JP2007334357A - Optical element and mapping optic - Google Patents

Optical element and mapping optic Download PDF

Info

Publication number
JP2007334357A
JP2007334357A JP2007156063A JP2007156063A JP2007334357A JP 2007334357 A JP2007334357 A JP 2007334357A JP 2007156063 A JP2007156063 A JP 2007156063A JP 2007156063 A JP2007156063 A JP 2007156063A JP 2007334357 A JP2007334357 A JP 2007334357A
Authority
JP
Japan
Prior art keywords
lens
optical
glass
optical element
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007156063A
Other languages
Japanese (ja)
Other versions
JP2007334357A5 (en
Inventor
Jose Zimmer
ヨゼ ツィンマー
Ulrich Peuchert
ウルリッヒ ポイシェールト
Jochen Alkemper
ヨッヘン アルケンパー
Martin Letz
マルチン レッツ
Steffen Reichel
シュテフェン ライヒェル
Chisui Okano
知水 岡野
Yvonne Menke
イボンヌ メンケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of JP2007334357A publication Critical patent/JP2007334357A/en
Publication of JP2007334357A5 publication Critical patent/JP2007334357A5/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/901Optical glass, e.g. silent on refractive index and/or ABBE number having R.I. at least 1.8
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/904Infrared transmitting or absorbing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material having parameters which can not be attained by the conventional glass, single crystal material, polycrystalline ceramics respectively materials, that is, a high refractive index, a high Abbe number and a special relative partial dispersion. <P>SOLUTION: A refractive, transmissive or diffractive optical element contains a ceramic comprising a combination of crystals, has a fine-single crystal analogous to that of Y<SB>2</SB>O<SB>3</SB>, is transparent to visible light and/or infrared rays and has a cubic structure containing one or more kinds of oxides of the type X<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、可視光及び/又は赤外線に対して透過性があり、X型の酸化物を含んだ立体結晶構造(ここでは以下、Yのものに類似する立体構造を意味する)をもつセラミックを含む屈折性、透過性又は回折性光学素子に関する。好適な実施態様によれば、XはY、Sc、In及び/又はランタニド系の元素La〜Lu、特にLu、Yb、Gd又はLaの一種又は複数から成る群より選ばれる。また、セラミックの立体構造が保たれる限り、例えばHfO及び/又はZrOの、化学量論組成の異なる酸化物を含んだXの混合物も可能である。 The present invention is a three-dimensional crystal structure that is transparent to visible light and / or infrared light and contains an oxide of the X 2 O 3 type (herein, it means a three-dimensional structure similar to that of Y 2 O 3 ). And a refractive, transmissive or diffractive optical element. According to a preferred embodiment, X is selected from the group consisting of one or more of Y, Sc, In and / or lanthanide elements La to Lu, in particular Lu, Yb, Gd or La. In addition, a mixture of X 2 O 3 containing oxides having different stoichiometric compositions such as HfO 2 and / or ZrO 2 is also possible as long as the three-dimensional structure of the ceramic is maintained.

以下、セラミックとは光セラミックとも云う。本発明によれば、光セラミック(又はセラミック)は上記のように、極めて透過性のある、酸化物を含んだ多結晶単層材料である。光セラミックは、95重量%を超える、好ましくは少なくとも97重量%、より好ましくは99重量%、極めて好ましくは99.5〜99.9重量%のものが目的組成の結晶形式であることを意味する。   Hereinafter, the ceramic is also referred to as a photoceramic. According to the present invention, the optoceramic (or ceramic) is a highly transmissive, polycrystalline single layer material containing oxide as described above. Optoceramic means that more than 95% by weight, preferably at least 97% by weight, more preferably 99% by weight, very particularly preferably 99.5-99.9% by weight is the crystalline form of the desired composition. .

屈折性光学素子は、色収差の少ない、特に近似的にアポクロマートなマッピング挙動を有する、例えば対物レンズ等のマッピング(写像)光学部品に用いるのに特に適している。透過性セラミックの光学部品は、ガラスのレンズとの組み合わせでレンズ系に応用されうるが、他のセラミックレンズとの組み合わせでは、特にまたディジタルカメラ、形態電話カメラに、また顕微鏡、マイクロリソグラフィー、光学的データ記憶の分野又は消費者又は工業的応用の分野の他の用途にも応用されうる。   The refractive optical element is particularly suitable for use in a mapping optical component such as an objective lens having a low chromatic aberration, in particular, an approximately apochromatic mapping behavior. Transparent ceramic optical components can be applied to lens systems in combination with glass lenses, but also in combination with other ceramic lenses, especially in digital cameras, form phone cameras, and in microscopes, microlithography, optical It can also be applied in other fields of data storage or consumer or industrial applications.

マッピング光学部品開発の主目的は光学部品をコンパクトに、できるだけ軽く構成して、然も十分なその光学的特性を得ることである。例えばディジタルカメラ、携帯電話の対物レンズ等の電子装置におけるディジタル画像検出の分野での用途では特に、マッピング光学部品は極めて小さく、軽量に構成されなければならない。云いかえれば、マッピングレンズの総量が最小でなければならない。このことは、屈折率が高く、分散ができるだけ低い透過性材料を、従って近似的にアポクロマートなマッピング挙動を有する、極めてコンパクトなマッピング光学部品の設計できることを要する。   The main purpose of mapping optical component development is to make the optical component compact and as light as possible and still obtain its sufficient optical properties. Particularly in applications in the field of digital image detection in electronic devices such as digital cameras, objectives for mobile phones, etc., the mapping optics must be very small and lightweight. In other words, the total amount of mapping lenses must be minimal. This requires that a transparent material with a high refractive index and as low a dispersion as possible, and thus a very compact mapping optic with an approximately apochromatic mapping behavior can be designed.

顕微鏡の場合には、ほとんど回折の無いマッピング光学部品が接眼レンズ並びに対物レンズに必要となる。   In the case of a microscope, mapping optical components having almost no diffraction are required for the eyepiece and the objective lens.

防衛の分野では、可視(380〜800nm)の、また8000nm迄、理想的には10000nm迄のスペクトル域で透過率が高く、更に外部からの機械的作用、衝撃、温度、温度変化、圧力等の影響に対して抵抗性のある、透明な光学部品が要求される。   In the defense field, the transmittance is high in the visible (380 to 800 nm), spectral range up to 8000 nm, ideally up to 10,000 nm, and mechanical effects from outside, impact, temperature, temperature change, pressure, etc. Transparent optical components that are resistant to the effects are required.

同様のことが、例えばディジタル投影、更にはディスプレー技術等の他の多くの技術に付いて云える。だが、光学的記憶技術等の単色支配用途では、コンパクトシステムの実現を高屈折率材料が可能にしている。   The same is true for many other technologies, such as digital projection and even display technology. However, for monochromatic dominant applications such as optical storage technology, high-refractive-index materials enable the realization of compact systems.

現在、マッピング光学部品の開発は利用可能な材料の光学的パラメタにより制限されている。ガラス溶融及びガラス成形の利用可能な技術により、屈折率をアッベ数に対して座標表記したアッベ線図で、アッベ数=80/屈折率=1.7及びアッベ数=10/屈折率=2.0の点をおおよそ通る線の下にある、高品質のガラス種のみが生成することができる。この想像線は図2aに、破線で示されている。より詳しくは、屈折率が約1.9〜約2.2、アッベ数が約30〜約40の範囲にあるガラスは不安定になる傾向があるため、そのようなガラスを大量に、且つ高品質に生成するのは困難である。また、屈折率が約1.8〜約2.1、アッベ数が約30〜約45の範囲にあるガラスも不安定になる傾向がある。   Currently, the development of mapping optics is limited by the optical parameters of the available materials. An Abbe diagram in which the refractive index is expressed as a coordinate with respect to the Abbe number using available techniques of glass melting and glass forming, Abbe number = 80 / refractive index = 1.7 and Abbe number = 10 / refractive index = 2. Only high quality glass species can be produced that are below the line that passes roughly through the zero point. This imaginary line is shown in FIG. More particularly, glasses with a refractive index in the range of about 1.9 to about 2.2 and Abbe number in the range of about 30 to about 40 tend to be unstable, so that such glasses are used in large quantities and high It is difficult to produce in quality. Further, glass having a refractive index of about 1.8 to about 2.1 and an Abbe number of about 30 to about 45 also tends to become unstable.

屈折率(屈折数)n、アッベ数v及び相対部分分散(例えばPg,F)の定義はだいたいにおいて当業者に周知であり、より詳細には専門文献により定義されている。本発明の意味では、これ等用語は、”The properties of optical glass;
Bach, Hans; Neuroth, Norbert (Ed.), Berlin (i.a.): Springer, 1995.−(Schott series on glass and glass ceramics: science, technology, and applications; 1);XVII, 410 p. −2., corr. Print., 1998,XVII, 414 p.” における定義に従って用いられる。
The definitions of refractive index (refractive number) n d , Abbe number v d, and relative partial dispersion (eg, P g, F ) are generally well known to those skilled in the art, and more specifically defined by specialized literature. In the sense of the present invention, these terms are “The properties of optical glass;
Bach, Hans; Neuroth, Norbert (Ed.), Berlin (ia): Springer, 1995 .− (Schott series on glass and glass ceramics: science, technology, and applications; 1); XVII, 410 p. −2., Corr. Print., 1998, XVII, 414 p. "

屈折率及びアッベ数に加えて、相対部分分散は光学材料の選択に際し重要な役割を演じる。近似アポクロマートな光学部品の作成が望まれる場合、相対部分分散がおおよそ等しく、アッベ数が大きく異なる材料の組み合わせが必要となる。部分分散Pg,Fをアッベ数に対して座標表記すると(図2)、殆どのガラスは一線(「正規線」)上にある。従って、アッベ数と相対部分分散の別の組み合わせの挙動をする材料が望まれる。 In addition to refractive index and Abbe number, relative partial dispersion plays an important role in the selection of optical materials. When it is desired to create an optical component with an approximate apochromatism, a combination of materials having substantially the same relative partial dispersion and greatly different Abbe numbers is required. When the partial dispersion Pg, F is expressed as a coordinate with respect to the Abbe number (FIG. 2), most of the glass is on one line (“normal line”). Therefore, a material that behaves in another combination of Abbe number and relative partial dispersion is desired.

現在、アッベ線図の上記想像線の上にある材料は単結晶か多結晶材料かの何れかである。だが、周知の結晶引上げ法による単結晶の製造は極めて高コストであり、化学組成に関して大きな制限がある。更に、殆どの用途に対して、最終形状の大きさに近い結晶は出来ないため、後処理に大きな労力を要することになる。多結晶セラミックは広い範囲の組成で出来るが、特に屈折率の均一性と透明性に関してそれ等の光学的特性は不十分である。今日まで、光学的特性が十分なセラミックの製造が可能な組成及び構造の範囲は殆ど知られていない。   Currently, the material above the imaginary line of the Abbe diagram is either a single crystal or a polycrystalline material. However, the production of a single crystal by the well-known crystal pulling method is extremely expensive and has a great limitation on the chemical composition. Furthermore, for most applications, crystals that are close to the size of the final shape cannot be produced, which requires a large amount of labor for post-processing. Polycrystalline ceramics can be made in a wide range of compositions, but their optical properties are insufficient, especially with respect to refractive index uniformity and transparency. To date, little is known about the range of compositions and structures that allow the production of ceramics with sufficient optical properties.

従って、多結晶セラミックは今日まで光学的用途には限られた程度まで用いられていたに過ぎない。例えば、特開2000−203933には、特殊焼結法によるYAG多結晶の製造が開示されている。また、レーザ用高温材料として光学的特性のYAG多結晶の製造が最近、例えばNd等のレーザ活性イオンのドーピングでなされている。   Thus, polycrystalline ceramics have only been used to a limited extent for optical applications to date. For example, JP 2000-203933 discloses the production of YAG polycrystals by a special sintering method. Further, YAG polycrystal having optical characteristics as a high-temperature material for laser has recently been manufactured by doping with laser active ions such as Nd.

米国特許6908872には、セラミック内に存在しなければならない酸化物として酸化バリウムを用いる半透明のセラミックが記載されている。この得られるセラミックはペロブスカイト構造を有し、常誘電性である。だが、ペロブスカイト構造のそのようなバリウム含有相を含むセラミックは光学的マッピング特性が不十分である。これは、多くのペロブスカイトが歪んだ強誘電性結晶を形成し、それ等の光学的等方性を失おうとする傾向の結果である。これは結果として就中、セラミックを構成する結晶が複屈折となって望ましくなく、その上、青色光(約380nm)の範囲の透過率が不十分である。 US Pat. No. 6,908,872 describes a translucent ceramic using barium oxide as an oxide that must be present in the ceramic. The resulting ceramic has a perovskite structure and is paraelectric. However, ceramics containing such a barium-containing phase with a perovskite structure have insufficient optical mapping properties. This is a result of the tendency of many perovskites to form distorted ferroelectric crystals and lose their optical isotropy. As a result, the crystals constituting the ceramic are undesirably birefringent, and the transmittance in the range of blue light (about 380 nm) is insufficient.

米国特許3640887には、化学量論組成X(セスキ酸化物)の立方晶酸化物に基づく光学セラミックの製造が記載されている。好例として、可視(波長範囲ca.380nm〜800nm)の吸収帯域のために着色される光学活性酸化物のみが述べられている。焼結補助剤として例えば、ThOが用いられる。これは毒性又は放射性のため、望ましくない。同様のことが、米国特許3545987に付いても云える。 US Pat. No. 3,640,887 describes the production of optoceramics based on cubic oxides of stoichiometric composition X 2 O 3 (sesquioxide). As a good example, only optically active oxides which are colored for the visible (wavelength range ca. 380 nm to 800 nm) absorption band are mentioned. For example, ThO 2 is used as a sintering aid. This is undesirable because it is toxic or radioactive. The same is true for US Pat. No. 3,545,987.

米国特許4761390は、実質的にYから成るカバープレートに係わる。 U.S. Pat. No. 4,761,390 relates to a cover plate consisting essentially of Y 2 O 3 .

また、米国特許4755492には、透明なセラミックYと、それ自体がオキサレート沈殿法により製造される粉末からのその製造が記載されている。用途は高圧放電灯用の放電容器に係わる。 U.S. Pat. No. 4,755,492 also describes its production from transparent ceramic Y 2 O 3 and a powder itself produced by an oxalate precipitation process. The application relates to a discharge vessel for a high pressure discharge lamp.

米国特許4098612には、放電容器用のY及びAlの混合酸化物から成る透明なセラミックが記載されている。Alは5重量%までの量含むことができるが、その結果、立体構造が無くなることになる。同様のことは、米国特許4147744における高含有率のLaを含む透明なYセラミックに付いても云える。米国特許4571312及び米国特許4747973には、UV−VIS(紫外−可視域)で光学的に活性であるランタニドをドープして、医療技術用の光学的活性シンチレータとして用いられる Y−Gd系の光学セラミックが記載されている。 U.S. Patent 4098612, transparent ceramic comprising mixed oxides of Y 2 O 3 and Al 2 O 3 for the discharge vessel is described. Al 2 O 3 can be included in an amount up to 5% by weight, but as a result, there will be no steric structure. The same can be said for the transparent Y 2 O 3 ceramic containing a high content of La 2 O 3 in US Pat. No. 4,147,744. In US Pat. No. 4,571,312 and US Pat. No. 4,747,973, Y 2 O 3 —Gd 2 used as an optically active scintillator for medical technology is doped with a lanthanide which is optically active in UV-VIS (ultraviolet-visible range). O 3 based optoceramics are described.

特開2003−128465又はWO06/03726には、Sc又はLuに基づく光学セラミックの製造が記載されている。これ等セラミックは、光学的活性添加物が添加して用いられ、従ってレーザシステムに対して関するものである。 JP 2003-128465 or WO 06/03726 describes the production of optical ceramics based on Sc 2 O 3 or Lu 2 O 3 . These ceramics are used with the addition of optically active additives and are therefore relevant for laser systems.

米国特許公開公報2006−061880又は2006−062569には、セラミックの少なくとも一つのレンズとガラスの付加的レンズ部品から成る光学的マッピングシステムの組み合わせが記載されているが、システム全体に対するセラミックの有利な効果(例えば、分散挙動が有利なことによる)は述べられていない。屈折率の極めて高いセラミックレンズ(n=2.08)が、ガラスレンズ(n=1.62)と直接接触している。nの大きな差に付随する光散乱の問題を回避するため、特定の、従って高コストの対策が講じられねばならない。従って、例えば米国特許公開公報2006−062569では、このガラス―セラミックパテ部材を特別に光学的マッピングシステムに配置することにより、セラミックレンズをガラスレンズに連結すると共に、光散乱を低減するか、画像検出器に亘って均一に分布させるようにしなければならない。 U.S. Patent Publication Nos. 2006-061880 or 2006-062569 describe a combination of an optical mapping system consisting of at least one lens of ceramic and an additional lens part of glass, but the advantageous effect of the ceramic on the overall system. (Eg due to the advantageous dispersion behavior) is not mentioned. A ceramic lens (n d = 2.08) having a very high refractive index is in direct contact with the glass lens (n d = 1.62). To avoid the problem of light scattering associated with the large difference in n d, specific, and therefore must be measures of high cost are taken. Thus, for example, in US 2006-0662569, this glass-ceramic putty member is specially placed in an optical mapping system to connect the ceramic lens to the glass lens and reduce light scattering or image detection. Must be evenly distributed over the vessel.

本発明の目的は、従来のガラス、単結晶材料又は多結晶セラミック又は材料で得られないパラメタ、即ち高い屈折率、高いアッベ数及び特殊な相対部分分散を有する材料を提供することにある。本発明の他の目的は、上記材料から成る光学部品を提供することにある。本発明の他の目的は、上記材料から形成される光学部品をもつマッピング光学部品を提供することにある。本発明の他の目的は、近時アポクロマートに挙動する特にマッピング光学部品を提供することにある。本発明の他の目的は、可視及び/又は赤外波長慮域で透明度の高い光学部品を提供することにある。光学部品は好ましくは、可視光と赤外線の両方に対して透過性のある(透明である)ことである。   It is an object of the present invention to provide a material having parameters not obtainable with conventional glasses, single crystal materials or polycrystalline ceramics or materials, ie high refractive index, high Abbe number and special relative partial dispersion. Another object of the present invention is to provide an optical component made of the above material. Another object of the present invention is to provide a mapping optical component having an optical component formed from the above material. Another object of the present invention is to provide a mapping optical component that behaves like apochromat in recent times. Another object of the present invention is to provide an optical component having high transparency in the visible and / or infrared wavelength range. The optical component is preferably transmissive (transparent) to both visible and infrared light.

可視光における透明性は、幅が少なくとも200nmの窓内で、例えば400〜600nmの窓、450〜750nmの窓、又は好ましくは400〜800nmの窓内で、波長が380〜800nmの可視光の範囲において、層厚さが2mm、好ましくは3mm、特に好ましくは5mmの場合に、内部透過率(即ち、光透過率−反射損失)が70%より高い、好ましくは>80%であり、より好ましくは>90%であり、特に好ましくは>95%であるものを意味する。   Transparency in visible light is in the range of visible light with a wavelength of 380-800 nm in a window with a width of at least 200 nm, for example in a window of 400-600 nm, a window of 450-750 nm, or preferably in a window of 400-800 nm. In the case where the layer thickness is 2 mm, preferably 3 mm, particularly preferably 5 mm, the internal transmittance (ie, light transmittance-reflection loss) is higher than 70%, preferably> 80%, more preferably It means> 90%, particularly preferably> 95%.

赤外線における透明性は、幅が少なくとも1000nmの窓内で、例えば1000〜2000nmの窓、1500〜2500nmの窓、又は好ましくは3000〜4000nmの窓内で、波長が800〜5000nmの赤外光の範囲において、層厚さが2mm、好ましくは3mm、特に好ましくは5mmの場合に、内部透過率(即ち、光透過率−反射損失)が70%より高い、好ましくは>80%であり、より好ましくは>90%であり、特に好ましくは>95%であるものを意味する。   Infrared transparency is in the range of infrared light having a wavelength of 800-5000 nm in a window having a width of at least 1000 nm, for example in a window of 1000-2000 nm, 1500-2500 nm, or preferably 3000-4000 nm. In the case where the layer thickness is 2 mm, preferably 3 mm, particularly preferably 5 mm, the internal transmittance (ie, light transmittance-reflection loss) is higher than 70%, preferably> 80%, more preferably It means> 90%, particularly preferably> 95%.

理想的には、材料は、幅が200nmより大きく、5000〜8000nmの波長の窓内で、厚さ3mmの場合に、透過率(反射損失を含む)が20%より大きいものである。   Ideally, the material has a transmittance (including reflection loss) greater than 20% for a thickness of 3 mm within a window with a width greater than 200 nm and a wavelength of 5000-8000 nm.

本発明の上記及び他の目的は、請求項1に記載の方法の光学素子及び請求項12に記載の特徴を有するマッピング光学部品により達成される。他の実施態様は従属請求項に記載されている。   These and other objects of the present invention are achieved by a method optical element according to claim 1 and a mapping optical component having the characteristics according to claim 12. Other embodiments are described in the dependent claims.

本発明による光学セラミックは好ましくは、特に群Y、Sc、In又は特にLu、Yb、Gd又はLa等のランタニド系列の酸化物の一種又は複数種から選ばれる少なくとも一つの酸化物又は型Xの酸化物の混合物を、好ましくは焼結することにより作製される。上記群のものは、可視スペクトル域で光学的活性ではない。この場合、混合物の成分比は、型Yの立体構造の型が維持されるように選ばれる。本発明の意味では、立体構造をもつセラミックとは、単微結晶が立体構造を有する結晶組み合わせから成るセラミックを意味する。材料は好ましくは、立体単微結晶が少なくとも95%又はそれ以上、更に好ましくは≧98%、更にまた好ましくは≧99%から成る。 The optoceramics according to the invention are preferably at least selected from the group Y 2 O 3 , Sc 2 O 3 , In 2 O 3 or in particular one or more lanthanide series oxides such as Lu, Yb, Gd or La. One oxide or a mixture of oxides of type X 2 O 3 is preferably produced by sintering. The above groups are not optically active in the visible spectral range. In this case, the component ratio of the mixture is selected such that the type of the three-dimensional structure of type Y 2 O 3 is maintained. In the sense of the present invention, a ceramic having a three-dimensional structure means a ceramic composed of a crystal combination in which a single microcrystal has a three-dimensional structure. The material preferably consists of at least 95% or more solid single crystallites, more preferably ≧ 98%, even more preferably ≧ 99%.

本発明による光学素子は好ましくは、In、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、の一種又はそれ以上から選ばれる酸化物を含む。 The optical element according to the invention is preferably In 2 O 3 , La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd An oxide selected from one or more of 2 O 3 and Tb 2 O 3 is included.

型Xの酸化物と他の化学量論組成、例えばジルコニウム又はハフニウムの酸化物との混合物も、本発明による光学セラミック用の材料として適している。ここで、添加物Zr又はHfの量は、セラミックの型Yの立体構造が維持されるように選ばれる。この立体構造は好ましくは、欠陥の無い構造にできるだけ高密度に充填される。 Mixtures of type X 2 O 3 oxides with other stoichiometric compositions such as zirconium or hafnium oxides are also suitable as materials for the optoceramics according to the invention. Here, the amount of the additive Zr 2 O 3 or Hf 2 O 3 is selected so that the three-dimensional structure of the ceramic type Y 2 O 3 is maintained. This three-dimensional structure is preferably packed as densely as possible into a defect-free structure.

混合結晶相は全て立体構造が純Yのものと同形のものである。上記のように、本発明はまた、例えばYの、Sc、In、Luの及びYb等のように、結晶構造がYのものと類似する型Yの純粋酸化物を含む。 All of the mixed crystal phases have the same shape as that of pure Y 2 O 3 in the three-dimensional structure. As described above, the present invention also includes, for example, Y 2 O 3, Sc 2 O 3, an In 2 O 3, Lu as such 2 O 3 and of Yb 2 O 3, the crystal structure of Y 2 O 3 Including pure oxide of type Y 2 O 3 similar to that.

多結晶光学セラミックを構成する微結晶は、立体結晶構造をもつ。これは結果として、複屈折の無い等方性の光学挙動をもたらす。微結晶は誘電挙動する、即ち、それ等が立体構造をもつため永久双極子が存在し、物質は性質が光学的に等方性である。単微結晶は上記のように、できるだけ高密度に充填され、理論的密度として少なくとも99%、好ましくは少なくとも99.9%、より好ましくは99.99%の値を得ることができる。従って、本発明によるセラミック(光学セラミック)は略、気泡を含まない。   The microcrystal constituting the polycrystalline optical ceramic has a three-dimensional crystal structure. This results in an isotropic optical behavior with no birefringence. Microcrystals behave dielectrically, that is, they have a three-dimensional structure, so there are permanent dipoles, and materials are optically isotropic in nature. As described above, the single crystallites are packed as densely as possible, and a theoretical density of at least 99%, preferably at least 99.9%, more preferably 99.99% can be obtained. Therefore, the ceramic (optical ceramic) according to the present invention is substantially free of bubbles.

独立して請求される、本発明の他の実施態様によれば、少なくとも2つの異なる透明材料から成る少なくとも2つのレンズを含み、少なくとも1つのレンズが上記の光学素子として形成されて成るマッピング光学部品が提供される。従って、本発明は、例えば対物レンズ等の一つのマッピング光学部品に二つの異なる透明性材料を用いることにより新規のマッピング特性が得られると云う発見に基づく。特に、一実施態様では、公知のガラス種ではでは実現し得ない数の比較的少ない屈折性光学素子でマッピング光学部品の無色化が可能なことである。この場合例えば、近似的にアポクロマートな特性の対物レンズの形成のため、全部で僅か3個の屈折性光学素子の使用が考えられる。概して、本発明によれば、従来技術による多レンズシステムを用いる場合に較べて、極めて低重量で、構造深さが小さく、且つ色修正が低コストで可能な、コンパクトなマッピング光学部品を得ることができる。   According to another embodiment of the present invention, which is claimed independently, mapping optical component comprising at least two lenses of at least two different transparent materials, wherein at least one lens is formed as an optical element as described above Is provided. Thus, the present invention is based on the discovery that novel mapping properties can be obtained by using two different transparent materials for a single mapping optical component such as an objective lens. In particular, in one embodiment, the mapping optical component can be made colorless with a relatively small number of refractive optical elements that cannot be achieved with known glass types. In this case, for example, in order to form an objective lens having approximately apochromatic characteristics, it is conceivable to use only three refractive optical elements in total. In general, according to the present invention, a compact mapping optical component is obtained that is extremely low in weight, has a small structural depth, and can be color-corrected at a lower cost than when using a multi-lens system according to the prior art. Can do.

この場合、本発明の他の実施態様によれば、レンズが純粋に屈折挙動するようにすることができる。レンズは単一的に、又は互いに離間して配置することができる。数個のレンズを原則的に、一群のレンズに、例えば2つ一組のレンズ、3つ一組のレンズ等として、纏めることができる。   In this case, according to another embodiment of the present invention, the lens can be made to be purely refractive. The lenses can be arranged singly or spaced apart from each other. In principle, several lenses can be combined into a group of lenses, for example, as a set of two lenses, a set of three lenses, or the like.

本発明の他の実施態様によれば、レンズの少なくとも一つが、フレネル帯板、回折格子、またブレーズド回折格子としてレンズ面及びレンズ一部にスタンプ又はプレス加工又は書き込まれた回折構造を有するようにしても良い。   According to another embodiment of the invention, at least one of the lenses has a diffractive structure stamped or pressed or written on the lens surface and part of the lens as a Fresnel strip, a diffraction grating, or a blazed diffraction grating. May be.

本発明の他の実施態様によれば、マッピング光学部品はガラスから成る少なくとも一つのレンズを含み、マッピング光学部品が上記のような透明セラミックガラスから成るレンズと、それに適合されたガラスのレンズから成るようにする。   According to another embodiment of the invention, the mapping optic comprises at least one lens made of glass, and the mapping optic consists of a lens made of transparent ceramic glass as described above and a glass lens adapted to it. Like that.

本発明の他の実施態様によれば、ガラスとセラミックの相対部分分散(Pg,F)が略同じであり、好ましくは両者の差が約10%未満であり、ガラスとセラミックのアッベ数の差が10を上回る、好ましくは20を上回るようにする。アッベ数の差を比較的大きくすると共に、相対部分分散を略等しくすることにより、近似的にアポクロマートな特性のマッピング光学部品を得ることができる。 According to another embodiment of the present invention, the relative partial dispersion (P g, F ) of glass and ceramic is substantially the same, preferably the difference between the two is less than about 10%, and the Abbe number of glass and ceramic is The difference is greater than 10, preferably greater than 20. By making the difference in Abbe number relatively large and making the relative partial dispersion substantially equal, a mapping optical component having approximately apochromatic characteristics can be obtained.

図2aに示すアッベ図において、丸印で示した点は典型的に、今日利用可能なガラス技術により高い光学的特性に作製可能なガラス種を表す。図2aから明らかなように、ガラス溶融及びガラス成形の現在の技術ではアッベ数=80/屈折率=1.7及びアッベ数=10/屈折率=20の点を通る破線の上部にあるガラスは制限付きで製造が可能に過ぎない。特に、アッベ数約30〜45との組み合わせで屈折率が1.80〜2.1の範囲にあるガラスは不安定である(図2a内の正方形参照)。   In the Abbe diagram shown in FIG. 2a, the circled dots typically represent glass types that can be made to high optical properties with the glass technology available today. As is apparent from FIG. 2a, the current technology of glass melting and glass forming is that the glass at the top of the dashed line passing through the points Abbe number = 80 / refractive index = 1.7 and Abbe number = 10 / refractive index = 20. It is only possible to manufacture with restrictions. In particular, a glass having a refractive index in the range of 1.80 to 2.1 in combination with an Abbe number of about 30 to 45 is unstable (see the square in FIG. 2a).

以下に説明するように、本発明の光学セラミックは屈折率が約1.80〜2.1、同時にアッベ数が約30〜45の範囲にある透明な材料である。これは、レンズシステムの色消し(無色化)のため新規な材料組み合わせを用いることができること意味する。   As described below, the optoceramic of the present invention is a transparent material having a refractive index of about 1.80 to 2.1 and an Abbe number of about 30 to 45 at the same time. This means that new material combinations can be used for achromatic (achromatic) of the lens system.

図2bの図において、種々のガラス及び単微結晶材料のアッベ数が相対部分分散(Pg,F)に対して座標表示されている。図2bで明らかなように、約30〜42のアッベ数と約0.56〜0.58の組み合わせがガラスで得られている(図2bにおける長方形参照)。 In the diagram of FIG. 2b, the Abbe numbers of various glasses and single crystallite materials are coordinated with respect to the relative partial dispersion (P g, F ). As can be seen in FIG. 2b, an Abbe number of about 30-42 and a combination of about 0.56-0.58 have been obtained with glass (see rectangle in FIG. 2b).

以下、詳細に述べるように、本発明によれば、上記パラメタ範囲にあるアッベ数と相対部分分散をもつセラミックガラスを製造することができる。これは、色消し及び/又は高度色消し(超色消し)のため新規な材料組み合わせを用いることができること意味する。   Hereinafter, as described in detail, according to the present invention, ceramic glass having an Abbe number and a relative partial dispersion within the above parameter range can be manufactured. This means that new material combinations can be used for achromatic and / or advanced achromatic (super achromatic).

この組成範囲内で、酸化物の異なる優れた混合物は結果として、本発明による光学セラミックの製造のため特に適した立体晶相を形成する。例えばグループA(ここでは、そのように云う)の立方晶酸化物Yの、Sc、In、Lu、Ybの混合物は、上記グループAの他の候補一つ又は複数が上限99・9%まで含むと、Pg,F(相対部分分散)に対するアッベ数の図におけるそれ等の位置に関する特性が有利になる。 Within this composition range, an excellent mixture of different oxides results in the formation of a cubic phase that is particularly suitable for the production of optoceramics according to the invention. For example, a mixture of Sc 2 O 3 , In 2 O 3 , Lu 2 O 3 , Yb 2 O 3 of the cubic oxide Y 2 O 3 of group A (herein referred to as such) If one or more of the other candidates includes an upper limit of 99.9% , the properties regarding their position in the Abbe number diagram relative to P g, F (relative partial dispersion) will be advantageous.

また、上記グループの候補をグループBの酸化物La又はGdと混合し、最大量は立方基本晶相の安定性によるようにすることができる。従って、例えば、GdをYb又はLuに最大量約80モル%ドープできるが、Yには最大量約70モル%までと少なくしてドープできる。これ等の値の上では、結晶構造は対象性の低い単斜晶系として形成されるが、これは本発明によれば好ましくない。例えば、Laの場合には、Yb、Lu又はYbに最大量を約20モル%としてドープできる。 Also, the group candidates can be mixed with Group B oxides La 2 O 3 or Gd 2 O 3 with the maximum amount depending on the stability of the cubic fundamental crystal phase. Thus, for example, Gd 2 O 3 can be doped to Yb 2 O 3 or Lu 2 O 3 with a maximum amount of about 80 mol%, but Y 2 O 3 can be doped with a maximum amount of about 70 mol%. Above these values, the crystal structure is formed as a monoclinic system with low objectivity, which is not preferred according to the present invention. For example, in the case of La 2 O 3 , Yb 2 O 3 , Lu 2 O 3 or Yb 2 O 3 can be doped with a maximum amount of about 20 mol%.

本発明に従って用い得る酸化物は、可視スペクトル域、即ち約380〜800nmでは通常光学活性を有しない化合物を形成する、即ちこの波長域の光は吸収も放出もされない。実質的に、セラミックは着色されず、この場合、蛍光は存在しない。   The oxides that can be used according to the invention form compounds that are not normally optically active in the visible spectral range, i.e. about 380 to 800 nm, i.e. light in this wavelength range is neither absorbed nor emitted. In effect, the ceramic is not colored, in which case there is no fluorescence.

一連の受動光学素子に対して、可能な蛍光は対象毎に抑制されなければならない。これは、特に純度の高い原料を用いることにより保証される。一実施態様によれば、光学活性不純物(例えば、希土類又は遷移金属の群の活性イオン)は最小に低減されなければならない。好ましくは、これは<100ppm、好ましくは<10ppm、特に好ましくは<1ppm、最も好ましくは光学セラミックは、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm等のこれ等のイオンを含まない。   For a series of passive optical elements, the possible fluorescence must be suppressed for each object. This is ensured by using particularly high purity raw materials. According to one embodiment, optically active impurities (eg, active ions of the rare earth or transition metal group) must be reduced to a minimum. Preferably this is <100 ppm, preferably <10 ppm, particularly preferably <1 ppm, most preferably the optoceramic has these ions such as Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm etc. Not included.

本発明の他の実施態様によれば、これ等のイオン(例えば、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm)を、光学活性(レーザ活性等の)が強く減じられる量である15モル%以上、添加することができる。   According to another embodiment of the present invention, these ions (eg, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm) are strongly reduced in optical activity (such as laser activity). An amount of 15 mol% or more can be added.

それの前提条件は、独特な応用には、単色(self−colour)又は蛍光が働きをしないということである。これがそうである限り、ランタニド系列の他の元素の酸化物を用いることができる。その場合、上記グループAを例えば、Tb、Dy、Er、Ho、Tmで補足することができる。 A prerequisite for that is that for unique applications, no single-color or fluorescence will work. As long as this is the case, oxides of other elements of the lanthanide series can be used. In that case, the group A can be supplemented with, for example, Tb 2 O 3 , Dy 2 O 3 , Er 2 O 3 , Ho 2 O 3 , Tm 2 O 3 .

総じて、平均陽イオン半径が0.93オングストロームを超えない、又は陽イオンの陽イオン半径の差が0.22オングストロームを超えないセスキ酸化物の全組み合わせが可能である。   Overall, all combinations of sesquioxides where the average cation radius does not exceed 0.93 angstroms or the difference in cation radii of the cations does not exceed 0.22 angstroms are possible.

ZrO又はHfO(グループC)を明白な量、上記酸化物又は混合酸化物に添加することができる。例えば、Ybm又はLuにHfO又はZrOを50モル%まで添加したもの、またSc又はYにHfO又はZrOを40モル%まで添加したものがある。一般に、ZrOの含有量は55モル%を超えるべきではない。 ZrO 2 or HfO 2 (Group C) can be added in obvious amounts to the oxide or mixed oxide. For example, Ybm 2 O 3 or Lu 2 O 3 with HfO 2 or ZrO 2 added to 50 mol%, or Sc 2 O 3 or Y 2 O 3 with HfO 2 or ZrO 2 added to 40 mol% There is. In general, the content of ZrO 2 should not exceed 55 mol%.

HfOは原料として可能であり、ZrOを介して混合される。ThOは毒性及び放射性に故に不適切である。 HfO 2 can be used as a raw material and mixed through ZrO 2 . ThO 2 is unsuitable due to toxicity and radioactivity.

屈折率は、ZrO及び/又はHfOを用いることにより著しく大きくなる。 The refractive index is significantly increased by using ZrO 2 and / or HfO 2 .

透明度、屈折数、アッベ数及び部分分散等の光学特性は、酸化物を適宜組み合わせることにより必要なものに合わすことができる。   Optical properties such as transparency, refraction number, Abbe number, and partial dispersion can be adjusted to those required by appropriately combining oxides.

の場合、屈折値n=1.91443、アッベ数v=36.2及び相対部分分散Pg,F)=0.5723である。 In the case of Y 2 O 3 , the refraction value n d = 1.91443, the Abbe number v d = 36.2 and the relative partial dispersion P g, F ) = 0.5723.

Luの場合、屈折値n=1.93483、アッベ数v=38.42及び相対部分分散Pg,F)=0.5725である。 In the case of Lu 2 O 3 , the refraction value n d = 1.93483, the Abbe number v d = 38.42 and the relative partial dispersion P g, F ) = 0.5725.

Yb原子1%をドープしたScでは、屈折値n=1.99523、アッベ数v=35.07及び相対部分分散Pg,F)=0.5687である。 In Sc 2 O 3 doped with 1% of Yb atoms, the refraction value n d = 1.999523, the Abbe number v d = 35.07, and the relative partial dispersion P g, F ) = 0.5687.

これ等3つの物質は本発明の光学セラミックとして適切である。   These three materials are suitable as optoceramics of the present invention.

好ましくは、本発明の光学セラミックの屈折値は1.8〜2.1、更に好ましくは1.85〜2.05、特に好ましくは1.89〜2.02の範囲にあり、アッベ数は30〜45、好ましくは33〜40であり、相対部分分散は0.560〜0.580、好ましくは0.565〜0.575である。   Preferably, the refractive index of the optical ceramic of the present invention is in the range of 1.8 to 2.1, more preferably 1.85 to 2.05, particularly preferably 1.89 to 2.02, and the Abbe number is 30. ˜45, preferably 33˜40, and the relative partial dispersion is 0.560˜0.580, preferably 0.565˜0.575.

図3は、例えば携帯電話等の電子装置のコンパクトな対物レンズに挿入し得る一群のレンズを示す。図3によれば、レンズ群は対象物の側から画像側に、第1のレンズL1、レンズ口径絞りS,第2のレンズL2及び第3のレンズから成る。レンズL1の屈折力は正であり、その凸面は対象物の側に向いている。半月状の第二のレンズL2の屈折力は正であり、その凸面は対象物の側に向いている。第3のレンズL3の屈折力は負であり、その凹面は対象物の側に向いている。レンズ口径絞りSは第1のレンズL1と第2のレンズL2の間に配置され、対物レンズの焦点長と共に対物レンズのF数を定める。   FIG. 3 shows a group of lenses that can be inserted into a compact objective lens of an electronic device such as a mobile phone. According to FIG. 3, the lens group is composed of a first lens L1, a lens aperture stop S, a second lens L2, and a third lens from the object side to the image side. The refractive power of the lens L1 is positive, and its convex surface faces the object side. The half-moon-shaped second lens L2 has a positive refractive power, and its convex surface faces the object side. The refractive power of the third lens L3 is negative, and its concave surface faces the object side. The lens aperture stop S is disposed between the first lens L1 and the second lens L2, and determines the F number of the objective lens together with the focal length of the objective lens.

図4は、図3のレンズ群を含む、例えば携帯電話用のマッピング光学部品の典型的な機構を示す。一実施例として、対物レンズのF数は2.88であり、焦点距離は3.789、機構の全長(光チップまでの)は5.55mmである。   FIG. 4 shows a typical mechanism of mapping optics, for example for a mobile phone, including the lens group of FIG. As an example, the F number of the objective lens is 2.88, the focal length is 3.789, and the total length of the mechanism (up to the optical chip) is 5.55 mm.

本発明の一実施例によれば、この第1のレンズL1とカバーガラス12が、屈折率が約1.914、アッベ数が約36.2のY構造をもつ本発明の光学セラミックのレンズで置き換えられている。 According to one embodiment of the present invention, the first lens L1 and the cover glass 12 have the Y 2 O 3 structure of the present invention having a refractive index of about 1.914 and an Abbe number of about 36.2. It has been replaced with a lens.

以下の表1に、屈折数が約1.914、アッベ数が36.2の光学セラミックレンズを用いる設計の明細が記載されている。セラミックレンズは機械的硬度が高いので、カバーガラスの目的(対物レンズの保護)をここでも果たしている。   Table 1 below describes the design details using an optoceramic lens having a refractive index of about 1.914 and an Abbe number of 36.2. The ceramic lens has a high mechanical hardness, so it also fulfills the purpose of the cover glass (protection of the objective lens).

Figure 2007334357
Figure 2007334357

ここで、面1はレンズL1の第1の面(対象物の側の)であり、面2はL1の第2の面である。面3はレンズ口径絞りSを呈示し、面4及び5はL2のものであり、面6及び7はレンズL3のものである。面8はセンサ上の像平面を呈示する。   Here, the surface 1 is the first surface (on the object side) of the lens L1, and the surface 2 is the second surface of L1. Surface 3 presents a lens aperture stop S, surfaces 4 and 5 are of L2, and surfaces 6 and 7 are of lens L3. Surface 8 presents the image plane on the sensor.

面4〜7は、次の式で記述される非球面である。   Surfaces 4 to 7 are aspheric surfaces described by the following equations.

Figure 2007334357
Figure 2007334357

ここで、zは光軸の座標、rは光軸に垂直な座標、Rは半径であり、非球面係数A〜Eは下の表2に与えられている(表1によれば、第1の線は面1のもの、第2の線は面2のもの等)。   Here, z is the coordinate of the optical axis, r is the coordinate perpendicular to the optical axis, R is the radius, and aspherical coefficients A to E are given in Table 2 below (according to Table 1, the first The first line is for surface 1, the second line is for surface 2, etc.).

Figure 2007334357
Figure 2007334357

図5及び6には、レンズL1に、ガラスレンズ(又はプラスティックレンズ)を用いる従来の材料組み合わせのマッピング特性(図5a及び図6a)が、及び本発明による光学セラミックの上記材料組み合わせのマッピング特性(図5bお呼び図6b)がそれぞれ計算されている。結果は、フィールド曲率が24%程度、像の歪みが45%程度向上し、色交差収差が実質的に、即ち380%程度向上した。色特性の明瞭な向上は、アポクロマート特性を略可能にする良好な相対部分分散(正規線からの離反)の結果である。   5 and 6 show the mapping characteristics (FIGS. 5a and 6a) of a conventional material combination using a glass lens (or plastic lens) for the lens L1, and the mapping characteristics of the material combination of the optical ceramic according to the present invention (FIG. FIG. 5b and call diagram 6b) are respectively calculated. As a result, the field curvature was improved by about 24%, the image distortion was improved by about 45%, and the color crossing aberration was substantially improved, that is, by about 380%. The clear improvement in the color characteristics is a result of good relative partial dispersion (separation from the normal line) which makes the apochromat characteristics almost possible.

従って、概して、マッピング特性が略アポクロマートな、全部で3つで良いコンパクト対象レンズを製造することができる。   Therefore, in general, it is possible to manufacture a compact target lens that has a mapping characteristic of approximately apochromatic and that only requires three in total.

本発明による材料の更なる使用は、赤外用途でのその使用である。好ましくは、これ等材料の透明度は、800nmから8000nmまで、少なくとも800nmから5000nmまでの範囲で高い。全く好ましくは、本発明による光学素子は、可視光(約380nm〜約800nm)と、5000nmまで、更に好ましくは7000nmまで、最も好ましくは8000nmまでの熱放射線(赤外)との両方のマッピングに導く上記種の光学セラミックから成るレンズで良い。   A further use of the material according to the invention is its use in infrared applications. Preferably, the transparency of these materials is high in the range from 800 nm to 8000 nm, at least from 800 nm to 5000 nm. Quite preferably, the optical element according to the invention leads to a mapping of both visible light (about 380 nm to about 800 nm) and thermal radiation (infrared) up to 5000 nm, more preferably up to 7000 nm, most preferably up to 8000 nm. A lens made of the above-mentioned optical ceramic may be used.

それの用途は、対弾道弾ミサイル防衛用飛行機用の、赤外線を透過させる所謂「赤外監視」用窓及びレンズ、上限7000nmまでの赤外波長用の対弾道弾ミサイルのカバークラウン等である。この場合、可視光と赤外光の両方に対する透過率が同時に高いことは好都合である。これは、防衛分野での使用を促進する。
型X の光学セラミックの製造
Its applications include so-called “infrared monitoring” windows and lenses that transmit infrared radiation for anti-ballistic missile defense aircraft, cover crowns for anti-ballistic missiles for infrared wavelengths up to 7000 nm, and the like. In this case, it is advantageous that the transmittance for both visible light and infrared light is high at the same time. This facilitates use in the defense field.
Manufacture of type X 2 O 3 optoceramics

製造ルートは以下の主工程を含む:
1. 粉末(ナノ粒子)の調製
2. 粉末のコンディショニング
3. 成形
4. 乾燥及び脱結合材処理
5. 焼結
6. HIP(熱間静水圧プレス)
7. 後段アニーリング
The manufacturing route includes the following main processes:
1. 1. Preparation of powder (nanoparticles) 2. Conditioning of the powder Molding 4. 4. Drying and debinding treatment Sintering 6. HIP (Hot isostatic press)
7). Second stage annealing

個々のプロセス工程並びに基本的プロセスパラメタの選択は、種々の要素による。それには特に、粉末特性(主粒子サイズ、凝集塊サイズ、比表面積、粒形等)、処理及び焼結工程中の材料自体の物理化学的挙動、生成物の指定サイズ・大きさ形状及びその光学特性値がある。
従って、コストを考慮しつつも、所望の製品をもたらす上記の及び以後に記載のプロセスモジュールが選択されねばならない。
1.粉末の調製
The selection of individual process steps as well as basic process parameters depends on various factors. In particular, powder properties (main particle size, agglomerate size, specific surface area, particle shape, etc.), physicochemical behavior of the material itself during processing and sintering processes, the specified size and size of the product and its optics There is a characteristic value.
Therefore, the process modules described above and below that yield the desired product must be selected while considering the cost.
1. Powder preparation

光学セラミックの製造は、適宜の粉末を用いてなされる。その方法は、沈殿(共沈)法、フレーム(炎)加水分解法、ガス凝縮法、レーザアブレーション法、プラズマスプレー法(CVS法)、ゾルゲル法、熱水法、燃焼法等である。充填密度が高いことから、グレイン(粒子)形状は好ましくは円形、好ましくは球状である。即ち、グレインはファン・デル・ワールス力を介して単にゆるみ接触している状態にする。理想的には、グレインは焼結ネックとしての小橋を介して互いに繋げられる。化学沈殿反応に関しては、沈殿条件がグレイン留分とグレイン形状に強く依存する。従って、広い範囲で異なる出発粉末を、例えば窒化又は塩化イットリウムの例えば窒化物又は塩化物溶液の沈殿媒質を選択(炭酸塩沈殿、水酸化物沈殿、蓚酸塩沈殿)して生成すると良い。品質と出発特性(例えば、比表面積)の異なる粉末は、フィルタケーキを乾燥させる種々の方法(単純乾燥空気、凍結乾燥法、共沸蒸留法)により得られる。更に、多くの付加的パラメタ(pH、攪拌機の回転速度、温度、沈殿体積等)が沈殿中に考えられなければならない。   The production of the optical ceramic is performed using an appropriate powder. The methods include precipitation (coprecipitation) method, flame (flame) hydrolysis method, gas condensation method, laser ablation method, plasma spray method (CVS method), sol-gel method, hydrothermal method, combustion method and the like. Due to the high packing density, the grain (particle) shape is preferably circular, preferably spherical. That is, the grains are simply brought into loose contact via van der Waals forces. Ideally, the grains are connected to each other via a small bridge as a sintering neck. For chemical precipitation reactions, the precipitation conditions strongly depend on the grain fraction and grain shape. Accordingly, a wide range of different starting powders may be produced, for example, by selecting a precipitation medium (carbonate precipitation, hydroxide precipitation, oxalate precipitation) of, for example, nitride or yttrium chloride, for example nitride or chloride solution. Powders with different qualities and starting properties (eg specific surface area) can be obtained by various methods (simple dry air, freeze drying, azeotropic distillation) of drying the filter cake. Furthermore, many additional parameters (pH, stirrer speed, temperature, precipitation volume, etc.) must be considered during precipitation.

粉末の純度が実質的判定基準である。各不純物は結果として、焼結条件の変化や光学特性の不均一な分布をもたらすことがある。不純物は液相の形成をもたらし、それが最悪の場合、結果として広い不均一な結晶粒界部を生ずることがある。だが、粒子間相(非晶質又は結晶質)の形成は、このため屈折値の差異が光通過の場合に散乱損失を引き起こす結果となる場合があるので、回避されるべきである。   The purity of the powder is a substantial criterion. Each impurity can result in changes in sintering conditions and non-uniform distribution of optical properties. Impurities can lead to the formation of a liquid phase, which in the worst case can result in wide, non-uniform grain boundaries. However, the formation of intergranular phases (amorphous or crystalline) should be avoided, as this may result in a scattering loss in the case of light passage where the difference in refractive values.

硬質凝集塊を用いること、即ち沈殿又は焼成中に現れる一次粒子をこのためある程度「溶かし合う」ことも、この方法を用いれば可能である。そこで、例えば、J. Mouzen は出版修士論文「Yb:Yナノ粒子の合成及び透明多結晶イットリアセラミックの製造」(Lulea University of Technology, Int. No. 2005:29)で、粒子間気泡、粒子内気泡の避けるため、差動焼結が有利であるとしている。これは、硬質凝集物、凝集物内の一次粒子が初期に高密度に焼結し、残留気泡が好ましくは粒界部に位置するようにすることにより保証されよう。残留気泡は熱平衡プレスによって構造から除去されることができる。 It is also possible with this method to use hard agglomerates, i.e. to "dissolve" the primary particles that appear during precipitation or calcination to some extent. So, for example, J. Mouzen has published a master thesis “Synthesis of Yb: Y 2 O 3 nanoparticles and production of transparent polycrystalline yttria ceramics” (Lulea University of Technology, Int. No. 2005: 29). In order to avoid bubbles in the particles, differential sintering is advantageous. This will be ensured by ensuring that the hard agglomerates, the primary particles in the agglomerates, initially sinter to a high density and the residual bubbles are preferably located at the grain boundaries. Residual bubbles can be removed from the structure by thermal equilibrium pressing.

更に、沈殿(共沈)粉末の製造において、試剤のターゲット添加により凝集傾向を低減できる可能性がある。従って、細粒化工程の必要が除かれる。そのためには、沈殿蓚酸塩懸濁液の焼成の前にNHOHを添加できる。
2.粉末のコンディショニング
Furthermore, in the production of a precipitated (co-precipitated) powder, there is a possibility that the tendency to agglomerate can be reduced by adding a target of the reagent. Thus, the need for a fine graining process is eliminated. To that end, NH 4 OH can be added prior to calcination of the precipitated oxalate suspension.
2. Powder conditioning

粉末は成形のために、種々の仕方で調整される。通常、粉末は、a)未だ存在する凝集物を分解する及びb)添加物の添加中に粉末を均一にする目的で細粒化される。細粒化は乾式又は湿式条件で、後者の場合、水又はアルコール等の媒体で行うことができる。細粒化時間は上限24時間までとして良いが、細粒体(Al、ZrO)又は細粒ドラムの裏張りが磨耗しない程度に選ばれるべきである。細粒機としては、リング砕断機、摩砕機、ボールミル等が適している。媒体としては例えば、水、液体アルコール又はヘプタン等の炭化水素が用いられる。 The powder is adjusted in various ways for shaping. Usually, the powder is agglomerated for the purposes of a) breaking down the agglomerates still present and b) homogenizing the powder during the addition of the additive. Atomization can be carried out in dry or wet conditions, and in the latter case, it can be carried out in a medium such as water or alcohol. Although the fine graining time may be up to 24 hours, it should be selected to such an extent that the fine particles (Al 2 O 3 , ZrO 2 ) or the fine drum backing do not wear. As the fine granulator, a ring crusher, an attritor, a ball mill and the like are suitable. As the medium, for example, hydrocarbon such as water, liquid alcohol or heptane is used.

混合物の乾燥はここでも、低温の空気中で行えば良く、最適には、細粒懸濁液はスプレー乾燥で乾燥される。この場合、規定サイズ及び品質の顆粒を生成することができる。スプレー乾燥の場合、結合剤を用い、スプレー乾燥の結果、軟質凝集物が生成されるようにすると良い。凝集物のサイズは100μmを超えるべきでないが、10〜50μmのオーダーの凝集物が手頃であり、凝集物<10μmが理想的である。また、凍結乾燥法又は乱流乾燥が可能である。   The mixture can again be dried in cold air, and optimally the fine suspension is dried by spray drying. In this case, granules of defined size and quality can be produced. In the case of spray drying, a binder may be used so that soft agglomerates are generated as a result of spray drying. The size of the agglomerates should not exceed 100 μm, but agglomerates on the order of 10-50 μm are affordable and agglomerates <10 μm are ideal. Moreover, freeze-drying or turbulent drying is possible.

ときたま、ナノ粉末又はナノ粉末凝集物が加圧成形を要する場合には、添加物も用いられる。鋳造、例えばスリップ注型法、加圧鋳造、遠心鋳造による成形のためには、粉末混合物を適宜の液化機で分散しなければならない。それには例えば、ダーバン、ドラピクス、ポリアリール酸、ポリアクリル酸、蓚酸アンモニウム一水和物、蓚酸、クエン酸アンモニウムソルバイト等が適している。   Occasionally, additives are also used when the nanopowder or nanopowder agglomerates require pressure molding. For molding, for example by slip casting, pressure casting, centrifugal casting, the powder mixture must be dispersed with a suitable liquefier. For example, durban, drapix, polyaryl acid, polyacrylic acid, ammonium oxalate monohydrate, oxalic acid, ammonium citrate sorbite and the like are suitable.

プラスティック成形(押出加工、射出成形、熱間鋳造)のため、型ポリオレフィンの有機バインダー、例えばHOSTAMOND(登録商標)(会社Clariant)又は触媒分解バインダー、例えば型CATAMOLD(登録商標)(会社BASF)が粉末に混入され、適宜形式で均一化されねばならない。
3.成形
For plastic molding (extrusion, injection molding, hot casting) organic mold polyolefin binders such as HOSTAMOND® (company Clariant) or catalytic cracking binders such as type CATAMOLD® (company BASF) are powdered It must be mixed in and made uniform in an appropriate form.
3. Molding

加圧成形により、成形を速やかに、且つ廉価に行うことができる。   Molding can be performed quickly and inexpensively by pressure molding.

スリップ注型法のため、石膏の型を用いることが推奨される。
4.徐冷工程
Because of the slip casting method, it is recommended to use a plaster mold.
4). Slow cooling process

真空焼結により、圧縮粉末から開口気孔を除くことができる。真空条件は10−3mbar(=10−3hPa)上で、好ましくは10−5〜10−6mbar(=10−5〜10−6hPa)の圧力が用いられる。焼結条件は材料により変化し、例えばT=1500℃〜1800℃等の条件及び1〜10時間の焼結時間が挙げられるべきである。 Open pores can be removed from the compressed powder by vacuum sintering. The vacuum condition is 10 −3 mbar (= 10 −3 hPa), preferably 10 −5 to 10 −6 mbar (= 10 −5 to 10 −6 hPa). Sintering conditions vary depending on the material, for example, conditions such as T = 1500 ° C.-1800 ° C. and sintering times of 1-10 hours should be mentioned.

或いはまた、特定雰囲気(He、水素(乾式または湿式)、N、Ar)内での焼結も可能である。 Alternatively, sintering in a specific atmosphere (He, hydrogen (dry or wet), N 2 , Ar) is also possible.

真空焼結の場合、グレイン成長が速過ぎず、制御されることが重要である。目的は、気泡がグレイン中に入らないようにすることである。そのため、例えば焼結温度を極めて低温に保つことができる。任意選択として、その後もサンプルは気孔密度が高いため、不透明であり、気孔は閉じこめられたままである。   In the case of vacuum sintering, it is important that the grain growth is not too fast and is controlled. The purpose is to prevent air bubbles from entering the grains. Therefore, for example, the sintering temperature can be kept extremely low. Optionally, the sample is still opaque due to the high pore density and the pores remain confined.

粒界間の密閉気孔は、後に行うHIP工程で加圧により、構造から排出することができる。典型的条件は1500℃〜1800℃、圧力100MPa(1000bar)〜200MPa(2000bar)である。1〜10時間の焼き戻し時間(加熱及び冷却時間なし)は普通である。加熱素子として、W又はMo、任意選択としてグラファイトも用いることができる。   The closed pores between the grain boundaries can be discharged from the structure by pressurization in a subsequent HIP process. Typical conditions are 1500 ° C. to 1800 ° C., pressure 100 MPa (1000 bar) to 200 MPa (2000 bar). Tempering times of 1 to 10 hours (no heating and cooling times) are common. As the heating element, W or Mo and optionally graphite can also be used.

アルゴンを圧力媒体として用いることができる。サンプルを同じ粉末内にカプセルで包み又は埋め込み、粒界、例えばガラス状の中間相にアルゴンが溶けるのを回避することができる。   Argon can be used as a pressure medium. Samples can be encapsulated or embedded within the same powder to avoid melting argon in grain boundaries, eg, glassy mesophases.

後者により、面における材料の還元、又は炉室内部の加熱素子の成分でサンプルの汚染による変色を回避することができ、その場合、空気による「後焼き戻し」は必要ない。必要な場合でも、それは空気又は酸素中で行われるべきである。典型的な条件は、上限1400℃までの温度で1〜48時間である。   The latter makes it possible to avoid material reduction on the surface or discoloration due to contamination of the sample with components of the heating element inside the furnace chamber, in which case “post-tempering” with air is not necessary. If necessary, it should be done in air or oxygen. Typical conditions are 1 to 48 hours at temperatures up to 1400 ° C.

グレイン内微細気泡は、特殊工程により少なくすることができる。これは、新たに作られる粒界がグレインで囲まれる気泡体積部を超えて成長するように行われるグレインのターゲット成長により達成される。   Fine grains in the grain can be reduced by a special process. This is achieved by grain target growth performed such that the newly created grain boundary grows beyond the bubble volume enclosed by the grains.

そのため、サンプルはHIP工程後に再び焼結にかけられる。   Therefore, the sample is subjected to sintering again after the HIP process.

真空焼結とその後のHIP工程の代わりに、複合工程「真空熱間焼結」を用いることができる。
実施例
Instead of vacuum sintering and the subsequent HIP process, a composite process “vacuum hot sintering” can be used.
Example

高純度のY粉末、La粉末及びHf粉末を出発材料として用いた。これ等粉末は添加物及びバインダーと混合され、エタノール中で12時間球体破砕(ボールミル)された。次いで、ミルドスラリーをホットプレート上で乾燥してアルコール溶媒を除去した。斯く得られた粉末は金属型内で、低圧で必要形状に加圧成形され、次いで98MPaで冷間アイソスタティック(平衡)に加圧成形された。 High purity Y 2 O 3 powder, La 2 O 3 powder and Hf 2 O 3 powder were used as starting materials. These powders were mixed with additives and binders and crushed (ball milled) in ethanol for 12 hours. The milled slurry was then dried on a hot plate to remove the alcohol solvent. The powder thus obtained was pressed into the required shape at low pressure in a metal mold and then pressed into cold isostatic (equilibrium) at 98 MPa.

真空(1x10−3Pa)下で温度1700℃、3時間の焼結の後、空気中で圧力196MPa、温度1780℃、2時間の熱間アイソスタティックプレスで透明なYセラミックが得られた。 After sintering at a temperature of 1700 ° C. for 3 hours under vacuum (1 × 10 −3 Pa), a transparent Y 2 O 3 ceramic is obtained by hot isostatic pressing at a pressure of 196 MPa and a temperature of 1780 ° C. for 2 hours in air. It was.

光学的透明材料との光の相互作用は、反射、吸収、散乱及び正透過を追加して与えられる。反射損失はスネルの法則のため、材料に固有である。材料から出射する光の全量は「全透過度」と呼ばれ、その正透過部は散乱を可能な損失機構として考慮して、インライン透過度(Tin−line)と呼ばれる。 The interaction of light with an optically transparent material is given in addition to reflection, absorption, scattering and specular transmission. Reflection loss is inherent to the material due to Snell's law. The total amount of light emitted from the material is referred to as “total transmittance”, and its specular transmission portion is referred to as in-line transmittance (T in-line ) in consideration of a loss mechanism capable of scattering.

in−line=Iin−line/I=10−(kin−line)d T in-line = I in-line / I 0 = 10 − (kin-line) d

ここでIin−line及びIは夫々、サンプルを離れた正透過強度及び入射強度であり、kin−lineは吸収係数である。グラフ表示は図7に見られる通りである。 Here, I in-line and I 0 are the normal transmission intensity and the incident intensity away from the sample, respectively, and k in-line is the absorption coefficient. The graphical display is as seen in FIG.

全作製サンプルは透明であった。Laを殆ど又は全く含まないサンプルは黄色変色を呈した。図7に、種々の量のLaを含有するY光学セラミックの線形吸収が示されている。0〜0.7モル%のLaを含有する光学セラミックに対して明らかに、〜400nmにおいて広い吸収帯が見られる。驚くべきことに、〜10モル%のLaを含むサンプルはこの黄色着色を呈さず、UV−可視域吸収図中で可視帯ではいかなる吸収も見られなかった。 All fabricated samples were transparent. Samples containing little or no La 2 O 3 exhibited a yellow discoloration. FIG. 7 shows the linear absorption of Y 2 O 3 optoceramics containing various amounts of La 2 O 3 . A broad absorption band is clearly seen at ˜400 nm for optoceramics containing 0-0.7 mol% La 2 O 3 . Surprisingly, the sample containing 10 mol% La 2 O 3 did not exhibit this yellow coloration and did not show any absorption in the visible band in the UV-visible absorption diagram.

従って、Laはレンズ用の好学特性を、透過を促進するものであることが証明された。 Thus, La 2 O 3 proved to be a scholarly property for lenses that promotes transmission.

本発明による光学素子の4例を示す。4 shows four examples of optical elements according to the present invention. 図2aは種々のガラスと本発明の一実施態様による光学セラミックの特性をアッベ線図(相対部分分散対屈折数)に纏めたものである。FIG. 2a summarizes the Abbe diagram (relative partial dispersion versus refractive index) of the properties of various glasses and optoceramics according to one embodiment of the present invention. 図2bは種々のガラスと本発明の一実施態様による光学セラミックの位置の関係を線図(相対部分分散対屈折数)に纏めたものである。FIG. 2b summarizes the positional relationship of various glasses and optoceramics according to one embodiment of the present invention in a diagram (relative partial dispersion versus refractive index). 本発明の一実施態様によるマッピング光学部品を示す。2 shows a mapping optic according to one embodiment of the present invention. 図3のマッピング光学部品によるコンパクトな画像検出機構を示す。4 shows a compact image detection mechanism with the mapping optical component of FIG. 図5a及び図5bは、図3のマッピング光学部品としての対物レンズのマッピング特性を、従来の材料を用いた場合(図5a)及び本発明による材料組み合わせを用いた場合(図5b)に付いてそれぞれ示す。5a and 5b show the mapping characteristics of the objective lens as the mapping optical component in FIG. 3 when using a conventional material (FIG. 5a) and when using a material combination according to the present invention (FIG. 5b). Each is shown. 図6a及び6bは、図3のマッピング光学部品としての対物レンズのマッピング色収差を、従来の材料を用いた場合(図6a)及び本発明による材料組み合わせを用いた場合(図6b)に付いてそれぞれ示し、Y2O3に基づく光学セラミックを用いると、色特性が明瞭に向上(交差収差が明瞭に低減)するのを示す。FIGS. 6a and 6b show the mapping chromatic aberration of the objective lens as the mapping optical component in FIG. 3 when using a conventional material (FIG. 6a) and when using a material combination according to the present invention (FIG. 6b), respectively. It is shown that the color characteristics are clearly improved (crossed aberrations are clearly reduced) when an optical ceramic based on Y2O3 is used. 種々の量のLaを含有するY光学セラミックの線形吸収を示す。It shows the linear absorption of the Y 2 O 3 opto-ceramics containing La 2 O 3 in various amounts.

符号の説明Explanation of symbols

1 両凸レンズ
2 両凹レンズ
3 基体
4 球面レンズ
10 画像検出機構
11 ケーシング
12 カバープレート・IRフィルタ
13 光検出器
14 信号処理回路
15 支持プレート
1 Biconvex lens 2 Biconcave lens 3 Base 4 Spherical lens 10 Image detection mechanism 11 Casing 12 Cover plate / IR filter 13 Photo detector 14 Signal processing circuit 15 Support plate

Claims (22)

結晶の組み合わせから成るセラミックを含み、
単微結晶が、Yのものに類似し、可視光及び/又は赤外線に対して透明であり、且つX型の一種又は複数の酸化物を含む、立体構造をもつ
屈折性、透過性又は回折性光学素子。
Including ceramic consisting of a combination of crystals,
A single crystallite similar to that of Y 2 O 3 , transparent to visible light and / or infrared, and having a steric structure containing one or more oxides of the X 2 O 3 type Transmissive or diffractive optical elements.
XがY、Sc、In及び/又はランタニド系の元素La〜Lu、特にLu、Yb、Gd又はLaの一種又は複数から成る群より選ばれる請求項1に記載の光学素子。   The optical element according to claim 1, wherein X is selected from the group consisting of one or more of Y, Sc, In and / or lanthanide elements La to Lu, particularly Lu, Yb, Gd or La. セラミック内にX型の少なくとも2種の酸化物が含まれて成る請求項1又は2に記載の光学素子。 The optical element according to claim 1, wherein at least two kinds of oxides of X 2 O 3 type are contained in the ceramic. Sc、In、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd及びTbの少なくとも1種又は複数が含まれて成る請求項1〜3の何れか1項に記載の光学素子。 Sc 2 O 3, In 2 O 3, La 2 O 3, Ce 2 O 3, Pr 2 O 3, Nd 2 O 3, Pm 2 O 3, Sm 2 O 3, Eu 2 O 3, Gd 2 O 3 and The optical element according to claim 1, wherein at least one or a plurality of Tb 2 O 3 is contained. 更にHfO及び/又はZrOを含んで成る請求項1〜4の何れか1項に記載の光学素子。 The optical element according to claim 1, further comprising HfO 2 and / or ZrO 2 . 不純物が最大量100ppm含まれて成る請求項の1〜5の何れか1項に記載の光学素子。   The optical element according to claim 1, wherein the impurity is contained in a maximum amount of 100 ppm. 屈折率が1.80以上、好ましくは1.85〜2.05の範囲、アッベ数が30以上、好ましくは30〜45の範囲にある請求項1〜6の何れか1項に記載の光学素子。   The optical element according to any one of claims 1 to 6, wherein the refractive index is 1.80 or more, preferably 1.85 to 2.05, and the Abbe number is 30 or more, preferably 30 to 45. . アッベ数が30〜42の範囲にあり、相対部分分散が0.56〜0.58の範囲にある請求項1〜8の何れか1項に記載の光学素子。   The optical element according to any one of claims 1 to 8, wherein the Abbe number is in the range of 30 to 42 and the relative partial dispersion is in the range of 0.56 to 0.58. 可視光に対して透明である請求項1〜8の何れか1項に記載の光学素子。   The optical element according to claim 1, which is transparent to visible light. 赤外光に対して透明である請求項1〜9の何れか1項に記載の光学素子。   It is transparent with respect to infrared light, The optical element of any one of Claims 1-9. 可視光と赤外光の両方に対して透明である請求項1から10の何れか1項に記載の光学素子。   The optical element according to any one of claims 1 to 10, which is transparent to both visible light and infrared light. 少なくとも2つの異なる透明材料から成る少なくとも2つのレンズを含み、少なくとも1つのレンズが請求項1〜11の何れか1項による光学素子として形成されて成るマッピング光学部品。   12. A mapping optical component comprising at least two lenses of at least two different transparent materials, wherein at least one lens is formed as an optical element according to any one of claims 1-11. レンズが単に屈折性である請求項12に記載の光学部品。   The optical component of claim 12, wherein the lens is simply refractive. 少なくとも1つのレンズが回折構造を有して成る請求項12に記載の光学部品。   The optical component according to claim 12, wherein at least one lens has a diffractive structure. 更に、ガラスから成る少なくとも1つのレンズを含んで成る請求項12〜14の何れか1項に記載の光学部品。   The optical component according to claim 12, further comprising at least one lens made of glass. ガラス及びセラミックの夫々の相対部分分散が互いに略類似し、ガラス及びセラミックの夫々のアッベ数の差が10より高い請求項12〜15の何れか1項に記載の光学部品。   The optical component according to any one of claims 12 to 15, wherein the relative partial dispersions of the glass and the ceramic are substantially similar to each other, and the difference between the Abbe numbers of the glass and the ceramic is higher than 10. セラミックの相対部分分散が0.56〜0.58の範囲、アッベ数が30〜40の範囲にあり、そして各ガラスの相対部分分散が0.555〜0.585、アッベ数が45下である請求項12〜16の何れか1項に記載の光学部品。   The relative partial dispersion of the ceramic is in the range of 0.56 to 0.58, the Abbe number is in the range of 30 to 40, and the relative partial dispersion of each glass is 0.555 to 0.585, and the Abbe number is below 45. The optical component according to any one of claims 12 to 16. ガラスがN−BAF4、N−BaF10、N−SSK8、N−SSK5、N−KF9,LLF1、TiF1及び光学位置が同等なガラスから成る群より選ばれる請求項12〜17の何れか1項に記載の光学部品。   The glass according to any one of claims 12 to 17, wherein the glass is selected from the group consisting of N-BAF4, N-BaF10, N-SSK8, N-SSK5, N-KF9, LLF1, TiF1, and glass having an equivalent optical position. Optical components. セラミックの相対部分分散が0.56〜0.58の範囲、アッベ数が30〜40の範囲にあり、そして各ガラスの相対部分分散が0.555〜0.575、アッベ数が45下である請求項12〜18の何れか1項に記載の光学部品。   The relative partial dispersion of the ceramic is in the range of 0.56 to 0.58, the Abbe number is in the range of 30 to 40, and the relative partial dispersion of each glass is 0.555 to 0.575, and the Abbe number is below 45. The optical component according to any one of claims 12 to 18. レンズが所定の焦点距離を有するコンパクト対物レンズに対して配置されて成る請求項12〜19の何れか1項に記載の光学部品。   The optical component according to any one of claims 12 to 19, wherein the lens is arranged with respect to a compact objective lens having a predetermined focal length. マッピング光学部品の人の側に配置される第1のレンズが純屈折性レンズとして形成されて成る請求項12〜20の何れか1項に記載の光学部品。   21. The optical component according to claim 12, wherein the first lens disposed on the person side of the mapping optical component is formed as a purely refractive lens. 第1のレンズが球面レンズである請求項21に記載の光学部品。   The optical component according to claim 21, wherein the first lens is a spherical lens.
JP2007156063A 2006-06-14 2007-06-13 Optical element and mapping optic Ceased JP2007334357A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006027957A DE102006027957A1 (en) 2006-06-14 2006-06-14 Optical elements and imaging optics

Publications (2)

Publication Number Publication Date
JP2007334357A true JP2007334357A (en) 2007-12-27
JP2007334357A5 JP2007334357A5 (en) 2012-03-01

Family

ID=38515440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156063A Ceased JP2007334357A (en) 2006-06-14 2007-06-13 Optical element and mapping optic

Country Status (5)

Country Link
US (1) US7751123B2 (en)
EP (1) EP1867618A1 (en)
JP (1) JP2007334357A (en)
CN (1) CN101093257B (en)
DE (1) DE102006027957A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004861A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Lanthanum oxide-based sintered object, sputtering target comprising the sintered object, process for producing lanthanum oxide-based sintered object, and process for sputtering target production using the process
WO2010004862A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
JP2010285299A (en) * 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd Oxide and magnetooptical device
JP2011121837A (en) * 2009-12-14 2011-06-23 Oxide Corp Translucent terbium oxide sintered compact for magneto-optical element
JP2013510063A (en) * 2009-11-03 2013-03-21 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Method for producing single crystal cubic sesquioxide and use thereof
EP2716616A1 (en) 2012-10-03 2014-04-09 Shin-Etsu Chemical Co., Ltd. Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2898890B1 (en) * 2006-03-23 2008-05-09 Saint Gobain Ct Recherches YTTRIUM OXIDE PRODUCT FRITTE AND DOPE.
DE102006027958A1 (en) * 2006-06-14 2007-12-20 Schott Ag Optoceramics, optical elements produced therefrom and imaging optics
JP5762715B2 (en) * 2010-10-06 2015-08-12 信越化学工業株式会社 Magneto-optic material, Faraday rotator, and optical isolator
TWI481562B (en) * 2010-10-13 2015-04-21 Shinetsu Chemical Co Oxide and magnetic optics
WO2012124753A1 (en) * 2011-03-16 2012-09-20 信越化学工業株式会社 Magneto-optical ceramic material and method for selecting same
US20140098411A1 (en) * 2011-09-28 2014-04-10 Woohong Kim RARE EARTH DOPED Lu2O3 POLYCRYSTALLINE CERAMIC LASER GAIN MEDIUM
CN102815945B (en) * 2012-09-13 2014-09-10 中国科学院上海硅酸盐研究所 Lanthanum gadolinium zirconate transparent ceramic material and preparation method thereof
JP6052800B2 (en) * 2013-07-12 2016-12-27 信越化学工業株式会社 Optical isolator
CN108585853B (en) * 2017-12-11 2021-12-24 上海大学 Europium-doped scandium oxide scintillator and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158409A (en) * 1974-11-20 1976-05-21 Toray Industries
JPS5417911A (en) * 1977-07-11 1979-02-09 Gte Laboratories Inc Transparent yttria ceramic and method of making same
JPH06211573A (en) * 1993-01-18 1994-08-02 Kurosaki Refract Co Ltd Production of transparent y2o3 sintered compact
JP2002326862A (en) * 2001-05-02 2002-11-12 Kohan Kogyo Kk Light transmitting ceramic and method for producing the same
JP2004075512A (en) * 2001-11-20 2004-03-11 Murata Mfg Co Ltd Translucent ceramic, optical component and optical device using the same
JP2004091271A (en) * 2002-08-30 2004-03-25 Rikogaku Shinkokai Transparent or translucent ceramics and production method therefor
WO2006003726A1 (en) * 2004-07-02 2006-01-12 Konoshima Chemical Co., Ltd. Light transmitting lutetium oxide sintering product and process for producing the same
JP2006084887A (en) * 2004-09-17 2006-03-30 Casio Comput Co Ltd Lens device
JP2006113287A (en) * 2004-10-14 2006-04-27 Olympus Corp Objective for microscope

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432314A (en) * 1966-08-02 1969-03-11 Us Air Force Transparent zirconia composition and process for making same
SE310860B (en) * 1966-09-28 1969-05-12 Gen Electric
US3545987A (en) * 1966-09-28 1970-12-08 Gen Electric Transparent yttria-based ceramics and method for producing same
US3640887A (en) * 1970-04-06 1972-02-08 Gen Electric Transparent zirconia- hafnia- and thoria-rare earth ceramics
US4098612A (en) * 1977-07-11 1978-07-04 Gte Laboratories Incorporated Transparent yttria ceramics and method for producing same
US4747973A (en) * 1982-06-18 1988-05-31 General Electric Company Rare-earth-doped yttria-gadolina ceramic scintillators
US4571312A (en) * 1982-06-18 1986-02-18 General Electric Company Preparation of yttria-gadolinia ceramic scintillators by sintering and gas hot isostatic pressing
US4755492A (en) * 1986-10-06 1988-07-05 General Electric Company Yttrium oxide ceramic body
US4761390A (en) * 1987-02-02 1988-08-02 Raytheon Company Optically transparent yttrium oxide
JP3401553B2 (en) 1999-01-14 2003-04-28 独立行政法人物質・材料研究機構 Manufacturing method of transparent yttrium aluminum garnet sintered body by dry mixing method
KR100493564B1 (en) * 2000-12-20 2005-06-10 가부시키가이샤 무라타 세이사쿠쇼 Transparent ceramic and method for production thereof, and optical element
US6989930B2 (en) * 2001-10-10 2006-01-24 Sony Corporation Optical lens, condenser lens, optical pickup, and optical recording/reproducing apparatus
JP3883106B2 (en) * 2001-10-18 2007-02-21 神島化学工業株式会社 Translucent scandium oxide sintered body and method for producing the same
US7141522B2 (en) * 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
US7141523B2 (en) 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, REO, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
US7466489B2 (en) * 2003-12-15 2008-12-16 Susanne Beder Projection objective having a high aperture and a planar end surface
US7148480B2 (en) * 2004-07-14 2006-12-12 The Regents Of The University Of California Polycrystalline optical window materials from nanoceramics
JP4591757B2 (en) * 2004-09-17 2010-12-01 カシオ計算機株式会社 Lens device
JP2006091482A (en) * 2004-09-24 2006-04-06 Casio Comput Co Ltd Ceramics lens for optical device
JP2006091430A (en) * 2004-09-24 2006-04-06 Casio Comput Co Ltd Lens unit
CN100447106C (en) * 2005-01-17 2008-12-31 上海大学 Method for preparing transparent polycrystal ceramics and laser ceramics in Y2O3 base with La3+ being mixed into
CN100336777C (en) * 2005-06-28 2007-09-12 中国科学院上海硅酸盐研究所 Method for preparing lutecia based transparent ceramics
DE102006027958A1 (en) * 2006-06-14 2007-12-20 Schott Ag Optoceramics, optical elements produced therefrom and imaging optics

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158409A (en) * 1974-11-20 1976-05-21 Toray Industries
JPS5417911A (en) * 1977-07-11 1979-02-09 Gte Laboratories Inc Transparent yttria ceramic and method of making same
JPH06211573A (en) * 1993-01-18 1994-08-02 Kurosaki Refract Co Ltd Production of transparent y2o3 sintered compact
JP2002326862A (en) * 2001-05-02 2002-11-12 Kohan Kogyo Kk Light transmitting ceramic and method for producing the same
JP2004075512A (en) * 2001-11-20 2004-03-11 Murata Mfg Co Ltd Translucent ceramic, optical component and optical device using the same
JP2004091271A (en) * 2002-08-30 2004-03-25 Rikogaku Shinkokai Transparent or translucent ceramics and production method therefor
WO2006003726A1 (en) * 2004-07-02 2006-01-12 Konoshima Chemical Co., Ltd. Light transmitting lutetium oxide sintering product and process for producing the same
JP2006084887A (en) * 2004-09-17 2006-03-30 Casio Comput Co Ltd Lens device
JP2006113287A (en) * 2004-10-14 2006-04-27 Olympus Corp Objective for microscope

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004861A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Lanthanum oxide-based sintered object, sputtering target comprising the sintered object, process for producing lanthanum oxide-based sintered object, and process for sputtering target production using the process
WO2010004862A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
JP2010285299A (en) * 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd Oxide and magnetooptical device
KR20120036342A (en) * 2009-06-09 2012-04-17 신에쓰 가가꾸 고교 가부시끼가이샤 Oxide and magneto-optical device
US8753538B2 (en) 2009-06-09 2014-06-17 Shin-Etsu Chemical Co., Ltd. Oxide and magneto-optical device
KR101687431B1 (en) * 2009-06-09 2016-12-19 신에쓰 가가꾸 고교 가부시끼가이샤 Oxide and magneto-optical device
JP2013510063A (en) * 2009-11-03 2013-03-21 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Method for producing single crystal cubic sesquioxide and use thereof
JP2011121837A (en) * 2009-12-14 2011-06-23 Oxide Corp Translucent terbium oxide sintered compact for magneto-optical element
EP2716616A1 (en) 2012-10-03 2014-04-09 Shin-Etsu Chemical Co., Ltd. Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method
KR20140043874A (en) 2012-10-03 2014-04-11 신에쓰 가가꾸 고교 가부시끼가이샤 Method of manufacturing transparent sesquioxide sintered body, and transparent sesquioxide sintered body manufactured by the method
US9090513B2 (en) 2012-10-03 2015-07-28 Shin-Etsu Chemical Co., Ltd. Method of manufacturing transparent sesquioxide sintered body, and transparent sesquioxide sintered body manufactured by the method
KR102117992B1 (en) 2012-10-03 2020-06-02 신에쓰 가가꾸 고교 가부시끼가이샤 Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method

Also Published As

Publication number Publication date
DE102006027957A1 (en) 2007-12-20
EP1867618A1 (en) 2007-12-19
US20080094734A1 (en) 2008-04-24
US7751123B2 (en) 2010-07-06
CN101093257A (en) 2007-12-26
CN101093257B (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP2007334357A (en) Optical element and mapping optic
US7700510B2 (en) Opto-ceramics made from In2O3 or oxides Y, Lu, Sc, Yb, In, Gd, and La, optical elements made therefrom, and mapping optics including the optical elements
JP5427368B2 (en) Optoceramics, optical elements produced from them, applications thereof and imaging optical elements
JP5563766B2 (en) Transparent spinel ceramics, method for producing the same, and optical material using the transparent spinel ceramics
JP5325518B2 (en) Transparent ceramic, manufacturing method thereof, and optical element using the transparent ceramic
JP5390454B2 (en) Passive optical ceramics having a cubic structure, method for producing the same, and use thereof
US7324285B2 (en) Optical elements and imaging optics comprising them
JP6179731B2 (en) Optical element using spinel optoceramics and manufacturing method
JP2008213466A (en) Manufacturing method for optical element, and optical element
US20110143912A1 (en) Colored spinel optoceramics
CN101291890B (en) Light transparent ceramic, process for producing the same, optical component and optical device
JP4831073B2 (en) Translucent ceramic, optical component and optical device
JP2014062007A (en) Translucent ceramic, method of producing the same, optical element and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20120113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120926