の送流をさらに一層効率的なものとし、また、流送水路が土砂、ゴミ類を吸引しても閉塞することがないようにし、水理的に有利な構造をもつものとし、さらには水路の強度を大きなものとすることもできる、堆積物の新しい吸引流送設備が提供される。   According to the invention of this application relating to the suction flow facility installed with specific requirements for the circular channel and the closed channel having the opening as described above, the conventional problems are solved and the sediment of the sediment to be sucked into the closed channel is reduced. Make the flow even more efficient, and make sure that the flow channel does not become clogged even if soil or dirt is sucked in, and has a hydraulically advantageous structure. A new suction flow facility for deposits, which can be of high strength, is provided.

また、閉水路に取水管を接続した吸引流送設備の発明においては、以上の効果に加えて、取水管からの取水量を調整することによって、1)円形水路内の流速を調整し、同時に円形水路内への吸引圧、吸引土砂量を調整でき、2)閉水路から排出される堆積物の濃度を調整でき、3)この吸引流送設備の運転終了時に、即ち閉水路内の流れの停止時に、堆積土砂の濃度を薄めて、閉水路内の土砂の沈殿量を小さくして、閉塞を防ぐことができ、4)この吸引流送設備の運転終了時に、閉水路内の堆積土砂の濃度を薄めて、バルブを閉じる時の細かい土砂成分によるバルブの損傷を防ぐことができる。   In addition, in the invention of the suction flow facility in which the intake pipe is connected to the closed water channel, in addition to the above effects, by adjusting the amount of water taken from the water intake tube, 1) the flow velocity in the circular water channel is adjusted, and at the same time The suction pressure and amount of sediment in the circular channel can be adjusted. 2) The sediment concentration discharged from the closed channel can be adjusted. 3) At the end of the operation of the suction flow system, that is, the flow in the closed channel. At the time of stoppage, the sediment concentration can be reduced and the sedimentation amount in the closed channel can be reduced to prevent clogging. 4) At the end of operation of this suction flow facility, the accumulated sediment in the closed channel can be prevented. By reducing the concentration, the valve can be prevented from being damaged by fine sediment components when the valve is closed.

この出願の発明は、上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

まず、この出願の発明の設備では、この出願の発明者らがすでに提案している吸引流送のための設備を前提としている。すなわち、上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備である。   First, the equipment of the invention of this application is premised on the equipment for suction flow already proposed by the inventors of this application. That is, a circular water channel in which the open terminal at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and flowed from the opening, and this circular channel It is a sediment suction and flow installation facility having a closed water channel that is connected to a water channel and flows sediment.

図1は、その構成の一例を示したものである。   FIG. 1 shows an example of the configuration.

図1において、地盤(4)に建設されたダム(3)に水(7)が貯蔵され、ダム底(5)の堆積物(6a)上には、開口部(1a)を有する円形水路(1)が敷設されている。これは後続の堆積物(6b)に囲まれていてもよい。そして、開口部の存在しない閉水路(1b)が、円形水路(1)に連設されている。また、閉水路(1b)の先端箇所にバルブ(2)が設置され、堆積土砂の吸流送設備が構成されている。水中の堆積物を吸引流送するための開口部(1a)を有する円形水路(1)は、上流位置にある開放端(1c)を液体中の堆積物(6b)より突出させ、かつ、液体中の堆積物(6a)に面する下側に開口部(1a)が開設されている。   In FIG. 1, water (7) is stored in a dam (3) constructed on the ground (4), and a circular water channel (1a) having an opening (1a) is formed on the deposit (6a) at the dam bottom (5). 1) is laid. This may be surrounded by a subsequent deposit (6b). And the closed water channel (1b) without an opening part is connected with the circular water channel (1). In addition, a valve (2) is installed at the tip of the closed water channel (1b), and a sediment transporting facility for sedimentary earth and sand is configured. The circular water channel (1) having an opening (1a) for sucking and flowing underwater deposits causes the open end (1c) at the upstream position to protrude from the deposit (6b) in the liquid, and the liquid An opening (1a) is opened on the lower side facing the deposit (6a).

この設備においては、静水圧によって、水中の堆積物(6a)が開口部(1a)より円形水路(1)そして閉水路(1b)内に吸引され流送され開放終端(1d)より放出される。   In this facility, underwater pressure deposits (6a) are sucked into the circular water channel (1) and the closed water channel (1b) from the opening (1a) and are discharged from the open end (1d) by hydrostatic pressure. .

図2は、前記の円形水路(1)の一例を示したものであって、この図2は、開口部(1a)側から見た状態を例示している。   FIG. 2 shows an example of the circular water channel (1), and FIG. 2 illustrates a state seen from the opening (1a) side.

このような吸引流送設備においては、水中の堆積物(6b)を吸引排出するために、たとえばまず閉水路(1b)先端部のバルブ(2)を開き、水路内を水が流れることで、閉水路(1b)内が低圧になることから、円形水路(1)の開口部(1a)から、その周囲の堆砂(6b)を水(7)とともに吸引する。   In such suction and flow equipment, in order to suck and discharge the sediment (6b) in the water, for example, the valve (2) at the tip of the closed channel (1b) is first opened, and water flows through the channel, Since the inside of the closed water channel (1b) has a low pressure, the surrounding sediment (6b) is sucked together with water (7) from the opening (1a) of the circular water channel (1).

その際、開放端(1c)を水中に位置させているので、開口部(1a)からの堆砂(6b)の吸引作用で固形分濃度が濃くなるに伴って管路抵抗が増大し吸引流送の速度が低下する場合でも、開放端(1c)から水(7)が流入し、この結果希釈が起こるので、管路抵抗が減少し、吸引作用は間断なく継続する。これによって、何ら他の制御装置を付設することなく、開口部円形水路(1)および後続の閉水路(2)の全長に亘り、吸引流送力が自動調節される。   At that time, since the open end (1c) is located in the water, the pipe resistance increases as the solid concentration increases due to the suction action of the sediment (6b) from the opening (1a), and the suction flow is increased. Even when the feeding speed is decreased, water (7) flows from the open end (1c), and as a result, dilution occurs, so that the pipe resistance decreases and the suction action continues without interruption. As a result, the suction flow force is automatically adjusted over the entire length of the opening circular water channel (1) and the subsequent closed water channel (2) without any additional control device.

以上のような吸引流送は、静水圧を利用したものとして特徴がある。   The suction flow as described above is characterized by utilizing hydrostatic pressure.

そして以上の円形水路(1)や閉水路(1b)としてはパイプ構造体が用いられてよい。また、図1の例においては、円形水路(1)に連設される閉水路(1b)は、円形水路(1)よりも低い高さ位置にあるものとして例示されているが、閉水路(1b)は、円形水路(1)よりも高い位置にあってもよい。この場合にも、初期操作として、前記と同様に閉水路(1b)内に負圧を生じさせればよい。   A pipe structure may be used as the circular water channel (1) or the closed water channel (1b). Moreover, in the example of FIG. 1, although the closed water channel (1b) provided in a row with the circular water channel (1) is illustrated as being at a lower position than the circular water channel (1), the closed water channel ( 1b) may be located higher than the circular water channel (1). Also in this case, as an initial operation, a negative pressure may be generated in the closed channel (1b) as described above.

たとえば以上例示したような、堆積物の吸引流送設備において、この出願の発明では、まず第1の特徴としては、図3に例示した円形水路(1)において、円形水路(1)の開口部(1a)の水路軸線(A)に直交する幅をB、円形水路の水路軸線に直交する内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とする。   For example, in the deposit suction flow facility as exemplified above, in the invention of this application, first, as a first feature, the circular water channel (1) illustrated in FIG. When the width orthogonal to the channel axis (A) of (1a) is B and the inner diameter orthogonal to the channel axis of the circular channel is D, the opening width ratio: B / D is in the range of 0.1 to 0.7. .

このことは、堆積物の吸引流送をより円滑に、効率的にするための条件として好適である。図4は、実施例として、この開口幅比B/Dの大きさと堆積物の円形水路(1)から閉水路(1b)への依頼濃度との関係を示したものである。   This is suitable as a condition for making the suction flow of the deposits smoother and more efficient. FIG. 4 shows, as an example, the relationship between the size of the opening width ratio B / D and the requested concentration of sediment from the circular water channel (1) to the closed water channel (1b).

B/Dが0.1未満の場合、つまり、円形水路(1)の内径Dに比べて開口部(1a)の幅Bがあまりにも小さい場合には、堆積物の吸引力は生じにくく、実質的に、堆積物濃度は低くなって、その吸引流送は生じ難い。一方、B/Dが0.7を超えても堆積物濃度は上昇せず、しかも円形水路(1)が堆積物に埋まってしまうという不具合が生じやすい。また、B/Dが0.7を超えると、円形水路(1)の強度が低下することから、円形水路(1)がつぶれる危険性が大きくなる。このことから、この出願の発明では、開口幅比:B/Dを0.1〜0.7の範囲としている。より実際的には0.1〜0.6の範囲が考慮される。   When B / D is less than 0.1, that is, when the width B of the opening (1a) is too small compared to the inner diameter D of the circular water channel (1), the suction force of the deposit is less likely to occur. In particular, the deposit concentration becomes low and the suction flow is unlikely to occur. On the other hand, even if B / D exceeds 0.7, the deposit concentration does not increase, and the circular water channel (1) is likely to be buried in the deposit. Moreover, since the intensity | strength of a circular water channel (1) will fall when B / D exceeds 0.7, the danger that a circular water channel (1) will be crushed becomes large. For this reason, in the invention of this application, the opening width ratio: B / D is in the range of 0.1 to 0.7. More practically, a range of 0.1 to 0.6 is considered.

そして、この出願の発明の第2の特徴は、前記の円形水路(1)の敷設勾配が堆積物の水中安息角(Phi)よりも小さくすることである。水中安息角(Phi)は、その定義や算出方法がよく知られたものであって、堆積物の種類、状況に応じて求められるものである。円形水路(1)およびこれに連設された閉水路(1b)の敷設勾配が堆積物の水中安息角(Phi)よりも大きい場合には、堆積物の吸引流送が困難になるのである。   The second feature of the invention of this application is that the laying gradient of the circular channel (1) is smaller than the underwater angle of repose (Phi) of the sediment. The underwater angle of repose (Phi) is well known for its definition and calculation method, and is determined according to the type and situation of the deposit. When the laying gradient of the circular water channel (1) and the closed water channel (1b) connected thereto is larger than the underwater angle of repose (Phi) of the sediment, it becomes difficult to suck and flow the sediment.

そして、この出願の発明の第3の特徴は、前記のとおり、式(1)の値が0.2よりも小さくなるように、図3に示したD、B、そしてL、すなわち、
D=円形水路の内径
B=開口部の幅
L=開口部の円形水路の軸線(A)に沿った長さ(開口部長)
を定めることである。図5は、この式(1)の4LB/πD2の値と、開口部(1a)における始点での水路内外の圧力差(水頭差):h0と始点より距離L離れた所の圧力差:hxとの比:hx/h0との相関についての実験結果を例示したものであるが、hx/h0は実質的に1.0に近いことが望ましい。円形水路(1)の開口部長:Lを長くするとhx/h0が小さくなり、堆積物の吸引力が失われることがわかる。構造物的には、開口部長:L短いほうが強度は大きい。このため、この開口部長:Lはできるだけ短くすることが望ましい。図5からは、4LB/πD2が0.2を超えるとhx/h0はほぼ0.5以下となることがわかる。実際、開口部長:Lを長くしても効率的な吸引流速が実現されないことが確認されている。
And, as described above, the third feature of the invention of this application is that D, B, and L shown in FIG. 3, that is, the value of the expression (1) is smaller than 0.2, that is,
D = Inner diameter of circular water channel B = Width of opening L = Length along axis (A) of circular water channel of opening (opening length)
Is to determine. FIG. 5 shows the value of 4LB / πD 2 in the equation (1) and the pressure difference between the inside and outside of the water channel at the starting point (water head difference) at the opening (1a): h 0 and the pressure difference at a distance L from the starting point. the ratio of h x: it exemplifies the results of experiments on the correlation between the h x / h 0, h x / h 0 is preferably substantially near 1.0. It can be seen that when the length of the opening of the circular water channel (1): L is increased, h x / h 0 is decreased and the suction force of the deposit is lost. In terms of structure, the strength is larger when the length of the opening: L is shorter. For this reason, it is desirable to make this opening length L: as short as possible. FIG. 5 shows that h x / h 0 is approximately 0.5 or less when 4LB / πD 2 exceeds 0.2. In fact, it has been confirmed that an efficient suction flow rate is not realized even if the opening length L is increased.

さらに、この出願の発明の第4の特徴は、図3に示した、円形水路(1)における隣接開口部(1a)間の水路軸線(A)に沿った間隔(L1)が、前記の式(2)で与えられる円形水路の内径(D)との比率以下となるようにすることである。この式(2)におけるL1、D等のファクターは次のものである。   Furthermore, the fourth feature of the invention of this application is that the distance (L1) along the channel axis (A) between the adjacent openings (1a) in the circular channel (1) shown in FIG. The ratio is equal to or less than the ratio with the inner diameter (D) of the circular channel given in (2). Factors such as L1 and D in the equation (2) are as follows.

L1=開口部間の間隔、すなわち開口部間の閉断面区間の長さ
Phi=堆積土砂の水中安息角
D=円形水路の内径
B=開口部の幅
円形水路(1)を構成するパイプに沿って、開口部(1a)からの土砂等の堆積物の吸引が下流に進んで行くが、開口部(1a)の相互の間隔:L1が長くなると、吸引の連続性が止まることになる。すなわち、ある開口部からの堆積物の吸引が終わると、次の下流部の開口部からの堆積物の吸引が連続しなくなる。このような連続性がなくなる状態は、吸引流送の流れが成立しなくなることを意味していることから、開口部の間隔:L1については、連続性がなくなる状態の長さよりも短くすることが必要になる。
L1 = interval between openings, that is, length of closed cross section between openings Phi = water repose angle of sedimentary earth and sand D = inner diameter of circular channel B = width of opening along pipe constituting circular channel (1) Then, suction of sediment such as earth and sand from the opening (1a) proceeds downstream, but if the mutual distance L1 between the openings (1a) becomes longer, the continuity of suction stops. That is, when the suction of the deposit from a certain opening is completed, the suction of the deposit from the next downstream opening does not continue. Since the state where the continuity is lost means that the flow of the suction flow is not established, the opening interval L1 may be shorter than the length of the state where the continuity is lost. I need it.

前記の式(2)は、実際に、連続性のなくなる状態についての実験を行うことで導かれたものである。表1は、内径:Dについて、これを、50mm、100mm、300mm、700mmとした場合の、実験に際しての条件を示したものである。また、表1では、水中安息角(Phi)について、ダム湖等の堆積物として、丸みのある堆砂が5〜10(deg)であることを、より角のある堆砂、砂利が20〜30(deg)であることを示している。   The above formula (2) is actually derived by conducting an experiment on a state where continuity is lost. Table 1 shows the conditions for the experiment when the inner diameter D is 50 mm, 100 mm, 300 mm, and 700 mm. In Table 1, with regard to the angle of repose of water (Phi), as sediments such as dam lakes, rounded sediment is 5 to 10 (deg), and sediment with more corners and gravel is 20 to 20 30 (deg).

Figure 2005016294
Figure 2005016294

図6および図7は、内径:D=100mm、D=700mmの場合のtan(Phi)とL1/Dの比との関係をB/D比の異なる場合について例示したものである。   6 and 7 illustrate the relationship between the ratio of tan (Phi) and L1 / D when the inner diameter is D = 100 mm and D = 700 mm for different B / D ratios.

式(2)そして、図6および図7の例示に従っての確認を実験的に行ったところ、L1/Dが式(2)より得られた値を超えて大きい場合には堆積物の吸引流送が困難であって、この値よりも小さくすることにより吸引流送が円滑に効果的に可能であることが判明した。   When the confirmation according to the expression (2) and the examples of FIGS. 6 and 7 is experimentally performed, when L1 / D is larger than the value obtained from the expression (2), the sediment suction flow is performed. It was found that the suction flow can be smoothly and effectively performed by making the value smaller than this value.

そして、この出願の発明においては以上のような特徴のある円形水路(1)について、開口部(1a)を、水路軸線に垂直の直下位置ではなく、側方に配置することや水路軸線に沿って左右側方等に千鳥配置することも考慮される。たとえば図8はこのような千鳥配置の一例を示したものである。   In the invention of this application, with respect to the circular water channel (1) having the above-described characteristics, the opening (1a) is not located at a position directly below the water channel axis but on the side or along the water channel axis. Therefore, staggered arrangement on the left and right sides is also considered. For example, FIG. 8 shows an example of such a staggered arrangement.

さらに、この出願の発明においては、円形水路(1)の閉断面の下側に重しを兼ねた枕木を配設してもよい。この枕木のある形態は、円形水路(1)の設置時、および沈設時に、開口部(1a)の位置を固定するための手段として有効である。   Furthermore, in the invention of this application, a sleeper that also serves as a weight may be disposed below the closed cross section of the circular water channel (1). This form of sleepers is effective as a means for fixing the position of the opening (1a) when the circular water channel (1) is installed and set.

たとえば図9は、円形水路(1)の閉断面部(11)の外周の一部に金属製等の帯体(12)を配置し、下側の枕木(13)にこれを固定した例を示している。図10は、閉断面部(11)の全周に分画した帯体(12)を配置し、下側の枕木(13)に、支持体(14)をもって固定した例を、また、図11は、前記の帯体(12)に代えて、ブロック体(15)を用いた例を示している。   For example, FIG. 9 shows an example in which a band (12) made of metal or the like is disposed on a part of the outer periphery of the closed cross section (11) of the circular water channel (1) and fixed to the lower sleeper (13). Show. FIG. 10 shows an example in which the band (12) divided on the entire circumference of the closed cross section (11) is arranged and fixed to the lower sleeper (13) with the support (14). Shows an example in which a block body (15) is used instead of the belt body (12).

いずれの場合も、枕木(13)を金属やコンクリート等の重量のあるものとすることによって、開口部(1a)の配置を所定位置で安定化することができる。   In any case, the arrangement of the opening (1a) can be stabilized at a predetermined position by making the sleeper (13) heavy with metal, concrete, or the like.

そして、以上のような液体中の堆積物の流送設備においては、この出願の発明によって、前記の閉水路に接続される取水管を備えることが有効でもある。   In addition, in the above-described facility for transporting deposits in liquid, it is also effective to provide a water intake pipe connected to the closed water channel according to the invention of this application.

図12は、このような取水管(16)を設置した例を示している。取水管(16)は、閉水路(1b)に接続されており、その上流端はダム(3)内の水面以下の位置にある。この上流端は、たとえばバルブ(17)等の開閉手段によって開閉自在とされており、取水流量の調整が可能とされている。   FIG. 12 shows an example in which such a water intake pipe (16) is installed. The intake pipe (16) is connected to the closed water channel (1b), and its upstream end is at a position below the water surface in the dam (3). The upstream end can be opened and closed by an opening / closing means such as a valve (17), and the intake water flow rate can be adjusted.

そして、この図12の例では、開口部(1a)を有する円形水路(1)の終端の閉水路(1b)の開始点近傍と、取水管(16)の接続位置の上流側と下流側に、水圧、流量そして液体密度の測定器(18)が配置されている。もちろんこの配置に限定されることはない。   And in this example of FIG. 12, in the vicinity of the starting point of the closed water channel (1b) at the end of the circular water channel (1) having the opening (1a), and upstream and downstream of the connection position of the intake pipe (16). A water pressure, flow rate and liquid density measuring device (18) is arranged. Of course, the arrangement is not limited to this.

この設備においては、測定器(18)により閉水路中の水圧、流速、濃度を測定し、これらが所定の範囲となるように、バルブ(17)を開閉して取水するようにしている。バルブ(17)を開くと、取水管(16)からの取水が閉水路(1b)に流入し、堆積物を含む流送液体の濃度をはじめ、その流量調整が可能とされる。   In this facility, the water pressure, flow velocity, and concentration in the closed channel are measured by the measuring device (18), and the valve (17) is opened and closed so that the water is within a predetermined range. When the valve (17) is opened, water taken from the water intake pipe (16) flows into the closed water channel (1b), and the flow rate can be adjusted, including the concentration of the liquid flow containing deposits.

堆積物を含む流送液体のダム(3)外への排出をとめる時は、まず取水管バルブ(17)を全開とし、取水管(16)接合部下流の閉水路(1b)内の土砂濃度を薄くする。次に閉水路バルブ(2)を全閉とする。最後に、取水管バルブ(17)を全閉とする。   When stopping the discharge of the inflowing liquid containing sediment to the outside of the dam (3), first, the intake pipe valve (17) is fully opened and the sediment concentration in the closed water channel (1b) downstream of the joint of the intake pipe (16) Thin out. Next, the closed water passage valve (2) is fully closed. Finally, the intake pipe valve (17) is fully closed.

上流開放端(1c)を液体(7)中の堆積物(6b)より上に突き出し、且つ下側に開口部(1a)を有し堆積物を吸引流送する円形水路(1)と、その円形水路の下流端に続く閉水路(1b)とからなる液体中の堆積物を流送する設備においても、バルブ(2)部での閉塞やバルブ(2)の損傷無しにこのバルブ(2)による水路内の流量、水圧を調整することは必ずしも容易でない場合がある。このような場合、上記のように取水管(16)のバルブ(17)を開くと、取水管(16)からの水が閉水路(1b)に流れ込むことで、取水管(16)との接合部上流側の円形水路(1)の流量が減少する。このように取水管(16)のバルブ(2)を調節することで、上流円形水路(1)内の流量が調節できるようになる。流量の調節は、上流円形水路(1)内の流速の調節と同じであり、ひいては、円形水路(1)の開口部(1a)の土砂吸引圧力も調節できることになる。土砂吸引圧力の大小と円形水路内の土砂濃度は連動していることから、吸引土砂量をも調節できることになる。また、この時に円形水路(1)や閉水路(1b)に設けた圧力計、流量計、密度計という測定器(18)を設置しておけば、これらの計測値を参照しながら、バルブ(17)の開閉を調節でき、任意のスラリー状態での流送排出が可能となる。   A circular water channel (1) having an upstream open end (1c) protruding above the deposit (6b) in the liquid (7) and having an opening (1a) on the lower side for sucking and flowing the deposit; Even in a facility for feeding deposits in a liquid consisting of a closed water channel (1b) following the downstream end of the circular water channel, this valve (2) can be used without clogging or damage to the valve (2). It may not always be easy to adjust the flow rate and water pressure in the water channel. In such a case, when the valve (17) of the water intake pipe (16) is opened as described above, the water from the water intake pipe (16) flows into the closed water channel (1b), thereby joining the water intake pipe (16). The flow rate of the circular water channel (1) on the upstream side of the section decreases. By adjusting the valve (2) of the intake pipe (16) in this way, the flow rate in the upstream circular water channel (1) can be adjusted. The adjustment of the flow rate is the same as the adjustment of the flow velocity in the upstream circular water channel (1). As a result, the sediment suction pressure in the opening (1a) of the circular water channel (1) can also be adjusted. Since the magnitude of the sediment suction pressure is linked with the sediment concentration in the circular channel, the amount of sediment can be adjusted. At this time, if a measuring instrument (18) such as a pressure gauge, a flow meter, and a density meter provided in the circular water channel (1) or the closed water channel (1b) is installed, the valve ( The opening and closing of 17) can be adjusted, and it becomes possible to carry out the discharge in an arbitrary slurry state.

また、従来より、一般的にダムの貯水池、ため池、沈砂池から堆積土砂を河川流に乗せて下流に排出することは環境的に近年ほとんどなされていない。今後のダム湖での堆積土砂の増加、下流や海岸での流下土砂の不足から発生する侵食問題の解決のために、今後は堆積土砂を下流に排出する必要があるが、濃度の高い状態での下流排出は下流に環境上の問題を発生させる。   Further, in recent years, it has been generally not environmentally practiced to discharge sedimentary sediment from a dam reservoir, basin, or sedimentation basin onto a river flow downstream. In order to solve the erosion problem caused by the increase of sediment in the dam lake and the shortage of sediment flowing downstream and on the coast, it will be necessary to discharge sediment in the downstream. Downstream discharge of the system creates environmental problems downstream.

これに対して、上記のような取水管(16)があれば、バルブ(17)を開けることで加水が可能となり、排出濃度を下げ、排出先の下流河川で環境的に許容される濃度を容易に実現することができる。バルブの調節によってこの排出土砂濃度は調節可能である。   On the other hand, if there is a water intake pipe (16) as described above, water can be added by opening the valve (17), the discharge concentration is lowered, and the environmentally acceptable concentration in the downstream river of the discharge destination is reduced. It can be easily realized. This sediment concentration can be adjusted by adjusting the valve.

さらにまた、前記のとおりのこの出願の発明の設備においても、水路に鉛直を含む急傾斜部がある場合、バルブ閉鎖などにより、水路内を流れているスラリーの流れを停止すると、水路内のスラリーに含まれる土砂分は水路底に沈殿する。この時、急傾斜部があればその最も低い水路部に沈殿物が集中し水路断面を閉塞する場合が想定される。   Furthermore, also in the equipment of the invention of this application as described above, when the water channel has a steeply inclined portion including the vertical, the slurry in the water channel is stopped by stopping the flow of the slurry flowing in the water channel by closing a valve or the like. The sediment contained in the sediment settles on the bottom of the channel. At this time, if there is a steeply inclined portion, it is assumed that the sediment concentrates on the lowest water channel portion and closes the cross section of the water channel.

このような想定に対しても、バルブなどによる流れの停止前に、取水管(16)のバルブ(17)を開き、水路内の土砂濃度を十分薄くしておけば、スラリー流の停止による最も低い水路部分への土砂分の集中沈殿による閉塞を防止できる。   Even for such an assumption, if the valve (17) of the intake pipe (16) is opened and the sediment concentration in the water channel is made sufficiently low before the flow is stopped by the valve or the like, the most It can prevent clogging due to concentrated sedimentation of sediment in the low water channel.

さらにまた、流れる流体は粘土から巨礫までの幅広い土砂を含み、木の幹、枝、葉、ビニール、プラスチックなどの紐状、膜状のものを含むゴミ芥を含む。   Furthermore, the flowing fluid includes a wide range of earth and sand from clay to boulders, and includes garbage traps including tree trunks, branches, leaves, vinyls, plastics, and other string-like and film-like ones.

このため、堆積物を流送する設備に使われるバルブは全閉、全開での使用を前提としても、たとえばバルブ(2)の開閉時のトラブル、損傷は発生し易い。このような懸念に対しても、バルブ(2)などによる流れの停止前に、取水管(16)のバルブ(17)を開き取水管(16)からのきれいな水でバルブ(2)部分を含む水路部を清掃し、土砂やごみ芥をほとんど含まない状態にすることで、バルブ(2)開閉時のトラブル、損傷を回避することができる。   For this reason, even if the valve used in the facility for feeding deposits is assumed to be fully closed or fully opened, troubles and damages when opening and closing the valve (2) are likely to occur. Against such a concern, before stopping the flow by the valve (2) or the like, the valve (17) of the intake pipe (16) is opened and the valve (2) portion is included with clean water from the intake pipe (16). By cleaning the water channel and making it almost free of earth and sand and garbage, trouble and damage when opening and closing the valve (2) can be avoided.

以上のように、取水管(16)、バルブ(17)等の設置によって、堆積物の性状、堆積物の厚さ、堆積物が円形水路を覆っている長さ、利用できる水頭差、排出先の環境上の許容濁水濃度などの条件に合わせて、排出状態をコントロールできるようになる。   As described above, by installing the intake pipe (16), valve (17), etc., the nature of the deposit, the thickness of the deposit, the length of the deposit covering the circular channel, the available head difference, the discharge destination The discharge state can be controlled according to the environmental turbid water concentration and other conditions.

もちろん、この出願の発明においては以上の例示に限定されることなしに、その細部について様々な形態が可能であることは言うまでもない。   Of course, in the invention of this application, it is needless to say that various forms are possible for the details without being limited to the above examples.

たとえば以上の例では排出に池内外の水頭差を利用しているが、必要であれば、排出するために、通常使用されるポンプ、インダクションポンプなども利用される。   For example, in the above example, the water head difference between the inside and outside of the pond is used for discharging, but a pump, an induction pump, etc. that are usually used are also used for discharging if necessary.

また、液体としては水に限らず、濁水、その他液体であれば、この出願の発明が適用される。   Further, the liquid is not limited to water, and the invention of this application is applied if it is muddy water or other liquid.

堆積土砂吸引排送設備の敷設状況を示す概要図である。It is a schematic diagram which shows the laying condition of sedimentation earth suction discharge equipment. 図1の敷設された開口部を有する円形水路を例示した拡大概要図である。FIG. 2 is an enlarged schematic view illustrating a circular water channel having the laid opening of FIG. 1. 円形水路とその開口部の寸法関係について示した要部概要図である。It is the principal part schematic diagram shown about the dimensional relationship of a circular water channel and its opening part. 開口幅比:B/Dと体積濃度との関係を示した図である。It is the figure which showed the relationship between opening width ratio: B / D and volume concentration. 4LB/πD2とhx /h0との関係を実験として示した図である。Is a diagram showing the relationship between 4LB / [pi] D 2 and h x / h 0 as experimental. 式(2)について、D=100mmの場合の、tan(Phi)とL1/Dの値との関係を示した図である。It is a figure showing the relation between tan (Phi) and the value of L1 / D about D (100) about a formula (2). 式(2)について、D=700mmの場合の、tan(Phi)とL1/Dとの関係を示した図である。It is the figure which showed the relationship between tan (Phi) and L1 / D in the case of D = 700mm about Formula (2). 開口部の千鳥状の配置例を示した概要図である。It is the schematic which showed the example of a staggered arrangement | positioning of an opening part. 枕木の配置例を示した概要図である。It is the schematic which showed the example of arrangement | positioning of a sleeper. 枕木の別の配置例を示した概要図である。It is the schematic which showed another example of arrangement | positioning of a sleeper. 枕木のさらに別の配置例を示した概要図である。It is the schematic which showed another example of arrangement | positioning of a sleeper. 取水管を有する設備を例示した概要図である。It is the schematic which illustrated the installation which has an intake pipe.

符号の説明Explanation of symbols

1 円形水路
1a 開口部
1b 閉水路
1c 開放端
1d 開放終端
2 閉水路バルブ
3 ダム
4 地盤
5 ダム底
6a、6b 堆積物
7 水
8 ポンプ
9 注水管
10 ボルト
11 閉断面部
12 帯体
13 枕木
14 支持体
15 ブロック体
16 取水管
17 取水管バルブ
18 測定器
DESCRIPTION OF SYMBOLS 1 Circular waterway 1a Opening part 1b Closed waterway 1c Open end 1d Open end 2 Closed waterway valve 3 Dam 4 Ground 5 Dam bottom 6a, 6b Deposit 7 Water 8 Pump 9 Injection pipe 10 Bolt 11 Closed cross-section 12 Band 13 14 Support body 15 Block body 16 Intake pipe 17 Intake pipe valve 18 Measuring instrument

Claims (17)

上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。   An open end at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and flowed from the opening, and the circular channel A sediment suction flow facility having a closed water channel that is connected to flow the sediment, where B is a width orthogonal to the water channel axis of the opening of the circular water channel, and D is the inner diameter of the circular water channel, Opening width ratio: B / D is in the range of 0.1 to 0.7. 上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、円形水路およびこれに連設された閉水路の敷設勾配が堆積物の水中安息角(Phi)よりも小さいことを特徴とする堆積物の吸引流送設備。   An open end at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and flowed from the opening, and the circular channel A sediment suction and flow facility having a closed water channel that is connected to flow the sediment, and the laying gradient of the circular water channel and the closed water channel connected to the circular water channel is determined from an underwater repose angle (Phi) of the sediment. Sediment flow equipment for deposits, which is also small. 請求項2の設備において、円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。   In the facility of claim 2, when the width perpendicular to the channel axis of the opening of the circular water channel is B and the inner diameter of the circular water channel is D, the opening width ratio: B / D is in the range of 0.1 to 0.7. A facility for sucking and flowing sediments. 上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、次式(1)
Figure 2005016294
(D=円形水路の内径
B=開口部の幅
L=開口部の円形水路の軸線に沿った長さ)
の値が、0.2よりも小さいことを特徴とする堆積物の吸引流送設備。
An open end at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and flowed from the opening, and the circular channel Sediment suction flow equipment having a closed water channel that is connected to flow sediments, and has the following formula (1)
Figure 2005016294
(D = inner diameter of circular channel B = width of opening L = length along the axis of circular channel of opening)
The sediment suction flow facility, wherein the value of is less than 0.2.
請求項4の設備において、円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。   In the installation of claim 4, when the width orthogonal to the water channel axis of the opening of the circular water channel is B and the inner diameter of the circular water channel is D, the opening width ratio: B / D is in the range of 0.1 to 0.7. A facility for sucking and flowing sediments. 請求項4または5の設備において、円形水路およびこれに連設された閉水路の敷設勾配が堆積物の水中安息角(Phi)よりも小さいことを特徴とする堆積物の吸引流送設備。   6. A facility for suction and flow of sediment according to claim 4, wherein the laying gradient of the circular channel and the closed channel connected to the circular channel is smaller than the underwater angle of repose (Phi) of the deposit. 上流位置の開放端末を液体中の堆積物より上に突出させ、下側に開口部を形成してこの開口部より堆積物を吸引して流送するようにした円形水路と、この円形水路に連接されて堆積物を流送する閉水路を備えた堆積物の吸引流送設備であって、円形水路において隣接する開口部間の水路軸線に沿った間隔(L1)が、次式(2)
Figure 2005016294
(L1=開口部間の間隔、すなわち開口部間の閉断面区間の長さ
Phi=堆積土砂の水中安息角
D=円形水路の内径
B=開口部の幅)
で与えられる円形水路の内径(D)との比率以下とされていることを特徴とする堆積物の吸引流送設備。
An open end at the upstream position protrudes above the deposit in the liquid, an opening is formed on the lower side, and the deposit is sucked and flowed from the opening, and the circular channel It is a sediment suction flow facility having a closed water channel that is connected to flow the sediment, and an interval (L1) along the water channel axis between adjacent openings in the circular water channel is expressed by the following equation (2):
Figure 2005016294
(L1 = interval between openings, that is, length of closed section between openings Phi = water repose angle of sedimentary sediment D = inner diameter of circular channel B = width of opening)
The sediment suction and flow equipment, wherein the ratio is equal to or less than the ratio of the inner diameter (D) of the circular water channel given in (1).
請求項7の設備において、円形水路の開口部の水路軸線に直交する幅をB、円形水路の内径をDとするとき、開口幅比:B/Dが0.1〜0.7の範囲とされていることを特徴とする堆積物の吸引流送設備。   In the equipment of claim 7, when the width perpendicular to the channel axis of the opening of the circular water channel is B and the inner diameter of the circular water channel is D, the opening width ratio: B / D is in the range of 0.1 to 0.7. A facility for sucking and flowing sediments. 請求項7または8の設備において、円形水路およびこれに連設された閉水路の敷設勾配が堆積物の水中安息角(Phi)よりも小さいことを特徴とする堆積物の吸引流送設備。   The facility according to claim 7 or 8, wherein the laying gradient of the circular channel and the closed channel connected to the circular channel is smaller than an underwater angle of repose (Phi) of the deposit. 請求項7から9のいずれかの設備において、
次式(1)
Figure 2005016294
(D=円形水路の内径
B=開口部の幅
L=開口部の円形水路の軸線に沿った長さ)
の値が、0.2よりも小さいことを特徴とする堆積物の吸引流送設備。
The equipment according to any one of claims 7 to 9,
The following formula (1)
Figure 2005016294
(D = inner diameter of circular channel B = width of opening L = length along the axis of circular channel of opening)
The sediment suction flow facility, wherein the value of is less than 0.2.
請求項1から10のいずれかの設備であって、円形水路下側の開口部は、水路軸線に垂直の直下位置ではなく、側方に配置されていることを特徴とする堆積物の吸引流送設備。   11. The facility according to claim 1, wherein the opening on the lower side of the circular water channel is arranged not on a position perpendicular to the axis of the water channel but on a side thereof. Delivery equipment. 請求項1から11のいずれかの設備であって、円形水路下側の開口部は、水路軸線に沿って千鳥に配置されていることを特徴とする堆積物の吸引流送設備。   12. The facility according to claim 1, wherein the openings on the lower side of the circular water channel are arranged in a staggered manner along the water channel axis. 請求項1から12のいずれかの設備であって、円形水路の閉断面部の下側に枕木が配設されていることを特徴とする堆積物の吸引流送設備。   The facility according to any one of claims 1 to 12, wherein a sleeper is disposed below the closed section of the circular water channel. 請求項1から13のいずれかの設備であって、閉水路もしくは円形水路に接続されて、その上流端が水面以下で、開閉手段によって開閉自在とされている取水管が配設されていることを特徴とする堆積物の吸引流送設備。   14. The facility according to claim 1, wherein a water intake pipe connected to a closed water channel or a circular water channel, the upstream end of which is below the water surface and is opened and closed by an opening / closing means is disposed. Sediment inflow and flow equipment characterized by 上流開放端末を液体中の堆積物より上に突出させ、下側に開口部を有する円形水路とその円形水路の下流端に続く閉水路とからなる液体中の堆積物を流送する設備において、閉水路もしくは円形水路に接続されて、その上流端が水面以下で、開閉手段によって開閉自在とされている取水管が配設されていることを特徴とする堆積物の吸引流送設備。   In the facility for projecting the upstream open terminal above the deposit in the liquid and feeding the deposit in the liquid consisting of a circular channel having an opening on the lower side and a closed channel following the downstream end of the circular channel, A deposit suction and flow facility, characterized in that a water intake pipe connected to a closed water channel or a circular water channel, the upstream end of which is below the water surface and which can be opened and closed by an opening and closing means, is provided. 請求項14または15のいずれかの設備において、水圧、流量および液体密度の少なくともいずれかの測定手段が配置されていることを特徴とする堆積物の吸引流送設備。   16. The deposit suction flow facility according to claim 14, wherein at least one of measuring means for water pressure, flow rate and liquid density is arranged. 請求項16の設備において、測定手段の検知にともなって、開閉手段による開閉が自動制御される機構を備えていることを特徴とする堆積物の吸引流送設備。   The facility according to claim 16, further comprising a mechanism for automatically controlling opening and closing by the opening and closing means in accordance with detection of the measuring means.
JP2004164063A 2003-06-02 2004-06-02 Sediment flow transfer equipment Expired - Fee Related JP4675061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164063A JP4675061B2 (en) 2003-06-02 2004-06-02 Sediment flow transfer equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003157271 2003-06-02
JP2004164063A JP4675061B2 (en) 2003-06-02 2004-06-02 Sediment flow transfer equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009120354A Division JP5100705B2 (en) 2003-06-02 2009-05-18 Sediment flow transfer equipment

Publications (2)

Publication Number Publication Date
JP2005016294A true JP2005016294A (en) 2005-01-20
JP4675061B2 JP4675061B2 (en) 2011-04-20

Family

ID=34196667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164063A Expired - Fee Related JP4675061B2 (en) 2003-06-02 2004-06-02 Sediment flow transfer equipment

Country Status (1)

Country Link
JP (1) JP4675061B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281153A (en) * 2009-06-05 2010-12-16 Tom Jacobsen Equipment for transporting and discharging deposit in liquid
JP2011045822A (en) * 2009-08-26 2011-03-10 Jfe Steel Corp Sludge removal unit
JP2012197580A (en) * 2011-03-18 2012-10-18 Public Works Research Institute Suction pipe for underwater deposit transportation, transportation device of underwater deposit and transportation method of underwater deposit using the same
JP2014173253A (en) * 2013-03-06 2014-09-22 Hiroshi Ito System for moving and discharging sediment within reservoir by making use of dam discharge energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767155B (en) * 2012-08-08 2015-09-02 马向前 A kind of reservoir desilting pipe-line system and distribution method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638432A (en) * 1969-04-28 1972-02-01 Townsend L Schoonmaker Stationary dredging apparatus
US4147450A (en) * 1973-12-21 1979-04-03 Schoonmaker Townsend L Fixed dredge cleanout means
US4600338A (en) * 1982-07-08 1986-07-15 De Ondernemingen S.B.B.M. Mud removal process and apparatus
WO2002088472A1 (en) * 2001-05-02 2002-11-07 Tom Jacobsen Method for the removal of sediment from sand traps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638432A (en) * 1969-04-28 1972-02-01 Townsend L Schoonmaker Stationary dredging apparatus
US4147450A (en) * 1973-12-21 1979-04-03 Schoonmaker Townsend L Fixed dredge cleanout means
US4600338A (en) * 1982-07-08 1986-07-15 De Ondernemingen S.B.B.M. Mud removal process and apparatus
WO2002088472A1 (en) * 2001-05-02 2002-11-07 Tom Jacobsen Method for the removal of sediment from sand traps

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009006741, 橋本徹, "ダムや堰などの貯水池に堆積した土砂を排出するHydro技術", 大ダム, 20030425, 第183巻, p.85−89, JP, 社団法人日本大ダム会議 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281153A (en) * 2009-06-05 2010-12-16 Tom Jacobsen Equipment for transporting and discharging deposit in liquid
JP2011045822A (en) * 2009-08-26 2011-03-10 Jfe Steel Corp Sludge removal unit
JP2012197580A (en) * 2011-03-18 2012-10-18 Public Works Research Institute Suction pipe for underwater deposit transportation, transportation device of underwater deposit and transportation method of underwater deposit using the same
JP2014173253A (en) * 2013-03-06 2014-09-22 Hiroshi Ito System for moving and discharging sediment within reservoir by making use of dam discharge energy

Also Published As

Publication number Publication date
JP4675061B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP3895505B2 (en) Equipment for collecting and transferring sediment
US3638432A (en) Stationary dredging apparatus
JP4412700B2 (en) How to remove sediment from sand traps
JP3277489B2 (en) Sediment discharge mechanism for water storage area and method for discharging sediment from water storage area
WO1998020208A1 (en) Dredging method and dredging apparatus
JP4663145B2 (en) Underwater sediment flow method using hydrostatic pressure, pipe with opening and underwater sediment flow facility
JP3961722B2 (en) Closure opening mechanism of sediment collection and transfer equipment
JP5305439B2 (en) Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same
JP4195214B2 (en) A dredge apparatus using a pipe having an opening at a bent portion
MXPA03005839A (en) Method for hydraulic subsea dredging.
JP2007002437A (en) Transportation system of dredged sediment
JP4675061B2 (en) Sediment flow transfer equipment
JP5100705B2 (en) Sediment flow transfer equipment
JP4173932B2 (en) Bottom sediment discharge method
JP3723852B2 (en) Bottom sediment removal apparatus and bottom sediment removal method
KR100650111B1 (en) Dredging apparatus
JP6147010B2 (en) Method of preventing sediment accumulation in rivers and sediment discharge system used therefor
JP4610292B2 (en) Method and apparatus for transporting earth and sand in a reservoir
JP5208056B2 (en) Equipment for transporting and discharging sediments in liquids
JPH11324008A (en) Removing method for sediment in dam
JP2009007787A (en) Fixed type suction-conveying removing apparatus for sady soil
JP2005220598A (en) Equipment for cleaning accumulated sediment on bottom of river
JP4114512B2 (en) Reservoir sand discharging method and sand discharging device
JP5599069B2 (en) Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same
WO2006033441A1 (en) Running-down apparatus for submerged sediment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees