JP2012187614A - Welding method, and structure - Google Patents

Welding method, and structure Download PDF

Info

Publication number
JP2012187614A
JP2012187614A JP2011054525A JP2011054525A JP2012187614A JP 2012187614 A JP2012187614 A JP 2012187614A JP 2011054525 A JP2011054525 A JP 2011054525A JP 2011054525 A JP2011054525 A JP 2011054525A JP 2012187614 A JP2012187614 A JP 2012187614A
Authority
JP
Japan
Prior art keywords
welding
mass
welded portion
weld
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011054525A
Other languages
Japanese (ja)
Inventor
Yoshihiro Fujita
善宏 藤田
Yoshiki Ishizaki
祥希 石崎
Satoru Asai
知 浅井
Yasuo Morishima
康雄 森島
Minoru Obata
稔 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011054525A priority Critical patent/JP2012187614A/en
Publication of JP2012187614A publication Critical patent/JP2012187614A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding method that prevents both of a stress corrosion cracking and a weld cracking, and to provide a structure.SOLUTION: The welding method includes the steps of: welding a base material with a first welding material comprising an Ni-based heat resistant super alloy that is formed chiefly Ni of 25 mass% or less Cr to form a welded part; and welding over the welded part with a second welding material comprising an Ni-based heat resistant super alloy that is formed chiefly Ni of more than 30 mass% Cr to cover the welded part.

Description

本発明は,例えば,原子力発電プラントなどで使用される構造物の溶接方法および構造物に関する。   The present invention relates to a structure welding method and a structure used in, for example, a nuclear power plant.

従来,原子力発電プラントの原子炉構造物の溶接には,耐食性に優れたインコネル600合金が使用されてきた。しかし,近年,耐食性及び信頼性のさらなる向上を目的として,インコネル690合金が使用されつつある。このインコネル690合金の溶加材として,アメリカ機械学会(The American Society of Mechanical Engineers : ASME)に規定されるCase2124-1,UNS N06690が用いられている。
この溶加材の化学成分はインコネル690合金とほぼ同じであるが,溶接割れを防ぐためにP及びCuの含有量に特に制限を加え,また,耐食性の劣化を防ぐためにMo,Nb,Al,Ti及びAl+Ti含有量に制限を加えている。
Conventionally, Inconel 600 alloy having excellent corrosion resistance has been used for welding of nuclear reactor plant nuclear reactor structures. In recent years, however, Inconel 690 alloy is being used for the purpose of further improving corrosion resistance and reliability. As the filler material of the Inconel 690 alloy, Case2124-1 and UNS N06690 defined by the American Society of Mechanical Engineers (ASME) are used.
The chemical composition of this filler metal is almost the same as that of Inconel 690 alloy. However, in order to prevent weld cracking, the content of P and Cu is particularly limited, and in order to prevent deterioration of corrosion resistance, Mo, Nb, Al, Ti And limits the Al + Ti content.

しかしながら,上記インコネル690合金溶加材は完全オーステナイト組織を呈するために,溶接割れ感受性が高いという問題がある。   However, the above-mentioned Inconel 690 alloy filler metal has a problem of high weld cracking susceptibility because it exhibits a complete austenite structure.

そこで,最近,上記インコネル690合金溶加材をベースとし,添加元素を微調整することで,溶接割れ感受性により優れる溶加材が開発されている。例えば,N添加(0.03〜0.3質量%)により高強度化を計り,さらにW,Vを組み合わせた溶加材が開発されている(特許文献1参照)。また,高Mn化(〜5質量%)により高温割れの主要因となるSを固定し,Ta添加により固液共存温度範囲を狭小化させ,低融点物質生成を助長するS,Pの影響を抑制した溶加材が開発されている(特許文献2参照)。さらに,Mn+Nb含有量およびTi+Al含有量を制限することで,耐再熱割れ性およびワイヤ加工性を向上させた溶加材が開発されている(特許文献3参照)。Nb量を低減し,Ta量を高めることで,耐溶接割れ性を高めた溶加材も開発されている(特許文献4参照)。一方,これらNi基高Cr合金用溶加材の溶接方法について,オーステナイト系ステンレス鋼に対し,これらの溶加材を用いて,多層肉盛溶接を施す際に,一層目の肉盛溶接により形成した溶接金属のNi含有量を51質量%以上にし,溶接割れ防止を図る技術が開発されている(特許文献5参照)。   Therefore, recently, a filler material that is superior in weld cracking susceptibility has been developed based on the above-mentioned Inconel 690 alloy filler material and finely adjusting the additive elements. For example, a filler material in which strength is increased by adding N (0.03 to 0.3% by mass) and W and V are combined has been developed (see Patent Document 1). In addition, S, which is the main cause of hot cracking, is fixed by increasing Mn (up to 5 mass%), and the solid-liquid coexistence temperature range is narrowed by adding Ta, and the effects of S and P that promote the generation of low melting point substances A suppressed filler material has been developed (see Patent Document 2). Furthermore, a filler material having improved reheat cracking resistance and wire workability by limiting the Mn + Nb content and Ti + Al content has been developed (see Patent Document 3). A filler metal having improved weld crack resistance by reducing the amount of Nb and increasing the amount of Ta has also been developed (see Patent Document 4). On the other hand, the welding method for these Ni-based high Cr alloy filler materials is formed by overlay welding of the first layer when multi-layer overlay welding is performed on these austenitic stainless steels. A technique for preventing weld cracking by increasing the Ni content of the weld metal to 51 mass% or more has been developed (see Patent Document 5).

特開平11−170084号公報JP-A-11-170084 特開2003−311473号公報JP 2003-31473 A 特願2007−189972号公報Japanese Patent Application No. 2007-189972 特願2005−517274号公報Japanese Patent Application No. 2005-517274 特願平9−129166号公報Japanese Patent Application No. 9-129166

上述の690系Ni基高Cr合金溶接材料は,耐腐食性が高く,特に,原子力分野において危惧される耐応力腐食割れ性が高い。しかしながら,690系Ni基高Cr合金溶接材料は,溶接割れ感受性が高くなる問題を有する。
上記に鑑み,本発明は応力腐食割れおよび溶接割れの双方の防止を図った溶接方法および構造物を提供することを目的とする。
The above-mentioned 690 series Ni-based high Cr alloy welding material has high corrosion resistance, in particular, high stress corrosion cracking resistance, which is a concern in the nuclear field. However, the 690 Ni-based high Cr alloy welding material has a problem that the weld cracking sensitivity is increased.
In view of the above, an object of the present invention is to provide a welding method and a structure in which both stress corrosion cracking and weld cracking are prevented.

本発明の一態様に係る溶接方法は,Cr量25質量%以下のNiを主成分とするNi基耐熱超合金からなる第1の溶接材料を用いて,母材を溶接して溶接部を形成する工程と,Cr量30質量%を越えるNiを主成分とするNi基耐熱超合金からなる第2の溶接材料を用いて,前記溶接部上を溶接する工程と,を具備する。   A welding method according to an aspect of the present invention forms a weld by welding a base material using a first welding material made of a Ni-base heat-resistant superalloy mainly composed of Ni with a Cr content of 25% by mass or less. And a step of welding the welded portion using a second welding material made of a Ni-base heat-resistant superalloy mainly composed of Ni with a Cr content exceeding 30% by mass.

本発明によれば,応力腐食割れおよび溶接割れの双方の防止を図った溶接方法および構造物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the welding method and structure which aimed at prevention of both a stress corrosion crack and a weld crack can be provided.

第1実施形態に係る溶接方法で溶接された部材の断面の一例を表す断面図である。It is sectional drawing showing an example of the cross section of the member welded with the welding method which concerns on 1st Embodiment. 第2実施形態に係る溶接方法で溶接された部材の断面の一例を表す断面図である。It is sectional drawing showing an example of the cross section of the member welded with the welding method which concerns on 2nd Embodiment. 第3実施形態に係る溶接方法で溶接された部材の断面の一例を表す断面図である。It is sectional drawing showing an example of the cross section of the member welded with the welding method which concerns on 3rd Embodiment.

本実施形態では,応力腐食割れおよび溶接割れの双方を防止するために,溶接材料における成分制限とプロセスとを組み合わせる。以下,説明する。   In this embodiment, in order to prevent both stress corrosion cracking and weld cracking, the component limitation in the welding material and the process are combined. This will be described below.

溶接割れは,合金に割れが生じたときの温度等によって,高温割れ,凝固割れ,液化割れに区分される。
Ni基耐熱合金(690系Ni基高Cr合金等)の高温割れ感受性は,合金中に析出されるγ’相(Ni(Al,Ti)を主成分とする相)の析出促進元素であるAlおよびTiの含有量で表現できる。具体的には,(0.28・CCr+0.043・CCo)が一定であれば,(CAl+0.84・CTi)の増加に従い,割れ感受性が増加する。すなわち,γ’相の析出量が多く,高温強度が高い合金ほど割れやすい。
Weld cracks are classified into hot cracks, solidification cracks, and liquefaction cracks, depending on the temperature at which the alloy cracks.
The high temperature cracking susceptibility of Ni-based heat-resistant alloys (690-based Ni-based high Cr alloys, etc.) is a precipitation promoting element for the γ 'phase (phases mainly composed of Ni 3 (Al, Ti)) precipitated in the alloy. It can be expressed by the contents of Al and Ti. Specifically, if (0.28 · C Cr + 0.043 · C Co ) is constant, the susceptibility to cracking increases as (C Al + 0.84 · C Ti ) increases. That is, an alloy having a larger amount of γ ′ phase and a higher high-temperature strength is more likely to crack.

なお,CCr,CCo,CAl,CTi,および後述のCNb,CMo,CSi,C,C,CMnはそれぞれ,Ni基耐熱合金中でのCr,Co,Al,Ti,Nb,Mo,Si,P,S,Mnの質量%を表す。 C Cr , C Co , C Al , C Ti , and C Nb , C Mo , C Si , C P , C S , and C Mn described later are Cr, Co, Al, It represents mass% of Ti, Nb, Mo, Si, P, S, and Mn.

また,凝固割れ感受性PSCは(1)式で,液化割れ感受性PLCは(2)式で表される。
SC=69.12・CTi+27.3・CNb+9.70・CMo
+300・CSi−55.3 ……(1)
LC=48.0・C+1.97・CTi+8.93・CNb
+2.83・CMo+27.2 ……(2)
これゆえに,割れ感受性を抑えるには上記式(1),(2)における成分を抑制することが望ましい。
Furthermore, solidification cracking susceptibility P SC in (1), liquation cracking susceptibility P LC is expressed by equation (2).
P SC = 69.12 · C Ti + 27.3 · C Nb + 9.70 · C Mo
+ 300 · C Si -55.3 (1)
P LC = 48.0 · C C + 1.97 · C Ti + 8.93 · C Nb
+ 2.83 · C Mo +27.2 (2)
Therefore, it is desirable to suppress the components in the above formulas (1) and (2) in order to suppress cracking sensitivity.

本実施形態では,このような状況を踏まえ,溶接の部位に応じて,組成の異なるNi基耐熱合金を溶加材として用いる。即ち,耐腐食環境下にさらされる部位(最終溶接層)に対し,Cr量を30質量%以上含む690系溶接材料(後述の溶接材料M1)を適用する。また,それ以外の部位(第1溶接層(初層)および中間溶接層)に対しては,Cr量が25質量%以下の溶接性に優れるNi基溶接材料(後述の溶接材料M2)を適用する。この結果,応力腐食割れおよび溶接割れの双方を防止可能となる。特に,単層溶接よりも溶接部の応力が大きくなり易い,多層溶接においても,溶接割れを防止できる。   In the present embodiment, based on such a situation, Ni-base heat-resistant alloys having different compositions are used as the filler material depending on the part to be welded. That is, a 690 series welding material (welding material M1 described later) containing Cr in an amount of 30% by mass or more is applied to a portion exposed to a corrosion resistant environment (final weld layer). For other parts (the first weld layer (initial layer) and the intermediate weld layer), a Ni-based welding material (welding material M2 described later) excellent in weldability with a Cr content of 25% by mass or less is applied. To do. As a result, both stress corrosion cracking and weld cracking can be prevented. In particular, weld cracking can be prevented even in multi-layer welding, where the stress at the weld is likely to be greater than in single-layer welding.

溶接対象の母材がSおよびPを含む場合に,溶接部の初層にMnを多く含み,かつ,PおよびS量を低減した溶接材料を適用できる。母材がSおよびPなどの元素を含むと割れ感受性が高くなる。このような場合に,PおよびS量を低減し,かつSをトラップするMnを多く含む溶接材料を用いることで,溶接割れを防止できる。   When the base material to be welded contains S and P, a welding material containing a large amount of Mn in the initial layer of the weld and reducing the amount of P and S can be applied. When the base material contains elements such as S and P, the cracking sensitivity becomes high. In such a case, weld cracking can be prevented by reducing the amount of P and S and using a welding material containing a large amount of Mn that traps S.

また,(CAl+CTi)を0.6質量%以下に制限する溶接材料を用いても良い。溶接材料がAlおよびTiを多く含むほど高温強度が高まる一方,割れ感受性が高くなる。このため,溶接材料での(CAl+CTi)を0.6質量%以下に制限することで,溶接割れをより低減できる。
これに加えて,溶接材料中のNb,Mo,Si,Cも抑えても良い。溶接材料の割れ感受性がさらに低減される。
Moreover, you may use the welding material which restrict | limits ( CAl + CTi ) to 0.6 mass% or less. The higher the welding material contains Al and Ti, the higher the high temperature strength, but the higher the cracking sensitivity. For this reason, a weld crack can be reduced more by restrict | limiting ( CAl + CTi ) in a welding material to 0.6 mass% or less.
In addition to this, Nb, Mo, Si, and C in the welding material may be suppressed. The cracking susceptibility of the welding material is further reduced.

以下,実施形態に係るNi基高Cr合金用溶加材を用いた溶接方法についてより具体的に説明する。   Hereinafter, the welding method using the Ni-based high Cr alloy filler material according to the embodiment will be described more specifically.

(第1の実施の形態)
ここでは,母材11,12の対向する端部間を溶接して,母材11,12を接続する場合を考える(突合せ継手溶接)。母材11,12にはそれぞれ,異種材料,例えば,オーステナイト系ステンレス鋼と炭素鋼を用いることができる(異材溶接)。
(First embodiment)
Here, a case is considered in which the ends 11 and 12 of the base materials 11 and 12 are welded to connect the base materials 11 and 12 (butt joint welding). Different materials such as austenitic stainless steel and carbon steel can be used for the base metals 11 and 12 (dissimilar material welding).

本実施形態では,図1に示すように,溶接部13,最終溶接部14を順に形成する。溶接部13,最終溶接部14それぞれに,以下の溶接材料M1,M2を用いる。
・溶接材料M1: Cr量(CCr)25質量%以下のNi基合金溶加材
・溶接材料M2: Cr量(CCr)30質量%以上を有するNi基合金溶接材料
In the present embodiment, as shown in FIG. 1, a welded portion 13 and a final welded portion 14 are formed in order. The following welding materials M1 and M2 are used for the welded portion 13 and the final welded portion 14, respectively.
-Welding material M1: Ni-base alloy filler material with a Cr content ( CCr ) of 25% by mass or less-Welding material M2: Ni-base alloy welding material with a Cr content ( CCr ) of 30% by mass or more

(1)まず,母材11,12の開先を溶接材料M1(溶接割れ性の低いNi基合金溶加材)にて溶接を施し,溶接部13を形成する。溶接部13は,単層溶接,多層溶接の何れで形成されても良い。 (1) First, the grooves of the base materials 11 and 12 are welded with the welding material M1 (Ni-base alloy filler material having low weld cracking property) to form the welded portion 13. The welded portion 13 may be formed by either single layer welding or multilayer welding.

(2)その後,溶接部13を最終溶接部14で覆い溶接部13を環境から保護する。即ち,溶接材料M2(応力腐食割れ性の低いNi基合金溶加材)にて,溶接部13上に溶接を施し,最終溶接部14を形成する。 (2) Thereafter, the welded portion 13 is covered with the final welded portion 14 to protect the welded portion 13 from the environment. That is, the final welded portion 14 is formed by welding the welded portion 13 with the welding material M2 (Ni-base alloy filler metal having low stress corrosion cracking property).

このように,溶接部13,最終溶接部14それぞれでの溶接に,溶接材料M1,M2を用いる。この結果,溶接部13および最終溶接部14での溶接割れ,および応力腐食割れを防止できる。   Thus, the welding materials M1 and M2 are used for welding in the welded portion 13 and the final welded portion 14, respectively. As a result, weld cracking and stress corrosion cracking at the welded portion 13 and the final welded portion 14 can be prevented.

ここで,溶接部13あるいはその初層(溶接部13が多層溶接の場合)に,溶接材料M2中,溶接材料M3を用いるのがより好ましい。特に,母材11,12の少なくともいずれかが,C>0.003質量%,C>0.002質量%の場合に,溶接割れをより低減できる。 Here, it is more preferable to use the welding material M3 in the welding material M2 for the welded portion 13 or its first layer (when the welded portion 13 is multilayer welding). In particular, when at least one of the base materials 11 and 12 has C P > 0.003 mass% and C S > 0.002 mass%, the weld crack can be further reduced.

・溶接材料M3: CMn>0.5質量%,C<0.010質量%,C<0.0002質量%,(CAl+CTi)<0.6質量%を満たすCr量25質量%以下のNiを主成分とするNi基耐熱超合金溶加材 -Welding material M3: Cr amount 25 mass satisfying C Mn > 0.5 mass%, C P <0.010 mass%, C S <0.0002 mass%, (C Al + C Ti ) <0.6 mass% % Ni-base heat-resistant superalloy filler material with Ni as a main component

ここで,溶接部13あるいはその初層(溶接部13が多層溶接の場合)に,溶接材料M3中,溶接材料M4を用いるのがさらに好ましい。溶接材料中のNb,Mo,Si,Cを抑えることで,その割れ感受性がさらに低減される。   Here, it is more preferable to use the welding material M4 in the welding material M3 for the welded portion 13 or its first layer (when the welded portion 13 is multilayer welding). By suppressing Nb, Mo, Si, and C in the welding material, the susceptibility to cracking is further reduced.

・溶接材料M4: CMn>0.5質量%,C<0.010質量%,C<0.0002質量%,(CAl+CTi)<0.6質量%,CNb>0.1質量%,CMo<0.5質量%,CSi<0.5質量%,およびC<0.04質量%を満たすCr量25質量%以下のNiを主成分とするNi基耐熱超合金溶加材 -Welding material M4: C Mn > 0.5 mass%, C P <0.010 mass%, C S <0.0002 mass%, (C Al + C Ti ) <0.6 mass%, C Nb > 0. Ni-based heat-resistant super alloy containing Ni as a main component with a Cr content of 25% by mass or less satisfying 1% by mass, C Mo <0.5% by mass, C Si <0.5% by mass, and C C <0.04% by mass Alloy filler

溶接部13,最終溶接部14の溶接に,例えば,TIG溶接を利用できる。TIG溶接は,アーク溶接の一種であり,非溶極式(非消耗電極式)の電極,および不活性ガス(例えば,アルゴン,ヘリウム,アルゴン-ヘリウム混合ガス)が用いられる。不活性ガスを吹き付けて溶接部位を大気から遮断した状態で,アーク放電によって,溶接材料や母材が熔解される。   For example, TIG welding can be used for welding the welded portion 13 and the final welded portion 14. TIG welding is a type of arc welding, and uses a non-melting electrode type (non-consumable electrode type) electrode and an inert gas (for example, argon, helium, argon-helium mixed gas). The welding material and the base metal are melted by arc discharge in a state where the welding site is cut off from the atmosphere by blowing an inert gas.

ここで,溶接部13あるいはその初層(溶接部13が多層溶接の場合)への入熱量(溶接線単位長さ当たりの入熱量)を20000J/cm以下とすることが好ましい。溶接部13の初層等への入熱を制限することで,母材11,12中の不純物の溶接部13への溶け出しを制限でき,溶接部13の品質(溶接割れ性等)を保持容易となる。   Here, it is preferable that the amount of heat input (the amount of heat input per unit length of the weld line) to the welded portion 13 or its first layer (when the welded portion 13 is multilayer welding) is 20000 J / cm or less. By restricting the heat input to the first layer of the welded portion 13, it is possible to restrict the melting of impurities in the base materials 11 and 12 to the welded portion 13, and maintain the quality of the welded portion 13 (weld cracking property, etc.) It becomes easy.

(第2の実施の形態)
本実施形態でも母材11,12の対向する端部間を溶接して,母材11,12を接続する(突合せ継手溶接)。母材11,12にはそれぞれ,異種材料,例えば,オーステナイト系ステンレス鋼と炭素鋼を用いることができる。
(Second Embodiment)
Also in the present embodiment, the opposing ends of the base materials 11 and 12 are welded to connect the base materials 11 and 12 (butt joint welding). For the base materials 11 and 12, different materials such as austenitic stainless steel and carbon steel can be used.

本実施形態では,図2に示すように,初層溶接部15,溶接部13,最終溶接部14を順に形成する。初層溶接部15,溶接部13,最終溶接部14それぞれに,既述の溶接材料M3,M1,M2を用いる。   In this embodiment, as shown in FIG. 2, the first layer welded portion 15, the welded portion 13, and the final welded portion 14 are formed in this order. The welding materials M3, M1, and M2 described above are used for the first layer welded portion 15, the welded portion 13, and the final welded portion 14, respectively.

(1)まず,母材11,12の開先に溶接材料M3にてバタリング溶接を施し,初層溶接部15を形成する。初層溶接部15は,基本的に単層溶接で形成される。 (1) First, buttering welding is performed on the grooves of the base materials 11 and 12 with the welding material M3 to form the first layer welded portion 15. The first layer weld 15 is basically formed by single layer welding.

(2)初層溶接部15を有する母材11,12の開先を溶接材料M1にて溶接を施し,溶接部13(中間層)を形成する。溶接部13は,単層溶接,多層溶接の何れで形成されても良い。 (2) The base material 11, 12 having the first layer weld 15 is welded with a welding material M1 to form a weld 13 (intermediate layer). The welded portion 13 may be formed by either single layer welding or multilayer welding.

(3)その後,溶接部13を最終溶接部14で覆い溶接部13を環境から保護する。即ち,溶接材料M2にて,溶接部13上に溶接を施し,最終溶接部14を形成する。 (3) Thereafter, the welded portion 13 is covered with the final welded portion 14 to protect the welded portion 13 from the environment. That is, welding is performed on the welded portion 13 with the welding material M2, and the final welded portion 14 is formed.

既述のように,初層溶接部15の形成に溶接材料M3を用いることで,母材11,12の少なくともいずれかが,C>0.003質量%,C>0.002質量%の場合に,溶接割れをより低減できる。また,初層溶接部15の形成に溶接材料M3中,溶接材料M4を用いることで,溶接割れをさらに低減できる。 As described above, by using the welding material M3 for forming the first layer weld portion 15, at least one of the base materials 11 and 12 is C P > 0.003 mass%, C S > 0.002 mass%. In this case, weld cracks can be further reduced. Moreover, welding cracks can be further reduced by using the welding material M4 in the welding material M3 for the formation of the first layer weld 15.

初層溶接部15,溶接部13,最終溶接部14の溶接に,例えば,TIG溶接を利用できる。ここで,初層溶接部15への入熱量を20000J/cm以下とすることが好ましい。初層溶接部15の初層等への入熱を制限することで,母材11,12中の不純物の初層溶接部15への溶け出しを制限でき,初層溶接部15,ひいては溶接部13の品質(溶接割れ性等)を保持容易となる。   For example, TIG welding can be used for welding the first layer welded portion 15, the welded portion 13, and the final welded portion 14. Here, it is preferable that the amount of heat input to the first layer weld 15 is 20000 J / cm or less. By restricting the heat input to the first layer or the like of the first layer weld 15, it is possible to limit the outflow of impurities in the base materials 11 and 12 to the first layer weld 15. 13 quality (weld cracking property, etc.) can be easily maintained.

(第3の実施の形態)
本実施形態では母材21の表面に溶接を施す(肉盛り溶接)。母材21には,例えば,オーステナイト系ステンレス鋼や炭素鋼を用いることができる。
本実施形態では,図3に示すように,初層溶接部22,溶接部23,最終溶接部24を順に形成する。初層溶接部22,溶接部23,最終溶接部24には,第2の実施形態と同様の溶接材料M3,M1,M2を利用できる。
(Third embodiment)
In the present embodiment, welding is performed on the surface of the base material 21 (build-up welding). For the base material 21, for example, austenitic stainless steel or carbon steel can be used.
In this embodiment, as shown in FIG. 3, the first layer welded portion 22, the welded portion 23, and the final welded portion 24 are formed in this order. For the first layer welded portion 22, the welded portion 23, and the final welded portion 24, the same welding materials M3, M1, and M2 as in the second embodiment can be used.

第2の実施形態と同様,初層溶接部22の形成に溶接材料M3を用いることで,母材21が,C>0.003質量%,C>0.002質量%の場合に,溶接割れをより低減できる。また,初層溶接部22の形成に溶接材料M3中,溶接材料M4を用いることで,溶接割れをさらに低減できる。 Similar to the second embodiment, by using the welding material M3 for forming the first layer weld portion 22, when the base material 21 is C P > 0.003 mass% and C S > 0.002 mass%, Welding cracks can be further reduced. Moreover, welding cracks can be further reduced by using the welding material M4 in the welding material M3 for forming the first layer welded portion 22.

第2の実施形態と同様,初層溶接部22,溶接部23,最終溶接部24の溶接に,例えば,TIG溶接を利用できる。ここで,初層溶接部22への入熱量を20000J/cm以下とすることが好ましい。初層溶接部22への入熱を制限することで,母材21中の不純物の初層溶接部22への溶け出しを制限でき,初層溶接部22,ひいては溶接部23の品質(溶接割れ性等)を保持容易となる。   As in the second embodiment, for example, TIG welding can be used for welding the first layer welded portion 22, the welded portion 23, and the final welded portion 24. Here, it is preferable that the amount of heat input to the first layer weld 22 is 20000 J / cm or less. By limiting the heat input to the first layer welded portion 22, it is possible to limit the outflow of impurities in the base material 21 to the first layer welded portion 22, and the quality of the first layer welded portion 22 and eventually the welded portion 23 (weld crack). Property).

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

11,12 母材
13 溶接部
14 最終溶接部
15 初層溶接部
21 母材
22 初層溶接部
23 溶接部
24 最終溶接部
11, 12 Base material 13 Welded portion 14 Final welded portion 15 First layer welded portion 21 Base material 22 First layer welded portion 23 Welded portion 24 Final welded portion

Claims (7)

Cr量25質量%以下のNiを主成分とするNi基耐熱超合金からなる第1の溶接材料を用いて,母材を溶接して溶接部を形成する工程と,
Cr量30質量%を越えるNiを主成分とするNi基耐熱超合金からなる第2の溶接材料を用いて,前記溶接部上を溶接する工程と,
を具備することを特徴とする溶接方法。
Using a first welding material made of a Ni-based heat-resistant superalloy mainly composed of Ni with a Cr content of 25% by mass or less, welding a base material to form a welded portion;
A step of welding the welded portion using a second welding material made of a Ni-base heat-resistant superalloy mainly composed of Ni with a Cr content exceeding 30% by mass;
The welding method characterized by comprising.
溶接部を形成する工程に先だって,
Cr量25質量%以下のNiを主成分とするNi基耐熱超合金からなる第3の溶接材料を用いて,母材をバタリング溶接する工程,をさらに具備することを特徴とする請求項1記載の溶接方法。
Prior to the process of forming the weld,
The method further comprises a step of buttering welding a base material using a third welding material made of a Ni-base heat-resistant superalloy mainly composed of Ni with a Cr content of 25% by mass or less. Welding method.
前記母材が,P>0.003質量%,S>0.002質量%,を含み,
前記第1の溶接材料または第3の溶接材料が,Mn>0.5質量%,P<0.010質量%,S<0.0002質量%,Al+Ti<0.6質量%,Nb<0.1質量%,Mo<0.5質量%,Si<0.5質量%,C<0.04質量%を満たす
ことを特徴とする請求項1または2に記載の溶接方法。
The base material includes P> 0.003 mass%, S> 0.002 mass%,
The first welding material or the third welding material has Mn> 0.5 mass%, P <0.010 mass%, S <0.0002 mass%, Al + Ti <0.6 mass%, Nb <0. The welding method according to claim 1 or 2, wherein 1% by mass, Mo <0.5% by mass, Si <0.5% by mass, and C <0.04% by mass are satisfied.
前記溶接部を形成する工程が,前記溶接部の初層の入熱量を20000J/cm以下の条件にてTIG溶接する工程を含む
ことを特徴とする請求項1乃至3のいずれか1項に記載の溶接方法。
The process of forming the said weld part includes the process of carrying out TIG welding on the conditions whose heat input of the first layer of the said weld part is 20000 J / cm or less. Welding method.
前記母材が,第1,第2の母材を含み,
前記溶接部を形成する工程が,前記第1,第2の母材を突き合わせ溶接する工程を含むことを特徴とする請求項1乃至4のいずれか1項に記載の溶接方法。
The base material includes first and second base materials;
The welding method according to claim 1, wherein the step of forming the welded portion includes a step of butt welding the first and second base materials.
前記溶接部を形成する工程が,前記母材を肉盛り溶接する工程を含むことを特徴とする請求項1乃至4のいずれか1項に記載の溶接方法。   The welding method according to any one of claims 1 to 4, wherein the step of forming the welded portion includes a step of build-up welding the base material. 請求項1乃至6のいずれか1項に記載の溶接方法で溶接された構造物。   A structure welded by the welding method according to claim 1.
JP2011054525A 2011-03-11 2011-03-11 Welding method, and structure Withdrawn JP2012187614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054525A JP2012187614A (en) 2011-03-11 2011-03-11 Welding method, and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054525A JP2012187614A (en) 2011-03-11 2011-03-11 Welding method, and structure

Publications (1)

Publication Number Publication Date
JP2012187614A true JP2012187614A (en) 2012-10-04

Family

ID=47081360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054525A Withdrawn JP2012187614A (en) 2011-03-11 2011-03-11 Welding method, and structure

Country Status (1)

Country Link
JP (1) JP2012187614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101825817B1 (en) * 2016-07-08 2018-02-05 두산중공업 주식회사 Maintenance method for welding part of small pipe for nuclear reactor
KR101842356B1 (en) * 2016-07-08 2018-03-26 두산중공업 주식회사 Maintenance method for welding part of small pipe for nuclear reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101825817B1 (en) * 2016-07-08 2018-02-05 두산중공업 주식회사 Maintenance method for welding part of small pipe for nuclear reactor
KR101842356B1 (en) * 2016-07-08 2018-03-26 두산중공업 주식회사 Maintenance method for welding part of small pipe for nuclear reactor

Similar Documents

Publication Publication Date Title
JP5977998B2 (en) Ni-base alloy weld metal, strip electrode, and welding method
JP4672555B2 (en) Ni-base high Cr alloy filler metal and welding rod for coated arc welding
JP5389000B2 (en) Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod
KR100473039B1 (en) Ni-base heat resistant alloy excellent in weldability and strength at elavated temperature, weld joint using the same, and tube for ethylene cracking furnace or reformer furnace using the same
JP4310664B1 (en) Welding materials and welded joint structures
KR101192618B1 (en) Welding material for ni-based alloy
JP5270043B2 (en) Ni-based high Cr alloy welding wire, coated arc welding rod, and coated arc weld metal
WO2006013727A1 (en) Weld joint and welding material thereof
JP6197885B2 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
JP5170297B1 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
WO2009145347A1 (en) Flux-cored wire for welding of duplex stainless steel which enables the miniaturization of solidified crystal particles
JP6852809B2 (en) Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints
JP5537587B2 (en) Ni-base alloy welding material and welding wire, welding rod and welding powder using the same
CN104975204A (en) Manufacturing method of Ni-base heat-proof alloy welded joint and Ni-base heat-proof alloy welded joint
TW201217544A (en) Welding process and corrosion-resistant filler alloy and consumables therefor
JP4941267B2 (en) Austenitic high alloy welded joint and austenitic high alloy welded material
JP2017507027A (en) Welding materials for heat-resistant steel
CA2995056C (en) Method for welding austenitic stainless steel sheets
WO2014119189A1 (en) Coated electrode
Kangazian et al. Influence of microstructural features on the mechanical behavior of Incoloy 825 welds
JP4513466B2 (en) Welded joints and welding materials
KR102197134B1 (en) Ni based alloy flux cored wire
JP2012187614A (en) Welding method, and structure
JP2014111265A (en) Cladding powder alloy
JP6638552B2 (en) Welding material for austenitic heat-resistant steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513