JP2012176882A - Composition for optical member and optical member - Google Patents

Composition for optical member and optical member Download PDF

Info

Publication number
JP2012176882A
JP2012176882A JP2012014363A JP2012014363A JP2012176882A JP 2012176882 A JP2012176882 A JP 2012176882A JP 2012014363 A JP2012014363 A JP 2012014363A JP 2012014363 A JP2012014363 A JP 2012014363A JP 2012176882 A JP2012176882 A JP 2012176882A
Authority
JP
Japan
Prior art keywords
atom
mol
composition
optical member
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014363A
Other languages
Japanese (ja)
Inventor
Tetsushi Yamamoto
哲士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012014363A priority Critical patent/JP2012176882A/en
Publication of JP2012176882A publication Critical patent/JP2012176882A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a colorless composition for optical members that contains La and O, and a transparent optical member.SOLUTION: The composition for optical members that contains La and O further contains at least one element selected from the group A consisting of Ca, Mg, Ba, Sr, and Zn, at least one element selected from the group B consisting of Zr, Ti, Sn, and Hf, and at least one element selected from the group C consisting of Ta and Nb, wherein the sum total of La, O, at least one element selected from the group A, at least one element selected from the group B, and at least one element selected from the group C is 99 mol% or more while the sum total of the elements of the composition is 100 mol%.

Description

本発明は光学部材用の組成物及び光学部材に関する。   The present invention relates to a composition for an optical member and an optical member.

無機材料からなる、ガラス以外の光学部材として、パイロクロア構造を有するものが知られている。特許文献1は、Bi、ZnO、Taからなる、パイロクロア構造を有するマイクロ波誘電体化合物を開示している。 As an optical member made of an inorganic material other than glass, one having a pyrochlore structure is known. Patent Document 1, Bi 2 O 3, ZnO, consisting of Ta 2 O 5, discloses a microwave dielectric compound having a pyrochlore structure.

特表2004−501856号公報JP-T-2004-501856

しかし、Biは黄色に着色しているため、特許文献1で開示しているマイクロ波誘電体化合物も黄色に着色していると考えられ、レンズ等に用いる光学部材としては、使用する波長帯域で十分な透過率が得られないと考えられる。そこで本発明は、La原子及びO原子を有し、着色がない光学部材用の組成物及び、透明な光学部材を提供することを目的とする。 However, since Bi 2 O 3 is colored yellow, it is considered that the microwave dielectric compound disclosed in Patent Document 1 is also colored yellow, and is used as an optical member used for lenses and the like. It is considered that sufficient transmittance cannot be obtained in the wavelength band. Then, an object of this invention is to provide the composition for optical members which has La atom and O atom, and is not colored, and a transparent optical member.

本発明に係る光学部材用の組成物は、La原子及びO原子を有する光学部材用の組成物において、前記組成物がさらに、Ca原子、Mg原子、Ba原子、Sr原子、Zn原子からなる群Aから選ばれる少なくとも1種の原子と、Zr原子、Ti原子、Sn原子、Hf原子からなる群Bから選ばれる少なくとも1種の原子と、Ta原子、Nb原子からなる群Cから選ばれる少なくとも1種の原子と、を有し、前記組成物の有する原子の総和を100mol%としたときに、前記La原子と、前記O原子と、前記群Aから選ばれる少なくとも1種の原子と、前記群Bから選ばれる少なくとも1種の原子と、前記群Cから選ばれる少なくとも1種の原子の総和が99mol%以上であることを特徴とする。   The composition for optical members according to the present invention is a composition for optical members having La atoms and O atoms, wherein the composition further comprises Ca atoms, Mg atoms, Ba atoms, Sr atoms, Zn atoms. At least one atom selected from A, at least one atom selected from Group B consisting of Zr atom, Ti atom, Sn atom and Hf atom, and at least one selected from Group C consisting of Ta atom and Nb atom And at least one atom selected from the group A, and the group, when the sum of the atoms of the composition is 100 mol%. The total of at least one atom selected from B and at least one atom selected from the group C is 99 mol% or more.

本発明に係る光学部材用の組成物によれば、La原子及びO原子を有する組成物であって、着色がない。したがって、この組成物から得られる光学部材は透明になると考えられるため、本発明に係る光学部材をレンズ等に用いる場合、使用する波長帯域で十分な透過率が得られると考えられる。   The composition for an optical member according to the present invention is a composition having La atoms and O atoms and is not colored. Therefore, since the optical member obtained from this composition is considered to be transparent, it is considered that when the optical member according to the present invention is used for a lens or the like, sufficient transmittance can be obtained in the wavelength band to be used.

本発明の実施例及び比較例で得られた結果をまとめた図である。It is the figure which put together the result obtained by the Example and comparative example of this invention. 本発明の実施例及び比較例で得られた結果をまとめた図である。It is the figure which put together the result obtained by the Example and comparative example of this invention.

本発明の実施形態について以下に説明するが、本発明はこれらに限られない。   Embodiments of the present invention will be described below, but the present invention is not limited thereto.

(実施形態1)
実施形態1では、光学部材用の組成物について説明する。
(Embodiment 1)
Embodiment 1 demonstrates the composition for optical members.

本実施形態に係る光学部材用の組成物は、La原子及びO原子を有する光学部材用の組成物において、前記組成物がさらに、Ca原子、Mg原子、Ba原子、Sr原子、Zn原子からなる群Aから選ばれる少なくとも1種の原子と、Zr原子、Ti原子、Sn原子、Hf原子からなる群Bから選ばれる少なくとも1種の原子と、Ta原子、Nb原子からなる群Cから選ばれる少なくとも1種の原子と、を有し、前記組成物の有する原子の総和を100mol%としたときに、前記La原子と、前記O原子と、前記群Aから選ばれる少なくとも1種の原子と、前記群Bから選ばれる少なくとも1種の原子と、前記群Cから選ばれる少なくとも1種の原子の総和が99mol%以上であることを特徴とする。   The composition for an optical member according to this embodiment is a composition for an optical member having La atoms and O atoms, and the composition further comprises Ca atoms, Mg atoms, Ba atoms, Sr atoms, and Zn atoms. At least one atom selected from group A, at least one atom selected from group B consisting of Zr atom, Ti atom, Sn atom, and Hf atom, and at least selected from group C consisting of Ta atom and Nb atom 1 atom, and when the sum of the atoms of the composition is 100 mol%, the La atom, the O atom, and at least one atom selected from the group A, and The total of at least one atom selected from group B and at least one atom selected from group C is 99 mol% or more.

本実施形態に係る光学部材用の組成物は、上記のような原子で構成されており、着色がない(白色である)。光学部材用の組成物が白色であれば、この組成物から得られる光学部材も着色せず、透明な光学部材を得られると考えられる。そのため、本実施形態に係る光学部材用の組成物から得られる光学部材をレンズ等に用いる場合、使用する波長帯域で十分な透過率が得られると考えられる。   The composition for an optical member according to this embodiment is composed of the atoms as described above, and is not colored (white). If the composition for optical members is white, the optical member obtained from this composition is not colored, and it is considered that a transparent optical member can be obtained. Therefore, when the optical member obtained from the composition for optical members according to the present embodiment is used for a lens or the like, it is considered that sufficient transmittance can be obtained in the wavelength band to be used.

本実施形態に係る光学部材用の組成物の好適な例は、前記群Aから選ばれる少なくとも1種の原子がCa原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Ca原子と、前記Zr原子と、前記Ta原子の総和が100mol%であり、かつ、前記La原子が17.3mol%以上28.0mol%以下、前記Ca原子が22.3mol%以上33.1mol%以下、前記Zr原子が17.2mol%以上27.8mol%以下、前記Ta原子が22.1mol%以上32.8mol%以下であることを特徴とする。   In a preferred example of the composition for an optical member according to this embodiment, at least one atom selected from the group A is a Ca atom, and at least one atom selected from the group B is a Zr atom. , At least one atom selected from the group C is a Ta atom, the total of the La atom, the Ca atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom is 17.3 mol% or more and 28.0 mol% or less, the Ca atom is 22.3 mol% or more and 33.1 mol% or less, the Zr atom is 17.2 mol% or more and 27.8 mol% or less, and the Ta atom is 22.1 mol% or more. It is characterized by being 32.8 mol% or less.

本実施形態に係る光学部材用の組成物のさらなる好適な例は、前記群Aから選ばれる少なくとも1種の原子がCa原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Ca原子と、前記Zr原子と、前記Ta原子の総和が100mol%であり、かつ、前記La原子が17.5mol%以上27.5mol%以下、前記Ca原子が22.5mol%以上32.5mol%以下、前記Zr原子が17.5mol%以上27.5mol%以下、前記Ta原子が22.5mol%以上32.5mol%以下であることを特徴とする。さらに、本実施形態に係る光学部材用の組成物は、下記の式(1)で示されることが好ましい。
(La1−XCa2+t(Zr1−XTa7+u ・・・(1)
(ただし、Xは0.45≦X≦0.65、tは−0.04≦t≦0.08、uは−0.05≦u≦0.10である)
In a further preferred example of the composition for an optical member according to this embodiment, at least one atom selected from the group A is a Ca atom, and at least one atom selected from the group B is a Zr atom. And at least one atom selected from the group C is a Ta atom, the sum of the La atom, the Ca atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom Is 17.5 mol% to 27.5 mol%, the Ca atom is 22.5 mol% to 32.5 mol%, the Zr atom is 17.5 mol% to 27.5 mol%, and the Ta atom is 22.5 mol% The amount is 32.5 mol% or less. Furthermore, it is preferable that the composition for optical members according to the present embodiment is represented by the following formula (1).
(La 1-X Ca X) 2 + t (Zr 1-X Ta X) 2 O 7 + u ··· (1)
(However, X is 0.45 ≦ X ≦ 0.65, t is −0.04 ≦ t ≦ 0.08, and u is −0.05 ≦ u ≦ 0.10)

本実施形態に係る光学部材用の組成物は、下記の式(2)で示されることがさらに好ましい。
(La1−XCa(Zr1−XTa ・・・(2)
(ただし、Xは0.45≦X≦0.65である)
上記の式(2)は、上記の式(1)において、tが0、かつ、uが0の場合である。
実施例で後述するように、本実施形態に係る光学部材用の組成物が上記の式(2)で示される場合、この組成物は立方晶パイロクロア構造であり、この組成物から透明な光学部材を得られると考えられる。
More preferably, the composition for an optical member according to this embodiment is represented by the following formula (2).
(La 1-X Ca X) 2 (Zr 1-X Ta X) 2 O 7 ··· (2)
(However, X is 0.45 ≦ X ≦ 0.65)
The above equation (2) is a case where t is 0 and u is 0 in the above equation (1).
As will be described later in Examples, when the composition for an optical member according to the present embodiment is represented by the above formula (2), the composition has a cubic pyrochlore structure, and the optical member is transparent from this composition. It is thought that can be obtained.

本実施形態に係る光学部材用の組成物の別の好適な例は、前記群Aから選ばれる少なくとも1種の原子がMg原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Mg原子と、前記Zr原子と、前記Ta原子の総和が100mol%で、かつ、前記La原子が27.2mol%以上38.2mol%以下、前記Mg原子が12.4mol%以上22.9mol%以下、前記Zr原子が27.0mol%以上37.9mol%以下、前記Ta原子が12.3mol%以上22.7mol%以下であることを特徴とする。   Another preferred example of the composition for an optical member according to this embodiment is that at least one atom selected from the group A is an Mg atom, and at least one atom selected from the group B is a Zr atom. And at least one atom selected from the group C is a Ta atom, the total of the La atom, the Mg atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom Is 27.2 mol% or more and 38.2 mol% or less, the Mg atom is 12.4 mol% or more and 22.9 mol% or less, the Zr atom is 27.0 mol% or more and 37.9 mol% or less, and the Ta atom is 12.3 mol%. It is above 22.7 mol%, It is characterized by the above-mentioned.

本実施形態に係る光学部材用の組成物のさらなる別の好適な例は、前記群Aから選ばれる少なくとも1種の原子がMg原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Mg原子と、前記Zr原子と、前記Ta原子の総和が100mol%で、かつ、前記La原子が27.5mol%以上37.5mol%以下、前記Mg原子が12.5mol%以上22.5mol%以下、前記Zr原子が27.5mol%以上37.5mol%以下、前記Ta原子が12.5mol%以上22.5mol%以下であることを特徴とする。   Still another suitable example of the composition for an optical member according to this embodiment is that at least one atom selected from the group A is an Mg atom and at least one atom selected from the group B is Zr. An atom, and at least one atom selected from the group C is a Ta atom, the total of the La atom, the Mg atom, the Zr atom, and the Ta atom is 100 mol%, and the La 27.5 mol% to 37.5 mol% of atoms, 12.5 mol% to 22.5 mol% of Mg atoms, 27.5 mol% to 37.5 mol% of Zr atoms, and 12.5 mol of Ta atoms % Or more and 22.5 mol% or less.

本実施形態に係る光学部材用の組成物は、下記の式(3)で示されることが好ましい。
(La1−XMg2+t(Zr1−XTa7+u ・・・(3)
(ただし、Xは0.25≦X≦0.45、tは−0.04≦t≦0.08、uは−0.05≦u≦0.10である)
It is preferable that the composition for optical members which concerns on this embodiment is shown by following formula (3).
(La 1-X Mg X) 2 + t (Zr 1-X Ta X) 2 O 7 + u ··· (3)
(However, X is 0.25 ≦ X ≦ 0.45, t is −0.04 ≦ t ≦ 0.08, and u is −0.05 ≦ u ≦ 0.10)

本実施形態に係る光学部材用の組成物は、下記の式(4)で示されることがさらに好ましい。
(La1−XMg(Zr1−XTa ・・・(4)
(ただし、Xは0.25≦X≦0.45である)
上記の式(4)は、上記の式(3)において、tが0、かつ、uが0の場合である。
実施例で後述するように、本実施形態に係る光学部材用の組成物が上記の式(4)で示される場合、この組成物は立方晶パイロクロア構造であり、この組成物から透明な光学部材を得られると考えられる。
More preferably, the composition for an optical member according to this embodiment is represented by the following formula (4).
(La 1-X Mg x) 2 (Zr 1-X Ta X) 2 O 7 ··· (4)
(However, X is 0.25 ≦ X ≦ 0.45)
The above equation (4) is a case where t is 0 and u is 0 in the above equation (3).
As will be described later in Examples, when the composition for an optical member according to the present embodiment is represented by the above formula (4), this composition has a cubic pyrochlore structure, and this composition is a transparent optical member. It is thought that can be obtained.

(光学部材用の組成物の不純物)
本実施形態に係る光学部材用の組成物は、本実施形態に係る光学部材用の組成物の有する原子の総和を100mol%としたときに、前記La原子と、前記O原子と、前記群Aから選ばれる少なくとも1種の原子と、前記群Bから選ばれる少なくとも1種の原子の総和が99mol%以上であり、不純物を1mol%以下含んでいてもよく、不純物の含有量は0.1mol%以下であることが好ましい。不純物として、Siの酸化物、Feの酸化物、Bの酸化物、Wの酸化物、Biの酸化物、Coの酸化物、Cuの酸化物、Yの酸化物、Alの酸化物などの金属酸化物などが挙げられる。
(Impurities in the composition for optical members)
The composition for an optical member according to the present embodiment has the La atom, the O atom, and the group A when the sum of the atoms of the composition for the optical member according to the present embodiment is 100 mol%. The total of at least one atom selected from the group B and at least one atom selected from the group B may be 99 mol% or more, may contain 1 mol% or less of impurities, and the content of impurities is 0.1 mol% The following is preferable. As impurities, metals such as Si oxide, Fe oxide, B oxide, W oxide, Bi oxide, Co oxide, Cu oxide, Y oxide, Al oxide, etc. An oxide etc. are mentioned.

(光学部材用の組成物の組成比の測定方法)
本実施形態において光学部材用の組成物の組成比の測定は、誘導結合プラズマ(Inductively coupled plasma、以下、ICPと略す)発光分析装置によって行うことができる。ICP発光分析装置はCIROS CCD(株式会社リガク社製)を用いることができる。
(Method for measuring composition ratio of composition for optical member)
In this embodiment, the composition ratio of the composition for an optical member can be measured by an inductively coupled plasma (hereinafter abbreviated as ICP) emission analyzer. As the ICP emission spectrometer, CIROS CCD (manufactured by Rigaku Corporation) can be used.

(結晶構造の測定方法)
本実施形態において、光学部材用の組成物の結晶構造が立方晶パイロクロア構造であるか否かの測定は以下の通りに行う。結晶構造の測定は、X線回折装置である、RINT2100(株式会社リガク社製)で、X線管電圧を40kV、X線管電流を40mAとして行う。
(Measurement method of crystal structure)
In this embodiment, the measurement of whether or not the crystal structure of the composition for an optical member is a cubic pyrochlore structure is performed as follows. The measurement of the crystal structure is performed with an RINT2100 (manufactured by Rigaku Corporation), which is an X-ray diffraction apparatus, with an X-ray tube voltage of 40 kV and an X-ray tube current of 40 mA.

まず、上記の装置で、2θ=10°〜80°における回折強度(counts)の測定を行い、X線回折パターンを得る。   First, the diffraction intensity (counts) at 2θ = 10 ° to 80 ° is measured with the above-described apparatus to obtain an X-ray diffraction pattern.

次に、得られたX線回折パターンに近い立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)をPDFデーターベースから選択する。選択したデータの格子定数を初期値として、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を用いて、最小二乗法による格子定数の精密化を数サイクル行う。   Next, an X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) having a cubic pyrochlore structure close to the obtained X-ray diffraction pattern is selected from the PDF database. Using the lattice constant of the selected data as an initial value, the powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) is used to refine the lattice constant by the least square method for several cycles.

次に、空間群(Fd−3m、#227、Z=8)、上記の精密化した格子定数、各サイトの元素占有比率、ワイコフ位置から、Mercury(Cambridge Crystallographic Data Centre社製、英国)を用いて計算することにより、X線回折パターンを得る。   Next, Mercury (Cambridge Crystallographic Data Center, UK) was used from the space group (Fd-3m, # 227, Z = 8), the refined lattice constant, the element occupation ratio of each site, and the Wyckoff position. To obtain an X-ray diffraction pattern.

次に、計算によって得られる立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していれば、金属酸化物の結晶構造が立方晶パイロクロア構造であるとする。ピーク位置が一致していない場合や、計算によって得られた立方晶パイロクロア構造のX線回折パターンにはないピークが生じている場合は、立方晶パイロクロア構造ではないとする。   Next, the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. If they match, it is assumed that the crystal structure of the metal oxide is a cubic pyrochlore structure. When the peak positions do not coincide with each other, or when a peak that does not exist in the X-ray diffraction pattern of the cubic pyrochlore structure obtained by calculation is generated, it is assumed that the cubic pyrochlore structure is not obtained.

(光学部材用の組成物と有機モノマーとを有する分散液)
本実施形態に係る光学部材用の組成物と有機モノマーとを有する分散液について説明する。このような分散液は、極性溶媒や非極性溶媒に、有機モノマーと本実施形態に係る光学部材用の組成物とを添加することにより得られる。分散させる際に、湿式分散方式であるビーズミル法を用いることも可能である。
(Dispersion liquid having composition for optical member and organic monomer)
The dispersion liquid which has the composition for optical members which concerns on this embodiment, and an organic monomer is demonstrated. Such a dispersion can be obtained by adding an organic monomer and the composition for an optical member according to the present embodiment to a polar solvent or a nonpolar solvent. When dispersing, it is also possible to use a bead mill method which is a wet dispersion method.

なお、上記の有機モノマーとして、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ酢酸ビニル、テフロン(登録商標)、ABS樹脂、AS樹脂、アクリル樹脂(PMMA)、ポリアミド、ポリアセタール、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、環状ポリオレフィン(COP)、ポリイミド(PI)などの熱可塑性樹脂や、フェノール樹脂、エポキシ樹脂、ポリイミド(PI)などの熱硬化性樹脂を用いることができる。一般的に、炭化水素系モノマーや脂環式モノマーは、他のモノマーよりも吸湿性が低く、かつ、線膨張係数が小さいため好ましい。   In addition, as said organic monomer, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl acetate, Teflon (registered trademark), ABS resin, AS resin, acrylic resin (PMMA), polyamide, polyacetal, polycarbonate Thermoplastic resins such as (PC), polyethylene terephthalate (PET), cyclic polyolefin (COP), and polyimide (PI), and phenol resins, epoxy resins, and polyimide (PI) can be used. In general, hydrocarbon monomers and alicyclic monomers are preferred because they are less hygroscopic than other monomers and have a low coefficient of linear expansion.

(光学部材用の組成物と有機ポリマーとを有する複合材料)
また、上記の分散液に、光を照射したり、加熱することにより、有機モノマーを重合硬化させることで、有機モノマーの重合体の中に本実施形態に係る光学部材用の組成物を有する複合材料を作製することができる。ここで、本実施形態に係る光学部材用の組成物の線膨張係数は、一般的に、有機モノマーの重合体の単独の線膨張係数よりも小さいため、複合材料の線膨張係数は、有機モノマーの重合体の線膨張係数よりも小さい。したがって、本実施形態に係る光学部材用の組成物は、線膨張係数を小さくするための添加材として用いることもできる。
(Composite material having composition for optical member and organic polymer)
Further, the above-mentioned dispersion liquid is irradiated with light or heated to polymerize and cure the organic monomer, so that the composite having the composition for the optical member according to the present embodiment in the polymer of the organic monomer is used. A material can be made. Here, since the linear expansion coefficient of the composition for optical members according to the present embodiment is generally smaller than the single linear expansion coefficient of the polymer of the organic monomer, the linear expansion coefficient of the composite material is the organic monomer. It is smaller than the linear expansion coefficient of the polymer. Therefore, the composition for optical members according to the present embodiment can also be used as an additive for reducing the linear expansion coefficient.

(実施形態2)
実施形態2では、光学部材について説明する。
(Embodiment 2)
In the second embodiment, an optical member will be described.

本実施形態に係る光学部材は、アッベ数が25以上、かつ、屈折率が1.75以上、かつ、透過率が20%以上であり、実施形態1で説明した光学部材用の組成物からなることを特徴とする。   The optical member according to the present embodiment has an Abbe number of 25 or more, a refractive index of 1.75 or more, and a transmittance of 20% or more, and is composed of the composition for optical members described in the first embodiment. It is characterized by that.

本実施形態に係る光学部材は、光学部材用の組成物を構成する上記のような原子で構成されており、透明である。したがって、本実施形態に係る光学部材をレンズなどの光学素子として用いる場合、使用する波長帯域で十分な透過率が得られると考えられる。   The optical member which concerns on this embodiment is comprised with the above atoms which comprise the composition for optical members, and is transparent. Therefore, when the optical member according to the present embodiment is used as an optical element such as a lens, it is considered that sufficient transmittance can be obtained in the wavelength band to be used.

本実施形態に係る光学部材用の好適な例は、前記群Aから選ばれる少なくとも1種の原子がCa原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Ca原子と、前記Zr原子と、前記Ta原子の総和が100mol%であり、かつ、前記La原子が17.3mol%以上28.0mol%以下、前記Ca原子が22.3mol%以上33.1mol%以下、前記Zr原子が17.2mol%以上27.8mol%以下、前記Ta原子が22.1mol%以上32.8mol%以下であることを特徴とする。   In a preferred example of the optical member according to this embodiment, at least one atom selected from the group A is a Ca atom, at least one atom selected from the group B is a Zr atom, and the group At least one atom selected from C is a Ta atom, the sum of the La atom, the Ca atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom is 17.3 mol. % To 28.0 mol%, the Ca atom from 22.3 mol% to 33.1 mol%, the Zr atom from 17.2 mol% to 27.8 mol%, and the Ta atom from 22.1 mol% to 32.8 mol%. % Or less.

本実施形態に係る光学部材のさらなる好適な例は、前記群Aから選ばれる少なくとも1種の原子がCa原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Ca原子と、前記Zr原子と、前記Ta原子の総和が100mol%であり、かつ、前記La原子が17.5mol%以上27.5mol%以下、前記Ca原子が22.5mol%以上32.5mol%以下、前記Zr原子が17.5mol%以上27.5mol%以下、前記Ta原子が22.5mol%以上32.5mol%以下であることを特徴とする。   In a further preferred example of the optical member according to this embodiment, at least one atom selected from the group A is a Ca atom, at least one atom selected from the group B is a Zr atom, and the group At least one atom selected from C is a Ta atom, the sum of the La atom, the Ca atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom is 17.5 mol. % To 27.5 mol%, the Ca atom from 22.5 mol% to 32.5 mol%, the Zr atom from 17.5 mol% to 27.5 mol%, and the Ta atom from 22.5 mol% to 32.5 mol% % Or less.

さらに、本実施形態に係る光学部材は、上記の式(1)で示されることが好ましく式(2)で示されることがさらに好ましい。   Furthermore, the optical member according to the present embodiment is preferably represented by the above formula (1), and more preferably represented by the formula (2).

本実施形態に係る光学部材用の組成物の別の好適な例は、前記群Aから選ばれる少なくとも1種の原子がMg原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Mg原子と、前記Zr原子と、前記Ta原子の総和が100mol%で、かつ、前記La原子が27.2mol%以上38.2mol%以下、前記Mg原子が12.4mol%以上22.9mol%以下、前記Zr原子が27.0mol%以上37.9mol%以下、前記Ta原子が12.3mol%以上22.7mol%以下であることを特徴とする。   Another preferred example of the composition for an optical member according to this embodiment is that at least one atom selected from the group A is an Mg atom, and at least one atom selected from the group B is a Zr atom. And at least one atom selected from the group C is a Ta atom, the total of the La atom, the Mg atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom Is 27.2 mol% or more and 38.2 mol% or less, the Mg atom is 12.4 mol% or more and 22.9 mol% or less, the Zr atom is 27.0 mol% or more and 37.9 mol% or less, and the Ta atom is 12.3 mol%. It is above 22.7 mol%, It is characterized by the above-mentioned.

本実施形態に係る光学部材のさらなる別の好適な例は、前記群Aから選ばれる少なくとも1種の原子がMg原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Mg原子と、前記Zr原子と、前記Ta原子の総和が100mol%で、かつ、前記La原子が27.5mol%以上37.5mol%以下、前記Mg原子が12.5mol%以上22.5mol%以下、前記Zr原子が27.5mol%以上37.5mol%以下、前記Ta原子が12.5mol%以上22.5mol%以下であることを特徴とする。   Still another suitable example of the optical member according to the present embodiment is such that at least one atom selected from the group A is an Mg atom, and at least one atom selected from the group B is a Zr atom, At least one atom selected from the group C is a Ta atom, the sum of the La atom, the Mg atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom is 27. 5 mol% or more and 37.5 mol% or less, the Mg atom is 12.5 mol% or more and 22.5 mol% or less, the Zr atom is 27.5 mol% or more and 37.5 mol% or less, and the Ta atom is 12.5 mol% or more and 22. It is characterized by being 5 mol% or less.

さらに、本実施形態に係る光学部材は、上記の式(3)で示されることが好ましく、式(4)で示されることがさらに好ましい。   Furthermore, the optical member according to the present embodiment is preferably represented by the above formula (3), and more preferably represented by the formula (4).

また、本実施形態に係る光学部材は、アッベ数(νd)と屈折率(nd)が下記の式(5)及び(6)を満たす関係にあることが好ましい。
2.20≧nd≧−0.01νd+2.25(30≦νd<55) ・・・(5)
2.20≧nd≧1.70(55≦νd≦100) ・・・(6)
ここで、上記のようにアッベ数(νd)の上限は100、屈折率(nd)の上限は2.20となっているが、適切な組成の発見や、適切な添加材の発見などにより、上限がより大きな値となる可能性がある。
In the optical member according to the present embodiment, it is preferable that the Abbe number (νd) and the refractive index (nd) satisfy the following expressions (5) and (6).
2.20 ≧ nd ≧ −0.01νd + 2.25 (30 ≦ νd <55) (5)
2.20 ≧ nd ≧ 1.70 (55 ≦ νd ≦ 100) (6)
Here, as described above, the upper limit of the Abbe number (νd) is 100 and the upper limit of the refractive index (nd) is 2.20. However, by finding an appropriate composition, finding an appropriate additive, etc. The upper limit may be larger.

また、本実施形態に係る光学部材は、透過率が60%以上であることが好ましく、80%以上であることがさらに好ましい。   Further, the optical member according to this embodiment preferably has a transmittance of 60% or more, and more preferably 80% or more.

(光学部材の不純物)
また、本実施形態に係る光学部材は、本実施形態に係る光学部材の有する原子の総和を100mol%としたときに、前記La原子と、前記O原子と、前記群Aから選ばれる少なくとも1種の原子と、前記群Bから選ばれる少なくとも1種の原子と、前記群Cから選ばれる少なくとも1種の原子の総和が99mol%以上であることが好ましい。したがって、本実施形態に係る光学部材は不純物を1mol%以下含んでいてもよく、不純物の含有量は0.1mol%以下であることが好ましい。不純物として、Siの酸化物、Feの酸化物、Bの酸化物、Wの酸化物、Biの酸化物、Coの酸化物、Cuの酸化物、Yの酸化物、Alの酸化物などの金属酸化物が挙げられる。また、他の不純物としてバインダや焼結助剤などが挙げられる。
(Impurities in optical components)
Further, the optical member according to the present embodiment is at least one selected from the La atom, the O atom, and the group A when the sum of atoms of the optical member according to the present embodiment is 100 mol%. The total of at least one atom selected from the group B and at least one atom selected from the group C is preferably 99 mol% or more. Therefore, the optical member according to this embodiment may contain 1 mol% or less of impurities, and the content of impurities is preferably 0.1 mol% or less. As impurities, metals such as Si oxide, Fe oxide, B oxide, W oxide, Bi oxide, Co oxide, Cu oxide, Y oxide, Al oxide, etc. An oxide is mentioned. Other impurities include binders and sintering aids.

(バインダ)
本実施形態におけるバインダとは、後述するように、本実施形態に係る光学部材用の組成物を焼成する際に、光学部材用の組成物同士が結合しやすくするために用いる材料である。本実施形態におけるバインダの例として、ポリビニルアルコール、ポリビニルアセタール、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルブチラール、ポリアクリル酸エステル、ポリメタアクリル酸エステル、パラフィンワックス、流動パラフィン、マイクロクリスタリンワックス、酸化ワックス、マレイン化ワックス、ステアリン酸、オレイン酸、ブチルステアレート、エチルステアレート、メチルステアレート、マイクロクリスタリンワックス、ポリビニルブチラール、ポリプロピレン、ポリスチレン、ポリエチレン、ジエチルフタレート、ポリアセタールなどが挙げられる。
(Binder)
As described later, the binder in the present embodiment is a material used to facilitate the bonding of the optical member compositions to each other when the optical member composition according to the present embodiment is baked. Examples of the binder in the present embodiment include polyvinyl alcohol, polyvinyl acetal, ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, polyvinyl butyral, polyacrylate ester, polymethacrylate ester, paraffin wax, liquid paraffin, microcrystalline wax, oxidized wax, malein Wax, stearic acid, oleic acid, butyl stearate, ethyl stearate, methyl stearate, microcrystalline wax, polyvinyl butyral, polypropylene, polystyrene, polyethylene, diethyl phthalate, polyacetal and the like.

(焼結助剤)
本実施形態における焼結助剤とは、本実施形態に係る光学部材用組成物や本実施形態に係る光学部材を得るために焼成する際に添加することで、必要な焼成時間を短くしたり、必要な焼成温度を低くすることができる材料である。また、本実施形態に係る光学部材が、適切な焼結助剤を有すると、有しない場合に比べて、固く、透過率が高い。本実施形態における焼結助剤として、MgO、Y、Al、SiOなどが挙げられる。
(Sintering aid)
The sintering aid in the present embodiment is added when firing to obtain the optical member composition according to the present embodiment or the optical member according to the present embodiment, thereby shortening the necessary firing time. It is a material that can lower the necessary firing temperature. In addition, when the optical member according to the present embodiment has an appropriate sintering aid, it is harder and has a higher transmittance as compared with the case where it does not have. Examples of the sintering aid in this embodiment include MgO, Y 2 O 3 , Al 2 O 3 , and SiO 2 .

(屈折率、アッベ数の測定方法)
本実施形態に係る光学部材の屈折率の測定はVブロック法で行うことができる。本実施形態において屈折率は、カルニュー精密屈折計KPR−2000(島津デバイス製造社製)を用いたときの、d線(587.6nm)の屈折率(nd)とする。
(Measurement method of refractive index and Abbe number)
The refractive index of the optical member according to this embodiment can be measured by the V block method. In this embodiment, the refractive index is the refractive index (nd) of the d line (587.6 nm) when a Kalnew precision refractometer KPR-2000 (manufactured by Shimadzu Device Manufacturing Co., Ltd.) is used.

また、アッベ数(νd)の測定は、上記の屈折率の測定装置で、d線(587.6nm)の屈折率(nd)、F線(486.1nm)の屈折率(nF)、C線(656.3nm)の屈折率(nC)の測定を行い、νd=(nd−1)/(nF−nC)の式に代入することで算出できる。   In addition, the Abbe number (νd) is measured by the refractive index measuring device described above, using the d-line (587.6 nm) refractive index (nd), the F-line (486.1 nm) refractive index (nF), and the C-line. It can be calculated by measuring the refractive index (nC) of (656.3 nm) and substituting it into the equation of νd = (nd−1) / (nF−nC).

(透過率の測定方法)
本実施形態に係る光学部材の透過率の測定は、紫外可視近赤外分光光度計(UV−3600、島津製作所、測定可能な波長領域:185〜3300nm)を用いて測定した直線透過率である。具体的には、本実施形態に係る光学部材の厚みを1mmとしたときに、波長400nmの光を照射したときの値である。
(Measurement method of transmittance)
The measurement of the transmittance of the optical member according to the present embodiment is a linear transmittance measured using an ultraviolet-visible near-infrared spectrophotometer (UV-3600, Shimadzu Corporation, measurable wavelength region: 185 to 3300 nm). . Specifically, it is a value when light having a wavelength of 400 nm is irradiated when the thickness of the optical member according to the present embodiment is 1 mm.

(光学部材の組成比の測定方法)
本実施形態において、光学部材の組成比の測定は、光学部材用の組成物の組成比の測定方法と同様に、ICP発光分析装置によって行うことができる。ICP発光分析装置はCIROS CCD(株式会社リガク社製)を用いることができる。
(Method for measuring composition ratio of optical member)
In the present embodiment, the measurement of the composition ratio of the optical member can be performed by an ICP emission analyzer as in the method of measuring the composition ratio of the composition for the optical member. As the ICP emission spectrometer, CIROS CCD (manufactured by Rigaku Corporation) can be used.

(光学部材の結晶構造の測定方法)
本実施形態において、光学部材の結晶構造の測定は、光学部材用の組成物の組成比の測定方法と同様に、X線回折装置である、RINT2100(株式会社リガク社製)で、X線管電圧を40kV、X線管電流を40mAとして行う。上記の装置で、2θ=10°〜80°における回折強度(counts)の測定を行い、X線回折パターンを得る。
(Measuring method of crystal structure of optical member)
In the present embodiment, the measurement of the crystal structure of the optical member is performed by the RINT2100 (manufactured by Rigaku Corporation), which is an X-ray diffractometer, as in the method for measuring the composition ratio of the composition for the optical member. The voltage is 40 kV and the X-ray tube current is 40 mA. The diffraction intensity (counts) at 2θ = 10 ° to 80 ° is measured with the above apparatus to obtain an X-ray diffraction pattern.

(用途)
本実施形態に係る光学部材の用途としてはレンズなどの光学素子に好適であるがこれに限られない。例えば、シンチレーター、時計の文字盤のカバーガラスなどに用いることもできる。
(Use)
Applications of the optical member according to the present embodiment are suitable for optical elements such as lenses, but are not limited thereto. For example, it can be used for a scintillator, a cover glass of a clock face, and the like.

(実施形態3)
実施形態3では、レンズについて説明する。
(Embodiment 3)
In Embodiment 3, a lens will be described.

(レンズ)
本実施形態に係るレンズは、上記、実施形態2で説明した光学部材の研磨面に反射防止膜を有することを特徴とする。ここで、レンズとは、入射させた光を屈折させることで、入射させた光を意図する方向に発散または集束させるための光学素子である。レンズとしては凹レンズ、凸レンズ、球面レンズ、非球面レンズ、回折光学素子(DOE)、屈折率分布型(GRIN)レンズなどが挙げられる。これらのレンズはフィルムカメラ、デジタルカメラ(DSC)、ビデオカメラ(VD)、携帯電話カメラ、監視カメラ、TVカメラ、映画カメラ、プロジェクターなどに用いることができる。
(lens)
The lens according to this embodiment has an antireflection film on the polished surface of the optical member described in the second embodiment. Here, the lens is an optical element for diverging or focusing the incident light in an intended direction by refracting the incident light. Examples of the lens include a concave lens, a convex lens, a spherical lens, an aspherical lens, a diffractive optical element (DOE), and a gradient index (GRIN) lens. These lenses can be used for film cameras, digital cameras (DSC), video cameras (VD), mobile phone cameras, surveillance cameras, TV cameras, movie cameras, projectors, and the like.

本実施形態において、反射防止膜は特に限定されない。また、反射防止膜とレンズとの間に中間層を有していてもよい。ここで、中間層は特に限定されないが、中間層の屈折率の値が、レンズの屈折率と反射防止膜の屈折率との間の値であることが好ましい。
なお、レンズの屈折率、アッベ数、透過率などの光学特性を測定する場合、例えば、レンズ表面から2μm以上の深さにおける上記光学特性を測定する。
In the present embodiment, the antireflection film is not particularly limited. Further, an intermediate layer may be provided between the antireflection film and the lens. Here, the intermediate layer is not particularly limited, but the refractive index value of the intermediate layer is preferably a value between the refractive index of the lens and the refractive index of the antireflection film.
When measuring the optical characteristics such as the refractive index, Abbe number, and transmittance of the lens, for example, the optical characteristics at a depth of 2 μm or more from the lens surface are measured.

(実施形態4)
実施形態4では、光学部材の製造方法について説明する。
(Embodiment 4)
Embodiment 4 demonstrates the manufacturing method of an optical member.

本実施形態に係る光学部材の製造方法は、実施形態1で説明した光学部材用の組成物に圧力をかけて成形体を得る工程(工程1)と、前記成形体を焼成して光学部材を得る工程(工程2)と、を有することを特徴とする。   The optical member manufacturing method according to the present embodiment includes a step (step 1) of applying pressure to the composition for an optical member described in the first embodiment to obtain a molded body, and firing the molded body to obtain the optical member. And a step of obtaining (step 2).

(光学部材用の組成物の製造方法)
本実施形態に係る光学部材用の組成物の製造方法の一例について説明する。
(Method for producing composition for optical member)
An example of the manufacturing method of the composition for optical members which concerns on this embodiment is demonstrated.

まず、平均粒径50μm以下の純度99重量%以上のLaの原料粉末を用い、乳鉢で30分粉砕及び混合する。なお、Laの原料粉末の純度が99重量%以上とは、原料粉末の全重量を100重量としたとき、Laは99重量以上であることを意味し、以下も同様である。 First, La 2 O 3 raw material powder having an average particle size of 50 μm or less and a purity of 99% by weight or more is ground and mixed in a mortar for 30 minutes. Incidentally, the purity of the raw material powder La 2 O 3 is 99 wt% or more, when the total weight of the raw powder is 100 weight, La 2 O 3 means that 99 wt or more, the same applies hereinafter is there.

得られた混合粉末をアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置する。電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持することで、上記の混合粉末を焼成する。以下では、この、混合粉末を焼成するときの温度を焼成温度(上記では1600℃)と呼び、焼成している時間を焼成時間(上記では3時間)と呼ぶ。その後、炉内の温度を室温まで自然冷却して、仮焼成体である、光学部材用の組成物を得る。   After the obtained mixed powder is added to the alumina crucible, the alumina crucible is placed in an electric furnace. Install the electric furnace in the atmosphere, raise the temperature in the electric furnace from room temperature to 1600 ° C in 2 hours, hold the temperature in the furnace at 1600 ° C for 3 hours, and fire the above mixed powder To do. Hereinafter, the temperature at which the mixed powder is fired is referred to as a firing temperature (above 1600 ° C.), and the firing time is referred to as a firing time (above 3 hours). Then, the temperature in a furnace is naturally cooled to room temperature, and the composition for optical members which is a temporary baking body is obtained.

本実施形態に係る光学部材用の組成物は、上記の固相反応で調製できるが、その他に、火炎法、及び、RFプラズマ法、アーク放電プラズマ法を用いた気相反応、水溶液や有機溶媒中での常圧液相反応、水熱合成やソルボサーマル法を用いた高圧液相反応、超臨界反応、液相プラズマ反応、マイクロリアクター、超音波反応、マイクロ波反応などで調製することもできる。   The composition for an optical member according to the present embodiment can be prepared by the above solid-phase reaction, but in addition, a flame method, a gas phase reaction using an RF plasma method, an arc discharge plasma method, an aqueous solution or an organic solvent. It can also be prepared by normal pressure liquid phase reaction, high pressure liquid phase reaction using hydrothermal synthesis or solvothermal method, supercritical reaction, liquid phase plasma reaction, microreactor, ultrasonic reaction, microwave reaction, etc. .

(原料粉末)
上記の原料粉末としてはLa酸化物、Ca酸化物、Mg酸化物、Zr酸化物、Ta酸化物などの金属酸化物や、炭酸カルシウム、炭酸マグネシウムなどの金属炭酸塩、金属水酸化物などが挙げられる。原料粉末を構成する各粒子の平均粒径は50μm以下であることが好ましい。なぜなら、原料粉末の平均粒径が50μmよりも大きい場合、上記の固相反応の反応性が低いと考えられるからである。
(Raw material powder)
Examples of the raw material powder include metal oxides such as La oxide, Ca oxide, Mg oxide, Zr oxide, and Ta oxide, metal carbonates such as calcium carbonate and magnesium carbonate, and metal hydroxides. It is done. The average particle diameter of each particle constituting the raw material powder is preferably 50 μm or less. This is because when the average particle size of the raw material powder is larger than 50 μm, it is considered that the reactivity of the solid phase reaction is low.

また、原料粉末の純度は99重量%以上であることが好ましい。なぜなら、原料粉末の純度が99重量%以上である場合、不純物による着色が生じにくいと考えられるからである。   The purity of the raw material powder is preferably 99% by weight or more. This is because when the purity of the raw material powder is 99% by weight or more, it is considered that coloring due to impurities hardly occurs.

(粉砕及び混合する方法)
本実施形態において粉砕及び混合する方法としては、溶媒を用いない乾式分散方式、または、溶媒を用いる湿式分散方式が挙げられる。湿式分散方式の例として、溶媒とボールミルを用いるボールミル法が挙げられる。湿式分散方式で用いる溶媒は水でも有機溶媒でもよい。上記ボールミルに使用するビーズはイットリア安定化ジルコニア(YSZ)が好ましい。また、用いるビーズの直径は30μm以上25mm以下であることが好ましく、300μm以上15mm以下であることがさらに好ましい。
(Method of grinding and mixing)
Examples of the method of pulverizing and mixing in the present embodiment include a dry dispersion method using no solvent, or a wet dispersion method using a solvent. An example of the wet dispersion method is a ball mill method using a solvent and a ball mill. The solvent used in the wet dispersion method may be water or an organic solvent. The beads used in the ball mill are preferably yttria stabilized zirconia (YSZ). Further, the diameter of the beads to be used is preferably 30 μm or more and 25 mm or less, and more preferably 300 μm or more and 15 mm or less.

(焼成温度)
上記の焼成温度は1000℃以上1800℃以下であることが好ましく、1200℃以上1700℃以下であることがさらに好ましい。焼成温度が1000℃以上である場合、原料粉末の結晶成長が十分に進むと考えられる。焼成温度が1800℃以下である場合、電気炉の耐火材が劣化しにくい。
(Baking temperature)
The firing temperature is preferably 1000 ° C. or higher and 1800 ° C. or lower, more preferably 1200 ° C. or higher and 1700 ° C. or lower. When the firing temperature is 1000 ° C. or higher, it is considered that crystal growth of the raw material powder proceeds sufficiently. When the firing temperature is 1800 ° C. or lower, the refractory material of the electric furnace is unlikely to deteriorate.

(焼成時間)
上記の焼成時間は0.5時間以上24時間以下であることが好ましく、1時間以上10時間以下であることがさらに好ましい。焼成時間が0.5時間以上である場合、結晶成長が十分に進むと考えられる。焼成時間が24時間以下である場合、製造コストが安くすむと考えられる。
(Baking time)
The firing time is preferably 0.5 hours or more and 24 hours or less, and more preferably 1 hour or more and 10 hours or less. When the firing time is 0.5 hours or more, it is considered that crystal growth proceeds sufficiently. If the firing time is 24 hours or less, the production cost is considered to be low.

(工程1について)
工程1では、上記のようにして得られた光学部材用の組成物に圧力をかけて成形体を得る工程である。圧力をかける方法としては、一軸加圧成型法、冷間等方圧加圧(ColdIsostatic Press、CIP)法、射出成形法、シート成形、押出成形、鋳込成形などが挙げられる。上記の工程1において、かける圧力は1000kg/cm以上3000kg/cm以下であることが好ましい。
(About step 1)
In step 1, pressure is applied to the composition for an optical member obtained as described above to obtain a molded body. Examples of the method of applying pressure include a uniaxial press molding method, a cold isostatic press (CIP) method, an injection molding method, sheet molding, extrusion molding, and casting molding. In step 1 described above, the applied pressure is preferably 1000 kg / cm 2 or more and 3000 kg / cm 2 or less.

(工程2について)
工程2では、上記の工程1で得られた成形体を焼成して光学部材を得る工程である。焼成温度及び焼成時間は、上記で説明した(焼成温度)、(焼成時間)と同じである。焼成する方法としては、熱間等方圧加圧(Hot Isostatic Press、HIP)法、放電プラズマ焼結(Spark Plasma Sintering、SPS)法、真空焼結法、ホットプレス法、高酸素雰囲気焼結法などを用いることができる。
(About step 2)
In step 2, the molded body obtained in the above step 1 is fired to obtain an optical member. The firing temperature and firing time are the same as the (baking temperature) and (baking time) described above. The firing method includes hot isostatic pressing (HIP) method, spark plasma sintering (SPS) method, vacuum sintering method, hot press method, high oxygen atmosphere sintering method. Etc. can be used.

(その他の工程について)
本実施形態に係る光学部材の製造方法は、上記の工程1、2以外の工程を含んでいてもよい。例えば、工程1の前に、光学部材用の組成物とバインダを混合する混合工程を有していてもよい。バインダを混合することで、光学部材用の組成物の凝集を抑制することができる。このとき用いるバインダは、実施形態1で説明したバインダを用いることができる。混合する方法は上記の(粉砕及び混合する方法)で説明した方法を用いることができる。さらに、バインダを混合する工程の後に、熱処理やスプレードライで溶媒を蒸発させる工程を有していてもよい。
(About other processes)
The manufacturing method of the optical member which concerns on this embodiment may include processes other than said process 1 and 2. For example, you may have the mixing process of mixing the composition for optical members, and a binder before the process 1. FIG. By mixing the binder, aggregation of the composition for the optical member can be suppressed. As the binder used at this time, the binder described in Embodiment 1 can be used. As a method for mixing, the method described in the above (method of pulverizing and mixing) can be used. Furthermore, you may have the process of evaporating a solvent by heat processing or spray drying after the process of mixing a binder.

また、工程1の前に、光学部材用の組成物を1メッシュ以上750メッシュ以下のふるいに通すことにより、粒径を揃える工程を有していてもよい。ふるいを通すことにより得られる粒子の平均粒径は1μm以上500μm以下であることが好ましい。   Moreover, before the process 1, you may have the process of arrange | equalizing a particle size by letting the composition for optical members pass through the sieve of 1 mesh or more and 750 mesh or less. The average particle size of the particles obtained by passing through a sieve is preferably 1 μm or more and 500 μm or less.

以下、本発明の実施例について説明するが、本発明はこれらに限定されない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(結晶構造の測定方法)
以下に説明する実施例において、光学部材用の組成物の結晶構造の測定は、X線回折装置であるRINT2100(株式会社リガク社製、X線管電圧40kV、X線管電流40mA)で行った。また、回折強度(counts)の測定は、2θ=10°〜80°の範囲で行った。
(Measurement method of crystal structure)
In the examples described below, the measurement of the crystal structure of the composition for an optical member was performed with RINT2100 (manufactured by Rigaku Corporation, X-ray tube voltage 40 kV, X-ray tube current 40 mA) which is an X-ray diffractometer. . The diffraction intensity (counts) was measured in the range of 2θ = 10 ° to 80 °.

(格子定数の精密化)
格子定数の精密化には、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を使用した。測定したX線回折パターンに近い立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)をPDFデーターベースから選択した。選択したデータの格子定数を初期値とした。最小二乗法による格子定数の精密化を数サイクル行い、測定したX線回折パターンに対応する格子定数を決定した。2θ=28.9〜29.3°の回折ピークは(222)面に由来のピークと同定した。
(Refinement of lattice constant)
For refinement of the lattice constant, powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) was used. An X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) having a cubic pyrochlore structure close to the measured X-ray diffraction pattern was selected from the PDF database. The lattice constant of the selected data was used as the initial value. The lattice constant was refined by the least square method for several cycles, and the lattice constant corresponding to the measured X-ray diffraction pattern was determined. The diffraction peak at 2θ = 28.9 to 29.3 ° was identified as a peak derived from the (222) plane.

空間群(Fd−3m、#227、Z=8)、精密化した格子定数、各サイトの元素占有比率、ワイコフ位置から、Mercury(Cambridge Crystallographic Data Centre社製、英国)を用いて計算することにより、X線回折パターンを得た。   By calculating from the space group (Fd-3m, # 227, Z = 8), the refined lattice constant, the element occupation ratio of each site, and the Wyckoff position using Mercury (Cambridge Crystallographic Data Centre, UK). An X-ray diffraction pattern was obtained.

次に、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していれば、光学部材用の組成物の結晶構造が立方晶パイロクロア構造であるとした。また、ピーク位置が一致していない場合や、計算によって得られた立方晶パイロクロア構造のX線回折パターンにはないピークが生じている場合は、立方晶パイロクロア構造ではないとした。   Next, the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement, and the position of the peak If the two coincide, the crystal structure of the composition for an optical member is assumed to be a cubic pyrochlore structure. Further, when the peak positions do not coincide with each other, or when a peak that does not exist in the X-ray diffraction pattern of the cubic pyrochlore structure obtained by the calculation occurs, it is determined that the cubic pyrochlore structure is not obtained.

(計算密度の算出)
計算密度(ρ)の算出には、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を使用した。空間群と精密化された格子定数から体積を算出した。光学部材用の組成物の分子量と算出した体積から計算密度(ρ)を算出した。
(Calculation of calculation density)
For calculation of the calculation density (ρ), powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) was used. The volume was calculated from the space group and the refined lattice constant. The calculated density (ρ) was calculated from the molecular weight of the composition for optical members and the calculated volume.

(結晶子径の算出)
結晶子径(D)の算出には、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を使用した。2θ=28.9〜29.3°の回折ピークは(222)面に由来する。測定された回折ピーク(2θ=28.9〜29.3°)から半価幅β(222)を算出する。得られた半価幅β(222)を用いて下記のシェラー式(式(7))を用いて(222)面の結晶子径D(222)を算出した。2θ=28.9〜29.3°回折ピークの回折強度が大きく、(222)面の結晶子径D(222)が大きいほど結晶性の良い立方晶パイロクロアが生成しているとした。
(222)=K×λCu−Kα1/β(222)cosθ ・・・(7)
ここで、K=0.9、λCu−Kα1=0.154056nm、β(222)は回折ピーク(2θ=28.9〜29.3°)の半価幅である。
(Calculation of crystallite diameter)
For the calculation of the crystallite diameter (D), powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) was used. The diffraction peak at 2θ = 28.9 to 29.3 ° is derived from the (222) plane. The half width β (222) is calculated from the measured diffraction peak (2θ = 28.9 to 29.3 °). The crystallite diameter D (222) of the (222) plane was calculated using the Scherrer formula (formula (7)) below using the obtained half width β (222). As the diffraction intensity of the 2θ = 28.9 to 29.3 ° diffraction peak is larger and the crystallite diameter D (222) of the (222) plane is larger, the cubic pyrochlore having better crystallinity is generated.
D (222) = K × λ Cu-Kα1 / β (222) cos θ (7)
Here, K = 0.9, λ Cu-Kα1 = 0.154056 nm, β (222) is the half width of the diffraction peak (2θ = 28.9 to 29.3 °).

(比表面積の算出)
比表面積(S)の算出にはBET法を用いた。使用した装置はTriStar(Micromeritics社製)を用いた。
(Calculation of specific surface area)
The BET method was used to calculate the specific surface area (S). The apparatus used was TriStar (manufactured by Micromeritics).

(粒子径の算出)
BET法による比表面積(S)と粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)で算出した計算密度(ρ)を用いて(式(8))を用いて粒子径(d)を算出した。
d=6/(S×ρ) ・・・(8)
(Calculation of particle size)
Using the specific surface area (S) by the BET method and the calculated density (ρ) calculated by the powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation), the particle diameter (d) using (Expression (8)) Was calculated.
d = 6 / (S × ρ) (8)

(実施例1)
酸化ランタン(La)5.5mmol、炭酸カルシウム(CaCO)9mmol、酸化タンタル(Ta)4.5mmol、酸化ジルコニウム(ZrO)11mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=28.98°回折ピークの最大回折強度は17390countsであった。上記の式(7)から(222)面の結晶子径は42.1nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.655Å、計算密度6.195g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
Example 1
Lanthanum oxide (La 2 O 3 ) 5.5 mmol, calcium carbonate (CaCO 3 ) 9 mmol, tantalum oxide (Ta 2 O 5 ) 4.5 mmol, and zirconium oxide (ZrO 2 ) 11 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 28.98 ° diffraction peak derived from the (222) plane was 17390 counts. From the above formulas (7) to (222), the crystallite diameter was estimated to be 42.1 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.6551 and the calculation density 6.195 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例2)
酸化ランタン(La)5mmol、炭酸カルシウム(CaCO)10mmol、酸化タンタル(Ta)5mmol、酸化ジルコニウム(ZrO)10mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.06°回折ピークの最大回折強度は18862countsであった。上記の式(7)から(222)面の結晶子径は42.3nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.626Å、計算密度6.235g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
(Example 2)
Lanthanum oxide (La 2 O 3 ) 5 mmol, calcium carbonate (CaCO 3 ) 10 mmol, tantalum oxide (Ta 2 O 5 ) 5 mmol, and zirconium oxide (ZrO 2 ) 10 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.06 ° diffraction peak derived from the (222) plane was 18862 counts. From the above formulas (7) to (222), the crystallite diameter of the (222) plane was estimated to be 42.3 nm. When refinement of the lattice constant was performed using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.626Å and the calculation density 6.235 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例3)
酸化ランタン(La)4mmol、炭酸カルシウム(CaCO)12mmol、酸化タンタル(Ta)6mmol、酸化ジルコニウム(ZrO)8mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.18°回折ピークの最大回折強度は19259countsであった。上記の式(7)から(222)面の結晶子径は40.6nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.589Å、計算密度6.280g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
(Example 3)
Lanthanum oxide (La 2 O 3 ) 4 mmol, calcium carbonate (CaCO 3 ) 12 mmol, tantalum oxide (Ta 2 O 5 ) 6 mmol, and zirconium oxide (ZrO 2 ) 8 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.18 ° diffraction peak derived from the (222) plane was 19259 counts. From the above formulas (7) to (222), the crystallite diameter was estimated to be 40.6 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.589 Å and the calculation density 6.280 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例4)
酸化ランタン(La)3.5mmol、炭酸カルシウム(CaCO)13mmol、酸化タンタル(Ta)6.5mmol、酸化ジルコニウム(ZrO)7mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.22°回折ピークの最大回折強度は18415countsであった。上記の式(7)から(222)面の結晶子径は40.6nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.571Å、計算密度6.303g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
Example 4
Lanthanum oxide (La 2 O 3 ) 3.5 mmol, calcium carbonate (CaCO 3 ) 13 mmol, tantalum oxide (Ta 2 O 5 ) 6.5 mmol, and zirconium oxide (ZrO 2 ) 7 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.22 ° diffraction peak derived from the (222) plane was 18415 counts. From the above formulas (7) to (222), the crystallite diameter was estimated to be 40.6 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.5711 and the calculation density 6.303 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例5)
酸化ランタン(La)7.5mmol、炭酸マグネシウム(MgCO)5mmol、酸化タンタル(Ta)2.5mmol、酸化ジルコニウム(ZrO)15mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=28.90°回折ピークの最大回折強度は19412countsであった。上記の式(7)から(222)面の結晶子径は83.5nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.690Å、計算密度6.087g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
(Example 5)
Lanthanum oxide (La 2 O 3 ) 7.5 mmol, magnesium carbonate (MgCO 3 ) 5 mmol, tantalum oxide (Ta 2 O 5 ) 2.5 mmol, and zirconium oxide (ZrO 2 ) 15 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 28.90 ° diffraction peak derived from the (222) plane was 19412 counts. From the above formulas (7) to (222), the crystallite diameter was estimated to be 83.5 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.690 Å and the calculation density 6.087 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例6)
酸化ランタン(La)6.5mmol、炭酸マグネシウム(MgCO)7mmol、酸化タンタル(Ta)3.5mmol、酸化ジルコニウム(ZrO)13mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.04°回折ピークの最大回折強度は18842countsであった。上記の式(7)から(222)面の結晶子径は78.6nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.638Å、計算密度6.122g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
(Example 6)
Lanthanum oxide (La 2 O 3 ) 6.5 mmol, magnesium carbonate (MgCO 3 ) 7 mmol, tantalum oxide (Ta 2 O 5 ) 3.5 mmol, and zirconium oxide (ZrO 2 ) 13 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.04 ° diffraction peak derived from the (222) plane was 18842 counts. From the above formulas (7) to (222), the crystallite diameter of the (222) plane was estimated to be 78.6 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.638Å and the calculation density 6.122 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例7)
酸化ランタン(La)6mmol、炭酸マグネシウム(MgCO)8mmol、酸化タンタル(Ta)4mmol、酸化ジルコニウム(ZrO)12mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.12°回折ピークの最大回折強度は15665countsであった。上記の式(7)から(222)面の結晶子径は81.6nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.609Å、計算密度6.146g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
(Example 7)
Lanthanum oxide (La 2 O 3 ) 6 mmol, magnesium carbonate (MgCO 3 ) 8 mmol, tantalum oxide (Ta 2 O 5 ) 4 mmol, and zirconium oxide (ZrO 2 ) 12 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.12 ° diffraction peak derived from the (222) plane was 15665 counts. From the above formulas (7) to (222), the crystallite diameter was estimated to be 81.6 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a was 10.609 60 and the calculation density was 6.146 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例8)
酸化ランタン(La)5.5mmol、炭酸マグネシウム(MgCO)9mmol、酸化タンタル(Ta)4.5mmol、酸化ジルコニウム(ZrO)11mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.16°回折ピークの最大回折強度は15876countsであった。上記の式(7)から(222)面の結晶子径は76.0nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.590Å、計算密度6.151g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。
(Example 8)
Lanthanum oxide (La 2 O 3 ) 5.5 mmol, magnesium carbonate (MgCO 3 ) 9 mmol, tantalum oxide (Ta 2 O 5 ) 4.5 mmol, and zirconium oxide (ZrO 2 ) 11 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.16 ° diffraction peak derived from the (222) plane was 15876 counts. From the above formulas (7) to (222), the crystallite diameter of the (222) plane was estimated to be 76.0 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, the lattice constant a was estimated to be 10.590 Å and the calculation density was 6.151 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure.

(実施例9)
酸化ランタン(La)5.3mmol、炭酸カルシウム(CaCO)8.6mmol、酸化タンタル(Ta)4.5mmol、酸化ジルコニウム(ZrO)11mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1500℃まで2時間で昇温し、炉内の温度が1500℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.06°回折ピークの最大回折強度は12045countsであった。上記の式(7)から(222)面の結晶子径は29.9nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.626Å、計算密度ρ=6.144g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。BET法による比表面積測定を行ったところ比表面積S=1.45m/gと見積られた。上記の式(8)から粒子径d=0.67μmと算出された。
Example 9
Add lanthanum oxide (La 2 O 3 ) 5.3 mmol, calcium carbonate (CaCO 3 ) 8.6 mmol, tantalum oxide (Ta 2 O 5 ) 4.5 mmol, zirconium oxide (ZrO 2 ) 11 mmol to the menor mortar and mix for 30 minutes did. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1500 ° C. over 2 hours, and the state where the temperature in the furnace was maintained at 1500 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.06 ° diffraction peak derived from the (222) plane was 12045counts. From the above formulas (7) to (222), the crystallite diameter was estimated to be 29.9 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.6261 and the calculation density ρ = 6.144 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure. When the specific surface area was measured by the BET method, the specific surface area S was estimated to be 1.45 m 2 / g. The particle diameter d was calculated as 0.67 μm from the above formula (8).

(実施例10)
酸化ランタン(La)5.4mmol、炭酸カルシウム(CaCO)8.8mmol、酸化タンタル(Ta)4.5mmol、酸化ジルコニウム(ZrO)11mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1500℃まで2時間で昇温し、炉内の温度が1500℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.04°回折ピークの最大回折強度は12352countsであった。上記の式(7)から(222)面の結晶子径は30.9nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.631Å、計算密度ρ=6.186g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。BET法による比表面積測定を行ったところ比表面積S=1.44m/gと見積られた。上記の式(8)から粒子径d=0.67μmと算出された。
(Example 10)
Add lanthanum oxide (La 2 O 3 ) 5.4 mmol, calcium carbonate (CaCO 3 ) 8.8 mmol, tantalum oxide (Ta 2 O 5 ) 4.5 mmol, zirconium oxide (ZrO 2 ) 11 mmol to the menor mortar and mix for 30 minutes did. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1500 ° C. over 2 hours, and the state where the temperature in the furnace was maintained at 1500 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.04 ° diffraction peak derived from the (222) plane was 12352 counts. From the above formulas (7) to (222), the crystallite diameter was estimated to be 30.9 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.6310.6 and the calculation density ρ = 6.186 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure. When the specific surface area was measured by the BET method, the specific surface area S was estimated to be 1.44 m 2 / g. The particle diameter d was calculated as 0.67 μm from the above formula (8).

(実施例11)
酸化ランタン(La)5.6mmol、炭酸カルシウム(CaCO)9.2mmol、酸化タンタル(Ta)4.5mmol、酸化ジルコニウム(ZrO)11mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1500℃まで2時間で昇温し、炉内の温度が1500℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.02°回折ピークの最大回折強度は11961countsであった。上記の式(7)から(222)面の結晶子径は31.5nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.638Å、計算密度ρ=6.224g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。BET法による比表面積測定を行ったところ比表面積S=1.59m/gと見積られた。上記の式(8)から粒子径d=0.61μmと算出された。
(Example 11)
Lanthanum oxide (La 2 O 3 ) 5.6 mmol, calcium carbonate (CaCO 3 ) 9.2 mmol, tantalum oxide (Ta 2 O 5 ) 4.5 mmol, and zirconium oxide (ZrO 2 ) 11 mmol are added to a menor mortar and mixed for 30 minutes. did. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1500 ° C. over 2 hours, and the state where the temperature in the furnace was maintained at 1500 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.02 ° diffraction peak derived from the (222) plane was 11961 counts. From the above formulas (7) to (222), the crystallite diameter of the (222) plane was estimated to be 31.5 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.6381 and the calculation density ρ = 6.224 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure. When the specific surface area was measured by the BET method, the specific surface area S was estimated to be 1.59 m 2 / g. The particle diameter d was calculated as 0.61 μm from the above formula (8).

(実施例12)
酸化ランタン(La)5.6mmol、炭酸カルシウム(CaCO)9.2mmol、酸化タンタル(Ta)4.5mmol、酸化ジルコニウム(ZrO)11mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1500℃まで2時間で昇温し、炉内の温度が1500℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.04°回折ピークの最大回折強度は11693countsであった。上記の式(7)から(222)面の結晶子径は29.8nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.634Å、計算密度ρ=6.283g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。BET法による比表面積測定を行ったところ比表面積S=1.58m/gと見積られた。上記の式(8)から粒子径d=0.61μmと算出された。
(Example 12)
Lanthanum oxide (La 2 O 3 ) 5.6 mmol, calcium carbonate (CaCO 3 ) 9.2 mmol, tantalum oxide (Ta 2 O 5 ) 4.5 mmol, and zirconium oxide (ZrO 2 ) 11 mmol are added to a menor mortar and mixed for 30 minutes. did. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1500 ° C. over 2 hours, and the state where the temperature in the furnace was maintained at 1500 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.04 ° diffraction peak derived from the (222) plane was 11,893 counts. From the above formulas (7) to (222), the crystallite diameter of the (222) plane was estimated to be 29.8 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.6341 and the calculation density ρ = 6.283 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure. When the specific surface area was measured by the BET method, the specific surface area S was estimated to be 1.58 m 2 / g. The particle diameter d was calculated as 0.61 μm from the above formula (8).

(実施例13)
酸化ランタン(La)5.7mmol、炭酸カルシウム(CaCO)9.4mmol、酸化タンタル(Ta)4.5mmol、酸化ジルコニウム(ZrO)11mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1500℃まで2時間で昇温し、炉内の温度が1500℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア構造(空間群Fd−3m、#227、Z=8)と同定した。(222)面由来の2θ=29.00°回折ピークの最大回折強度は11286countsであった。上記の式(7)から(222)面の結晶子径は29.4nmと見積られた。粉末X線回折パターン総合解析ソフトウェアJADEを用いて格子定数の精密化を行ったところ、格子定数a=10.641Å、計算密度ρ=6.321g/cmと見積られた。計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)と、実測で得られたX線回折パターンとを比較し、ピークの位置が一致していたため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造であることがわかった。BET法による比表面積測定を行ったところ比表面積S=1.45m/gと見積られた。上記の式(8)から粒子径d=0.67μmと算出された。
(Example 13)
Add lanthanum oxide (La 2 O 3 ) 5.7 mmol, calcium carbonate (CaCO 3 ) 9.4 mmol, tantalum oxide (Ta 2 O 5 ) 4.5 mmol, zirconium oxide (ZrO 2 ) 11 mmol to the menor mortar and mix for 30 minutes did. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1500 ° C. over 2 hours, and the state where the temperature in the furnace was maintained at 1500 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, it was identified as a cubic pyrochlore structure (space group Fd-3m, # 227, Z = 8). The maximum diffraction intensity of the 2θ = 29.00 ° diffraction peak derived from the (222) plane was 11286 counts. From the above formulas (7) to (222), the crystallite diameter of the (222) plane was estimated to be 29.4 nm. When the lattice constant was refined using the powder X-ray diffraction pattern comprehensive analysis software JADE, it was estimated that the lattice constant a = 10.6410.6 and the calculation density ρ = 6.321 g / cm 3 . The X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation is compared with the X-ray diffraction pattern obtained by actual measurement. Therefore, it was found that the crystal structure of the obtained composition for an optical member was a cubic pyrochlore structure. When the specific surface area was measured by the BET method, the specific surface area S was estimated to be 1.45 m 2 / g. The particle diameter d was calculated as 0.67 μm from the above formula (8).

(比較例1)
酸化ランタン(La)7.5mmol、炭酸カルシウム(CaCO)5mmol、酸化タンタル(Ta)2.5mmol、酸化ジルコニウム(ZrO)15mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 1)
Lanthanum oxide (La 2 O 3 ) 7.5 mmol, calcium carbonate (CaCO 3 ) 5 mmol, tantalum oxide (Ta 2 O 5 ) 2.5 mmol, and zirconium oxide (ZrO 2 ) 15 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例2)
酸化ランタン(La)7mmol、炭酸カルシウム(CaCO)6mmol、酸化タンタル(Ta)3mmol、酸化ジルコニウム(ZrO)14mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 2)
Lanthanum oxide (La 2 O 3 ) 7 mmol, calcium carbonate (CaCO 3 ) 6 mmol, tantalum oxide (Ta 2 O 5 ) 3 mmol, and zirconium oxide (ZrO 2 ) 14 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例3)
酸化ランタン(La)6mmol、炭酸カルシウム(CaCO)8mmol、酸化タンタル(Ta)4mmol、酸化ジルコニウム(ZrO)12mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 3)
Lanthanum oxide (La 2 O 3 ) 6 mmol, calcium carbonate (CaCO 3 ) 8 mmol, tantalum oxide (Ta 2 O 5 ) 4 mmol, and zirconium oxide (ZrO 2 ) 12 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例4)
酸化ランタン(La)3mmol、炭酸カルシウム(CaCO)14mmol、酸化タンタル(Ta)7mmol、酸化ジルコニウム(ZrO)6mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 4)
Lanthanum oxide (La 2 O 3 ) 3 mmol, calcium carbonate (CaCO 3 ) 14 mmol, tantalum oxide (Ta 2 O 5 ) 7 mmol, and zirconium oxide (ZrO 2 ) 6 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例5)
酸化ランタン(La)2mmol、炭酸カルシウム(CaCO)12mmol、酸化タンタル(Ta)6mmol、酸化ジルコニウム(ZrO)4mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 5)
Lanthanum oxide (La 2 O 3 ) 2 mmol, calcium carbonate (CaCO 3 ) 12 mmol, tantalum oxide (Ta 2 O 5 ) 6 mmol, and zirconium oxide (ZrO 2 ) 4 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例6)
酸化ランタン(La)9mmol、炭酸マグネシウム(MgCO)2mmol、酸化タンタル(Ta)1mmol、酸化ジルコニウム(ZrO)18mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 6)
Lanthanum oxide (La 2 O 3 ) 9 mmol, magnesium carbonate (MgCO 3 ) 2 mmol, tantalum oxide (Ta 2 O 5 ) 1 mmol, and zirconium oxide (ZrO 2 ) 18 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例7)
酸化ランタン(La)8.5mmol、炭酸マグネシウム(MgCO)3mmol、酸化タンタル(Ta)1.5mmol、酸化ジルコニウム(ZrO)17mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 7)
Lanthanum oxide (La 2 O 3 ) 8.5 mmol, magnesium carbonate (MgCO 3 ) 3 mmol, tantalum oxide (Ta 2 O 5 ) 1.5 mmol, and zirconium oxide (ZrO 2 ) 17 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例8)
酸化ランタン(La)8mmol、炭酸マグネシウム(MgCO)4mmol、酸化タンタル(Ta)2mmol、酸化ジルコニウム(ZrO)16mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 8)
Lanthanum oxide (La 2 O 3 ) 8 mmol, magnesium carbonate (MgCO 3 ) 4 mmol, tantalum oxide (Ta 2 O 5 ) 2 mmol, and zirconium oxide (ZrO 2 ) 16 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(比較例9)
酸化ランタン(La)5mmol、炭酸マグネシウム(MgCO)10mmol、酸化タンタル(Ta)5mmol、酸化ジルコニウム(ZrO)10mmolをメノー乳鉢に加え、30分間混合した。混合粉末1gをアルミナ坩堝に加えた後、アルミナ坩堝を電気炉内に設置した。この電気炉を大気中に設置し、電気炉内の温度を室温から1600℃まで2時間で昇温し、炉内の温度が1600℃の状態を3時間保持して焼成を行った。加熱後、室温まで自然冷却した。このようにして得られた光学部材用の組成物は着色がなかった(白色であった)。得られた白色粉末を測定試料とし、X線回折パターンを得た。得られたX線回折パターンから立方晶パイロクロア由来のピークと他の化合物由来のピークを観測し、立方晶パイロクロアと他の化合物が生成していることが分かった。実測で得られたX線回折パターンには、計算によって得られた立方晶パイロクロア構造のX線回折パターン(空間群Fd−3m、#227、Z=8)にはないピークが存在したため、得られた光学部材用の組成物の結晶構造が立方晶パイロクロア構造でないことがわかった。
(Comparative Example 9)
Lanthanum oxide (La 2 O 3 ) 5 mmol, magnesium carbonate (MgCO 3 ) 10 mmol, tantalum oxide (Ta 2 O 5 ) 5 mmol, and zirconium oxide (ZrO 2 ) 10 mmol were added to a menor mortar and mixed for 30 minutes. After adding 1 g of the mixed powder to the alumina crucible, the alumina crucible was placed in an electric furnace. This electric furnace was installed in the atmosphere, the temperature in the electric furnace was raised from room temperature to 1600 ° C. in 2 hours, and the state in which the temperature in the furnace was maintained at 1600 ° C. for 3 hours was fired. After heating, it was naturally cooled to room temperature. The composition for optical members thus obtained was not colored (white). The obtained white powder was used as a measurement sample to obtain an X-ray diffraction pattern. From the obtained X-ray diffraction pattern, peaks derived from cubic pyrochlore and peaks derived from other compounds were observed, and it was found that cubic pyrochlore and other compounds were formed. The X-ray diffraction pattern obtained by actual measurement was obtained because there was a peak not found in the X-ray diffraction pattern (space group Fd-3m, # 227, Z = 8) of the cubic pyrochlore structure obtained by calculation. It was also found that the crystal structure of the composition for optical members was not a cubic pyrochlore structure.

(まとめ)
上記、実施例1乃至8及び比較例1乃至9で得られた結果について、図1にまとめた。図1において、得られた光学部材用の組成物が、立方晶パイロクロア構造である場合を○、立方晶パイロクロア構造でない場合を×とした。また、図1において、Xは、実施例1乃至4、比較例1乃至5においては、上記の式(2)におけるXの値であり、実施例5乃至8、比較例6乃至9においては、上記の式(4)におけるXの値である。
(Summary)
The results obtained in Examples 1 to 8 and Comparative Examples 1 to 9 are summarized in FIG. In FIG. 1, the case where the obtained composition for an optical member has a cubic pyrochlore structure was marked with ◯, and the case where it was not a cubic pyrochlore structure was marked with x. In FIG. 1, X is the value of X in the above formula (2) in Examples 1 to 4 and Comparative Examples 1 to 5, and in Examples 5 to 8 and Comparative Examples 6 to 9, This is the value of X in the above equation (4).

図1において、1)最大回折強度は、立方晶パイロクロア構造(222)面由来、2θ=28.9〜29.3°のX線回折ピーク強度の測定値である。また、2)結晶子径は、X線回折ピーク(2θ=28.9〜29.3°)の半値幅からシェラー式(式(7))を用いて立方晶パイロクロア(222)面の結晶子径D(222)を算出した。結晶子径の算出には、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を使用した。 In FIG. 1, 1) The maximum diffraction intensity is a measured value of the X-ray diffraction peak intensity of 2θ = 28.9 to 29.3 ° derived from the cubic pyrochlore structure (222) plane. 2) The crystallite diameter is a crystallite of the cubic pyrochlore (222) plane using the Scherrer formula (formula (7)) from the half width of the X-ray diffraction peak (2θ = 28.9 to 29.3 °). The diameter D (222) was calculated. For the calculation of the crystallite size, powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) was used.

また、3)格子定数の精密化、及び、4)計算密度の算出には、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を使用した。   Moreover, powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) was used for 3) refinement of the lattice constant and 4) calculation of the calculation density.

図1のように、実施例に係る光学部材用の組成物は立方晶パイロクロア構造であることがわかった。また、実施例で立方晶パイロクロア構造をとるとわかった組成比だけでなく、実施例の組成比を上限、下限としたときの、間の組成比をとる場合も、立方晶パイロクロア構造をとると考えられる。例えば、実施例1及び実施例4から、La原子が27.5mol%、Ca原子が22.5mol%、Zr原子が27.5mol%、Ta原子が22.5mol%のとき、及び、La原子が17.5mol%、Ca原子が32.5mol%、Zr原子が17.5mol%、Ta原子が32.5mol%のときに、光学部材用の組成物が立方晶パイロクロア構造をとることがわかったが、その間の組成比、例えば、La原子が22.0mol%、Ca原子が27.5mol%、Zr原子が22.5mol%、Ta原子が27.5mol%の組成比をとる場合も、立方晶パイロクロア構造をとると考えられる。   As shown in FIG. 1, it was found that the composition for an optical member according to the example had a cubic pyrochlore structure. In addition, not only the composition ratio found to have a cubic pyrochlore structure in the examples, but also when taking the composition ratio between the upper limit and the lower limit of the composition ratio of the examples, the cubic pyrochlore structure is taken. Conceivable. For example, from Example 1 and Example 4, when La atoms are 27.5 mol%, Ca atoms are 22.5 mol%, Zr atoms are 27.5 mol%, Ta atoms are 22.5 mol%, and La atoms are It was found that the composition for optical members had a cubic pyrochlore structure when 17.5 mol%, Ca atoms were 32.5 mol%, Zr atoms were 17.5 mol%, and Ta atoms were 32.5 mol%. The composition ratio between them, for example, when the composition ratio of La atom is 22.0 mol%, Ca atom is 27.5 mol%, Zr atom is 22.5 mol%, Ta atom is 27.5 mol%, cubic pyrochlore It is thought to take a structure.

上記、実施例9乃至13で得られた結果について、図2にまとめた。図2において、Xとtとuは、(La1−XCa2+t(Zr1−XTa7+uにおけるXとtとuの値である。 The results obtained in Examples 9 to 13 are summarized in FIG. In FIG. 2, X and t and u is the value of (La 1-X Ca X) 2 + t (Zr 1-X Ta X) X in 2 O 7 + u and t and u.

図2において、1)最大回折強度は、立方晶パイロクロア構造(222)面由来、2θ=29.0°〜29.1°のX線回折ピーク強度の測定値である。また、2)結晶子径は、X線回折ピーク(2θ=29.0°〜29.1°)の半値幅からシェラー式(式(7))を用いて立方晶パイロクロア(222)面の結晶子径D(222)を算出した。結晶子径の算出には、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を使用した。また、3)格子定数の精密化、及び、4)計算密度ρの算出には、粉末X線回折パターン総合解析ソフトウェアJADE(株式会社リガク社製)を使用した。また、5)BET比表面積Sの測定は装置名TriStar(Micromeritics社製)を用いた。また、4)計算密度ρと5)BET比表面積Sの値から式(8)を用いて6)粒子径dを算出した。 In FIG. 2, 1) the maximum diffraction intensity is a measured value of the X-ray diffraction peak intensity of 2θ = 29.0 ° to 29.1 ° derived from the cubic pyrochlore structure (222) plane. 2) The crystallite diameter is a crystal of the cubic pyrochlore (222) plane using the Scherrer formula (formula (7)) from the half width of the X-ray diffraction peak (2θ = 29.0 ° to 29.1 °). The child diameter D (222) was calculated. For the calculation of the crystallite size, powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) was used. Moreover, powder X-ray diffraction pattern comprehensive analysis software JADE (manufactured by Rigaku Corporation) was used for 3) refinement of the lattice constant and 4) calculation of the calculation density ρ. 5) The BET specific surface area S was measured using the apparatus name TriStar (manufactured by Micromeritics). Moreover, 6) The particle diameter d was calculated from the value of 4) calculation density (rho) and 5) BET specific surface area S using Formula (8).

まず、(La1−XCa2+t(Zr1−XTa7+uのX=0.45において、t=0および0.04の時に粒子径d=0.61μmとなり、粒子径が0.65μm以下と小さくなることが分かった。それに対し、t=−0.08、−0.04、0.08の時は、粒子径d=0.67μm、0.67μm、0.69μmとなり、0.65μmよりも大きな粒子径となることが分かった。 First, (La 1-X Ca X ) 2 + t (Zr 1-X Ta X) in X = 0.45 in 2 O 7 + u, the particle size d = 0.61 .mu.m next when t = 0 and 0.04, the particle size Was found to be as small as 0.65 μm or less. On the other hand, when t = −0.08, −0.04, and 0.08, the particle diameter d = 0.67 μm, 0.67 μm, and 0.69 μm, and the particle diameter is larger than 0.65 μm. I understood.

したがって、0.45≦X≦0.65、かつ、−0.04<t<0.08において光学部材用の組成物の粒子径は小さくなると思われる。小さな粒子径から成る光学部材用の組成物を焼成することにより、得られる光学部材の結晶粒径は小さくなると思われる。結果、光学部材の強度が高く、かつ、透過率の高い光学部材を製造することが可能と思われる。   Therefore, it is considered that the particle diameter of the composition for an optical member becomes small when 0.45 ≦ X ≦ 0.65 and −0.04 <t <0.08. By firing a composition for an optical member having a small particle diameter, the crystal diameter of the obtained optical member seems to be small. As a result, it is possible to manufacture an optical member having high optical member strength and high transmittance.

以上、実施例1乃至13の結果より、以下の(i)(ii)の条件を満たす光学部材用の組成物は、立方晶パイロクロア構造をとると考えられる。その光学部材用の組成物を焼成、加圧することにより、透過率、屈折率、アッベ数といった光学特性にすぐれた光学部材が得られると考えられる。   As described above, from the results of Examples 1 to 13, it is considered that the composition for optical members satisfying the following conditions (i) and (ii) has a cubic pyrochlore structure. It is considered that an optical member having excellent optical characteristics such as transmittance, refractive index, and Abbe number can be obtained by firing and pressing the composition for the optical member.

(i)La原子及びO原子を有する光学部材用の組成物において、前記組成物がさらに、Ca原子、Mg原子、Ba原子、Sr原子、Zn原子からなる群Aから選ばれる少なくとも1種の原子と、Zr原子、Ti原子、Sn原子、Hf原子からなる群Bから選ばれる少なくとも1種の原子と、Ta原子、Nb原子からなる群Cから選ばれる少なくとも1種の原子と、を有し、前記組成物の有する原子の総和を100mol%としたときに、前記La原子と、前記O原子と、前記群Aから選ばれる少なくとも1種の原子と、前記群Bから選ばれる少なくとも1種の原子と、前記群Cから選ばれる少なくとも1種の原子の総和が99mol%以上である。   (I) A composition for an optical member having La atoms and O atoms, wherein the composition is further at least one atom selected from the group A consisting of Ca atoms, Mg atoms, Ba atoms, Sr atoms, and Zn atoms. And at least one atom selected from the group B consisting of Zr atoms, Ti atoms, Sn atoms, and Hf atoms, and at least one atom selected from the group C consisting of Ta atoms and Nb atoms, When the sum of the atoms of the composition is 100 mol%, the La atom, the O atom, at least one atom selected from the group A, and at least one atom selected from the group B And the sum total of at least 1 sort (s) of atoms chosen from the said group C is 99 mol% or more.

(ii)(i)の群Aから選ばれる少なくとも1種の原子がCa原子であり、(i)のBから選ばれる少なくとも1種の原子がZr原子であり、(i)のCから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Ca原子と、前記Zr原子と、前記Ta原子の総和が100mol%であり、かつ、前記La原子が17.3mol%以上28.0mol%以下、前記Ca原子が22.3mol%以上33.1mol%以下、前記Zr原子が17.2mol%以上27.8mol%以下、前記Ta原子が22.1mol%以上32.8mol%以下である。   (Ii) At least one atom selected from group A in (i) is a Ca atom, at least one atom selected from B in (i) is a Zr atom, and is selected from C in (i) At least one atom is a Ta atom, the sum of the La atom, the Ca atom, the Zr atom, and the Ta atom is 100 mol%, and the La atom is 17.3 mol% or more and 28. 0 mol% or less, the Ca atom is 22.3 mol% or more and 33.1 mol% or less, the Zr atom is 17.2 mol% or more and 27.8 mol% or less, and the Ta atom is 22.1 mol% or more and 32.8 mol% or less. .

Claims (14)

La原子及びO原子を有する光学部材用の組成物において、前記組成物がさらに、
Ca原子、Mg原子、Ba原子、Sr原子、Zn原子からなる群Aから選ばれる少なくとも1種の原子と、
Zr原子、Ti原子、Sn原子、Hf原子からなる群Bから選ばれる少なくとも1種の原子と、
Ta原子、Nb原子からなる群Cから選ばれる少なくとも1種の原子と、
を有し、前記組成物の有する原子の総和を100mol%としたときに、前記La原子と、前記O原子と、前記群Aから選ばれる少なくとも1種の原子と、前記群Bから選ばれる少なくとも1種の原子と、前記群Cから選ばれる少なくとも1種の原子の総和が99mol%以上であることを特徴とする光学部材用の組成物。
In the composition for optical members having La atoms and O atoms, the composition further comprises:
At least one atom selected from the group A consisting of Ca atom, Mg atom, Ba atom, Sr atom, Zn atom;
At least one atom selected from the group B consisting of Zr atom, Ti atom, Sn atom, Hf atom;
At least one atom selected from the group C consisting of Ta atoms and Nb atoms;
And when the total number of atoms of the composition is 100 mol%, the La atom, the O atom, at least one atom selected from the group A, and at least selected from the group B A composition for an optical member, wherein the sum of one kind of atom and at least one kind of atom selected from the group C is 99 mol% or more.
前記群Aから選ばれる少なくとも1種の原子がCa原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Ca原子と、前記Zr原子と、前記Ta原子の総和が100mol%であり、かつ、前記La原子が17.3mol%以上28.0mol%以下、前記Ca原子が22.3mol%以上33.1mol%以下、前記Zr原子が17.2mol%以上27.8mol%以下、前記Ta原子が22.1mol%以上32.8mol%以下であることを特徴とする請求項1に記載の光学部材用の組成物。   At least one atom selected from the group A is a Ca atom, at least one atom selected from the group B is a Zr atom, and at least one atom selected from the group C is a Ta atom. The total of the La atom, the Ca atom, the Zr atom, and the Ta atom is 100 mol%, the La atom is 17.3 mol% or more and 28.0 mol% or less, and the Ca atom is 22. 2. The mol is 3 mol% or more and 33.1 mol% or less, the Zr atom is 17.2 mol% or more and 27.8 mol% or less, and the Ta atom is 22.1 mol% or more and 32.8 mol% or less. A composition for optical members. 前記群Aから選ばれる少なくとも1種の原子がCa原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Ca原子と、前記Zr原子と、前記Ta原子の総和が100mol%であり、かつ、前記La原子が17.5mol%以上27.5mol%以下、前記Ca原子が22.5mol%以上32.5mol%以下、前記Zr原子が17.5mol%以上27.5mol%以下、前記Ta原子が22.5mol%以上32.5mol%以下であることを特徴とする請求項2に記載の光学部材用の組成物。   At least one atom selected from the group A is a Ca atom, at least one atom selected from the group B is a Zr atom, and at least one atom selected from the group C is a Ta atom. The total of the La atom, the Ca atom, the Zr atom, and the Ta atom is 100 mol%, the La atom is 17.5 mol% or more and 27.5 mol% or less, and the Ca atom is 22. 3. The composition according to claim 2, wherein 5 mol% or more and 32.5 mol% or less, the Zr atom is 17.5 mol% or more and 27.5 mol% or less, and the Ta atom is 22.5 mol% or more and 32.5 mol% or less. A composition for optical members. 前記組成物が立方晶パイロクロア構造であることを特徴とする請求項1乃至3のいずれか一項に記載の光学部材用の組成物。   The composition for an optical member according to any one of claims 1 to 3, wherein the composition has a cubic pyrochlore structure. 前記組成物が下記の式(1)で示されることを特徴とする請求項1乃至4のいずれか一項に記載の光学部材用の組成物。
(La1−XCa2+t(Zr1−XTa7+u ・・・(1)
(ただし、Xは0.45≦X≦0.65、tは−0.04≦t≦0.08、uは−0.05≦u≦0.10である)
The said composition is shown by following formula (1), The composition for optical members as described in any one of Claims 1 thru | or 4 characterized by the above-mentioned.
(La 1-X Ca X) 2 + t (Zr 1-X Ta X) 2 O 7 + u ··· (1)
(However, X is 0.45 ≦ X ≦ 0.65, t is −0.04 ≦ t ≦ 0.08, and u is −0.05 ≦ u ≦ 0.10)
前記組成物が下記の式(2)で示されることを特徴とする請求項5に記載の光学部材用の組成物。
(La1−XCa(Zr1−XTa ・・・(2)
(ただし、Xは0.45≦X≦0.65である)
The said composition is shown by following formula (2), The composition for optical members of Claim 5 characterized by the above-mentioned.
(La 1-X Ca X) 2 (Zr 1-X Ta X) 2 O 7 ··· (2)
(However, X is 0.45 ≦ X ≦ 0.65)
前記群Aから選ばれる少なくとも1種の原子がMg原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Mg原子と、前記Zr原子と、前記Ta原子の総和が100mol%で、かつ、前記La原子が27.2mol%以上38.2mol%以下、前記Mg原子が12.4mol%以上22.9mol%以下、前記Zr原子が27.0mol%以上37.9mol%以下、前記Ta原子が12.3mol%以上22.7mol%以下であることを特徴とする請求項1に記載の光学部材用の組成物。   At least one atom selected from the group A is an Mg atom, at least one atom selected from the group B is a Zr atom, and at least one atom selected from the group C is a Ta atom. The sum of the La atom, the Mg atom, the Zr atom, and the Ta atom is 100 mol%, the La atom is 27.2 mol% or more and 38.2 mol% or less, and the Mg atom is 12.4 mol%. 2 to 22.9 mol%, the Zr atom is 27.0 mol% to 37.9 mol%, and the Ta atom is 12.3 mol% to 22.7 mol%. A composition for an optical member. 前記群Aから選ばれる少なくとも1種の原子がMg原子であり、前記群Bから選ばれる少なくとも1種の原子がZr原子であり、前記群Cから選ばれる少なくとも1種の原子がTa原子であり、前記La原子と、前記Mg原子と、前記Zr原子と、前記Ta原子の総和が100mol%で、かつ、前記La原子が27.5mol%以上37.5mol%以下、前記Mg原子が12.5mol%以上22.5mol%以下、前記Zr原子が27.5mol%以上37.5mol%以下、前記Ta原子が12.5mol%以上22.5mol%以下であることを特徴とする請求項7に記載の光学部材用の組成物。   At least one atom selected from the group A is an Mg atom, at least one atom selected from the group B is a Zr atom, and at least one atom selected from the group C is a Ta atom. The sum of the La atom, the Mg atom, the Zr atom, and the Ta atom is 100 mol%, the La atom is 27.5 mol% or more and 37.5 mol% or less, and the Mg atom is 12.5 mol% % Or more and 22.5 mol% or less, the Zr atom is 27.5 mol% or more and 37.5 mol% or less, and the Ta atom is 12.5 mol% or more and 22.5 mol% or less. A composition for an optical member. 前記組成物が立方晶パイロクロア構造であることを特徴とする請求項7または8に記載の光学部材用の組成物。   The composition for an optical member according to claim 7 or 8, wherein the composition has a cubic pyrochlore structure. 前記組成物が下記の式(3)で示されることを特徴とする請求項7乃至9のいずれか一項に記載の光学部材用の組成物。
(La1−XMg2+t(Zr1−XTa7+u ・・・(3)
(ただし、Xは0.25≦X≦0.45、tは−0.04≦t≦0.08、uは−0.05≦u≦0.10である)
The composition for an optical member according to any one of claims 7 to 9, wherein the composition is represented by the following formula (3).
(La 1-X Mg X) 2 + t (Zr 1-X Ta X) 2 O 7 + u ··· (3)
(However, X is 0.25 ≦ X ≦ 0.45, t is −0.04 ≦ t ≦ 0.08, and u is −0.05 ≦ u ≦ 0.10)
前記組成物が下記の式(4)で示されることを特徴とする請求項10に記載の光学部材用の組成物。
(La1−XMg(Zr1−XTa ・・・(4)
(ただし、Xは0.25≦X≦0.45である)
The said composition is shown by following formula (4), The composition for optical members of Claim 10 characterized by the above-mentioned.
(La 1-X Mg x) 2 (Zr 1-X Ta X) 2 O 7 ··· (4)
(However, X is 0.25 ≦ X ≦ 0.45)
アッベ数が25以上、かつ、屈折率が1.75以上、かつ、透過率が20%以上であり、請求項1乃至11のいずれか一項に記載の光学部材用の組成物からなることを特徴とする光学部材。   The Abbe number is 25 or more, the refractive index is 1.75 or more, and the transmittance is 20% or more, and is made of the composition for an optical member according to any one of claims 1 to 11. An optical member. 請求項12に記載の光学部材の研磨面に反射防止膜を有することを特徴とするレンズ。   A lens comprising an antireflection film on the polished surface of the optical member according to claim 12. 請求項1乃至11のいずれか一項に記載の光学部材用の組成物に圧力をかけて成形体を得る工程と、
前記成形体を焼成して光学部材を得る工程と、
を有することを特徴とする光学部材の製造方法。
A step of applying pressure to the composition for an optical member according to any one of claims 1 to 11 to obtain a molded body;
Firing the molded body to obtain an optical member;
The manufacturing method of the optical member characterized by having.
JP2012014363A 2011-01-31 2012-01-26 Composition for optical member and optical member Pending JP2012176882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014363A JP2012176882A (en) 2011-01-31 2012-01-26 Composition for optical member and optical member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011018282 2011-01-31
JP2011018282 2011-01-31
JP2012014363A JP2012176882A (en) 2011-01-31 2012-01-26 Composition for optical member and optical member

Publications (1)

Publication Number Publication Date
JP2012176882A true JP2012176882A (en) 2012-09-13

Family

ID=46602791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014363A Pending JP2012176882A (en) 2011-01-31 2012-01-26 Composition for optical member and optical member

Country Status (2)

Country Link
JP (1) JP2012176882A (en)
WO (1) WO2012105584A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749550B1 (en) 2012-12-28 2017-05-17 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
JP6362087B2 (en) 2013-07-12 2018-07-25 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
EP2824091B1 (en) 2013-07-12 2020-02-19 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic equipment
JP6381294B2 (en) 2013-07-12 2018-08-29 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
CN114133226B (en) * 2021-12-30 2022-11-08 苏州晶生新材料有限公司 Optical coating substrate and using method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311079A1 (en) * 1975-05-12 1976-12-10 Rca Corp Phosphorescent material pf pyrochlore structure - contains cations of different valencies and an activator cation
US6680269B2 (en) * 2000-06-29 2004-01-20 The Penn State Research Foundation Bismuth pyrochlore microwave dielectric materials
CA2520555C (en) * 2003-03-31 2012-01-03 Council Of Scientific & Industrial Research Mg2mm' 06+x, ( m=y, rare earth metal, and m'=sn, sb, zr, hf, and ta) compounds and a method for the production of the same
WO2007060816A1 (en) * 2005-11-25 2007-05-31 Murata Manufacturing Co., Ltd. Translucent ceramic, process for producing the same, optical part and optical apparatus
JP4985138B2 (en) * 2007-06-20 2012-07-25 株式会社村田製作所 Method for improving coloring of translucent ceramic and method for producing ceramic hybrid lens

Also Published As

Publication number Publication date
WO2012105584A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US7710656B2 (en) Optoceramics, optical elements manufactured thereof and their use as well as imaging optics
TWI344452B (en)
JP2012176882A (en) Composition for optical member and optical member
JP2007108734A (en) Optical element and imaging optical element comprising same
JP2007334357A (en) Optical element and mapping optic
Wang et al. Transparent La2− xGdxZr2O7 ceramics obtained by combustion method and vacuum sintering
US8343884B2 (en) Passive optoceramics with cubic crystal structure, process for manufacturing the same and their uses
KR102497497B1 (en) Secondary thermal expansion material and manufacturing method thereof
JP2012176883A (en) Composition for optical member, and the optical member
WO2005097707A1 (en) Translucent ceramic, process for producing the same, optical part and optical apparatus
JP4548422B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
JP4941288B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
WO2014132624A1 (en) Optical material, optical element, and composite optical element
JP4605220B2 (en) Translucent ceramic, method for producing the same, optical component and optical device
KR20150097714A (en) Ceramic material
JP2012176881A (en) Composition for optical member, and the optical member
JP2023126191A (en) Sintered body, sintered body manufacturing method, powder, and temporarily sintered body
JP2023109721A (en) Powder and manufacturing method thereof
JP2009184898A (en) Translucent ceramics
JP5088320B2 (en) Translucent ceramic, optical component and optical device
TWI321555B (en)
CN115180827B (en) High-refractive-index high-hardness glass material and preparation method thereof
JP2024063030A (en) Zirconia composition and method for producing same