JP2012177156A - Method of manufacturing cylindrical target - Google Patents

Method of manufacturing cylindrical target Download PDF

Info

Publication number
JP2012177156A
JP2012177156A JP2011040517A JP2011040517A JP2012177156A JP 2012177156 A JP2012177156 A JP 2012177156A JP 2011040517 A JP2011040517 A JP 2011040517A JP 2011040517 A JP2011040517 A JP 2011040517A JP 2012177156 A JP2012177156 A JP 2012177156A
Authority
JP
Japan
Prior art keywords
cylindrical
target
cylindrical target
solder
solder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011040517A
Other languages
Japanese (ja)
Other versions
JP5672066B2 (en
Inventor
Yoshiharu Toida
良晴 戸井田
Kenichi Ito
謙一 伊藤
Kimiaki Tamano
公章 玉野
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2011040517A priority Critical patent/JP5672066B2/en
Publication of JP2012177156A publication Critical patent/JP2012177156A/en
Application granted granted Critical
Publication of JP5672066B2 publication Critical patent/JP5672066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical target allowing firm joining between a cylindrical base material and/or a target material and a solder material to increase conductivity and thermal conductivity between them and remarkably reducing cracking and peeling of the target material in use.SOLUTION: In a method of manufacturing the cylindrical target, when the cylindrical base material is arranged concentrically with the cylindrical target, and molten solder is injected into a space between the cylindrical base material and the cylindrical target material to join them together while heating them to above the melting point of the solder material, a powder substance (a ferromagnetic material, a ceramic material and the like) which is lighter in specific gravity than the solder material is put in advance into the space, then the molten solder is injected to float the powder substance on the liquid surface of the solder material, and the solder material is injected while vibrating the powder substance, and the solder material is physically agitated to manufacture the cylindrical target.

Description

本発明は、薄膜形成に使用されるマグネトロン型スパッタ装置、特に回転カソードスパッタリング装置に適用される円筒形ターゲットの製造方法に関する。   The present invention relates to a method of manufacturing a cylindrical target applied to a magnetron type sputtering apparatus used for forming a thin film, particularly a rotary cathode sputtering apparatus.

液晶、有機EL等のフラットパネルディスプレィや太陽電池等の基板となるガラスやプラスチックなどに薄膜を形成する技術の一つとしてマグネトロン型スパッタリング装置を用いたマグネトロンスパッタリング法が知られている。   A magnetron sputtering method using a magnetron type sputtering apparatus is known as one of techniques for forming a thin film on a flat panel display such as a liquid crystal or an organic EL or a glass or plastic used as a substrate of a solar cell or the like.

このマグネトロン型スパッタリング装置に用いられるターゲットには、熱および電気伝導率が高い銅等の平板に薄膜の材料となる平板状のターゲット材を1個または複数に分割、配置して、半田材等を用いて張り付ける平板ターゲットと、円筒形基材の外周面に円筒状のターゲット材を配置または形成した円筒形ターゲットの2種類が広く使用されている。特に、円筒形ターゲットを用いるマグネトロン型回転カソードスパッタリング装置は、平板ターゲットを用いる装置に比べ成膜速度を早くでき、またターゲット材の使用効率も高いことで大量生産による設備償却費の低減や材料費削減が望めるため、フラットパネルディスプレィや太陽電池の製造用に広く使用されている。   For the target used in this magnetron type sputtering apparatus, a flat target material, which is a thin film material, is divided into one or more on a flat plate made of copper or the like having high heat and electrical conductivity, and a solder material or the like is arranged. Two types are widely used: a flat plate target to be used and a cylindrical target in which a cylindrical target material is disposed or formed on the outer peripheral surface of a cylindrical base material. In particular, the magnetron type rotary cathode sputtering system using a cylindrical target can increase the deposition rate compared with the system using a flat plate target, and the use efficiency of the target material is high. Because it can be reduced, it is widely used for the production of flat panel displays and solar cells.

円筒形ターゲットの製造方法としては、例えば、円筒形基材の外周面にプラズマ溶射によってターゲット材を形成する方法、円筒形基材の外周に粉末を充填し熱間等方圧プレス(HIP)によりターゲット材を形成する方法、及び円筒形ターゲット材を円筒形基材に同軸状に嵌め込んだあと半田材等で接合する方法等が知られている。しかし、溶射法、HIP法は、装置及び運転コストが多大であるとともに、円筒形基材と円筒形ターゲット材が一体で作製されているため、円筒形基材の再利用が困難で経済的ではない。またこれらの方法は熱膨張率の差に起因する剥離や割れが発生しやすい。   As a manufacturing method of a cylindrical target, for example, a method of forming a target material on the outer peripheral surface of a cylindrical base material by plasma spraying, a powder is filled on the outer periphery of the cylindrical base material, and hot isostatic pressing (HIP) A method of forming a target material, a method of joining a cylindrical target material coaxially to a cylindrical base material, and then joining with a solder material or the like are known. However, the thermal spraying method and the HIP method have a large apparatus and operating cost, and the cylindrical base material and the cylindrical target material are manufactured integrally. Absent. Also, these methods tend to cause peeling and cracking due to the difference in thermal expansion coefficient.

また、マグネトロン型回転カソードスパッタリング装置では、ターゲット材が陰極として機能し、円筒形基材を通して直流電源または高周波電源に結合される。さらにターゲット材の温度上昇を抑えるため、円筒形基材内部に水等の冷却媒体を流してターゲット材の冷却を行なう。このため、ターゲット材と円筒形基材の間には高電気伝導性および高熱伝導性が必要である。   In the magnetron rotary cathode sputtering apparatus, the target material functions as a cathode and is coupled to a direct current power source or a high frequency power source through a cylindrical base material. Further, in order to suppress the temperature rise of the target material, a cooling medium such as water is flowed into the cylindrical base material to cool the target material. For this reason, high electrical conductivity and high thermal conductivity are required between the target material and the cylindrical base material.

円筒形ターゲットの製法で円筒形基材上に嵌め込んだターゲット材を固定する方式には
1)半田材によるロウ付け接合(例えば、特許文献1参照)
2)同軸状バネによる固定(例えば、特許文献2参照)
3)カーボンフェルト/シートによる接合(例えば、特許文献3,4参照)
4)接着剤などによる接合(例えば、特許文献5参照)
5)導電性や熱伝導性が高い粉末による接合(例えば、特許文献6参照)
6)金属線や金属箔などによる接合(例えば、特許文献7参照)
等が知られているが、電気的および熱的抵抗を共に小さくできる半田材を用いるロウ付け接合方式が広く使用されている。
A method of fixing a target material fitted on a cylindrical base material by a method of manufacturing a cylindrical target is as follows: 1) Brazing joining with a solder material (for example, see Patent Document 1)
2) Fixing with a coaxial spring (for example, see Patent Document 2)
3) Joining by carbon felt / sheet (for example, see Patent Documents 3 and 4)
4) Joining with an adhesive or the like (for example, see Patent Document 5)
5) Joining with powder having high electrical conductivity and thermal conductivity (see, for example, Patent Document 6)
6) Joining with metal wire or metal foil (for example, see Patent Document 7)
However, a brazing method using a solder material that can reduce both electrical and thermal resistance is widely used.

半田材を用いる円筒形ターゲットの組立工程は、初めに円筒形基材を垂直に立て、その外側に円筒形ターゲット材を嵌め込み、ついで円筒形基材と円筒形ターゲット材の中心軸を一致させた後、円筒形基材とターゲット材を半田材溶融温度以上に加熱しながら円筒形基材とターゲット材の間にある空間の上部および/または下部から溶融した半田材を注入する。その後円筒形基材とターゲット材を半田材の融点以下に徐冷して半田材を固化させることにより、円筒形基材とターゲット材を半田材で接合した円筒形ターゲットが得られる。また、円筒形基材やターゲット材の種類によっては、予め円筒形基材の外面および/またはターゲット材の内面に、半田材との密着性を改善するため、半田材と同じ物質を薄く塗布することや半田材との密着性が良い材料をメッキするなどの下地処理が行なわれる。   The assembly process of the cylindrical target using the solder material is as follows. First, the cylindrical base material is set up vertically, the cylindrical target material is fitted on the outside, and then the central axes of the cylindrical base material and the cylindrical target material are matched. Thereafter, the molten solder material is injected from the upper part and / or the lower part of the space between the cylindrical base material and the target material while heating the cylindrical base material and the target material to the solder material melting temperature or higher. Thereafter, the cylindrical base material and the target material are gradually cooled below the melting point of the solder material to solidify the solder material, thereby obtaining a cylindrical target in which the cylindrical base material and the target material are joined by the solder material. Also, depending on the type of cylindrical base material or target material, the same material as the solder material is applied thinly in advance on the outer surface of the cylindrical base material and / or the inner surface of the target material in order to improve the adhesion to the solder material. In addition, a base treatment such as plating a material having good adhesion to the solder material is performed.

しかし、この組立工程において、半田材の注入時に気泡の巻き込み等がおこり、そのまま半田材が固化すると、円筒形基材および/またはターゲット材と半田材との接合が不良となり、その部分での電気的および/または熱的抵抗が増大し、円筒形ターゲットの性能が低下する。この様な円筒形ターゲット使用してマグネトロン型スパッタリング装置で成膜を行なうと、接合不良部分でターゲット材の冷却不足が生じ、その結果、局所的な熱膨張の差が生じてターゲット材に破損が生じることがある。またプラズマ電流量が低下する結果、基板上の成膜厚さが不足する等の不良が生じる。   However, in this assembling process, entrainment of bubbles occurs when the solder material is injected, and if the solder material is solidified as it is, the bonding between the cylindrical base material and / or the target material and the solder material becomes defective, and the electrical connection at that portion And / or thermal resistance increases and the performance of the cylindrical target decreases. When such a cylindrical target is used to form a film with a magnetron type sputtering apparatus, the target material is insufficiently cooled at the poorly bonded portion, resulting in a difference in local thermal expansion and damage to the target material. May occur. In addition, as a result of a decrease in the amount of plasma current, defects such as insufficient film thickness on the substrate occur.

特開1996−060351号公報JP-A-1996-060351 ***国特許出願公開第102004031161号明細書West German Patent Application No. 102004031161 特開2002−155356号公報JP 2002-155356 A 特開2006−138006号公報JP 2006-138006 A ***国特許出願公開第280124号明細書West German Patent Application Publication No. 280124 米国特許第6409897号明細書US Pat. No. 6,409,897 英国特許出願公開第2053763号明細書British Patent Application No. 2053763

本発明の課題は、円筒形ターゲット製造時、円筒形基材および/またはターゲット材と半田材とを接合不良が少なく強固に接合させ、ターゲット材と円筒形基材との間の導電性および熱伝導性を高くし、あるいはターゲット材と円筒形基材との間の熱的および/または電気的接合を均一にすることで膜特性が良い成膜を可能とし、かつ使用中のターゲット材の割れ、剥離を著しく低減できる円筒形ターゲットおよびその製造方法を提供することである。   An object of the present invention is to manufacture a cylindrical target by firmly joining the cylindrical base material and / or the target material and the solder material with few joint defects, and providing conductivity and heat between the target material and the cylindrical base material. High conductivity, or uniform thermal and / or electrical bonding between the target material and the cylindrical base material enables film formation with good film characteristics, and cracking of the target material in use Another object of the present invention is to provide a cylindrical target capable of remarkably reducing peeling and a method for manufacturing the same.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、円筒形ターゲット材を円筒形基材に同軸状に嵌め込んだあと、半田材を介して接合する円筒形ターゲットの製造方法において、円筒形基材と円筒形ターゲット材との間に溶融した半田材を注入し接合する際、円筒形基材と円筒形ターゲット材の間に存在する溶融した半田材を物理的に撹拌することで、円筒形基材と円筒形ターゲット材の接合不良を抑制できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention manufactured a cylindrical target to be joined via a solder material after coaxially fitting the cylindrical target material to the cylindrical base material. In the method, when the molten solder material is injected and joined between the cylindrical base material and the cylindrical target material, the molten solder material existing between the cylindrical base material and the cylindrical target material is physically agitated. As a result, it has been found that bonding failure between the cylindrical base material and the cylindrical target material can be suppressed, and the present invention has been completed.

即ち本発明は、以下のとおりである。
(1)円筒形基材と円筒形ターゲット材とを半田材を介して接合する円筒形ターゲットの製造方法において、円筒形基材と円筒形基材外径より大きな内径を有する円筒形ターゲット材を同軸上に配置し、それらを半田材の融点以上に加熱しながら、円筒形基材と円筒形ターゲット材との間の空間に溶融した半田材を注入し両者を接合する際に、注入した溶融した半田材を物理的に撹拌することを特徴とする、円筒形ターゲットの製造方法。
(2)溶融した半田材を物理的に撹拌する手段として、あらかじめ半田材より比重が軽い粉体物質を当該空間に入れ、次いで溶融した半田材を注入してその粉体物質を半田材の液面上に浮かせ、かつ粉体物質を当該空間の外部に設置した振動源により振動させながら半田材を注入する、上述の(1)に記載の円筒形ターゲットの製造方法。
(3)粉体物質が強磁性材料、セラミックス材料、金属材料、有機材料、高分子材料またはそれらの複合材料である、上述の(2)に記載の円筒形ターゲットの製造方法。
(4)粉体物質を振動させる振動源が機械的振動源または磁気的振動源である、上述の(2)または(3)に記載の円筒形ターゲットの製造方法。
(5)振動源を、半田材の液面位置に合わせて円筒形基材上を移動させるまたは円筒形基材の端面に設置する、上述の(2)から(4)のいずれかに記載の円筒形ターゲットの製造方法。
以下に本発明を詳細に説明する。
That is, the present invention is as follows.
(1) In a manufacturing method of a cylindrical target in which a cylindrical base material and a cylindrical target material are joined via a solder material, a cylindrical target material having an inner diameter larger than the outer diameter of the cylindrical base material and the cylindrical base material It is placed on the same axis, and while melting them above the melting point of the solder material, the molten solder material is injected into the space between the cylindrical base material and the cylindrical target material, and the injected melt is joined. A method for producing a cylindrical target, wherein the solder material is physically agitated.
(2) As a means for physically agitating the molten solder material, a powder material having a specific gravity lower than that of the solder material is previously placed in the space, and then the molten solder material is injected, and the powder material is used as a liquid of the solder material. The method for manufacturing a cylindrical target according to (1), wherein the solder material is injected while floating on a surface and vibrating a powder substance by a vibration source installed outside the space.
(3) The method for producing a cylindrical target according to (2) above, wherein the powder substance is a ferromagnetic material, a ceramic material, a metal material, an organic material, a polymer material, or a composite material thereof.
(4) The method for producing a cylindrical target according to (2) or (3) above, wherein the vibration source for vibrating the powder substance is a mechanical vibration source or a magnetic vibration source.
(5) The vibration source according to any one of (2) to (4) described above, wherein the vibration source is moved on the cylindrical base material in accordance with the liquid level position of the solder material or installed on the end face of the cylindrical base material. Manufacturing method of cylindrical target.
The present invention is described in detail below.

図1は、本発明によって製造される円筒形ターゲットの一例の断面図である。銅やチタン等で作られた円筒状基材16とこれと同心状に配置された円筒形ターゲット材12との間に生じる空間に半田材料を注入して接合層18を形成することにより、円筒形基材と円筒形ターゲット材とを一体化させた円筒形ターゲットを組み立てる。   FIG. 1 is a cross-sectional view of an example of a cylindrical target manufactured according to the present invention. By forming a bonding layer 18 by injecting a solder material into a space formed between a cylindrical base material 16 made of copper, titanium or the like and a cylindrical target material 12 arranged concentrically therewith, a cylinder is formed. A cylindrical target in which a shaped base material and a cylindrical target material are integrated is assembled.

本発明では、円筒形基材と円筒形ターゲット材との間に注入した溶融した半田材を物理的に撹拌することにより、半田材の注入時に生じた気泡を消滅させ、円筒形基材および/またはターゲット材と半田材との接合不良を効果的に減らすことが出来る。このため、接合不良部が原因の円筒形ターゲットの性能低下も防止することが出来る。また、同時に半田材が酸化したスラグも取り除くことも可能である。   In the present invention, the molten solder material injected between the cylindrical base material and the cylindrical target material is physically agitated to eliminate bubbles generated during the injection of the solder material. Alternatively, the bonding failure between the target material and the solder material can be effectively reduced. For this reason, it is possible to prevent the performance of the cylindrical target from being deteriorated due to the poorly bonded portion. At the same time, it is also possible to remove the slag that the solder material has oxidized.

溶融した半田材を物理的に撹拌する方法としては、棒状あるいは板状などの治具を用いて撹拌することも可能である。しかしながら、半田材を注入する空間の開口部は幅が約0.5〜2.0mmと狭く、かつ開口部から半田付けする位置までの距離が長いものでは数mあるため、このように狭くて長い空間に存在する半田材をより効果的に撹拌するには、溶融半田材の液面上に粉体物質を浮かせ、これに当該空間の外部から振動を加えて粉体物質を振動させる方法が好ましい。粉体物質の振動を利用して半田材を物理的に撹拌することにより、開口部が狭く外部からの治具が到達困難な場所においても、半田材と円筒形基材または/およびターゲット材の接合不良を減少させることができる。   As a method of physically stirring the molten solder material, it is possible to stir using a jig such as a rod or plate. However, since the opening of the space for injecting the solder material is as narrow as about 0.5 to 2.0 mm and the distance from the opening to the position to be soldered is a few meters, it is so narrow. In order to more effectively agitate the solder material existing in a long space, a method of floating the powder material on the liquid surface of the molten solder material and applying vibration from the outside of the space to vibrate the powder material is a method. preferable. By physically agitating the solder material using the vibration of the powder substance, the solder material and the cylindrical base material and / or the target material can be used even in a place where the opening is narrow and the external jig is difficult to reach. Bonding defects can be reduced.

尚、本発明で言う半田材を物理的に撹拌するとは、半田材以外の物質を用いて溶融半田を撹拌することである。また半田材の撹拌は、円筒形基材と円筒形ターゲット材の間に溶融した半田材の注入を開始してから、半田材を冷却固化させるまでの間に行えばよい。撹拌の時期は特に限定はなく、半田材の注入中に行っても良く、また半田材の注入完了後に行ってもよいが、半田材の注入開始から冷却開始までの間、撹拌を続けることが好ましい。   In addition, physically stirring the solder material referred to in the present invention means stirring the molten solder using a substance other than the solder material. Further, the stirring of the solder material may be performed after the injection of the molten solder material between the cylindrical base material and the cylindrical target material is started and until the solder material is cooled and solidified. The timing of stirring is not particularly limited, and may be performed during the injection of the solder material, or after the completion of the injection of the solder material, but the stirring may be continued from the start of the solder material injection to the start of cooling. preferable.

以下、本発明をより具体的に説明する。本発明の第1の実施形態では、円筒形基材と円筒形ターゲット材との間の空間に注入した溶融半田材の液面上に、半田材より比重の軽い粉体物質を浮かせ、当該空間の外部から振動源、例えば超音波振動源を用い溶融半田材の液面を振動させる。この振動により液面上に浮かんでいる粉体物質も振動し、この粉体物質が半田材液面を撹拌する。通常、半田材液面には半田材の酸化皮膜が形成されかつ表面張力も働いているため、半田材中に存在する気泡が半田材液面近傍に上昇しても半田材の系外に排出することが困難である。しかし本方法によれば、粉体物質が円筒形基材および/または円筒形ターゲット材に衝突しながら、半田材液面を撹拌することにより、気泡を効果的に半田材の系外に排出することが出来る。   Hereinafter, the present invention will be described more specifically. In the first embodiment of the present invention, a powder substance having a specific gravity lighter than the solder material is floated on the liquid surface of the molten solder material injected into the space between the cylindrical base material and the cylindrical target material, and the space The liquid surface of the molten solder material is vibrated from the outside using a vibration source, for example, an ultrasonic vibration source. Due to this vibration, the powder material floating on the liquid surface also vibrates, and this powder material agitates the solder material liquid surface. Normally, an oxide film of solder material is formed on the surface of the solder material and the surface tension is also working, so even if bubbles that exist in the solder material rise near the surface of the solder material, they are discharged outside the solder material system. Difficult to do. However, according to this method, the powder material collides with the cylindrical base material and / or the cylindrical target material, and the bubbles are effectively discharged out of the solder material system by stirring the liquid surface of the solder material. I can do it.

前記粉体物質は比重が半田材より軽い材料であることが必要で、粉体物質の比重が半田材より重いと粉体物質が半田材の溶融液面に浮かず、底部に沈殿し半田材を撹拌する機能を発揮できない。また前記粉体物質は半田材の溶融温度において固体であることが必要である。これらの条件を満たす粉体物質としてはダイアモンド、アルミナ、ジルコニア、酸化珪素、酸化セリウム、シリカ等が挙げられる。   The powder material needs to be a material whose specific gravity is lighter than that of the solder material. If the specific gravity of the powder material is heavier than that of the solder material, the powder material does not float on the melt surface of the solder material and settles to the bottom. The function of stirring can not be demonstrated. The powder material needs to be solid at the melting temperature of the solder material. Examples of the powder substance that satisfies these conditions include diamond, alumina, zirconia, silicon oxide, cerium oxide, and silica.

粉体物質は、円筒形基材と円筒形ターゲット材との間の空間に入れるため、その直径は当該空間の厚みよりも小さい必要がある。最大径としては、取り扱いの容易さからみて、当該空間の厚みの80%以下が好ましい。また、最小径としては、十分な撹拌効果を得るため、0.1mm以上であることが好ましい。粉体物質が小さく軽すぎると、振動による運動エネルギーが小さくなり、撹拌の効果を十分に得ることが出来ない。   Since the powder substance is placed in a space between the cylindrical base material and the cylindrical target material, the diameter of the powder material needs to be smaller than the thickness of the space. The maximum diameter is preferably 80% or less of the thickness of the space from the viewpoint of ease of handling. The minimum diameter is preferably 0.1 mm or more in order to obtain a sufficient stirring effect. If the powder substance is too small and light, the kinetic energy due to vibration becomes small and the effect of stirring cannot be obtained sufficiently.

例えば超音波振動源を用いる場合は20kHz〜100kHzの超音波振動周波数を有する超音波発信機が好ましい。この周波数範囲以下では、超音波が粉体物質に与えるエネルギーが不足し撹拌能力が低下するといった問題があり、また、この周波数範囲を超える場合、装置が大がかりになるといった問題がある。   For example, when an ultrasonic vibration source is used, an ultrasonic transmitter having an ultrasonic vibration frequency of 20 kHz to 100 kHz is preferable. Below this frequency range, there is a problem that the energy that the ultrasonic wave gives to the powder substance is insufficient and the stirring ability is lowered, and when the frequency range is exceeded, there is a problem that the apparatus becomes large.

振動源の取り付け位置としてはターゲット材または円筒形基材等の上部、下部やターゲット材の外側面、円筒形基材内面等が可能であるが、振動によるターゲット材の劣化を防ぐためには円筒形基材への取り付けが望ましい。   The vibration source can be attached to the upper or lower part of the target material or cylindrical base material, the outer surface of the target material, the inner surface of the cylindrical base material, etc. Attachment to a substrate is desirable.

本発明の第2の実施形態では、円筒形基材と円筒形ターゲット材との間の空間に注入した溶融半田材の液面上に磁性粉体物質を浮かせ、当該空間の外部から磁気振動源を用い磁性粉体物質を振動させる。第1の実施形態と同様に、この振動により磁性粉体物質が半田材液面を撹拌することにより、気泡を効果的に半田材の系外に排出することが出来る。このため、狭くて長い空間に存在する半田材をより効果的に撹拌することができ、結果として円筒形基材および/または円筒形ターゲット材と半田材との良好な結合が可能となる。   In the second embodiment of the present invention, the magnetic powder material is floated on the liquid surface of the molten solder material injected into the space between the cylindrical base material and the cylindrical target material, and a magnetic vibration source is supplied from the outside of the space. Is used to vibrate the magnetic powder material. As in the first embodiment, the magnetic powder substance agitates the solder material liquid surface by this vibration, so that bubbles can be effectively discharged out of the solder material system. For this reason, the solder material existing in the narrow and long space can be more effectively agitated, and as a result, the cylindrical base material and / or the cylindrical target material and the solder material can be well bonded.

本発明に使用する磁性粉体物質としては、特に制限はないが、Fe、Ni、Co等の強磁性金属またはそれらのホウ化物、窒化物、炭化物などがあげられる。またFe、Ni、Co、MnとMg、Al、Zn、Cu、Nb、Mo、Ga、In、Zr、Cd、Snの少なくとも一種との合金またはそれらのホウ化物、窒化物、炭化物などがあげられる。さらにFe、NiO・Fe、MnO・Fe、CoO・Fe、Ni・ZnO・Fe、Mn・ZnO・Fe、Co・ZnO・Fe、BaO・6Fe、SrO・6Fe等のフェライト類、また、これら材料を無機材料やプラスチック類に分散させた磁気ビーズ類が挙げられる。磁性粉体物質の比重が半田材料より重いと、磁場が無い状態で磁性粉体物質が溶融した半田材の下部に沈殿してしまい半田材を撹拌する機能を発揮できない。 The magnetic powder material used in the present invention is not particularly limited, and examples thereof include ferromagnetic metals such as Fe, Ni, and Co, or borides, nitrides, and carbides thereof. Further, an alloy of Fe, Ni, Co, Mn and Mg, Al, Zn, Cu, Nb, Mo, Ga, In, Zr, Cd, Sn, or a boride, nitride, carbide, or the like thereof can be used. . Furthermore, Fe 3 O 4 , NiO · Fe 2 O 3 , MnO · Fe 2 O 3 , CoO · Fe 2 O 3 , Ni · ZnO · Fe 2 O 3 , Mn · ZnO · Fe 2 O 3 , Co · ZnO · Fe Examples thereof include ferrites such as 2 O 3 , BaO · 6Fe 2 O 3 , and SrO · 6Fe 2 O 3 , and magnetic beads in which these materials are dispersed in inorganic materials and plastics. If the specific gravity of the magnetic powder material is heavier than that of the solder material, the magnetic powder material will settle under the molten solder material in the absence of a magnetic field, and the function of stirring the solder material cannot be exhibited.

磁性粉体物質を振動させる磁気振動源には、永久磁石を回転または振動させることで磁場を振動させる方式、空芯または磁芯を有するコイルに交流電流を流して磁場を振動させる方式等が可能である。磁気振動源の取り付け位置としては、円筒形ターゲット材の外部または円筒形基材の内部等が可能であるが、肉厚が薄く透磁性がある円筒形基材内部であって、溶融半田材の液面位置がより望ましい。   For the magnetic vibration source that vibrates the magnetic powder material, a method of vibrating a magnetic field by rotating or vibrating a permanent magnet, a method of vibrating an alternating current through an air core or a coil having a magnetic core, etc. are possible. It is. The magnetic vibration source can be attached to the outside of the cylindrical target material or inside the cylindrical base material, but inside the cylindrical base material having a thin wall thickness and magnetic permeability. The liquid level position is more desirable.

本発明に使用する半田材としては、一般に半田材として使用されるものであれば使用可能である。好ましくは、低融点半田材であり、例えば、In、Sn、Bi、Znおよびそれらの合金等が挙げられる。より好ましくはIn系半田材である。In系半田材は平板状ターゲットでの実績が豊富であり、また、展延性に富むため、スパッタリング中に加熱されるターゲット材と冷却されている円筒形基材との熱膨張差による歪み等を緩和する効果がある。   As the solder material used in the present invention, any solder material that is generally used as a solder material can be used. Preferably, it is a low melting point solder material, for example, In, Sn, Bi, Zn, and alloys thereof. More preferred is an In-based solder material. In-based solder materials have abundant track record in flat targets, and because they are highly malleable, strain due to the difference in thermal expansion between the target material heated during sputtering and the cooled cylindrical base material, etc. It has a mitigating effect.

円筒形ターゲットに用いられる円筒形基材としては、磁界が透過する非磁性体の種々の材質が使用可能であり、例えば、チタン、銅、モリブデン、アルミニウム等の金属、それらの金属を含む合金やSUS等が挙げられる。スパッタリング時に、円筒形ターゲットの接合層が溶融せず十分な冷却効率を確保できる高熱伝導性を有し、スパッタリング時に印加する直流電圧を低く抑えられる高電気伝導性を有し、ターゲットを支えることが可能な強度等を備えているものであれば良く、ターゲット材との熱膨張率の差が小さければより望ましい。   As the cylindrical base material used for the cylindrical target, various materials of a non-magnetic material that transmits a magnetic field can be used. For example, metals such as titanium, copper, molybdenum, and aluminum, alloys containing these metals, SUS etc. are mentioned. At the time of sputtering, the bonding layer of the cylindrical target does not melt, has high thermal conductivity that can ensure sufficient cooling efficiency, has high electrical conductivity that can suppress the DC voltage applied during sputtering, and can support the target It is sufficient if it has a possible strength and the like, and it is more desirable if the difference in coefficient of thermal expansion from the target material is small.

円筒形基材は、作製する円筒形ターゲットおよびターゲット材の大きさに応じ長さ0.3〜4m、肉厚2〜10mmで、ターゲット材の内径より1〜3mm小さい外径60〜200mmφの物が用いられる。円筒形基材の長さとしては特に制限はないが、本発明によれば1m以上の長さを有する円筒形基材を用いて構成した円筒形ターゲットであっても効果的に半田材を撹拌することができ、円筒形基材とターゲット材間の接合不良部分を低減することが可能である。   The cylindrical base material has a length of 0.3 to 4 m and a wall thickness of 2 to 10 mm depending on the size of the cylindrical target to be produced and the target material, and an outer diameter of 60 to 200 mm that is 1 to 3 mm smaller than the inner diameter of the target material. Is used. Although there is no restriction | limiting in particular as the length of a cylindrical base material, According to this invention, even if it is a cylindrical target comprised using the cylindrical base material which has a length of 1 m or more, a solder material is stirred effectively. Therefore, it is possible to reduce the bonding failure portion between the cylindrical base material and the target material.

本発明の円筒形ターゲットに用いられる円筒形ターゲット材としては、一般にスパッタリングで用いられる種々の材質が使用可能であり、例えば、In、Sn、Zn、Al、Nb、Ti等の金属、若しくはこれらの金属を含んでなる合金、又はこれらの金属等の一種以上の酸化物や窒化物等が挙げられる。酸化物では、例えば、ITO(Indium Tin Oxide)、AZO(Aluminium Zinc Oxide)、IZO(Indium Zinc Oxide)、SnO、In、Al、TiO、ZnO等が挙げられ、これらのような脆いセラミックス材料では、特に本発明の効果が得られる。 As the cylindrical target material used for the cylindrical target of the present invention, various materials generally used in sputtering can be used, for example, metals such as In, Sn, Zn, Al, Nb, Ti, or these Examples thereof include alloys containing metals, or one or more oxides or nitrides of these metals. Examples of the oxide include ITO (Indium Tin Oxide), AZO (Aluminum Zinc Oxide), IZO (Indium Zinc Oxide), SnO 2 , In 2 O 3 , Al 2 O 3 , TiO 2 , and ZnO. In the case of such a brittle ceramic material, the effect of the present invention can be obtained.

本発明によれば、円筒形ターゲットの接合工程において円筒形基材とターゲット材間の接合不良部分を低減し、円筒形基材とターゲット材間の電気的ならびに熱的接触抵抗を均一かつ低抵抗化できる。これによりスパッタ時において円筒形ターゲット材の割れの発生が少なく、長時間に亘って均一かつ緻密な薄膜が形成でき、安定したスパッタ成膜ができる円筒形ターゲットの製造が可能となる   According to the present invention, in the cylindrical target joining process, defective joints between the cylindrical base material and the target material are reduced, and the electrical and thermal contact resistance between the cylindrical base material and the target material is uniform and low resistance. Can be As a result, the cylindrical target material is less likely to be cracked during sputtering, a uniform and dense thin film can be formed over a long period of time, and a cylindrical target capable of stable sputter deposition can be manufactured.

円筒形ターゲット断面図である。It is a cylindrical target sectional drawing. 本発明における円筒形ターゲット半田付け組み立て状態の一例を示す断面図である。It is sectional drawing which shows an example of the cylindrical target soldering assembly state in this invention. 本発明における円筒形ターゲット半田付け組み立て状態の一例を示す断面図である。It is sectional drawing which shows an example of the cylindrical target soldering assembly state in this invention.

以下、本発明を、実施例をもって詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

(実施例1)
図2に半田材注入時の円筒形ターゲットの組み立て図を示す。初めにITO製円筒形ターゲット材12(外径:91mmφ、内径:77mmφ、長さ:175mm)を2個準備し、円筒形基材16と接合する内面以外を耐熱性テープで覆って半田材が付着するのを防止し、接合面に超音波半田鏝でインジウム半田を下塗した。同様に、SUS製円筒形基材16(外径:75mmφ、内径:70mmφ、長さ500mm)の外周で円筒形ターゲット材が接合される面以外の面を耐熱性テープで覆い、接合面に超音波半田鏝でインジウム半田を下塗した。
Example 1
FIG. 2 shows an assembly diagram of the cylindrical target at the time of solder material injection. First, two cylindrical target materials 12 made of ITO (outer diameter: 91 mmφ, inner diameter: 77 mmφ, length: 175 mm) are prepared, and the solder material is covered with a heat-resistant tape except for the inner surface to be joined to the cylindrical base material 16. Adhesion was prevented, and indium solder was subbed with an ultrasonic soldering iron on the joint surface. Similarly, a surface other than the surface to which the cylindrical target material is joined on the outer periphery of the SUS cylindrical base material 16 (outer diameter: 75 mmφ, inner diameter: 70 mmφ, length 500 mm) is covered with a heat-resistant tape, Indium solder was primed with a sonic soldering iron.

次に、中心に円筒形基材の外径よりわずかに大きい径の孔を有する封止治具26上に、円筒形ターゲット材の内径と同じ大きさの孔を有するテフロン(登録商標)製シール材28を両者の孔の中心が一致する様に敷き、その上に円筒形ターゲット材の中心が封止治具の中心と一致する様に載せ、2個目の円筒形ターゲット材を同様にテフロン(登録商標)製シール材で挟んで載せた。次いで、円筒形基材の外部にシリコン製のO−リング29を嵌め、それを封止治具の孔に固定した。この円筒形基材と円筒形ターゲット材の間にできる空間に、粉体物質22として直径0.5mmφのジルコニアビーズを2.5cm入れた後、中心に円筒形ターゲット材の内径よりわずかに大きい径の孔を有する封止治具30で円筒形ターゲットを固定した。次いで円筒形基材上端に超音波振動源24を取り付けた。 Next, a seal made of Teflon (registered trademark) having a hole having the same size as the inner diameter of the cylindrical target material on the sealing jig 26 having a diameter slightly larger than the outer diameter of the cylindrical base material at the center. The material 28 is laid so that the centers of both holes coincide with each other, and the center of the cylindrical target material is placed so as to coincide with the center of the sealing jig, and the second cylindrical target material is similarly mounted on the Teflon. The product was placed between (registered trademark) sealing materials. Next, a silicon O-ring 29 was fitted to the outside of the cylindrical base material and fixed in the hole of the sealing jig. In a space formed between the cylindrical base material and the cylindrical target material, zirconia beads having a diameter of 0.5 mmφ are placed as a powder substance 22 in 2.5 cm 3, and then slightly larger than the inner diameter of the cylindrical target material at the center. The cylindrical target was fixed with a sealing jig 30 having a hole having a diameter. Next, an ultrasonic vibration source 24 was attached to the upper end of the cylindrical base material.

次に、組み立てた円筒形ターゲット全体を180℃まで加熱した状態で、超音波振動源24から周波数28kHz、出力100Wの超音波を附加しジルコニアビーズに振動を起こさせながら、溶融したインジウム半田を上部より円筒形基材と円筒形ターゲット材との間の空間に注入した。その後円筒形ターゲットを室温まで冷却し、インジウム半田が完全に固化したことを確認後、治具、シール材や余分な半田を取り除いてITOの円筒形ターゲットを製造した。   Next, with the assembled cylindrical target heated to 180 ° C., ultrasonic waves with a frequency of 28 kHz and an output of 100 W are applied from the ultrasonic vibration source 24 to cause the zirconia beads to vibrate, and the molten indium solder is placed on the top. More injected into the space between the cylindrical base material and the cylindrical target material. Thereafter, the cylindrical target was cooled to room temperature, and after confirming that the indium solder was completely solidified, the jig, the sealing material and the excess solder were removed to produce an ITO cylindrical target.

得られた円筒形ターゲットの接合状態を超音波探傷法により検査したところ、接合不良箇所は発見されなかった。   When the joining state of the obtained cylindrical target was inspected by an ultrasonic flaw detection method, no joint failure point was found.

(実施例2)
図3に半田材注入時の円筒形ターゲットの組み立て図を示す。実施例1の粉体物質を直径0.8mmφのフェライトビーズに代え、また超音波振動源の代わりに円筒形基材内部の半田材の液面位置に磁気振動源32を取り付け、50Hzで磁場振動を付加してフェライトビーズを振動させた以外は、実施例1と同様にして円筒形ターゲットを組み立てた。
(Example 2)
FIG. 3 shows an assembly diagram of the cylindrical target at the time of solder material injection. The powder material of Example 1 is replaced with a ferrite bead having a diameter of 0.8 mmφ, and a magnetic vibration source 32 is attached to the liquid surface position of the solder material inside the cylindrical base material instead of the ultrasonic vibration source, and magnetic field vibration is performed at 50 Hz. A cylindrical target was assembled in the same manner as in Example 1 except that the ferrite beads were vibrated by adding.

得られた円筒形ターゲットの接合状態を実施例1と同様に超音波探傷法により検査したところ、接合不良箇所は発見されなかった。   When the joining state of the obtained cylindrical target was inspected by the ultrasonic flaw detection method in the same manner as in Example 1, no joint failure location was found.

(比較例1)
粉末物質を入れないで、超音波振動源を発振させない以外は、実施例1と同様に円筒形ターゲットを組み立てた。
(Comparative Example 1)
A cylindrical target was assembled in the same manner as in Example 1 except that no powder substance was added and the ultrasonic vibration source was not oscillated.

得られた円筒形ターゲットの接合状態を実施例1と同様に超音波探傷法により検査したところ、面積比(接合面積に対する接合不良箇所の合計面積の割合)で8%の接合不良箇所が存在した。   When the joining state of the obtained cylindrical target was inspected by the ultrasonic flaw detection method in the same manner as in Example 1, there was a joint failure location of 8% in the area ratio (the ratio of the total area of the joint failure location to the junction area). .

12 円筒形ターゲット材
16 円筒形基材
18 接合層
20 溶融半田材
22 粉体物質
24 超音波振動源
26 封止治具
28 シール材
29 O−リング
30 封止治具
32 磁気振動源
DESCRIPTION OF SYMBOLS 12 Cylindrical target material 16 Cylindrical base material 18 Joining layer 20 Molten solder material 22 Powder material 24 Ultrasonic vibration source 26 Sealing jig 28 Sealing material 29 O-ring 30 Sealing jig 32 Magnetic vibration source

Claims (5)

円筒形基材と円筒形ターゲット材とを半田材を介して接合する円筒形ターゲットの製造方法において、円筒形基材と円筒形基材外径より大きな内径を有する円筒形ターゲット材を同軸上に配置し、それらを半田材の融点以上に加熱しながら、円筒形基材と円筒形ターゲット材との間の空間に溶融した半田材を注入し両者を接合する際に、注入した溶融した半田材を物理的に撹拌することを特徴とする、円筒形ターゲットの製造方法。 In a manufacturing method of a cylindrical target in which a cylindrical base material and a cylindrical target material are joined via a solder material, the cylindrical target material and the cylindrical target material having an inner diameter larger than the outer diameter of the cylindrical base material are coaxially arranged. When the molten solder material is injected into the space between the cylindrical base material and the cylindrical target material and joined together while heating them above the melting point of the solder material, the injected molten solder material A method for producing a cylindrical target, characterized by physically stirring the material. 溶融した半田材を物理的に撹拌する手段として、あらかじめ半田材より比重が軽い粉体物質を当該空間に入れ、次いで溶融した半田材を注入してその粉体物質を半田材の液面上に浮かせ、かつ粉体物質を当該空間の外部に設置した振動源により振動させながら半田材を注入する、請求項1に記載の円筒形ターゲットの製造方法。 As a means of physically agitating the molten solder material, a powder material having a specific gravity lower than that of the solder material is placed in the space in advance, and then the molten solder material is injected to place the powder material on the surface of the solder material. The manufacturing method of the cylindrical target of Claim 1 which inject | pours a solder material, making it float and vibrating a powder substance with the vibration source installed in the exterior of the said space. 粉体物質が強磁性材料、セラミックス材料、金属材料、有機材料、高分子材料またはそれらの複合材料である、請求項2に記載の円筒形ターゲットの製造方法。 The method for producing a cylindrical target according to claim 2, wherein the powder substance is a ferromagnetic material, a ceramic material, a metal material, an organic material, a polymer material, or a composite material thereof. 粉体物質を振動させる振動源が機械的振動源または磁気的振動源である、請求項2または請求項3に記載の円筒形ターゲットの製造方法。 The method for manufacturing a cylindrical target according to claim 2 or 3, wherein the vibration source for vibrating the powder substance is a mechanical vibration source or a magnetic vibration source. 振動源を、半田材の液面位置に合わせて円筒形基材上を移動させるまたは円筒形基材の端面に設置する、請求項2から請求項4のいずれかに記載の円筒形ターゲットの製造方法。 The manufacturing of the cylindrical target according to any one of claims 2 to 4, wherein the vibration source is moved on the cylindrical base material according to a liquid surface position of the solder material or installed on an end face of the cylindrical base material. Method.
JP2011040517A 2011-02-25 2011-02-25 Manufacturing method of cylindrical target Active JP5672066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040517A JP5672066B2 (en) 2011-02-25 2011-02-25 Manufacturing method of cylindrical target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040517A JP5672066B2 (en) 2011-02-25 2011-02-25 Manufacturing method of cylindrical target

Publications (2)

Publication Number Publication Date
JP2012177156A true JP2012177156A (en) 2012-09-13
JP5672066B2 JP5672066B2 (en) 2015-02-18

Family

ID=46979188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040517A Active JP5672066B2 (en) 2011-02-25 2011-02-25 Manufacturing method of cylindrical target

Country Status (1)

Country Link
JP (1) JP5672066B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115379A1 (en) * 2013-01-25 2014-07-31 住友金属鉱山株式会社 CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP2016050358A (en) * 2014-08-28 2016-04-11 住友金属鉱山株式会社 Manufacturing method for cylindrical sputtering target
JP2017008339A (en) * 2015-06-17 2017-01-12 住友金属鉱山株式会社 Manufacturing method of cylindrical sputtering target
KR20210107691A (en) 2018-12-26 2021-09-01 미쓰비시 마테리알 가부시키가이샤 Manufacturing method of cylindrical sputtering target
KR20210143161A (en) 2019-03-25 2021-11-26 미쓰비시 마테리알 가부시키가이샤 Manufacturing method of cylindrical sputtering target

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114549A (en) * 1992-09-02 1994-04-26 Dai Ichi High Frequency Co Ltd Method for brazing planar bodies
JPH0860351A (en) * 1994-08-23 1996-03-05 Mitsui Mining & Smelting Co Ltd Production of sputtering target for rotary cathode
JP2002301565A (en) * 2001-04-03 2002-10-15 Dai Ichi High Frequency Co Ltd Method for producing complexed cylindrical or columnar body
WO2006129941A1 (en) * 2005-05-31 2006-12-07 Applied Science Corp. Solder bonding method for sputtering target
JP2010018883A (en) * 2008-06-10 2010-01-28 Tosoh Corp Cylindrical sputtering target and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114549A (en) * 1992-09-02 1994-04-26 Dai Ichi High Frequency Co Ltd Method for brazing planar bodies
JPH0860351A (en) * 1994-08-23 1996-03-05 Mitsui Mining & Smelting Co Ltd Production of sputtering target for rotary cathode
JP2002301565A (en) * 2001-04-03 2002-10-15 Dai Ichi High Frequency Co Ltd Method for producing complexed cylindrical or columnar body
WO2006129941A1 (en) * 2005-05-31 2006-12-07 Applied Science Corp. Solder bonding method for sputtering target
JP2008512571A (en) * 2005-05-31 2008-04-24 アプライド サイエンス コーポレイション Solder bonding method of sputtering target
JP2010018883A (en) * 2008-06-10 2010-01-28 Tosoh Corp Cylindrical sputtering target and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115379A1 (en) * 2013-01-25 2014-07-31 住友金属鉱山株式会社 CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP2014141722A (en) * 2013-01-25 2014-08-07 Sumitomo Metal Mining Co Ltd CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF
CN105008578B (en) * 2013-01-25 2017-03-22 住友金属矿山株式会社 CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP2016050358A (en) * 2014-08-28 2016-04-11 住友金属鉱山株式会社 Manufacturing method for cylindrical sputtering target
JP2017008339A (en) * 2015-06-17 2017-01-12 住友金属鉱山株式会社 Manufacturing method of cylindrical sputtering target
KR20210107691A (en) 2018-12-26 2021-09-01 미쓰비시 마테리알 가부시키가이샤 Manufacturing method of cylindrical sputtering target
KR20210143161A (en) 2019-03-25 2021-11-26 미쓰비시 마테리알 가부시키가이샤 Manufacturing method of cylindrical sputtering target

Also Published As

Publication number Publication date
JP5672066B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5672066B2 (en) Manufacturing method of cylindrical target
JP5482020B2 (en) Cylindrical sputtering target and manufacturing method thereof
TWI442810B (en) Frit-sealed device
JP5309978B2 (en) Manufacturing method of cylindrical sputtering target
JP2012132065A (en) Cylindrical sputtering target and method for manufacturing the same
TWI440732B (en) Cylindrical sputtering target and its manufacturing method
JP5428741B2 (en) Manufacturing method of cylindrical sputtering target
JP5283354B2 (en) Rotary target assembly
JP2008184640A (en) Cylindrical sputtering target and method of manufacturing the same
JP5194460B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP2018111868A (en) Method for manufacturing cylindrical sputtering target
JP5672537B2 (en) Cylindrical sputtering target and manufacturing method thereof
CN112080727B (en) Binding method of rotary target material
JP2018083079A (en) Compact-structure magnetically conductive coating layer, method of manufacturing compact-structure magnetically conductive coating layer, pot body, and cooking appliance
CN111129282A (en) Piezoelectric ceramic intelligent structure and method for embedding piezoelectric ceramic intelligent structure into metal matrix
CN201614405U (en) Rotary sputtering target
CN104108862A (en) Vacuum glass sealing structure and forming method thereof
JP2011252237A (en) Method of manufacturing cylindrical sputtering target
US20220216041A1 (en) High efficiency rotatable sputter target
JP2013529253A (en) Non-continuous bonding of sputtering target to backing material
JP2017008339A (en) Manufacturing method of cylindrical sputtering target
CN108517520A (en) A kind of diamond laminated film and its preparation method and application
KR101502513B1 (en) Sputtering target assembly and method of manufacturing the same
CN215050656U (en) Rotary target binding equipment with oxide removal vibration knocking device
JPH1046329A (en) Sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R151 Written notification of patent or utility model registration

Ref document number: 5672066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151