JP2012187903A - Method of fusing cfrtp material - Google Patents

Method of fusing cfrtp material Download PDF

Info

Publication number
JP2012187903A
JP2012187903A JP2011055730A JP2011055730A JP2012187903A JP 2012187903 A JP2012187903 A JP 2012187903A JP 2011055730 A JP2011055730 A JP 2011055730A JP 2011055730 A JP2011055730 A JP 2011055730A JP 2012187903 A JP2012187903 A JP 2012187903A
Authority
JP
Japan
Prior art keywords
cfrtp
fusing
cfrtp material
fusion
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011055730A
Other languages
Japanese (ja)
Inventor
Yoshihiro Mizutani
義弘 水谷
Akira Todoroki
章 轟
Masatobu Kawagoe
正羽 河越
Masayuki Murata
将之 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2011055730A priority Critical patent/JP2012187903A/en
Publication of JP2012187903A publication Critical patent/JP2012187903A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of fusing a CFRTP material, by which foreign substance does not remain on the fusion boundary, the joint area is not limited, the temperature control and pressurization are facilitated, and the fusion is simply and excellently executed.SOLUTION: The method of fusing the CFRTP material is carried out by fusing the CFRTP material, which is a thermoplastic resin reinforced by a carbon fiber, with the same or different kind of other member having conductivity, and sequentially includes: a melting step of partially melting the joint surface of the CFRTP material and the vicinity thereof by applying voltage to the CFRTP material and other member and by pressuring at least the joint part of the other member by the joint part of the CFRTP material in a state where the joint part of the CFRTP material and the joint part of the other member are joined; and a solidifying step of solidifying the melted part by stopping the application of the voltage and by cooling the joint part of the CFRTP material.

Description

本発明は、炭素繊維で強化した熱可塑性樹脂であるCFRTP材を、導電性を有する同種又は異種の他部材と融着するCFRTP材の融着方法に関するものである。   The present invention relates to a method for fusing a CFRTP material, in which a CFRTP material, which is a thermoplastic resin reinforced with carbon fiber, is fused to another member having the same or different conductivity.

近年、炭素繊維で強化した熱可塑性樹脂であるCFRTP(Carbon Fiber Reinforced Thermoplastics)が、炭素繊維で強化した熱硬化性樹脂であるCFRP(Carbon Fiber Reinforced Plastics)に対して、靭性、成形性、リサイクル性、及び補修性などの点で優れていることから注目されている。CFRTPは、航空分野及び自動車分野等への利用が期待されている。   In recent years, CFRTP (Carbon Fiber Reinforced Thermoplastics), a thermoplastic resin reinforced with carbon fiber, is tougher, moldable, and recyclable than CFRP (Carbon Fiber Reinforced Plastics), a thermosetting resin reinforced with carbon fiber. It is attracting attention because it is excellent in terms of repairability. CFRTP is expected to be used in the aviation field and the automobile field.

CFRTPを構造材料として使用する際、二次加工として融着接合が行われる場合がある。これは熱可塑性樹脂が加熱することにより溶融する特徴を利用した接合である。
従来、一般的な熱可塑性樹脂の融着方法として、抵抗融着、超音波融着、及び誘導融着などがある。そこで、近年、熱可塑性樹脂で一般的なこれらの融着方法をCFRTPの融着に適用することが検討されている。
When CFRTP is used as a structural material, fusion bonding may be performed as a secondary process. This is a joining using the feature that the thermoplastic resin melts when heated.
Conventionally, general methods for fusing thermoplastic resins include resistance fusing, ultrasonic fusing, and induction fusing. Therefore, in recent years, it has been studied to apply these fusing methods generally used for thermoplastic resins to CFRTP fusing.

D.Stavrov, H.E.N. Bersee, "Resistance welding of thermoplastic composites-an overview", composites: PartA 36 (2005),p.39-54.D.Stavrov, H.E.N.Bersee, "Resistance welding of thermoplastic composites-an overview", composites: PartA 36 (2005), p.39-54. F.Balle, G.Wagner, D.Eifler, "Ultrasonic spot welding of aluminum sheet / carbon fiber reinforced polymer - joints", Mat.-wiss.u. Werkstofftech. 2007, 38, No.11, p.934-938F. Balle, G. Wagner, D. Eifler, "Ultrasonic spot welding of aluminum sheet / carbon fiber reinforced polymer-joints", Mat.-wiss.u. Werkstofftech. 2007, 38, No. 11, p.934-938

一般に、複数の熱可塑性樹脂材の融着においては、熱可塑性樹脂が溶融しやすいため、接合面及びその近傍のみを部分的に溶融させる工夫が必要である。   Generally, in the fusion of a plurality of thermoplastic resin materials, since the thermoplastic resin is easily melted, it is necessary to devise a technique for partially melting only the joint surface and the vicinity thereof.

抵抗融着は、複数の被着体の接合部間に加熱体を設置して外部から加圧し、この状態で加熱体を通電加熱することにより、加熱体に接合している樹脂を部分的に溶融させて、融着を行う方法である。
しかしながら、抵抗融着では、融着完了後も加熱体が複数の被着体間にそのまま残留してしまう。このため、加熱体が使い捨てとなり、融着ごとに新しく加熱体を用意しなければならず、高コストである。また、内部に加熱体が残っていると、接合界面に力がかかった際に応力集中を引き起こしやすくなる。
In resistance fusion, a heating body is installed between the bonding parts of a plurality of adherends and pressurized from the outside, and the heating body is energized and heated in this state, so that the resin bonded to the heating body is partially This is a method of melting and fusing.
However, in resistance welding, the heating body remains between a plurality of adherends even after the fusion is completed. For this reason, the heating element becomes disposable, and a new heating element must be prepared for each fusion, which is expensive. Further, if a heating body remains inside, stress concentration tends to occur when a force is applied to the bonding interface.

超音波融着は、複数の被着体の接合部に対して外部から加圧しながら超音波を印加し、複数の被着体の接合面及びその近傍で発生する熱によりその近傍の樹脂を部分的に溶融させて、融着を行う方法である。
しかしながら、超音波融着では、超音波振動を与える部分のサイズに制限があり、現在は小さなサイズのスポット融着に限られている。
In ultrasonic fusion, ultrasonic waves are applied to the bonding parts of a plurality of adherends while applying pressure from the outside, and the resin adjacent to the bonding surfaces of the plurality of adherends and the heat generated in the vicinity thereof are partially applied. This is a method of performing melting and fusing.
However, in the ultrasonic fusion, there is a limit to the size of the portion to which the ultrasonic vibration is applied, and at present, it is limited to a spot fusion of a small size.

誘導融着は、複数の被着体の接合部に対して外部から加圧しながら誘導コイルを近接させることにより、誘導コイルによって発生した磁場によって発生した渦電流による発熱によりその近傍の樹脂を部分的に溶融させて、融着を行う方法である。CFRTPの場合には、導電性材料である炭素繊維が含まれているので、磁性材を用いなくても誘導融着を実施することができる。
しかしながら、誘導融着では、誘導コイル付近でしか発熱が生じないため、超音波融着と同様、接合部のサイズに制限がある。接合面積が大きい場合には、誘導コイルを複数の被着体の接合部に沿って動かす必要があり、操作が煩雑となる。また、誘導コイルは複数の被着体からある程度離間させる必要があるので、接合面及びその近傍の温度制御が難しく、加圧もしづらい。
Induction fusion is a method in which an induction coil is brought close to a bonding portion of a plurality of adherends while being pressed from the outside, so that the resin nearby is partially heated by eddy current generated by a magnetic field generated by the induction coil. It is a method of fusing to melt. In the case of CFRTP, since carbon fiber which is a conductive material is included, induction fusion can be performed without using a magnetic material.
However, in induction welding, heat is generated only in the vicinity of the induction coil, so that the size of the joint is limited as in ultrasonic fusion. When the joining area is large, it is necessary to move the induction coil along the joining portions of the plurality of adherends, and the operation becomes complicated. In addition, since the induction coil needs to be separated from the plurality of adherends to some extent, it is difficult to control the temperature of the joint surface and its vicinity, and pressurization is difficult.

2005年に、非特許文献1において、CFRTP材に抵抗融着を適用した研究が報告されている。2007年に、非特許文献2において、CFRTP材に超音波融着を適用した研究が報告されている。このように、CFRTP材の融着に関する研究自体、まだ始まったばかりである。   In 2005, Non-Patent Document 1 reported a study of applying resistance fusion to a CFRTP material. In 2007, Non-Patent Document 2 reported a study of applying ultrasonic fusion to a CFRTP material. Thus, research on the fusion of CFRTP material itself has just started.

本発明は上記事情に鑑みてなされたものであり、融着界面に異物が残留せず、接合面積に制限がなく、温度制御及び加圧が容易で、簡易にかつ良好に融着を実施することが可能なCFRTP材の融着方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and no foreign matter remains on the fusion interface, the bonding area is not limited, temperature control and pressurization are easy, and simple and satisfactory fusion is performed. An object of the present invention is to provide a method for fusing a CFRTP material.

本発明のCFRTP材の融着方法は、
炭素繊維で強化した熱可塑性樹脂であるCFRTP(Carbon Fiber Reinforced Thermoplastics)材を、導電性を有する同種又は異種の他部材と融着するCFRTP材の融着方法であって、
前記CFRTP材の接合部と前記他部材の接合部とを接合させた状態で、前記CFRTP材及び前記他部材への電圧印加と、少なくとも前記CFRTP材の前記接合部の前記他部材の前記接合部への加圧とを実施して、前記CFRTP材の接合面及びその近傍を部分的に溶融させる溶融工程と、
前記電圧印加を停止し、前記CFRTP材の前記接合部を冷却して、溶融部分を固化する固化工程とを順次有するものである。
The method for fusing the CFRTP material of the present invention includes:
A method for fusing a CFRTP material, in which a CFRTP (Carbon Fiber Reinforced Thermoplastics) material, which is a thermoplastic resin reinforced with carbon fiber, is fused to another member having the same or different conductivity.
In a state where the joint portion of the CFRTP material and the joint portion of the other member are joined, voltage application to the CFRTP material and the other member, and at least the joint portion of the other member of the joint portion of the CFRTP material And a melting step of partially melting the joint surface of the CFRTP material and the vicinity thereof,
A solidification step of sequentially stopping the voltage application, cooling the joint portion of the CFRTP material, and solidifying the molten portion.

本発明によれば、融着界面に異物が残留せず、接合面積に制限がなく、温度制御及び加圧が容易で、簡易にかつ良好に融着を実施することが可能なCFRTP材の融着方法を提供することができる。   According to the present invention, there is no foreign matter remaining at the fusion interface, there is no limitation on the bonding area, temperature control and pressurization are easy, and the fusion of CFRTP material that can be easily and satisfactorily performed fusion is achieved. A wearing method can be provided.

本発明の方法の概略説明図である。It is a schematic explanatory drawing of the method of this invention. 本発明の方法の一例を示す側面図である。It is a side view which shows an example of the method of this invention. 本発明の方法の他例を示す側面図である。It is a side view which shows the other example of the method of this invention. 予備実験の方法を示す側面図である。It is a side view which shows the method of a preliminary experiment. 予備実験の方法と結果を示す図である。It is a figure which shows the method and result of a preliminary experiment. 実施例1の温度測定結果を示す図である。It is a figure which shows the temperature measurement result of Example 1. FIG. 実施例1の温度測定結果を示す図である。It is a figure which shows the temperature measurement result of Example 1. FIG. 引張せん断強さの試験方法を示す写真である。It is a photograph which shows the test method of tensile shear strength. 実施例1の引張せん断強さ試験後のサンプル表面写真である。2 is a sample surface photograph after a tensile shear strength test of Example 1. FIG. 実施例1の引張せん断強さ試験の結果を示すグラフである。3 is a graph showing the results of a tensile shear strength test of Example 1. 実施例2の温度測定結果を示す図である。It is a figure which shows the temperature measurement result of Example 2. 実施例2の引張せん断強さ試験後のサンプル表面写真である。4 is a sample surface photograph after the tensile shear strength test of Example 2. FIG. 実施例2の引張せん断強さ試験の結果を示すグラフである。4 is a graph showing the results of a tensile shear strength test of Example 2. 実施例2の引張せん断強さ試験の結果を示すグラフである。4 is a graph showing the results of a tensile shear strength test of Example 2.

以下、本発明について詳細に説明する。
本発明者は、一般的な熱可塑性樹脂と異なり、CFRTP材では導電性材料である炭素繊維を含むため、通電による加熱が可能であることに着目した。
金属では、加圧しながら通電するスポット溶接がある。金属のスポット溶接では通常、数〜5mmφ程度の電極を兼ねた一対の加圧部材で加圧しながら、数十〜数kV程度、通常数百〜数kV程度の大きな電圧をかけて、溶接が行われる。
金属ではまた、被着体の溶接箇所にプロジェクションと呼ばれる突起部を設け、この突起部に電流を集中して流し、加熱加圧接合するプロジェクション溶接もある。
しかしながら、金属に比較して導電率が相対的に低いCFRTP材の融着にスポット溶接をそのまま適用したとしても、接合面及びその近傍部分のみだけでなく、CFRTP材と電極との接触面及びその近傍など、CFRTP材が広範囲に溶融して、元のCFRTP材の形状を保つことが難しい。そのため、金属で公知の方法をCFRTP材の融着にそのまま適用することは難しい。また、金属のスポット溶接及びプロジェクション溶接はいずれも、局所的に高電流を流すことで溶接を行うもので、一度で処理できる接合面積に制限がある。
本発明者はCFRTP材の特性に合わせて融着条件を種々検討し、接合面積に制限なく、電圧印加及び加圧によるCFRTP材の融着に成功した。
Hereinafter, the present invention will be described in detail.
The present inventors paid attention to the fact that, unlike a general thermoplastic resin, the CFRTP material includes carbon fiber, which is a conductive material, and thus can be heated by energization.
With metal, there is spot welding in which current is applied while applying pressure. In metal spot welding, welding is usually performed by applying a large voltage of several tens to several kV, usually several hundred to several kV, while applying pressure with a pair of pressure members that also serve as electrodes of several to 5 mmφ. Is called.
In the case of metal, there is also projection welding in which a projection called projection is provided at the welded portion of the adherend, and a current is concentrated to flow through the projection to heat and press bond.
However, even if spot welding is directly applied to the fusion of a CFRTP material having a relatively low electrical conductivity compared to metal, not only the joint surface and its vicinity but also the contact surface between the CFRTP material and the electrode It is difficult to maintain the shape of the original CFRTP material because the CFRTP material melts in a wide range such as in the vicinity. Therefore, it is difficult to apply a known method using a metal as it is to the fusion of the CFRTP material. Further, both metal spot welding and projection welding are performed by locally applying a high current, and there is a limit to the joint area that can be processed at one time.
The present inventor has studied various fusing conditions according to the characteristics of the CFRTP material, and succeeded in fusing the CFRTP material by applying voltage and applying pressure without limiting the bonding area.

本発明のCFRTP材の融着方法は、
炭素繊維で強化した熱可塑性樹脂であるCFRTP(Carbon Fiber Reinforced Thermoplastics)材を、導電性を有する同種又は異種の他部材と融着するCFRTP材の融着方法であって、
CFRTP材の接合部と他部材の接合部とを接合させた状態で、CFRTP材及び他部材への電圧印加と、少なくともCFRTP材の接合部の他部材の接合部への加圧とを実施して、CFRTP材の接合面及びその近傍を部分的に溶融させる溶融工程と、
電圧印加を停止し、CFRTP材の接合部を冷却して、溶融部分を固化する固化工程とを順次有するものである。
The method for fusing the CFRTP material of the present invention includes:
A method for fusing a CFRTP material, in which a CFRTP (Carbon Fiber Reinforced Thermoplastics) material, which is a thermoplastic resin reinforced with carbon fiber, is fused to another member having the same or different conductivity.
In a state where the joint portion of the CFRTP material and the joint portion of the other member are joined, voltage application to the CFRTP material and the other member and at least pressurization to the joint portion of the other member of the CFRTP material are performed. A melting step of partially melting the bonding surface of the CFRTP material and its vicinity;
A voltage application is stopped, a joint portion of the CFRTP material is cooled, and a solidification step for solidifying the molten portion is sequentially provided.

CFRTP材は、用いられる樹脂の種類、炭素繊維含有量、及び炭素繊維含有形態等によって、種々の種類が存在する。
本明細書において、「CFRTP材と同種の他部材」とはCFRTP材全般を指し、融着を行う複数のCFRTP材の組成等が違っていても、これらは同種とみなす。
「CFRTP材と異種の他部材」とはCFRTP材以外の導電材を指し、例えば、金属材、半導体材、炭素繊維で強化した熱硬化性樹脂であるCFRP(Carbon Fiber Reinforced Plastics)材、及びこれらの複合材等が挙げられる。
There are various types of CFRTP materials depending on the type of resin used, the carbon fiber content, the carbon fiber content, and the like.
In this specification, “other members of the same type as the CFRTP material” refers to all CFRTP materials, and even if the compositions of the plurality of CFRTP materials to be fused are different, these are regarded as the same type.
“Other member different from CFRTP material” refers to a conductive material other than the CFRTP material, such as a metal material, a semiconductor material, a CFRP (Carbon Fiber Reinforced Plastics) material which is a thermosetting resin reinforced with carbon fiber, and these The composite material etc. are mentioned.

CFRTP材に用いられる熱可塑性樹脂は特に制限されず、ポリエーテルイミド(PEI)、PPS(ポリフェニレンスルファイド)、及びPEEK(ポリエーテルエーテルケトン)等が挙げられる。   The thermoplastic resin used for the CFRTP material is not particularly limited, and examples thereof include polyetherimide (PEI), PPS (polyphenylene sulfide), and PEEK (polyetheretherketone).

図1に、本発明の方法の概略説明図を示す。図1では例として、第1の板状のCFRTP材10の接合部11と、第2の板状のCFRTP材20の接合部21とを部分的に重ねて、接合部11、21に電圧を印加している様子を示している。
図中、Jは一対のCFRTP材10、20の接合界面、Eは電圧、Iは電流を示している。
FIG. 1 is a schematic explanatory diagram of the method of the present invention. In FIG. 1, as an example, the junction 11 of the first plate-like CFRTP material 10 and the junction 21 of the second plate-like CFRTP material 20 are partially overlapped to apply voltage to the junctions 11 and 21. The state of applying is shown.
In the figure, J indicates a bonding interface between the pair of CFRTP materials 10 and 20, E indicates a voltage, and I indicates a current.

本発明の方法では、通電によるCFRTP材中の炭素繊維のジュール発熱を利用して、融着を実施する。
複数のCFRTP材を接合させて電圧Eを印加すると、これらの間に電流Iが流れる。このとき、複数のCFRTP材の接合界面Jの電気抵抗が最大となるため、接合界面Jが優先的にジュール加熱される。接合界面Jが溶融すると、同じ印加電圧でも、接合界面Jの電気抵抗が低下して、流れる電流量は増す。
したがって、本発明の方法では、接合面及びその近傍の樹脂が優先的に加熱溶融されて良好に融着が実施できる一方、その他の部分は溶融せず、融着前の形状をそのまま維持することができる。
溶融工程においては、CFRTP材の接合面全体が加熱溶融する必要はなく、接合面の少なくとも一部が加熱溶融されればよい。
In the method of the present invention, fusion is performed by utilizing Joule heat generation of carbon fibers in the CFRTP material by energization.
When a plurality of CFRTP materials are joined and the voltage E is applied, a current I flows between them. At this time, since the electrical resistance of the bonding interface J of the plurality of CFRTP materials is maximized, the bonding interface J is preferentially heated by Joule. When the bonding interface J is melted, the electric resistance of the bonding interface J decreases and the amount of current flowing increases even with the same applied voltage.
Therefore, in the method of the present invention, the bonding surface and the resin in the vicinity thereof can be preferentially heated and melted to achieve good fusion, while other portions are not melted and the shape before fusion is maintained as it is. Can do.
In the melting step, it is not necessary to heat and melt the entire bonding surface of the CFRTP material, and it is sufficient that at least a part of the bonding surface is heated and melted.

本発明のCFRTP材の融着方法においては、少なくともCFRTP材の接合部に対して、電圧印加用の電極を兼ねた加圧部材を当接させて、溶融工程を実施することができる。
この方法では、電圧印加と加圧を同一部材で実施できるので、装置が簡便である。
例えば、図2に示すように、図1に示した複数の板状のCFRTP材10、20の接合部11、21を外部から電極を兼ねた加圧部材31、32で挟んで、電圧印加及び加圧を実施することができる。図2は側面図である。
In the method for fusing the CFRTP material of the present invention, the melting step can be carried out by bringing a pressure member that also serves as an electrode for applying a voltage into contact with at least the joint portion of the CFRTP material.
In this method, voltage application and pressurization can be performed with the same member, so that the apparatus is simple.
For example, as shown in FIG. 2, the joints 11 and 21 of the plurality of plate-like CFRTP materials 10 and 20 shown in FIG. 1 are sandwiched between pressure members 31 and 32 that also serve as electrodes from the outside, and voltage application and Pressurization can be performed. FIG. 2 is a side view.

本発明のCFRTP材の融着方法においては、少なくともCFRTP材の接合部に対して、外部から加圧部材を当接させた状態で、CFRTP材の接合部とは異なる箇所に電圧印加用の電極を接続して、溶融工程を実施することができる。
この方法では、プレス機等の加圧部材を使用することができる。
例えば、図3に示すように、図1に示した複数の板状のCFRTP材10、20の接合部11、21を加圧部材41、42で挟み、CFRTP材10、20の接合部11、21とは異なる箇所に電圧印加用の電極を接続して、電圧印加及び加圧を実施することができる。図3は側面図である。
In the method for fusing a CFRTP material of the present invention, an electrode for applying a voltage at a location different from the joint portion of the CFRTP material in a state where a pressure member is brought into contact with the joint portion of the CFRTP material from the outside. Can be connected to carry out the melting step.
In this method, a pressing member such as a press machine can be used.
For example, as illustrated in FIG. 3, the joint portions 11 and 21 of the plurality of plate-like CFRTP materials 10 and 20 illustrated in FIG. 1 are sandwiched between the pressure members 41 and 42, and the joint portions 11 of the CFRTP materials 10 and 20 are disposed. A voltage application electrode can be connected to a location different from 21 to perform voltage application and pressurization. FIG. 3 is a side view.

本発明の方法では、電極とCFRTP材との接触抵抗よりCFRTP材及び他部材の接合面同士の接触抵抗が大きい条件で、溶融工程を実施する。
接触抵抗が逆の関係、すなわち、CFRTP材及び他部材の接合面同士の接触抵抗より電極とCFRTP材との接触抵抗が大きい条件では、電極とCFRTP材との接触界面で溶融が起こるため、好ましくない。
本発明者は、ワニ口クリップ等のCFRTP材との接触面積が小さい電極を用いてCFRTP材に通電を行った場合、上記条件を充足せず、電極とCFRTP材との接触界面で溶融が生じることを見出している。したがって、電極とCFRTP材との接触面積をある程度大きく確保するなどして、上記条件を充足するようにする。
金属のスポット溶接の場合、印加電圧は数十〜数kV程度、通常数百〜数kV程度の大きな電圧を要するが、CFRTP材同士の融着の場合、印加電圧は例えば数〜15V程度で充分である。
In the method of the present invention, the melting step is performed under the condition that the contact resistance between the bonding surfaces of the CFRTP material and the other member is larger than the contact resistance between the electrode and the CFRTP material.
Since the contact resistance is opposite, that is, the contact resistance between the electrode and the CFRTP material is larger than the contact resistance between the joint surfaces of the CFRTP material and other members, melting occurs at the contact interface between the electrode and the CFRTP material. Absent.
The present inventor does not satisfy the above conditions when the CFRTP material is energized using an electrode having a small contact area with the CFRTP material such as an alligator clip, and melting occurs at the contact interface between the electrode and the CFRTP material. I have found that. Therefore, the above condition is satisfied by ensuring a certain large contact area between the electrode and the CFRTP material.
In the case of spot welding of metal, the applied voltage requires a large voltage of about several tens to several kV, usually several hundred to several kV. However, in the case of fusion between CFRTP materials, for example, about several to 15 V is sufficient. It is.

本発明の方法では、接合界面が樹脂の融点以上になることが必要であり、かつ、過度な加熱は接合界面以外が溶融する範囲が広がるため、好ましくない。
接合界面の温度をモニタリングし、接合界面が樹脂の融点以上になった時点で、電圧印加を停止することが好ましい。例えば、サーモグラフィを用いて、接合面の側方から接合面の温度のモニタリングを実施することができる。
加熱制御は、電流もしくは電気抵抗値のモニタリングによっても実施することもできる。
In the method of the present invention, it is necessary for the bonding interface to be equal to or higher than the melting point of the resin, and excessive heating is not preferable because the range of melting other than the bonding interface widens.
It is preferable to monitor the temperature of the bonding interface and stop the voltage application when the bonding interface reaches or exceeds the melting point of the resin. For example, the temperature of the joint surface can be monitored from the side of the joint surface using thermography.
Heating control can also be implemented by monitoring current or electrical resistance.

本発明の方法では、加圧部材の加圧面積が、CFRTP材及び他部材の接合面積より小さい条件で、溶融工程を実施することができる。
この方法には、接合面の一部がスポット状に加熱溶融するスポット融着が含まれる。
In the method of the present invention, the melting step can be performed under the condition that the pressing area of the pressing member is smaller than the bonding area of the CFRTP material and the other member.
This method includes spot fusion in which a part of the joining surface is heated and melted in a spot shape.

本発明の方法ではまた、加圧部材の加圧面積が、CFRTP材及び他部材の接合面積以上である条件で、溶融工程を実施することができる。
この方法には、接合面全体が加熱溶融する面融着が含まれる。
上述したように、電圧印加及び加圧を用いる従来の金属溶接では、かかる面融着は実施不可能であり、かかる面融着を実施できることは本発明の1つの特徴である。
In the method of the present invention, the melting step can be performed under the condition that the pressing area of the pressing member is equal to or larger than the bonding area of the CFRTP material and the other member.
This method includes surface fusion in which the entire bonding surface is heated and melted.
As described above, in the conventional metal welding using voltage application and pressurization, such surface fusion cannot be performed, and it is one feature of the present invention that such surface fusion can be performed.

固化工程において、「接合部の冷却」は自然冷却(空冷)でも良いし、冷却手段を用いた積極的な冷却でもよい。   In the solidification step, “cooling of the joint” may be natural cooling (air cooling) or may be positive cooling using a cooling means.

溶融工程の前に、CFRTP材の接合面の樹脂を除去する表面樹脂除去工程を実施することが好ましい。
表面樹脂の除去は、研磨紙を用いた表面研磨等により実施することができる。
表面樹脂を除去しない場合には、接合界面に炭素繊維が露出した部分とそうでない部分とが存在し、融着むらが生じる恐れがある。
接合面の表面樹脂を除去して炭素繊維を表面に露出させることで、CFRTP材と他部材との導通性を高め、電流を効果的にかつ均一に流すことができる。
後記[実施例]の項において図14に示すように、接合面の表面研磨を実施しなくても良好な引張せん断強さが得られたが、接合面の表面研磨を実施することで、引張せん断強さの向上が見られた。
Prior to the melting step, it is preferable to carry out a surface resin removal step of removing the resin on the bonding surface of the CFRTP material.
The removal of the surface resin can be carried out by surface polishing using abrasive paper or the like.
When the surface resin is not removed, there is a portion where the carbon fiber is exposed and a portion where the carbon fiber is not exposed at the bonding interface, which may cause uneven fusion.
By removing the surface resin of the bonding surface and exposing the carbon fiber to the surface, the electrical conductivity between the CFRTP material and the other member can be improved and the current can be passed effectively and uniformly.
As shown in FIG. 14 in the section “Examples” below, good tensile shear strength was obtained without performing surface polishing of the joint surface. An improvement in shear strength was observed.

本発明によれば、融着界面に異物が残留せず、接合面積に制限がなく、温度制御及び加圧が容易で、簡易にかつ良好に融着を実施することが可能なCFRTP材の融着方法を提供することができる。
本発明者は、後記[実施例]の項において、既存の融着方法の中で最もよく利用されている抵抗融着における引張せん断強さ(10〜25MPa)と同等以上の引張せん断強さを実現している。
According to the present invention, there is no foreign matter remaining at the fusion interface, there is no limitation on the bonding area, temperature control and pressurization are easy, and the fusion of CFRTP material that can be easily and satisfactorily performed fusion is achieved. A wearing method can be provided.
In the section of [Examples] below, the present inventor has a tensile shear strength equal to or higher than the tensile shear strength (10 to 25 MPa) in resistance fusion that is most often used in the existing fusion methods. Realized.

本発明に係る実施例について説明する。   Embodiments according to the present invention will be described.

(予備実験)
本発明の方法により接合面及びその近傍が優先して加熱されることを確認する予備実験を実施した。
予備実験用に一対のCFRP材(炭素繊維強化熱硬化性樹脂)を用意した。用いたCFRP材は、三菱レイヨン社製のMR50K/♯1053I(炭素繊維はPAN系、樹脂はエポキシ♯1053、180℃キュアの航空機グレード)であり、この積層構成は[(0°/45°/90°/-45°)2S]の合計16層である。用いたCFRP材の寸法は長さ82mm×幅20mm×厚さ2.1mmである。
(Preliminary experiment)
A preliminary experiment was conducted to confirm that the bonding surface and its vicinity are preferentially heated by the method of the present invention.
A pair of CFRP materials (carbon fiber reinforced thermosetting resin) were prepared for preliminary experiments. The CFRP material used is MR50K / # 1053I manufactured by Mitsubishi Rayon Co., Ltd. (carbon fiber is PAN, resin is epoxy # 1053, aircraft grade cured at 180 ° C.), and this laminated structure is [(0 ° / 45 ° / 90 ° / −45 °) 2S ] for a total of 16 layers. The dimensions of the CFRP material used are 82 mm long × 20 mm wide × 2.1 mm thick.

電圧印加電源として直流安定化電源(松定プレシジョン社製PK10−120)を用い、直流安定化電源とCFRP材との接続にはワニ口クリップを用いた。
ワニ口クリップとCFRP材内の炭素繊維を効率良く接触させるために、CFRP材の両端から10mmずつの範囲を研磨紙♯240で研磨して表面樹脂を除去し、炭素繊維を露出させた。
A DC stabilized power supply (PK10-120 manufactured by Matsusada Precision Co., Ltd.) was used as the voltage application power supply, and an alligator clip was used for connection between the DC stabilized power supply and the CFRP material.
In order to efficiently contact the alligator clip and the carbon fiber in the CFRP material, the surface resin was removed by polishing 10 mm from both ends of the CFRP material with abrasive paper # 240 to expose the carbon fiber.

図4に示すように、一対のCFRP材10、20を30mm重ね(シングルラップジョイント)、計4箇所に熱電対T1〜T4を貼付した。この予備実験では、CFRTP材ではなくCFRP材を用いているが、図面上は図1〜図3と同じ符号を用いている。図中、Sは研磨部を示している。図4には主な寸法を図示しており、その寸法単位は「mm」である。   As shown in FIG. 4, a pair of CFRP materials 10 and 20 were stacked 30 mm (single lap joint), and thermocouples T1 to T4 were attached to a total of four locations. In this preliminary experiment, a CFRP material is used instead of a CFRTP material, but the same reference numerals as in FIGS. In the figure, S indicates a polishing portion. FIG. 4 shows the main dimensions, and the unit of dimension is “mm”.

一対のCFRP材10、20の接合部11、21を加圧部材として市販の金属製のクリップにより挟んで加圧した。クリップに電流が流れることを回避するため、一対のCFRP材10、20とクリップとの間にGFRP(ガラス繊維強化プラスチック)を介挿入して絶縁した。   The joints 11 and 21 of the pair of CFRP materials 10 and 20 were pressed with a commercially available metal clip as a pressure member. In order to avoid current flowing through the clip, insulation was performed by inserting GFRP (glass fiber reinforced plastic) between the pair of CFRP materials 10 and 20 and the clip.

図5の下図に示すように、一対のCFRP材10、20の両端(研磨部)にワニ口クリップCを接続し、板面に平行方向(繊維方向)に電圧を印加した。
電圧印加開始後、経時的に4つの熱電対T1〜T4の温度測定を実施した。熱電対T1〜T4のうち、接合部11、12に近い熱電対T2、T3の温度が80℃を超えた約300秒後に電圧印加を停止し、空冷した。
As shown in the lower part of FIG. 5, crocodile clips C were connected to both ends (polishing portions) of a pair of CFRP materials 10 and 20, and a voltage was applied in a direction parallel to the plate surface (fiber direction).
After starting the voltage application, the temperature of the four thermocouples T1 to T4 was measured over time. Among thermocouples T1 to T4, voltage application was stopped about 300 seconds after the temperature of thermocouples T2 and T3 close to the junctions 11 and 12 exceeded 80 ° C., and air cooling was performed.

実験前(電圧印加前)と実験後(電圧印加+空冷後)について、テスターを用いて、接合した一対のCFRP材10、20全体の電気抵抗値を求めた。
図5下図に示すように、一対のCFRP材10、20全体の抵抗値は実験前の840[Ω]から実験後の220[Ω]に低下した。
図5上図に示すように、別途、CFRP材1枚について両端から電圧を印加し、同様に電気抵抗値の変化を測定した。
Before the experiment (before voltage application) and after the experiment (after voltage application + air cooling), the electrical resistance values of the entire pair of bonded CFRP materials 10 and 20 were obtained using a tester.
As shown in the lower diagram of FIG. 5, the resistance value of the pair of CFRP materials 10 and 20 as a whole decreased from 840 [Ω] before the experiment to 220 [Ω] after the experiment.
As shown in the upper diagram of FIG. 5, a voltage was separately applied from both ends of one CFRP material, and the change in the electrical resistance value was measured in the same manner.

図4及び図5下図に示したシングルラップジョイントについて、全体の電気抵抗値を各部の電気抵抗成分に分離した。図5下図に示すように、図示左から、電極接触部(=研磨部)、中央部(接合部及び研磨部を除いた部分)、接合部、中央部、電極接触部(=研磨部)の5つの部分抵抗に全体の抵抗を分けることができる。これら5つの部分抵抗は直列と考えることができる。   With respect to the single lap joint shown in the lower diagrams of FIGS. As shown in the lower diagram of FIG. 5, from the left of the drawing, the electrode contact portion (= polishing portion), the central portion (the portion excluding the bonding portion and the polishing portion), the bonding portion, the central portion, and the electrode contact portion (= polishing portion). The total resistance can be divided into five partial resistances. These five partial resistors can be considered in series.

図5上図に示すように、CFRP1枚についても同様に、図示左から、電極接触部(=研磨部)、中央部、電極接触部(=研磨部)に分けることができる。CFRP1枚の全体と各部の電気抵抗値を図5上図に示す。図示するように、中央部の抵抗は0.15[Ω]であった。この値と全体の抵抗値を用いて、シングルラップジョイントについて、各部の抵抗値を求めた。得られた結果を図5下図に示す。図には、電圧印加前において接合部の抵抗が電極接触部の抵抗より大きく、電圧印加後に接合部の抵抗値が低下することが示されている。   As shown in the upper diagram of FIG. 5, one CFRP can be similarly divided into an electrode contact portion (= polishing portion), a central portion, and an electrode contact portion (= polishing portion) from the left in the drawing. The upper part of FIG. 5 shows the entire CFRP sheet and the electrical resistance values of each part. As shown in the figure, the resistance at the center was 0.15 [Ω]. Using this value and the overall resistance value, the resistance value of each part was determined for the single lap joint. The obtained results are shown in the lower diagram of FIG. The figure shows that the resistance of the junction is greater than the resistance of the electrode contact portion before voltage application, and the resistance value of the junction decreases after voltage application.

この予備実験では、横方向(繊維方向)の抵抗値で評価しているが、厚み方向の抵抗も傾向としては同様と考えられる。
また、予備実験で用いたのはCFRP材であるが、CFRTP材でも同様の傾向が得られると考えられる。本発明者がCFRTP材で同様の実験を行ったところ、電極接触部の発熱が大きく、電極接触部が溶融した。この場合、ワニ口クリップではなく、接合面積の大きい板状等の電極を用いることで、かかる問題は生じない。
In this preliminary experiment, the resistance value in the lateral direction (fiber direction) is evaluated, but the resistance in the thickness direction is considered to be similar.
Moreover, although the CFRP material was used in the preliminary experiment, it is considered that the same tendency can be obtained with the CFRTP material. When the present inventor conducted a similar experiment with the CFRTP material, the electrode contact portion generated a large amount of heat, and the electrode contact portion melted. In this case, such a problem does not occur by using a plate-like electrode having a large joining area instead of the alligator clip.

(実施例1)
<スポット融着>
一対の板状のCFRTP材(長さ70mm×幅12mm×厚み3.9mm)を用意した。用いた一対のCFRTP材はいずれも、TenCate社(Netherlands)製のT300 3K 5HS/PEIである。T300 3K 5HS/PEIは,熱可塑性樹脂であるポリエーテルイミド(PEI、Ultem1000)を織物材の炭素繊維で強化したものである。これら一対のCFRTP材の接合面を♯240の研磨紙で研磨した後、アセトンで洗浄した。
Example 1
<Spot fusion>
A pair of plate-like CFRTP materials (length 70 mm × width 12 mm × thickness 3.9 mm) were prepared. The pair of CFRTP materials used is T300 3K 5HS / PEI manufactured by TenCate (Netherlands). T300 3K 5HS / PEI is obtained by reinforcing polyetherimide (PEI, Ultem 1000), which is a thermoplastic resin, with carbon fiber as a woven material. The joint surfaces of the pair of CFRTP materials were polished with # 240 polishing paper and then washed with acetone.

図2に示した例のように、研磨後の上記一対のCFRTP材を長手方向に25mm重なるように設置し、重なり部分の外部から直径9.0mmφの一対の炭素鋼棒(本発明者が作製)を当接させて加圧するとともに、これらを電極として一対のCFRTP材に電圧を印加した。加圧力は5.4MPaとした。電圧印加電源としては、直流安定化電源(松定プレシジョン社製PK10−120)を用い、融着中は電圧E=5.0[V]で一定になるように調整した。   As in the example shown in FIG. 2, the pair of CFRTP materials after polishing are placed so as to overlap each other by 25 mm in the longitudinal direction, and a pair of carbon steel rods having a diameter of 9.0 mmφ from the outside of the overlapping portion (produced by the present inventor) ) In contact with each other and a voltage was applied to the pair of CFRTP materials using these as electrodes. The applied pressure was 5.4 MPa. A DC stabilized power supply (PK10-120 manufactured by Matsusada Precision Co., Ltd.) was used as the voltage application power supply, and the voltage E was adjusted to be constant at 5.0 [V] during fusion.

融着中は上記一対のCFRTP材の接合部の外面にK型熱電対を1枚ずつ貼付し(熱電対1、熱電対2)、30sec毎に温度測定を行った。また、サーモグラフィで一対のCFRTP材の側面側の温度分布を測定した。温度の測定結果を図6、図7に示す。
図6中の「接合面」で表わされる温度は、サーモグラフィで測定した値である。図7は電圧印加後120秒後のサーモグラフィ結果を示す図である。これらの図には、接合面及びその近傍の温度が他の部分より高温になっていることが示されている。
電圧印加時間が1minを超え、かつ接合部の温度が220℃を超えた時点で電圧印加を停止して、空冷した。
本実施例では、接合面及びその近傍の樹脂のみが溶融して外部に浸み出し、その他の樹脂は溶融しない様子が肉眼で観察され、融着を良好に実施できた。
During fusion, one K-type thermocouple was attached to the outer surface of the joint portion of the pair of CFRTP materials (thermocouple 1 and thermocouple 2), and the temperature was measured every 30 seconds. Further, the temperature distribution on the side surfaces of the pair of CFRTP materials was measured by thermography. The temperature measurement results are shown in FIGS.
The temperature represented by “joint surface” in FIG. 6 is a value measured by thermography. FIG. 7 is a diagram showing a thermography result 120 seconds after voltage application. In these drawings, it is shown that the temperature of the joint surface and the vicinity thereof is higher than that of the other portions.
When the voltage application time exceeded 1 min and the junction temperature exceeded 220 ° C., the voltage application was stopped and air cooling was performed.
In this example, it was observed with the naked eye that only the joint surface and the resin in the vicinity thereof melted and oozed out, and the other resins did not melt, and the fusion was successfully performed.

空冷後、引張せん断強さの測定を実施した。図8に示すように、一対の把具で融着後の一対のCFRTP材を把持させて、CFRTP材の長手方向(繊維方向)に引っ張り、破断応力Pを求めた。下記式より、真応力(True stress)及び公称応力(Nominal stress)を求めた。   After air cooling, the tensile shear strength was measured. As shown in FIG. 8, a pair of CFRTP materials after fusion were gripped by a pair of grips, pulled in the longitudinal direction (fiber direction) of the CFRTP materials, and the breaking stress P was obtained. True stress and nominal stress were determined from the following formula.

真応力:σ=P/A
公称応力:σ=P/A
(上記式中、P:最大荷重、A:融着面積(接合面のうち実際に溶融した部分の面積、Welding area),A:接合面積(Joint area))
True stress: σ t = P / A w
Nominal stress: σ n = P / A j
(In the above formula, P: maximum load, A w : fusion area (the area of the bonded surface that is actually melted, Welding area), A j : bonding area)

本実施例では、一対のCFRTP材の接合面のうち、電極を兼ねた加圧部材で加圧された領域及びその近傍が部分的に溶融した。したがって、本実施例では、融着面積A<接合面積Aである。
図9に破断後のサンプル表面写真の例を示し、この例における接合面積と融着面積を示してある。
In this example, the region pressed by the pressure member that also serves as the electrode and the vicinity thereof were partially melted in the joint surfaces of the pair of CFRTP materials. Therefore, in this embodiment, the fusion area A w <the junction area A j .
FIG. 9 shows an example of a sample surface photograph after fracture, and shows a bonding area and a fusion area in this example.

同様の実験を4回行い、真応力及び公称応力の平均値及び分散値を求めた。
結果を図10に示す。平均真応力σ=31.0MPaであり、既存の抵抗融着法の真応力σ=10〜25MPaより高強度が得られた。
The same experiment was performed four times, and the average value and the dispersion value of the true stress and the nominal stress were obtained.
The results are shown in FIG. The average is a true stress σ t = 31.0MPa, high strength than the true stress σ t = 10~25MPa existing resistance welding method was obtained.

(実施例2)
<面融着>
実施例1と同組成の一対の板状のCFRTP材(長さ70mm×幅12mm×厚み2.0mm)を用意し、これらの接合面を実施例1と同様に研磨し、互いに長手方向に25mm重なるように設置した。
図3に示した例のように、上記一対のCFRTP材を一対の銅板(JIS C 1020規格、長さ100mm×幅100mm×厚み5.0mm、445g)で挟み込んで加圧するとともに、これら一対の銅板を電極として一対のCFRTP材に電圧を印加した。
(Example 2)
<Fusion>
A pair of plate-like CFRTP materials (length 70 mm × width 12 mm × thickness 2.0 mm) having the same composition as in Example 1 were prepared, and their joint surfaces were polished in the same manner as in Example 1 and 25 mm in the longitudinal direction. It installed so that it might overlap.
As in the example shown in FIG. 3, the pair of CFRTP materials are sandwiched and pressed between a pair of copper plates (JIS C 1020 standard, length 100 mm × width 100 mm × thickness 5.0 mm, 445 g), and the pair of copper plates Was applied to the pair of CFRTP materials.

本実施例では、接合面全面を加圧するため、実施例1に比較して、電極とCFRTP材との接触面積が大きい。CFRTP材の電極接触面が溶融することを防ぐために、本実施例では、熱伝導性に優れ、電極接触面の抵抗を低減可能な銅を用い、かつ、電極接触面積を一対のCFRTP材の接合面積以上とした。これによって、電極とCFRTP材との接触抵抗より一対のCFRTP材の接合面同士の接触抵抗が大きい条件を充足するようにした。   In this embodiment, since the entire bonding surface is pressurized, the contact area between the electrode and the CFRTP material is larger than that in the first embodiment. In order to prevent the electrode contact surface of the CFRTP material from melting, in this embodiment, copper having excellent thermal conductivity and capable of reducing the resistance of the electrode contact surface is used, and the electrode contact area is bonded to a pair of CFRTP materials. More than the area. Thus, the condition that the contact resistance between the joint surfaces of the pair of CFRTP materials is larger than the contact resistance between the electrodes and the CFRTP material is satisfied.

実施例1と同じ電圧印加電源を用い、融着中は電圧E=10.28[V]で一定になるように調整した。
融着中は上記一対のCFRTP材の長手方向の両端から5mm離れた表面にK型熱電対を1枚ずつ貼付し(熱電対1、熱電対2)、30sec毎に温度測定を行った。また、サーモグラフィで一対のCFRTP材の側面側の温度分布測定を実施した。温度の測定結果を図11に示す。
上記2つの熱電対の温度が180℃を超える、もしくは片方の熱電対の温度が240℃を超えた時点で、電圧印加を停止して空冷した。
The same voltage application power source as in Example 1 was used, and the voltage E was adjusted to be constant at 10.28 [V] during fusion.
During fusion, one K-type thermocouple was attached to the surface of the pair of CFRTP materials 5 mm away from both ends in the longitudinal direction (thermocouple 1 and thermocouple 2), and the temperature was measured every 30 seconds. Moreover, the temperature distribution measurement of the side surface side of a pair of CFRTP material was implemented with thermography. The measurement result of temperature is shown in FIG.
When the temperature of the two thermocouples exceeded 180 ° C. or the temperature of one of the thermocouples exceeded 240 ° C., voltage application was stopped and air cooling was performed.

本実施例においても、接合面及びその近傍の樹脂のみが溶融して外部に浸み出し、その他の樹脂は溶融しない様子が肉眼で観察され、融着を良好に実施できた。   Also in this example, it was observed with the naked eye that only the bonding surface and the resin in the vicinity thereof melted and oozed out, and the other resins did not melt, and the fusion could be carried out satisfactorily.

空冷後、実施例1と同様にして、引張せん断強さの測定を実施し、真応力(True stress)及び公称応力(Nominal stress)を求めた。
本実施例では、一対のCFRTP材の接合面全体が溶融したので(全面融着)、融着面積A=接合面積Aであり、真応力σ=公称応力σである。
図12に破断後のサンプル表面写真の例を示し、この例における接合面積と融着面積を示してある。
After air cooling, the tensile shear strength was measured in the same manner as in Example 1 to determine true stress and nominal stress.
In this embodiment, since the entire joining surface of the pair of CFRTP materials is melted (entire fusion), the fused area A w = the joined area A j and the true stress σ t = the nominal stress σ n .
FIG. 12 shows an example of a sample surface photograph after fracture, and shows the bonding area and fusion area in this example.

接合面の研磨条件を固定し、加圧力を変え、各加圧条件について3回実験を行い、各条件について真応力及び公称応力の平均値及び分散値を求めた。加圧条件は、0.36MPa、0.45MPa、0.54MPaの3条件とした。
結果を図13に示す。本実施例では、平均真応力σ=18.4〜22.0MPaであり、既存の抵抗融着法の真応力σ=10〜25MPaと同様の強度が得られた。
本実施例では平均公称応力σ=18.4〜21.6MPaであり、実施例1の公称応力σの約3倍程度の公称応力σが実現できた。
本実施例で実施した全面融着はスポット溶接等の金属溶接では実現できないものである。
The polishing conditions of the joint surface were fixed, the applied pressure was changed, and the experiment was performed three times for each pressure condition, and the average value and the dispersion value of the true stress and the nominal stress were obtained for each condition. The pressing conditions were three conditions of 0.36 MPa, 0.45 MPa, and 0.54 MPa.
The results are shown in FIG. In this embodiment, the average is a true stress σ t = 18.4~22.0MPa, true stress sigma t = same strength and 10~25MPa existing resistance welding method was obtained.
In this embodiment the average nominal stress σ n = 18.4~21.6MPa, nominal stress sigma n of about 3 times the nominal stress sigma n of Example 1 was realized.
The whole surface fusion performed in this embodiment cannot be realized by metal welding such as spot welding.

一方、加圧力を0.36[MPa]で固定し、接合面の研磨条件を変え、各研磨条件について3回同様の実験を行い、各条件について真応力及び公称応力の平均値及び分散値を求めた。研磨条件は、研磨紙による研磨なし、及び♯100研磨紙、♯240研磨紙、♯400研磨紙の4条件とした。
結果を図14に示す。図示するように、表面研磨なしの条件でも良好な真応力が得られたが、接合面の表面研磨を実施することで、真応力の向上が見られた。
On the other hand, the applied pressure was fixed at 0.36 [MPa], the polishing conditions of the joint surface were changed, the same experiment was performed three times for each polishing condition, and the average value and dispersion value of the true stress and nominal stress were determined for each condition. Asked. There were four polishing conditions: no polishing with polishing paper, and # 100 polishing paper, # 240 polishing paper, and # 400 polishing paper.
The results are shown in FIG. As shown in the figure, a good true stress was obtained even under the condition of no surface polishing. However, the true stress was improved by polishing the surface of the joint surface.

本発明のCFRTP材の融着方法は、航空分野及び自動車分野等の構造材料に利用することができる。   The method for fusing the CFRTP material of the present invention can be used for structural materials in the fields of aviation and automobiles.

10、20 CFRTP材
11、12 接合部
31、32 電極を兼ねた加圧部材
41、42 電極を兼ねない加圧部材
J 接合面(接合界面)
10, 20 CFRTP materials 11, 12 Bonding portions 31, 32 Pressure members 41, which also serve as electrodes Pressure members J which also serve as electrodes J Bonding surface (bonding interface)

Claims (7)

炭素繊維で強化した熱可塑性樹脂であるCFRTP(Carbon Fiber Reinforced Thermoplastics)材を、導電性を有する同種又は異種の他部材と融着するCFRTP材の融着方法であって、
前記CFRTP材の接合部と前記他部材の接合部とを接合させた状態で、前記CFRTP材及び前記他部材への電圧印加と、少なくとも前記CFRTP材の前記接合部の前記他部材の前記接合部への加圧とを実施して、前記CFRTP材の接合面及びその近傍を部分的に溶融させる溶融工程と、
前記電圧印加を停止し、前記CFRTP材の前記接合部を冷却して、溶融部分を固化する固化工程とを順次有するCFRTP材の融着方法。
A method for fusing a CFRTP material, in which a CFRTP (Carbon Fiber Reinforced Thermoplastics) material, which is a thermoplastic resin reinforced with carbon fiber, is fused to another member having the same or different conductivity.
In a state where the joint portion of the CFRTP material and the joint portion of the other member are joined, voltage application to the CFRTP material and the other member, and at least the joint portion of the other member of the joint portion of the CFRTP material And a melting step of partially melting the joint surface of the CFRTP material and the vicinity thereof,
A method for fusing a CFRTP material, which sequentially includes a solidification step of stopping the voltage application, cooling the joint portion of the CFRTP material, and solidifying a melted portion.
少なくとも前記CFRTP材の前記接合部に対して、電圧印加用の電極を兼ねた加圧部材を当接させて、前記溶融工程を実施する請求項1に記載のCFRTP材の融着方法。   The method for fusing a CFRTP material according to claim 1, wherein the fusing step is performed by bringing a pressure member that also serves as a voltage application electrode into contact with at least the joint portion of the CFRTP material. 少なくとも前記CFRTP材の前記接合部に対して、外部から加圧部材を当接させた状態で、前記CFRTP材の前記接合部とは異なる箇所に電圧印加用の電極を接続して、前記溶融工程を実施する請求項1に記載のCFRTP材の融着方法。   At least in the state where a pressure member is brought into contact with the joint portion of the CFRTP material from outside, a voltage application electrode is connected to a location different from the joint portion of the CFRTP material, and the melting step The method for fusing a CFRTP material according to claim 1, wherein: 前記電極と前記のCFRTP材との接触抵抗より前記CFRTP材及び前記他部材の接合面同士の接触抵抗が大きい条件で、前記溶融工程を実施する請求項2又は3に記載のCFRTP材の融着方法。   4. The fusion of the CFRTP material according to claim 2, wherein the melting step is performed under a condition in which a contact resistance between the joint surfaces of the CFRTP material and the other member is larger than a contact resistance between the electrode and the CFRTP material. Method. 前記加圧部材の加圧面積が、前記CFRTP材及び前記他部材の接合面積より小さい条件で、前記溶融工程を実施する請求項2〜4のいずれかに記載のCFRTP材の融着方法。   The method for fusing a CFRTP material according to any one of claims 2 to 4, wherein the fusing step is performed under a condition that a pressure area of the pressure member is smaller than a bonding area of the CFRTP material and the other member. 前記加圧部材の加圧面積が、前記CFRTP材及び前記他部材の接合面積以上である条件で、前記溶融工程を実施する請求項2〜4のいずれかに記載のCFRTP材の融着方法。   The method for fusing a CFRTP material according to any one of claims 2 to 4, wherein the fusing step is performed under a condition that a pressure area of the pressure member is equal to or greater than a bonding area of the CFRTP material and the other member. 前記溶融工程の前に、前記CFRTP材の前記接合面の樹脂を除去する表面樹脂除去工程を有する請求項1〜6のいずれかに記載のCFRTP材の融着方法。   The method for fusing a CFRTP material according to any one of claims 1 to 6, further comprising a surface resin removing step of removing the resin on the joint surface of the CFRTP material before the melting step.
JP2011055730A 2011-03-14 2011-03-14 Method of fusing cfrtp material Withdrawn JP2012187903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011055730A JP2012187903A (en) 2011-03-14 2011-03-14 Method of fusing cfrtp material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055730A JP2012187903A (en) 2011-03-14 2011-03-14 Method of fusing cfrtp material

Publications (1)

Publication Number Publication Date
JP2012187903A true JP2012187903A (en) 2012-10-04

Family

ID=47081576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055730A Withdrawn JP2012187903A (en) 2011-03-14 2011-03-14 Method of fusing cfrtp material

Country Status (1)

Country Link
JP (1) JP2012187903A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099971A1 (en) * 2011-12-27 2013-07-04 帝人株式会社 Method for joining composite materials
WO2014148643A1 (en) 2013-03-22 2014-09-25 オリジン電気株式会社 Composite-material joining device, method for producing joined body, and joined body
JP2015193084A (en) * 2014-03-31 2015-11-05 学校法人大同学園 Methods for repairing and grinding fiber-reinforced resin member
IT201800020521A1 (en) * 2018-12-20 2020-06-20 Leonardo Spa COMPOSITE MATERIAL AND RELATIVE METHOD OF IMPLEMENTATION
WO2022044254A1 (en) * 2020-08-28 2022-03-03 三菱重工業株式会社 Fusion method and fusion device
WO2022054120A1 (en) * 2020-09-08 2022-03-17 三菱重工業株式会社 Fusing device and fusing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099971A1 (en) * 2011-12-27 2013-07-04 帝人株式会社 Method for joining composite materials
WO2014148643A1 (en) 2013-03-22 2014-09-25 オリジン電気株式会社 Composite-material joining device, method for producing joined body, and joined body
CN105050798A (en) * 2013-03-22 2015-11-11 欧利生电气株式会社 Composite-material joining device, method for producing joined body, and joined body
JP5827771B2 (en) * 2013-03-22 2015-12-02 オリジン電気株式会社 Composite material joining apparatus and method for producing joined body
JP2015193084A (en) * 2014-03-31 2015-11-05 学校法人大同学園 Methods for repairing and grinding fiber-reinforced resin member
WO2020129007A1 (en) * 2018-12-20 2020-06-25 Leonardo S.P.A. Composite material and method for producing the same
IT201800020521A1 (en) * 2018-12-20 2020-06-20 Leonardo Spa COMPOSITE MATERIAL AND RELATIVE METHOD OF IMPLEMENTATION
CN113646161A (en) * 2018-12-20 2021-11-12 列奥纳多股份公司 Composite material and preparation method thereof
CN113646161B (en) * 2018-12-20 2023-06-06 列奥纳多股份公司 Composite material and preparation method thereof
WO2022044254A1 (en) * 2020-08-28 2022-03-03 三菱重工業株式会社 Fusion method and fusion device
JPWO2022044254A1 (en) * 2020-08-28 2022-03-03
JP7236201B2 (en) 2020-08-28 2023-03-09 三菱重工業株式会社 Fusion method and fusion device
WO2022054120A1 (en) * 2020-09-08 2022-03-17 三菱重工業株式会社 Fusing device and fusing method

Similar Documents

Publication Publication Date Title
JP2012187903A (en) Method of fusing cfrtp material
JP5622929B2 (en) Manufacturing method of joined body
Hou et al. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element
CN104228059B (en) Thermosetting polymer matrix composite resistance welding device and method
Tsiangou et al. On the sensitivity of ultrasonic welding of epoxy-to polyetheretherketone (PEEK)-based composites to the heating time during the welding process
AU2019304113B2 (en) Method for welding parts made of thermoplastic material
Xiong et al. Resistance welding technology of fiber reinforced polymer composites: a review
US11396153B2 (en) Methods for thermal welding of wind turbine blades
JP6358818B2 (en) Method for fusing fiber reinforced thermoplastic resin member
JPWO2013099971A1 (en) Composite material joining method and joined body manufacturing method
Russello et al. Welding of thermoplastics by means of carbon-nanotube web
WO2016006265A1 (en) Method for repairing damaged part of material including thermoplastic resin
US10994493B2 (en) Method and apparatus for welding a thermoset object to a further object via thermoplastic outer layers
US20160136879A1 (en) Susceptor Welding Tape
EP0454703A1 (en) Joining of composite materials
US20050184053A1 (en) Method for bonding thermoplastics
Enoki et al. Heating properties of carbon fibers by using direct resistance heating
CN109940898A (en) Linking method for thermoplastic element
NL2027363B1 (en) Resistance welding methods and apparatus
JPH11300836A (en) Heating element used for thermal fusion of thermoplastic resin molded product
Bates et al. Shear strength and meltdown behavior of reinforced polypropylene assemblies made by resistance welding
Tsiangou et al. Ultrasonic welding of CF/Epoxy to CF/PEEK composites: Effect of the energy director material on the welding process
Hümbert et al. Interdependency of welding speed and distance between coil and roller during induction welding of metal and glass fiber reinforced Polyamide 6
JP7171818B1 (en) Fusion method and structure
US20230398748A1 (en) Semi-conformable pressure application system and method for joining composite parts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603