JP2012193115A - New methylol compound and aldehyde compound, and method for producing the methylol compound - Google Patents

New methylol compound and aldehyde compound, and method for producing the methylol compound Download PDF

Info

Publication number
JP2012193115A
JP2012193115A JP2011056089A JP2011056089A JP2012193115A JP 2012193115 A JP2012193115 A JP 2012193115A JP 2011056089 A JP2011056089 A JP 2011056089A JP 2011056089 A JP2011056089 A JP 2011056089A JP 2012193115 A JP2012193115 A JP 2012193115A
Authority
JP
Japan
Prior art keywords
compound
methylol
methylol compound
charge
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011056089A
Other languages
Japanese (ja)
Inventor
Yuji Tanaka
裕二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011056089A priority Critical patent/JP2012193115A/en
Publication of JP2012193115A publication Critical patent/JP2012193115A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new methylol compound containing a structural unit having a charge-transport function (hole transport property) and a methylol group in a molecule, having excellent compatibility with other monomers and polymers such as polycarbonate and film-forming property, and enabling both of the formation of a high-density crosslinked structure coping with the requirement of mechanical durability such as abrasion resistance and heat-resistance by chemical reaction and the development of good charge transport property, a method for producing the compound, and a production intermediate of the compound.SOLUTION: There is provided the methylol compound expressed by general formula (1) (in the formula, X is -O-, -CH-, -CH=CH- or -CHCH-).

Description

本発明は、有機電荷輸送材料、光導電体として有用なメチロール化合物、及び該メチロール化合物の製造方法に関する。
また、本発明は、該新規メチロール化合物の製造原料としても有用な新規アルデヒド化合物及びその製造方法に関する。
さらに、該新規メチロール化合物を有機半導体材料として用いた有機電子写真感光体、有機EL、有機TFT、有機太陽電池等の電子部品、電子素子に関する。該新規メチロール化合物は、詳しくは分子中に電荷輸送機能(ホール輸送性)を持つ構造単位とメチロール基を有し、他のモノマーやポリカーボネート等の高分子材料との相溶性や成膜性にも優れ、化学反応により摩耗等の機械的耐久性や耐熱性の要求に対応できる高密度な架橋構造の形成と共に、良好な電荷輸送特性の発現を両立できるものである。
The present invention relates to an organic charge transport material, a methylol compound useful as a photoconductor, and a method for producing the methylol compound.
The present invention also relates to a novel aldehyde compound useful as a raw material for producing the novel methylol compound and a method for producing the same.
Furthermore, the present invention relates to an organic electrophotographic photoreceptor using the novel methylol compound as an organic semiconductor material, an organic EL, an organic TFT, an electronic component such as an organic solar cell, and an electronic element. Specifically, the novel methylol compound has a structural unit having a charge transport function (hole transportability) and a methylol group in the molecule, and is compatible with other monomers and polymer materials such as polycarbonate and film-forming properties. It is excellent and can form both a high-density cross-linked structure capable of meeting demands for mechanical durability such as abrasion and heat resistance by chemical reaction, and at the same time exhibit good charge transport characteristics.

電荷輸送機能を有する有機半導体材料は、有機電子写真感光体、有機EL、有機TFT、有機太陽電池等の有機デバイス用半導体膜形成材料として有用である。このような電荷輸送機能を樹脂に持たせる方法としては、機能膜形成等においてバインダーとして使用される樹脂中に電荷輸送性材料を分散させる方法が最も一般的であり、例えば電子写真感光体では広く使用されている。   The organic semiconductor material having a charge transport function is useful as a semiconductor film forming material for organic devices such as an organic electrophotographic photoreceptor, organic EL, organic TFT, and organic solar battery. As a method for imparting such a charge transport function to a resin, a method in which a charge transport material is dispersed in a resin used as a binder in the formation of a functional film or the like is the most common. in use.

しかしながら、単に電荷輸送性材料を樹脂中に混合、分散させるだけでは電荷輸送機能膜の機械的強度や耐熱性を確保するのが難しく、特性として十分なものが得られない。したがって、これらの特性を向上するためには、電荷輸送性材料とバインダーとして使用される樹脂を結合させて一体化させることが有効である。そして、電子写真感光体寿命を向上させるために、感光層の摩耗を低減させる検討がこれまで種々提案されている。
例えば、感光体の表面層として、コロイダルシリカ含有硬化性シリコーン樹脂を用いることが提案されている(例えば、特許文献1参照)。しかし、この感光体の表面層は耐摩耗特性は改善されるが、繰り返し使用時の電子写真特性が不十分であり、カブリや画像ボケが発生しやすく、また近年要求される高寿命感光体としての耐久性に対して不十分である。
However, it is difficult to ensure the mechanical strength and heat resistance of the charge transporting functional film simply by mixing and dispersing the charge transporting material in the resin, and sufficient characteristics cannot be obtained. Therefore, in order to improve these characteristics, it is effective to combine and integrate the charge transporting material and the resin used as the binder. Various studies have been proposed so far to reduce the wear of the photosensitive layer in order to improve the life of the electrophotographic photosensitive member.
For example, it has been proposed to use a colloidal silica-containing curable silicone resin as the surface layer of the photoreceptor (see, for example, Patent Document 1). However, the surface layer of this photoconductor has improved wear resistance, but the electrophotographic properties during repeated use are inadequate, fog and image blur are likely to occur, and as a long-life photoconductor required in recent years. It is insufficient for durability.

また、有機珪素変性正孔輸送性化合物を硬化性有機珪素系高分子中に結合させた樹脂層を表面に有する感光体が提案されている(例えば、特許文献2、3参照)。しかし、この感光体の表面層は、画像ボケが発生しやすく、実用化のためには、ドラムヒーター等の機構を搭載する等して画像ボケの発生を抑制する必要があり、装置の大型化、コストアップを招いている。また、露光部の残留電位が高く、帯電電位を抑えて作像する低電位現像プロセスにおいては、画像濃度の低下等が問題である。   In addition, a photoreceptor having a resin layer on the surface of which an organosilicon-modified hole transporting compound is bonded in a curable organosilicon polymer has been proposed (for example, see Patent Documents 2 and 3). However, the surface layer of this photoconductor is likely to cause image blur. For practical use, it is necessary to suppress the occurrence of image blur by installing a mechanism such as a drum heater. , Incurring cost increases. Further, in a low potential development process in which an exposed portion has a high residual potential and an image is formed while suppressing a charging potential, there is a problem of a decrease in image density.

更に、電荷輸送性付与基を有する硬化性シロキサン樹脂を三次元網目構造状に硬化させる方法が提案されている(例えば、特許文献4参照)。しかし、この提案の方法では、体積収縮に起因すると考えられる塗膜の亀裂が生じることがあり、特に安価で取り扱いの容易な市販のコーティング剤との組み合わせでは、上記問題が発生する。また、露光部の残留電位に膜厚依存性があり、低電位現像プロセスにおける画像濃度低下が問題となる。また、電荷輸送性付与基の含有量を増加すると、塗膜強度が低下し、十分な耐久性が得られないことがある。さらに、画像ボケを引き起こすことがあり、長期間繰り返して良好な画像が出力される電子写真感光体を安価にかつ容易に得ることは困難である。   Furthermore, a method of curing a curable siloxane resin having a charge transporting imparting group in a three-dimensional network structure has been proposed (see, for example, Patent Document 4). However, in the proposed method, cracks in the coating film, which are considered to be caused by volume shrinkage, may occur, and the above problem occurs particularly in combination with a commercially available coating agent that is inexpensive and easy to handle. In addition, the residual potential of the exposed area is dependent on the film thickness, which causes a problem of a decrease in image density in the low potential development process. Further, when the content of the charge transporting property-imparting group is increased, the coating film strength is lowered and sufficient durability may not be obtained. Further, it may cause image blur, and it is difficult to obtain an electrophotographic photosensitive member that can output a good image repeatedly for a long period of time at a low cost.

また、水酸基を少なくとも1つ有する電荷輸送性物質と三次元に架橋された樹脂及び導電性微粒子を含有する保護層を有する感光体が提案されている(例えば、特許文献5参照)。この構成によって、耐摩耗性の向上、残留電位の低減はある程度達成されると思われるが、保護層に導電性微粒子を含有させると、保護層の体積抵抗が低下してしまうため、高温高湿環境下での静電潜像流れに起因する画像ボケが発生しやすくなる。   In addition, a photoreceptor having a protective layer containing a charge transporting substance having at least one hydroxyl group, a three-dimensionally cross-linked resin and conductive fine particles has been proposed (see, for example, Patent Document 5). With this configuration, it is considered that improvement in wear resistance and reduction in residual potential are achieved to some extent. However, when conductive fine particles are contained in the protective layer, the volume resistance of the protective layer is lowered. Image blurring due to electrostatic latent image flow in an environment is likely to occur.

近年、反応性電荷輸送性物質を少なくとも含む2つ以上の水酸基を有するポリオールと芳香族系イソシアネート化合物との架橋結合により形成された架橋性樹脂を含有する保護層を有する感光体が提案されている(例えば、特許文献6参照)。この構成によって、高速かつ長期にわたる画像形成において画像濃度低下や異常画像発生等のない安定した画像が得られる高耐久な電子写真感光体が得られた。しかしながら、これから環境負荷低減に向けて更なる高耐久化が得られる新規な化合物の開発が望まれる。
我々は、先に、特許文献7の特開2007−153765号公報にて、
HOCH2-(HO)CH2-O-Ar1-X-Ar2-O-CH2(OH)-CH-CH2OH (1)
の一般式で表され、製膜性のよい電荷輸送性テトラヒドロキシ化合物(ここで、Ar1、Ar2はアリレン基を、Xは「-N(Ar4)-Ar3-N(Ar5)-」で代表される二価の芳香族性基を表わす)を提示したが、このテトラヒドロキシ化合物は、2つのヒドロキシ基が炭化水素鎖構造の端部に露出しており、残りの2つのヒドロキシ基がリニアな炭化水素基の途中Cに結合するものである。
In recent years, a photoreceptor having a protective layer containing a crosslinkable resin formed by cross-linking of a polyol having two or more hydroxyl groups containing at least a reactive charge transporting substance and an aromatic isocyanate compound has been proposed. (For example, refer to Patent Document 6). With this configuration, a highly durable electrophotographic photosensitive member capable of obtaining a stable image without image density reduction or abnormal image generation in high-speed and long-term image formation was obtained. However, it is desired to develop a new compound that can further enhance durability for reducing the environmental load.
First, in Japanese Patent Application Laid-Open No. 2007-153765 of Patent Document 7,
HOCH 2 - (HO) CH 2 -O-Ar 1 -X-Ar 2 -O-CH 2 (OH) -CH-CH 2 OH (1)
A charge transporting tetrahydroxy compound represented by the general formula: (wherein Ar 1 and Ar 2 are arylene groups, and X is “—N (Ar 4 ) -Ar 3 —N (Ar 5 )”. -Represents a divalent aromatic group represented by “-”, and this tetrahydroxy compound has two hydroxy groups exposed at the end of the hydrocarbon chain structure, and the remaining two hydroxy groups. The group is bonded to C in the middle of the linear hydrocarbon group.

本発明は、上記従来技術に鑑みてなされたものであり、分子中に電荷輸送機能(ホール輸送性)を持つ構造単位とメチロール基を有し、他のモノマーやポリカーボネート等の高分子材料との相溶性や成膜性にも優れ、化学反応により摩耗等の機械的耐久性や耐熱性の要求に対応できる高密度な架橋構造の形成と共に、良好な電荷輸送特性の発現を両立できる新規なメチロール化合物とその製造方法及び製造中間体を提供することを目的とする。
なお、本発明における「メチロール化合物」は、「メチロール(メチルアルコール)基を有する化合物」を指すものと定義する。
The present invention has been made in view of the above prior art, and has a structural unit having a charge transport function (hole transportability) in the molecule and a methylol group, and other monomers and a polymer material such as polycarbonate. A novel methylol that has excellent compatibility and film-forming properties, and can form a high-density cross-linked structure that can meet the requirements of mechanical durability such as abrasion and heat resistance by chemical reaction, and at the same time exhibits good charge transport properties. It aims at providing a compound, its manufacturing method, and a manufacturing intermediate.
The “methylol compound” in the present invention is defined to refer to “a compound having a methylol (methyl alcohol) group”.

本発明者らは鋭意検討した結果、分子中に2つのトリフェニルアミン構造を連結基で介した主要骨格構造からなる電荷輸送機能を有する化合物にアルデヒド基を導入し、更に還元反応により、上記課題を解決するメチロール化合物が得られることを見出し本発明に至った。以下、本発明について具体的に説明する。
すなわち、上記課題は、以下の本発明(1)〜(5)により達成される。
(1)「下記一般式(1)で表わされることを特徴とするメチロール化合物;
As a result of intensive studies, the present inventors have introduced an aldehyde group into a compound having a charge transport function composed of a main skeleton structure in which two triphenylamine structures are connected via a linking group in the molecule, and further, by the reduction reaction, As a result, the inventors have found that a methylol compound capable of solving the above problem can be obtained, and have reached the present invention. Hereinafter, the present invention will be specifically described.
That is, the said subject is achieved by the following this invention (1)-(5).
(1) “A methylol compound represented by the following general formula (1);

Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)」
(2)「下記一般式(2)で表わされるアルデヒド化合物;
Figure 2012193115
(Wherein X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —) ”
(2) "Aldehyde compound represented by the following general formula (2);

Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)」
(3)「下記一般式(2)で表わされるアルデヒド化合物を還元剤の共存下で反応させて得ることを特徴とする前記一般式(1)で表わされるメチロール化合物の製造方法;
Figure 2012193115
(Wherein X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —) ”
(3) “A process for producing a methylol compound represented by the general formula (1), which is obtained by reacting an aldehyde compound represented by the following general formula (2) in the presence of a reducing agent;

Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)
Figure 2012193115
(In the formula, X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —).

Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)」
(4)「下記一般式(1)で表わされるメチロール化合物を含有することを特徴とする電荷輸送性膜状体;
Figure 2012193115
(Wherein X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —) ”
(4) “a charge transporting film-like body comprising a methylol compound represented by the following general formula (1);

Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)」
(5)「基板上に、直接又は下引層を介して、電荷発生層と電荷輸送層が積層されてなる電子写真感光体において、該電荷輸送層が前記(4)項に記載された電荷輸送性膜状体であることを特徴とする電子写真感光体。」
Figure 2012193115
(Wherein X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —) ”
(5) In the electrophotographic photosensitive member in which the charge generation layer and the charge transport layer are laminated on the substrate directly or via an undercoat layer, the charge transport layer has the charge described in (4) above. An electrophotographic photoreceptor characterized by being a transportable film-like body. "

本発明の前記一般式(1)で表されるメチロール化合物は、メチロール基と電荷輸送性を有し、成膜性や他のモノマーやポリカーボネート等の高分子材料との相溶性にも優れる。更に、例えばイソシアネート化合物等の水酸基と容易に反応し、高密度の架橋膜形成が可能であり、しかも高密度架橋構造を有しながら良好な電荷輸送特性を示す。このため、良好な電荷輸送性と機械的耐久性や耐熱性の要求される各種有機半導体デバイス、例えば前出の有機電子写真感光体、有機EL、有機TFT、有機太陽電池等用の有機機能材料として極めて有用に用いることができる。
また本発明の上記メチロール化合物の製造原料として有用な前記一般式(2)の新規アルデヒド化合物を、水素化ホウ素ナトリウム等の還元剤を用いた還元反応より、目的のメチロール化合物を容易に合成して提供することができるという極めて優れた効果を奏する。
The methylol compound represented by the general formula (1) of the present invention has a methylol group and a charge transport property, and is excellent in film forming properties and compatibility with other monomers and polymer materials such as polycarbonate. Furthermore, it easily reacts with a hydroxyl group such as an isocyanate compound to form a high-density crosslinked film, and exhibits good charge transport properties while having a high-density crosslinked structure. Therefore, various organic semiconductor devices that require good charge transportability, mechanical durability, and heat resistance, such as the above-mentioned organic electrophotographic photosensitive member, organic EL, organic TFT, organic functional material for organic solar cells, etc. Can be used very effectively.
In addition, the novel aldehyde compound of the general formula (2), which is useful as a raw material for producing the methylol compound of the present invention, can be easily synthesized from the target methylol compound by a reduction reaction using a reducing agent such as sodium borohydride. There is an extremely excellent effect that it can be provided.

合成例1において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 1, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例2において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 2, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例3において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 3, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例4において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 4, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例5において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 5, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例6において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 6, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例7において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 7, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例8において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 8, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例9において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 9, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例10において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 10, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例11において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 11, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%). 合成例12において得られた化合物の赤外吸収スペクトル図(KBr錠剤法)であり、横軸は波数(cm−1)を示し、縦軸は透過度(%)を示す。It is an infrared absorption spectrum figure (KBr tablet method) of the compound obtained in the synthesis example 12, a horizontal axis shows a wave number (cm <-1 >), and a vertical axis | shaft shows the transmittance | permeability (%).

以下、本発明の詳細を説明する。
前記一般式(1)で表される本発明のメチロール化合物の具体例を以下の表1に示すが、本発明は何らこれら例示の化合物に限定されるものではない。
Details of the present invention will be described below.
Specific examples of the methylol compound of the present invention represented by the general formula (1) are shown in the following Table 1, but the present invention is not limited to these exemplified compounds.

Figure 2012193115
Figure 2012193115

前記一般式(1)で表される本発明のメチロール化合物は新規物質であり、前記一般式(2)で表されるアルデヒド化合物を製造原料として用い、これらの原料を水素化ホウ素ナトリウム等の還元剤によって、還元反応させることにより合成することができる。
例えば、以下の手順でアルデヒド化合物を合成し、得られたアルデヒド化合物を還元反応させて本発明のメチロール化合物を容易に合成することができる。
The methylol compound of the present invention represented by the general formula (1) is a novel substance, and the aldehyde compound represented by the general formula (2) is used as a production raw material, and these raw materials are reduced with sodium borohydride or the like. It can be synthesized by reducing reaction with an agent.
For example, the methylol compound of the present invention can be easily synthesized by synthesizing an aldehyde compound by the following procedure and subjecting the obtained aldehyde compound to a reduction reaction.

[アルデヒド化合物の合成]
下記反応式に示すようにトリフェニルアミン化合物を原料とし、これを従来知られている方法(例えばビルスマイヤー反応)を用いてホルミル化し、アルデヒド化合物を合成することができる。
[Synthesis of aldehyde compounds]
As shown in the following reaction formula, a triphenylamine compound is used as a raw material, which is formylated using a conventionally known method (for example, Vilsmeier reaction) to synthesize an aldehyde compound.

Figure 2012193115
Figure 2012193115

すなわち、上記の具体的なホルミル化の方法としては、塩化亜鉛/オキシ塩化リン/ジメチルホルムアルデヒドを用いた方法が有効であるが、本発明の中間体(メチロール化合物原料)であるアルデヒド化合物を得るための合成方法は、これらに限定されるものではない。具体的な合成例については後述の実施例に示す。   That is, as a specific formylation method, a method using zinc chloride / phosphorus oxychloride / dimethylformaldehyde is effective, but in order to obtain an aldehyde compound which is an intermediate of the present invention (methylol compound raw material). However, the synthesis method is not limited thereto. Specific synthesis examples will be described in the examples described later.

[メチロール化合物の合成]
下記反応式に示すようにアルデヒド化合物を製造原料とし、これを従来知られている還元方法を用いてメチロール化合物を合成することができる。
[Synthesis of methylol compounds]
As shown in the following reaction formula, a methylol compound can be synthesized by using an aldehyde compound as a raw material for production and using a conventionally known reduction method.

Figure 2012193115
Figure 2012193115

すなわち、上記の具体的な還元方法としては、水素化ホウ素ナトリムを用いた方法が有効であるが、本発明のメチロール化合物を得るための合成方法は、これらに限定されるものではない。具体的な合成例については後述の実施例に示す。   That is, as the specific reduction method described above, a method using sodium borohydride is effective, but the synthesis method for obtaining the methylol compound of the present invention is not limited thereto. Specific synthesis examples will be described in the examples described later.

本発明の前記一般式(1)で表されるメチロール化合物は、分子中に2つのトリフェニルアミン構造を連結基で介した主要骨格構造を有するため、結晶性が低く、他のモノマーやポリカーボネート等の高分子材料との相溶性に優れた電荷輸送機能を有する。
更に、例えばイソシアネート化合物等の水酸基と容易に化学反応し、高密度の架橋膜形成が可能であり、しかも高密度架橋構造を有しながら良好な電荷輸送特性を示す。このため、良好な電荷輸送性と機械的耐久性や耐熱性の要求される各種有機半導体デバイス、例えば前出の有機電子写真感光体、有機EL、有機TFT、有機太陽電池等用の有機機能材料として極めて有用に用いることができる。
また、本発明のメチロール化合物は、他のモノマーやポリカーボネート等の高分子材料との相溶性も良好であり、例えば、トリメチロールプロパン、ブタントリオール、トリメチロールプロパンアクリレート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、スミジュールHT(住化バイエルン社製)等が挙げられる。
芳香族イソシアネート化合物として、トリレンジイソシナネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、及びその重合体であるポリメリック(MDI)、キシレンジイソシアネート(XDI)、また(TDI)、(MDI)あるいは(XDI)とトリメチロールプロパン等のポリオールとのアダクト型が挙げられる。
これらのモノマーは単一あるいは複数用いて本発明のメチロール化合物に混合してもよく、目的とする要求特性等に合せて選択することができる。これらのモノマーの混合量は目的によっても異なるが、例えば電子写真感光体の電荷輸送層に応用する場合、通常メチロール化合物との混合比(重量%)で0.01%〜1500%、好ましくは1%〜500%程度である。
また、前記芳香族イソシアネート化合物1分子中に占める全イソシアネート基の含有比率NCO%(〔NCO基〕/〔イソシアネート化合物〕:wt%)が3〜50であることも好適な態様であり、より好ましくは10〜50%である。
The methylol compound represented by the general formula (1) of the present invention has a main skeleton structure in which two triphenylamine structures are connected via a linking group in the molecule, so that the crystallinity is low, and other monomers, polycarbonates, etc. It has a charge transport function with excellent compatibility with other polymer materials.
Furthermore, it can easily chemically react with a hydroxyl group such as an isocyanate compound to form a high-density crosslinked film, and exhibits good charge transport properties while having a high-density crosslinked structure. Therefore, various organic semiconductor devices that require good charge transportability, mechanical durability, and heat resistance, such as the above-mentioned organic electrophotographic photosensitive member, organic EL, organic TFT, organic functional material for organic solar cells, etc. Can be used very effectively.
In addition, the methylol compound of the present invention has good compatibility with other monomers and polymer materials such as polycarbonate. For example, trimethylolpropane, butanetriol, trimethylolpropane acrylate, hexamethylene diisocyanate, isophorone diisocyanate, Examples include Joule HT (manufactured by Sumika Bayern).
As aromatic isocyanate compounds, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and polymers thereof, polymeric (MDI), xylene diisocyanate (XDI), and (TDI), (MDI) or (XDI) And an adduct type of polyol such as trimethylolpropane.
These monomers may be used singly or in combination and may be mixed with the methylol compound of the present invention, and can be selected according to the desired required characteristics. The mixing amount of these monomers varies depending on the purpose. For example, when applied to the charge transport layer of an electrophotographic photoreceptor, the mixing ratio (% by weight) with a methylol compound is usually 0.01% to 1500%, preferably 1 % To about 500%.
Moreover, it is also a preferable aspect that the content ratio NCO% ([NCO group] / [isocyanate compound]: wt%) of all isocyanate groups in one molecule of the aromatic isocyanate compound is 3 to 50, more preferably. Is 10 to 50%.

以下、合成例及び評価例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although a synthesis example and an evaluation example are given and this invention is demonstrated further in detail, this invention is not limited to these Examples.

[合成例1(例示化合物1のための中間体1製造に用いたアルデヒド化合物原料の合成)] [Synthesis Example 1 (Synthesis of raw material of aldehyde compound used for production of intermediate 1 for exemplary compound 1)]

Figure 2012193115
4,4‘−ジアミノジフェニルメタン:19.83g、ブロモベンゼン:69.08g、酢酸パラジウム:2.24g、ターシャルブトキシナトリウム:46.13g、o-キシレン:250mlを四つ口フラスコに入れる。アルゴンガス雰囲気下、室温にて撹拌。トリターシャルブチルホスフィン:8.09gを滴下。80℃にて1時間、還流にて1時間撹拌継続。トルエンにて希釈し、硫酸マグネシウム、活性白土、シリカゲルを入れ、撹拌。濾過、洗浄、濃縮を行ない、結晶物が得られた。メタノールにて分散し、濾過、洗浄、乾燥を行ない、目的物を得た。(収量45.73g、薄黄色粉末、赤外吸収スペクトルを図1に示す)
Figure 2012193115
4,4′-diaminodiphenylmethane: 19.83 g, bromobenzene: 69.08 g, palladium acetate: 2.24 g, tert-butoxy sodium: 46.13 g, o-xylene: 250 ml are placed in a four-necked flask. Stir at room temperature under argon gas atmosphere. Tritial butyl phosphine: 8.09 g was added dropwise. Continue stirring at 80 ° C. for 1 hour and at reflux for 1 hour. Dilute with toluene, add magnesium sulfate, activated clay, silica gel and stir. Filtration, washing and concentration were carried out to obtain a crystal. The product was dispersed in methanol, filtered, washed and dried to obtain the desired product. (Yield 45.73 g, pale yellow powder, infrared absorption spectrum is shown in FIG. 1)

[合成例2(実施例1;例示化合物1の製造原料として用いたアルデヒド化合物の合成)] [Synthesis Example 2 (Example 1; Synthesis of aldehyde compound used as production raw material of Exemplified Compound 1)]

Figure 2012193115
中間体原料:30.16g、N-メチルホルムアニリド:71.36g、o-ジクロロベンゼン:400mlを四つ口フラスコに入れる。アルゴンガス雰囲気下、室温にて撹拌。オキシ塩化リン:82.01gを滴下。80℃に昇温し、撹拌。塩化亜鉛:32.71gを滴下。80℃にて撹拌を約10時間行ない、120℃にて約3時間撹拌継続。水酸化カリウム水溶液を加え、加水分解反応を行なった。ジクロロメタンにて抽出し、硫酸マグネシウムにて脱水、活性白土にて吸着処理を行なった。濾過、洗浄、濃縮を行ない、結晶物を得た。シリカゲルカラム精製(トルエン/酢酸エチル=8/2)を行ない、単離した。得られた結晶物をメタノール/酢酸エチルにて再結晶し、目的物を得た。(収量27.80g、黄色粉末、赤外吸収スペクトルを図2に示す)
Figure 2012193115
Intermediate raw material: 30.16 g, N-methylformanilide: 71.36 g, o-dichlorobenzene: 400 ml are put into a four-necked flask. Stir at room temperature under argon gas atmosphere. Phosphorus oxychloride: 82.01 g was added dropwise. The temperature was raised to 80 ° C. and stirred. Zinc chloride: 32.71 g was added dropwise. Stirring is performed at 80 ° C. for about 10 hours, and stirring is continued at 120 ° C. for about 3 hours. An aqueous potassium hydroxide solution was added to conduct a hydrolysis reaction. Extraction with dichloromethane, dehydration with magnesium sulfate, and adsorption treatment with activated clay. Filtration, washing, and concentration were performed to obtain a crystal. Silica gel column purification (toluene / ethyl acetate = 8/2) was performed and isolated. The obtained crystal was recrystallized from methanol / ethyl acetate to obtain the desired product. (Yield 27.80 g, yellow powder, infrared absorption spectrum is shown in FIG. 2)

[合成例3(実施例2;例示メチロール化合物1の合成)] [Synthesis Example 3 (Example 2; Synthesis of Exemplified Methylol Compound 1)]

Figure 2012193115
中間体アルデヒド化合物:12.30g、エタノール:150mlを四つ口フラスコに入れる。室温下にて撹拌し、水素化ホウ素ナトリウム:3.63gを投下。そのまま4時間撹拌継続。酢酸エチルにて抽出し、硫酸マグネシウムにて脱水し、活性白土&シリカゲルにて吸着処理を行なった。濾過、洗浄、濃縮により、アモルファス状物質が得られた。n−ヘキサンにて分散し、濾過、洗浄、乾燥にて取り出し、目的物を得た。(収量12.0g、薄黄白色アモルファス、赤外吸収スペクトルを図3に示す)
Figure 2012193115
Intermediate aldehyde compound: 12.30 g, ethanol: 150 ml are placed in a four-necked flask. The mixture was stirred at room temperature, and 3.63 g of sodium borohydride was dropped. Continue stirring for 4 hours. The mixture was extracted with ethyl acetate, dehydrated with magnesium sulfate, and adsorbed with activated clay and silica gel. An amorphous substance was obtained by filtration, washing and concentration. The product was dispersed in n-hexane and taken out by filtration, washing and drying to obtain the desired product. (Yield 12.0 g, pale yellow-white amorphous, infrared absorption spectrum is shown in FIG. 3)

[合成例4(例示化合物2のための中間体2製造に用いたアルデヒド化合物原料の合成)] [Synthesis Example 4 (Synthesis of raw material of aldehyde compound used for production of intermediate 2 for exemplary compound 2)]

Figure 2012193115
4,4‘−ジアミノジフェニルエーテル:20.02g、ブロモベンゼン:69.08g、酢酸パラジウム:0.56g、ターシャルブトキシナトリウム:46.13g、o-キシレン:250mlを四つ口フラスコに入れる。アルゴンガス雰囲気下、室温にて撹拌。トリターシャルブチルホスフィン:2.02gを滴下。80℃にて1時間、還流にて1時間撹拌継続。トルエンにて希釈し、硫酸マグネシウム、活性白土、シリカゲルを入れ、撹拌。濾過、洗浄、濃縮を行ない、結晶物が得られた。メタノールにて分散し、濾過、洗浄、乾燥を行ない、目的物を得た。(収量43.13g、薄茶色粉体、赤外吸収スペクトルを図4に示す)
Figure 2012193115
4,4'-diaminodiphenyl ether: 20.02 g, bromobenzene: 69.08 g, palladium acetate: 0.56 g, tert-butoxy sodium: 46.13 g, o-xylene: 250 ml are placed in a four-necked flask. Stir at room temperature under argon gas atmosphere. Tritertiary butylphosphine: 2.02 g was added dropwise. Continue stirring at 80 ° C. for 1 hour and at reflux for 1 hour. Dilute with toluene, add magnesium sulfate, activated clay, silica gel and stir. Filtration, washing and concentration were carried out to obtain a crystal. The product was dispersed in methanol, filtered, washed and dried to obtain the desired product. (Yield 43.13 g, light brown powder, infrared absorption spectrum is shown in FIG. 4)

[合成例5(実施例3;例示化合物2の製造に用いたアルデヒド化合物の合成)] [Synthesis Example 5 (Example 3; Synthesis of aldehyde compound used for production of Exemplified Compound 2)]

Figure 2012193115
中間体原料:30.27g、N-メチルホルムアニリド:71.36g、o-ジクロロベンゼン:300mlを四つ口フラスコに入れる。アルゴンガス雰囲気下、室温にて撹拌。オキシ塩化リン:82.01gを滴下。80℃に昇温し、撹拌。塩化亜鉛:16.36gを滴下。80℃にて撹拌を1時間行ない、120℃にて4時間、140℃にて3時間撹拌継続。水酸化カリウム水溶液を加え、加水分解反応を行なった。トルエン溶媒を用いて、抽出し、硫酸マグネシウムを入れ、濾過、洗浄、濃縮。トルエン/酢酸エチルにてカラム精製を行ない、濃縮後結晶が得られた。メタノールにて分散し、濾過、洗浄、乾燥を行ない、目的物を得た。(収量14.17g、薄黄色粉体、赤外吸収スペクトルを図5に示す)
Figure 2012193115
Intermediate raw material: 30.27 g, N-methylformanilide: 71.36 g, o-dichlorobenzene: 300 ml are put into a four-necked flask. Stir at room temperature under argon gas atmosphere. Phosphorus oxychloride: 82.01 g was added dropwise. The temperature was raised to 80 ° C. and stirred. Zinc chloride: 16.36 g was added dropwise. Stir at 80 ° C. for 1 hour, continue at 120 ° C. for 4 hours, and continue at 140 ° C. for 3 hours. An aqueous potassium hydroxide solution was added to conduct a hydrolysis reaction. Extract with toluene solvent, add magnesium sulfate, filter, wash, concentrate. Column purification was performed with toluene / ethyl acetate, and crystals were obtained after concentration. The product was dispersed in methanol, filtered, washed and dried to obtain the desired product. (Yield 14.17 g, pale yellow powder, infrared absorption spectrum is shown in FIG. 5)

[合成例6(実施例4;例示メチロール化合物2の合成)] [Synthesis Example 6 (Example 4; Synthesis of Exemplified Methylol Compound 2)]

Figure 2012193115
中間体アルデヒド化合物:6.14g、エタノール:75mlを四つ口フラスコに入れる。室温下にて撹拌し、水素化ホウ素ナトリウム:1.82gを投下。そのまま7時間撹拌継続。酢酸エチルにて抽出し、硫酸マグネシウムにて脱水し、活性白土&シリカゲルにて吸着処理を行なった。濾過、洗浄、濃縮により、アモルファス状物質が得られた。n−ヘキサンにて分散し、濾過、洗浄、乾燥にて取り出し、目的物を得。(収量5.25g、白色アモルファス、赤外吸収スペクトルを図6に示す)
Figure 2012193115
Intermediate aldehyde compound: 6.14 g, ethanol: 75 ml are placed in a four-necked flask. The mixture was stirred at room temperature and 1.82 g of sodium borohydride was added. Continue stirring for 7 hours. The mixture was extracted with ethyl acetate, dehydrated with magnesium sulfate, and adsorbed with activated clay and silica gel. An amorphous substance was obtained by filtration, washing and concentration. Disperse with n-hexane, take out by filtration, washing and drying to obtain the desired product. (Yield 5.25 g, white amorphous, infrared absorption spectrum is shown in FIG. 6)

[合成例7(例示化合物3のための中間体3製造に用いたアルデヒド化合物原料の合成)] [Synthesis Example 7 (synthesis of aldehyde compound raw material used for production of intermediate 3 for exemplary compound 3)]

Figure 2012193115
ジフェニルアミン:22.33g、ジブロモスチルベン:20.28g、酢酸パラジウム:0.336g、ターシャルブトキシナトリウム:13.84g、o-キシレン:150mlを四つ口フラスコに入れる。アルゴンガス雰囲気下、室温にて撹拌。トリターシャルブチルホスフィン:1.22gを滴下。80℃にて1時間、還流にて2時間撹拌継続。トルエンにて希釈し、硫酸マグネシウム、活性白土、シリカゲルを入れ、撹拌。濾過、洗浄、濃縮を行ない、結晶物が得られた。メタノールにて分散し、濾過、洗浄、乾燥を行ない、目的物を得た。(収量29.7g、黄色粉体、赤外吸収スペクトルを図7に示す)
Figure 2012193115
Diphenylamine: 22.33 g, dibromostilbene: 20.28 g, palladium acetate: 0.336 g, tert-butoxy sodium: 13.84 g, o-xylene: 150 ml are placed in a four-necked flask. Stir at room temperature under argon gas atmosphere. Tritertiary butylphosphine: 1.22 g was added dropwise. Continue stirring at 80 ° C. for 1 hour and at reflux for 2 hours. Dilute with toluene, add magnesium sulfate, activated clay, silica gel and stir. Filtration, washing and concentration were carried out to obtain a crystal. The product was dispersed in methanol, filtered, washed and dried to obtain the desired product. (Yield 29.7 g, yellow powder, infrared absorption spectrum is shown in FIG. 7)

[合成例8(実施例5;例示化合物3の製造に用いたアルデヒド化合物の合成)] [Synthesis Example 8 (Example 5; Synthesis of aldehyde compound used for production of Exemplified Compound 3)]

Figure 2012193115
脱水ジメチルホルムアルデヒド:33.44g、脱水トルエン:84.53gを四つ口フラスコに入れる。アルゴンガス雰囲気、氷水浴下にて撹拌。オキシ塩化リン:63.8gをゆっくり滴下。そのまま約1時間撹拌継続。中間体原料:26.76gを脱水トルエン:106g溶解液をゆっくり滴下。80℃にて撹拌を1時間行ない、還流にて5時間撹拌継続。水酸化カリウム水溶液を加え、加水分解反応を行なった。トルエンにて抽出し、硫酸マグネシウムにて脱水し、濃縮。カラム精製(トルエン/酢酸エチル=8/2)により単離した。メタノールにて分散し、濾過、洗浄、乾燥にて取り出し、目的物を得た。(収量16.66g、オレンジ粉末、赤外吸収スペクトルを図8に示す)
Figure 2012193115
Dehydrated dimethylformaldehyde: 33.44 g and dehydrated toluene: 84.53 g are placed in a four-necked flask. Stir in an argon gas atmosphere and ice-water bath. Slowly drop 63.8 g of phosphorus oxychloride. Continue stirring for about 1 hour. Intermediate raw material: 26.76 g of dehydrated toluene: 106 g A solution was slowly added dropwise. Stir at 80 ° C. for 1 hour and continue to stir at reflux for 5 hours. An aqueous potassium hydroxide solution was added to conduct a hydrolysis reaction. Extract with toluene, dehydrate with magnesium sulfate, and concentrate. Isolated by column purification (toluene / ethyl acetate = 8/2). The product was dispersed in methanol and taken out by filtration, washing and drying to obtain the desired product. (Yield 16.66 g, orange powder, infrared absorption spectrum is shown in FIG. 8)

[合成例9(実施例6;例示メチロール化合物3の合成)] [Synthesis Example 9 (Example 6; Synthesis of Exemplified Methylol Compound 3)]

Figure 2012193115
中間体アルデヒド化合物:6.54g、エタノール:75mlを四つ口フラスコに入れる。室温下にて撹拌し、水素化ホウ素ナトリウム:1.82gを投下。そのまま4時間撹拌継続。酢酸エチルにて抽出し、硫酸マグネシウムにて脱水し、活性白土&シリカゲルにて吸着処理を行なった。濾過、洗浄、濃縮により、アモルファス状物質が得られた。n−ヘキサンにて分散し、濾過、洗浄、乾燥にて取り出し、目的物を得。(収量2.30g、黄色アモルファス、赤外吸収スペクトルを図9に示す)
Figure 2012193115
Intermediate aldehyde compound: 6.54 g, ethanol: 75 ml are placed in a four-necked flask. The mixture was stirred at room temperature and 1.82 g of sodium borohydride was added. Continue stirring for 4 hours. The mixture was extracted with ethyl acetate, dehydrated with magnesium sulfate, and adsorbed with activated clay and silica gel. An amorphous substance was obtained by filtration, washing and concentration. Disperse with n-hexane, take out by filtration, washing and drying to obtain the desired product. (Yield 2.30 g, yellow amorphous, infrared absorption spectrum is shown in FIG. 9)

[合成例10(例示化合物4のための中間体4製造に用いたアルデヒド化合物原料の合成)] [Synthesis Example 10 (Synthesis of aldehyde compound raw material used for production of intermediate 4 for exemplary compound 4)]

Figure 2012193115
2,2‘−エチレンジアニリン:21.23g、ブロモベンゼン:75.36g、酢酸パラジウム:0.56g、ターシャルブトキシナトリウム:46.13g、o-キシレン:250mlを四つ口フラスコに入れる。アルゴンガス雰囲気&室温下にて撹拌。トリターシャルブチルホスフィン:2.03gを滴下。還流撹拌にて、8時間継続。トルエンにて希釈し、硫酸マグネシウム、活性白土を加え、室温下で撹拌。濾過、洗浄、濃縮を行ない、結晶物を得た。メタノールにて分散し、濾過、洗浄、乾燥を行ない、目的物を得た。(収量47.65g、薄茶色粉末、赤外吸収スペクトルを図10に示す)
Figure 2012193115
2,2′-ethylenedianiline: 21.23 g, bromobenzene: 75.36 g, palladium acetate: 0.56 g, tert-butoxy sodium: 46.13 g, o-xylene: 250 ml are placed in a four-necked flask. Stir in an argon gas atmosphere and room temperature. Add dropwise 2.03 g of tributyl phosphine. Continued at reflux for 8 hours. Dilute with toluene, add magnesium sulfate and activated clay, and stir at room temperature. Filtration, washing, and concentration were performed to obtain a crystal. The product was dispersed in methanol, filtered, washed and dried to obtain the desired product. (Yield 47.65 g, light brown powder, infrared absorption spectrum is shown in FIG. 10)

[合成例11(実施例7;例示化合物4製造のための中間体アルデヒド化合物の合成)] [Synthesis Example 11 (Example 7; Synthesis of Intermediate Aldehyde Compound for Production of Illustrative Compound 4)]

Figure 2012193115
中間体原料ドナー:31.0g、N-メチルホルムアニリド:71.36g、o-クロロベンゼン:400mlを四つ口フラスコに入れる。アルゴンガス雰囲気&室温下にて撹拌。オキシ塩化リン:82.01gをゆっくり滴下し、80℃に昇温。塩化亜鉛:32.71gを加え、80℃にて1時間、120℃にて約24時間継続。水酸化カリウム水溶液を加え、加水分解反応を行なった。トルエンにて希釈し、その後水洗し、油層を塩化マグネシウムにて脱水し、活性白土&シリカゲルにて吸着し、濾過、洗浄、濃縮を行ない、目的物を得た。(収量22.33g、黄色液体、赤外吸収スペクトルを図11に示す)
Figure 2012193115
Intermediate raw material donor: 31.0 g, N-methylformanilide: 71.36 g, o-chlorobenzene: 400 ml are put into a four-necked flask. Stir in an argon gas atmosphere and room temperature. Phosphorus oxychloride: 82.01 g was slowly added dropwise, and the temperature was raised to 80 ° C. Zinc chloride: 32.71 g was added and continued at 80 ° C. for 1 hour and at 120 ° C. for about 24 hours. An aqueous potassium hydroxide solution was added to conduct a hydrolysis reaction. Diluted with toluene, then washed with water, the oil layer was dehydrated with magnesium chloride, adsorbed with activated clay and silica gel, filtered, washed and concentrated to obtain the desired product. (Yield 22.33 g, yellow liquid, infrared absorption spectrum is shown in FIG. 11)

[合成例12(実施例8;例示メチロール化合物4の合成)] [Synthesis Example 12 (Example 8; Synthesis of Exemplified Methylol Compound 4)]

Figure 2012193115
中間体アルデヒド化合物:9.43g、エタノール:100mlを四つ口フラスコに入れる。室温下にて撹拌し、水素化ホウ素ナトリウム:2.72gを投下。そのまま7時間撹拌継続。酢酸エチルにて抽出し、硫酸マグネシウムにて脱水し、活性白土&シリカゲルにて吸着処理を行なった。濾過、洗浄、濃縮により、アモルファス状物質が得られた。n−ヘキサンにて分散し、濾過、洗浄、乾燥にて取り出し、目的物を得た。(収量8.53g、白色アモルファス、赤外吸収スペクトルを図12に示す)
Figure 2012193115
Intermediate aldehyde compound: 9.43 g, ethanol: 100 ml are placed in a four-necked flask. The mixture was stirred at room temperature, and sodium borohydride: 2.72 g was dropped. Continue stirring for 7 hours. The mixture was extracted with ethyl acetate, dehydrated with magnesium sulfate, and adsorbed with activated clay and silica gel. An amorphous substance was obtained by filtration, washing and concentration. The product was dispersed in n-hexane and taken out by filtration, washing and drying to obtain the desired product. (Yield 8.53 g, white amorphous, infrared absorption spectrum is shown in FIG. 12)

以上に示した反応により合成される前記一般式(2)で表されるアルデヒド化合物を、本発明のメチロール化合物製造のための原料として用い、これを還元反応させることによって前記一般式(1)で表される本発明のメチロール化合物が容易に製造されることがわかる。更に、上記反応により前出の他の例示化合物5,6も容易に製造される。   The aldehyde compound represented by the general formula (2) synthesized by the reaction shown above is used as a raw material for the production of the methylol compound of the present invention, and this is subjected to a reduction reaction in the general formula (1). It can be seen that the represented methylol compound of the present invention is easily produced. Furthermore, the other exemplified compounds 5 and 6 are easily produced by the above reaction.

<電荷輸送性評価>
[実施例9(応用例1)]
アルミ板上に下記組成の下引き層用塗工液、電荷発生層用塗工液、電荷輸送層用塗工液を順次、塗布、乾燥することにより、0.3μmの下引き層、0.3μmの電荷発生層、20μmの電荷輸送層を形成して6種類の感光体(1)〜(6)を作製した。
なお、6種類の感光体における電荷輸送層用塗工液の組成分として、それぞれ前記合成例において合成した本発明の例示メチロール化合物1〜4及び比較例化合物(I)、(II)を用いた。
<Evaluation of charge transportability>
[Example 9 (Application 1)]
By coating and drying an undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution in the following order on an aluminum plate in sequence, an undercoat layer of 0.3 μm; Six types of photoconductors (1) to (6) were prepared by forming a 3 μm charge generation layer and a 20 μm charge transport layer.
In addition, as the composition of the coating solution for the charge transport layer in the six types of photoreceptors, the exemplified methylol compounds 1 to 4 of the present invention synthesized in the synthesis example and the comparative compounds (I) and (II) were used, respectively. .

<下引き層用塗工液>
ポリアミド樹脂(CM−8000:東レ社製): 2部
メタノール: 49部
ブタノール: 49部
<Coating liquid for undercoat layer>
Polyamide resin (CM-8000: manufactured by Toray Industries, Inc.): 2 parts Methanol: 49 parts Butanol: 49 parts

<電荷発生層用塗工液>
下記構造式のビスアゾ顔料 : 2.5部
<Coating liquid for charge generation layer>
Bisazo pigment having the following structural formula: 2.5 parts

Figure 2012193115
ポリビニルブチラール(XYHL:UCC社製): 0.5部
シクロヘキサノン: 200部
メチルエチルケトン: 80部
Figure 2012193115
Polyvinyl butyral (XYHL: manufactured by UCC): 0.5 part Cyclohexanone: 200 parts Methyl ethyl ketone: 80 parts

<電荷輸送層用塗工液:(1)>
ビスフェノールZポリカーボネート
(パンライトTS−2050、帝人化成社製): 10部
電荷輸送性化合物
(表2に示す例示メチロール化合物1: 10部
テトラヒドロフラン: 80部
1%シリコーンオイルのテトラヒドロフラン溶液
(KF−50−100CS、信越化学工業社製): 0.2部
<Coating liquid for charge transport layer: (1)>
Bisphenol Z polycarbonate (Panlite TS-2050, manufactured by Teijin Chemicals Ltd.): 10 parts Charge transporting compound (Exemplified methylol compound shown in Table 2: 10 parts Tetrahydrofuran: 80 parts Tetrahydrofuran solution of 1% silicone oil (KF-50- 100CS, manufactured by Shin-Etsu Chemical Co., Ltd.): 0.2 parts

[実施例10(応用例2)]
実施例9(応用例1)における例示メチロール化合物1を、例示メチロール化合物2に変えた以外は、実施例9と同様にして感光体No(2)を作製した。
[Example 10 (Application 2)]
Photoreceptor No (2) was produced in the same manner as in Example 9, except that the exemplified methylol compound 1 in Example 9 (Application Example 1) was changed to the exemplified methylol compound 2.

[実施例11(応用例3)]
実施例9(応用例1)における例示メチロール化合物1を、例示メチロール化合物3に変えた以外は、実施例9と同様にして感光体No(3)を作製した。
[Example 11 (application example 3)]
Photoreceptor No (3) was produced in the same manner as in Example 9 except that the exemplified methylol compound 1 in Example 9 (Application Example 1) was changed to the exemplified methylol compound 3.

[実施例12(応用例4)]
実施例9(応用例1)における例示メチロール化合物1を、例示メチロール化合物4に変えた以外は、実施例9と同様にして感光体No(4)を作製した。
[Example 12 (Application 4)]
Photoreceptor No (4) was produced in the same manner as in Example 9 except that the exemplified methylol compound 1 in Example 9 (Application Example 1) was changed to the exemplified methylol compound 4.

[比較例1]
実施例9(応用例1)における例示メチロール化合物1を、つぎに示す化合物(I)に変えた以外は、実施例9と同様にして感光体No(5)を作製した。
[Comparative Example 1]
Photoreceptor No (5) was produced in the same manner as in Example 9, except that the exemplified methylol compound 1 in Example 9 (Application Example 1) was changed to the compound (I) shown below.

Figure 2012193115
Figure 2012193115

[比較例2]
実施例9(応用例1)における例示メチロール化合物1を、つぎに示す化合物(II)に変えた以外は、実施例9と同様にして感光体No(6)を作製した。
[Comparative Example 2]
Photoreceptor No (6) was produced in the same manner as in Example 9, except that the exemplified methylol compound 1 in Example 9 (Application Example 1) was changed to the compound (II) shown below.

Figure 2012193115
Figure 2012193115

上記により得られた感光体(1)〜(6)について、市販の静電複写紙試験装置[(株)川口電機製作所製EPA−8200型]を用い、半減露光量と残留電位から電荷輸送性を評価した。
すなわち、暗所で−6kVのコロナ放電により−800Vに帯電せしめた後、タングステンランプ光を感光体表面での照度が4.5luxになるように照射して、電位が1/2になるまでの時間(秒)を求め、半減露光量E1/2 (lux・sec)を算出した。また、露光30秒後の残留電位(−V)を求めた。なお、半減露光量が小さいほど感度が良く、残留電位が小さいほど電荷のトラップが少ないことを表す。
評価結果を下記表2に示す。
With respect to the photoreceptors (1) to (6) obtained as described above, a commercially available electrostatic copying paper testing apparatus [EPA-8200 type manufactured by Kawaguchi Electric Mfg. Co., Ltd.] was used to charge transport from half-exposure amount and residual potential. Evaluated.
That is, after charging to −800 V by −6 kV corona discharge in a dark place, tungsten lamp light is irradiated so that the illuminance on the surface of the photosensitive member becomes 4.5 lux, and the potential is reduced to ½. The time (second) was obtained, and the half-exposure amount E1 / 2 (lux · sec) was calculated. Further, the residual potential (−V) after 30 seconds of exposure was determined. The smaller the half-exposure amount, the better the sensitivity, and the smaller the residual potential, the fewer charge traps.
The evaluation results are shown in Table 2 below.

Figure 2012193115
上記評価結果から、公知材料であるメチロール基を有していない電荷輸送性化合物(I)を用いた比較感光体に比べて、本発明のメチロール化合物を用いた感光体(1)〜(4)は遜色なく、半減露光量が小さく感度が良好であり、残留電位が無く電荷のトラップの無いことが明確であり良好な電荷輸送性を示すことが分る。
Figure 2012193115
From the above evaluation results, the photoconductors (1) to (4) using the methylol compound of the present invention compared to the comparative photoconductor using the charge transporting compound (I) having no methylol group, which is a known material. Is inferior, has a small half-exposure amount and good sensitivity, clearly shows no residual potential and no charge trapping, and shows good charge transportability.

<耐ソルベント性評価>
また、上記感光体(1)〜(6)の表面に10mm×10mmの範囲で指脂を付着させ、45℃/43%RHの暗所環境下に1週間放置した後、顕微鏡にてソルベントクラックの有無を観察した。結果を表3示す。
<Solvent resistance evaluation>
Further, finger grease is attached to the surface of the above photoconductors (1) to (6) in a range of 10 mm × 10 mm, left in a dark place at 45 ° C./43% RH for one week, and then a solvent crack is observed with a microscope. The presence or absence of was observed. The results are shown in Table 3.

Figure 2012193115
(クラック評価)
○:発生なし、△:5本未満の発生、×:5本以上(ほぼ全面クラック)の発生

公知材料であるメチロール基を有さない電荷輸送性化合物(I)では、ほぼ全面にクラックが見られた。また、メチロール基を有するが、剛直な構造である化合物(II)では、若干のクラックが見られた。
これら比較例に対し、本発明のメチロール化合物を用いた感光体(1)〜(4)は、クラックが発生しなかった。
Figure 2012193115
(Crack evaluation)
○: No occurrence, Δ: Less than 5 occurrences, ×: More than 5 occurrences (almost entire surface cracks)

In the charge transporting compound (I) having no methylol group, which is a known material, cracks were observed on almost the entire surface. Further, in the compound (II) having a methylol group but having a rigid structure, some cracks were observed.
In contrast to these comparative examples, the photoreceptors (1) to (4) using the methylol compound of the present invention did not generate cracks.

<硬化膜のゲル分率測定>
上記合成例で合成した例示化合物1を用いて以下の〈塗工液A〉を調製し、この塗工液Aをアルミ板上にブレード塗工して指触乾燥後、135℃30分の加熱条件にて架橋反応し、厚さ5μmの硬化膜を作製した。得られた硬化膜のゲル分率を求めた。ゲル分率は、アルミ支持体上に架橋型電荷輸送層塗工液を上記のような態様で、直接塗工し、熱乾燥した膜を、テトラヒドロフラン溶液に25℃で5日間浸漬させ、ゲル分の質量残率より、下記数式1から求めた。結果を表3に示す。
<Measurement of gel fraction of cured film>
The following <Coating liquid A> is prepared using the exemplified compound 1 synthesized in the above synthesis example, this coating liquid A is blade-coated on an aluminum plate, dried by touching, and heated at 135 ° C. for 30 minutes. A cross-linking reaction was performed under the conditions to produce a cured film having a thickness of 5 μm. The gel fraction of the obtained cured film was determined. The gel fraction was determined by directly coating a crosslinkable charge transport layer coating solution on an aluminum support in the above-described manner and immersing the thermally dried membrane in a tetrahydrofuran solution at 25 ° C. for 5 days. It calculated | required from the following Numerical formula 1 from the mass residual ratio of. The results are shown in Table 3.

Figure 2012193115
Figure 2012193115

〈塗工液A〉
例示化合物1: 10部
トルエン−2,4−ジイソシアネート(TDI、東京化成社製): 10部
テトラヒドロフラン: 80部
<Coating fluid A>
Illustrative compound 1: 10 parts Toluene-2,4-diisocyanate (TDI, manufactured by Tokyo Chemical Industry Co., Ltd.): 10 parts Tetrahydrofuran: 80 parts

[実施例14(塗工液Bからの塗工膜の作製)]
塗工液Aにおいて用いた例示化合物1の代りに、例示化合物2を使用する以外は全て塗工液Aと同様の組成で塗工液Bを調製し、同様に厚さ5μmの硬化膜を作製した。そして、この硬化膜について同様にゲル分率測定をした。結果を表3に示す。
[Example 14 (Production of coating film from coating liquid B)]
Instead of Exemplified Compound 1 used in Coating Liquid A, except that Exemplified Compound 2 is used, Coating Liquid B is prepared with the same composition as Coating Liquid A, and similarly a cured film having a thickness of 5 μm is produced. did. And the gel fraction measurement was similarly performed about this cured film. The results are shown in Table 3.

[実施例15(塗工液Cからの塗工膜の作製)]
塗工液Aにおいて用いた例示化合物1の代りに、例示化合物3を使用する以外は全て塗工液Aと同様の組成で塗工液Cを調製し、同様に厚さ5μmの硬化膜を作製した。そして、この硬化膜について同様にゲル分率測定をした。結果を表3に示す。
[Example 15 (Production of coating film from coating liquid C)]
Instead of Exemplified Compound 1 used in Coating Liquid A, except that Exemplified Compound 3 is used, Coating Liquid C is prepared with the same composition as Coating Liquid A, and a cured film having a thickness of 5 μm is similarly produced. did. And the gel fraction measurement was similarly performed about this cured film. The results are shown in Table 3.

[実施例16(塗工液Dからの塗工膜の作製)]
塗工液Aにおいて用いた例示化合物1の代りに、例示化合物4を使用する以外は全て塗工液Aと同様の組成で塗工液Dを調製し、同様に厚さ5μmの硬化膜を作製した。そして、この硬化膜について同様にゲル分率測定をした。結果を表3に示す。
[Example 16 (Production of coating film from coating liquid D)]
Instead of Exemplified Compound 1 used in Coating Liquid A, except that Exemplified Compound 4 is used, a coating liquid D is prepared with the same composition as Coating Liquid A, and a cured film having a thickness of 5 μm is similarly produced. did. And the gel fraction measurement was similarly performed about this cured film. The results are shown in Table 3.

[比較例3(塗工液Eからの塗工膜の作製)]
塗工液Aにおいて用いた例示化合物1の代りに、比較化合物として下記化合物(III)を使用する以外は全て塗工液Aと同様の組成で塗工液Eを調製し、同様に厚さ5μmの硬化膜を作製した。そして、この硬化膜について同様にゲル分率測定をした。結果を表3に示す。
[Comparative Example 3 (Preparation of coating film from coating liquid E)]
A coating liquid E was prepared with the same composition as the coating liquid A except that the following compound (III) was used as a comparative compound in place of the exemplified compound 1 used in the coating liquid A, and the thickness was 5 μm. A cured film was prepared. And the gel fraction measurement was similarly performed about this cured film. The results are shown in Table 3.

Figure 2012193115
Figure 2012193115

[比較例4(塗工液Fからの塗工膜の作製)]
塗工液Aにおいて用いた例示化合物1の代りに、比較化合物として下記化合物(IV)を使用する以外は全て塗工液Aと同様の組成で塗工液Fを調製し、同様に厚さ5μmの硬化膜を作製した。そして、この硬化膜について同様にゲル分率測定をした。結果を表4に示す。
[Comparative Example 4 (Preparation of coating film from coating solution F)]
Instead of the exemplified compound 1 used in the coating liquid A, a coating liquid F was prepared with the same composition as the coating liquid A except that the following compound (IV) was used as a comparative compound. A cured film was prepared. And the gel fraction measurement was similarly performed about this cured film. The results are shown in Table 4.

Figure 2012193115
Figure 2012193115

Figure 2012193115
Figure 2012193115

上記評価結果から、本発明のメチロール化合物は、比較例に示した従来知られている電荷輸送性モノマーと比べてゲル分率が高く、架橋密度の高い硬化膜が形成されていることが分る。このような高密度架橋構造により、各種有機半導体デバイス用の有機機能材料として適用する場合に要求される摩耗や傷等に対する機械的耐久性や耐熱性の向上に応えることができる。   From the above evaluation results, it can be seen that the methylol compound of the present invention has a gel fraction higher than the conventionally known charge transporting monomers shown in the comparative examples, and a cured film having a high crosslinking density is formed. . Such a high-density crosslinked structure can meet the improvement in mechanical durability and heat resistance against wear and scratches required when applied as an organic functional material for various organic semiconductor devices.

上の評価例1(電荷輸送性評価)及び評価例2(硬化膜のゲル分率)から、化学反応により機械的耐久性や耐熱性に対応できる高密度な架橋構造の形成と共に、良好な電荷輸送特性の発現を両立することができるのは本発明のメチロール化合物であり、従来公知の電荷輸送性化合物の場合にはいずれも両立を達成することができない。
したがって、本発明のメチロール化合物は前記各種有機半導体デバイスを提供するための材料として極めて有効である。
From the above evaluation example 1 (charge transportability evaluation) and evaluation example 2 (gel fraction of the cured film), the formation of a high-density cross-linked structure capable of dealing with mechanical durability and heat resistance by a chemical reaction and good charge It is the methylol compound of the present invention that can exhibit both transport properties, and none of the conventionally known charge transporting compounds can achieve compatibility.
Therefore, the methylol compound of the present invention is extremely effective as a material for providing the various organic semiconductor devices.

特開平6−118681号公報Japanese Patent Laid-Open No. 6-118681 特開平9−124943号公報Japanese Patent Laid-Open No. 9-124943 特開平9−190004号公報JP-A-9-190004 特開2000−171990号公報JP 2000-171990 A 特開2003−186223号公報JP 2003-186223 A 特開2007−293197号公報JP 2007-293197 A 特開2007−153765号公報JP 2007-153765 A

Claims (5)

下記一般式(1)で表わされることを特徴とするメチロール化合物。
Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)
A methylol compound represented by the following general formula (1):
Figure 2012193115
(In the formula, X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —).
下記一般式(2)で表わされるアルデヒド化合物。
Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)
An aldehyde compound represented by the following general formula (2).
Figure 2012193115
(In the formula, X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —).
下記一般式(2)で表わされるアルデヒド化合物を還元剤の共存下で反応させて得ることを特徴とする前記一般式(1)で表わされるメチロール化合物の製造方法。
Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)

Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)
A method for producing a methylol compound represented by the general formula (1), which is obtained by reacting an aldehyde compound represented by the following general formula (2) in the presence of a reducing agent.
Figure 2012193115
(In the formula, X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —).

Figure 2012193115
(In the formula, X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —).
下記一般式(1)で表わされるメチロール化合物を含有することを特徴とする電荷輸送性膜状体。
Figure 2012193115
(式中、Xは−O−、−CH2−、−CH=CH−、-CH2CH2−を表す。)
A charge transporting film-like body comprising a methylol compound represented by the following general formula (1):
Figure 2012193115
(In the formula, X represents —O—, —CH 2 —, —CH═CH—, —CH 2 CH 2 —).
基板上に、直接又は下引層を介して、電荷発生層と電荷輸送層が積層されてなる電子写真感光体において、該電荷輸送層が請求項4に記載された電荷輸送性膜状体であることを特徴とする電子写真感光体。   An electrophotographic photosensitive member in which a charge generation layer and a charge transport layer are laminated directly or via an undercoat layer on a substrate, wherein the charge transport layer is a charge transport film-like body according to claim 4. An electrophotographic photosensitive member, characterized in that:
JP2011056089A 2011-03-15 2011-03-15 New methylol compound and aldehyde compound, and method for producing the methylol compound Pending JP2012193115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056089A JP2012193115A (en) 2011-03-15 2011-03-15 New methylol compound and aldehyde compound, and method for producing the methylol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056089A JP2012193115A (en) 2011-03-15 2011-03-15 New methylol compound and aldehyde compound, and method for producing the methylol compound

Publications (1)

Publication Number Publication Date
JP2012193115A true JP2012193115A (en) 2012-10-11

Family

ID=47085388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056089A Pending JP2012193115A (en) 2011-03-15 2011-03-15 New methylol compound and aldehyde compound, and method for producing the methylol compound

Country Status (1)

Country Link
JP (1) JP2012193115A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263724A (en) * 2004-03-19 2005-09-29 Kyocera Mita Corp Amine stilbene derivative, method for producing the same, and electrophotographic phtoreceptor
WO2006064892A1 (en) * 2004-12-13 2006-06-22 Seiko Epson Corporation Conductive material, composition for the conductive material, conductive layer, electronic device, and electronic equipment
JP5549844B2 (en) * 2009-10-02 2014-07-16 株式会社リコー Novel methylol compound and aldehyde compound, and method for producing the methylol compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263724A (en) * 2004-03-19 2005-09-29 Kyocera Mita Corp Amine stilbene derivative, method for producing the same, and electrophotographic phtoreceptor
WO2006064892A1 (en) * 2004-12-13 2006-06-22 Seiko Epson Corporation Conductive material, composition for the conductive material, conductive layer, electronic device, and electronic equipment
JP5549844B2 (en) * 2009-10-02 2014-07-16 株式会社リコー Novel methylol compound and aldehyde compound, and method for producing the methylol compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014005967; HOLMBERG,S.E. and SPANGLER,C.W.: 'Dendrimers based on bis-(diphenylamino)stilbene repeat unit: effect of anthracenyl end-caps' Polymeric Materials: Science and Engineering Vol.84, 2001, p.717-718 *

Similar Documents

Publication Publication Date Title
JP5549844B2 (en) Novel methylol compound and aldehyde compound, and method for producing the methylol compound
JP3580426B1 (en) Organic photoconductive material, electrophotographic photoreceptor and image forming apparatus using the same
CN104035291A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP5708996B2 (en) Novel tetrahydropyranyl compound and method for producing the tetrahydropyranyl compound
CN104035293A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2012193115A (en) New methylol compound and aldehyde compound, and method for producing the methylol compound
JP2004070271A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP4699804B2 (en) Acrylic acid ester compound and production method and production intermediate thereof
JPH0375660A (en) Electrophotographic sensitive body
JPH0431868A (en) Electrophotographic sensitive body
JP2004020649A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP5266747B2 (en) Acrylic ester compound and method for producing the same
JP2006076894A (en) Hydrazone compound and electrophotographic photo-sensitive body using the hydrazone compound, and image forming apparatus equipped with the electrophotographic photo-sensitive body
JP5273431B2 (en) Novel acrylate compound, production intermediate thereof, and production method thereof
JP2011186302A (en) Electrophotographic photoreceptor and image forming apparatus using the same
JPS58156940A (en) Organic photoconductor
CN1881093A (en) Photoconductive member
JP2004070269A (en) Electrophotographic photoreceptor
JP3540036B2 (en) Resorcinol compound, raw material compound thereof and production method thereof
JP2005263711A (en) Enamine compound containing vinylcarboxylic acid ester group and hydroxy group-containing enamine compound
JP2012121862A (en) Novel tetrahydropyranyl compound
JPH0416852A (en) Electrophotographic sensitive body
JPH03119361A (en) Electrophotographic sensitive body
JPH06161138A (en) Electrophotographic photosensitive body
JPH02285358A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811