JP2012174808A - Substrate for mounting light emitting element, and light emitting device - Google Patents

Substrate for mounting light emitting element, and light emitting device Download PDF

Info

Publication number
JP2012174808A
JP2012174808A JP2011033856A JP2011033856A JP2012174808A JP 2012174808 A JP2012174808 A JP 2012174808A JP 2011033856 A JP2011033856 A JP 2011033856A JP 2011033856 A JP2011033856 A JP 2011033856A JP 2012174808 A JP2012174808 A JP 2012174808A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
emitting device
mounting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033856A
Other languages
Japanese (ja)
Other versions
JP5673190B2 (en
Inventor
Yoshihiro Kimura
圭宏 木村
Toshiyuki Yagi
敏之 八木
Masato Fujitomo
正人 藤友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2011033856A priority Critical patent/JP5673190B2/en
Publication of JP2012174808A publication Critical patent/JP2012174808A/en
Application granted granted Critical
Publication of JP5673190B2 publication Critical patent/JP5673190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for mounting a light emitting element of a light emitting device having a metal plate in order to improve the heat dissipation and having a COB structure capable of maintaining the high reflectance for a long period of time.SOLUTION: The substrate 10 for mounting a light emitting element 5 of a light emitting device 50 comprises: a metal plate 1; an insulating layer 21 consisting of liquid crystal polymer; a conductive layer 3 consisting of a metal film; and an insulating-reflective layer 22 consisting of liquid crystal polymer. The conductive layer 3 forms a pair of lead electrodes 31, 32 of the light emitting device 50 separated from each other on the insulating layer 21, and the reflective layer 22 is formed other than at least of an area for placing the light emitting element 5 and exposes lead parts 31c, 32c of lead electrodes 31, 32 to a surface.

Description

本発明は、半導体発光素子が搭載されたCOB構造の発光装置、特に基板が金属製である発光装置および発光素子搭載用基板に関する。   The present invention relates to a light-emitting device having a COB structure on which a semiconductor light-emitting element is mounted, and more particularly to a light-emitting device and a light-emitting element mounting substrate whose substrate is made of metal.

発光ダイオード(LED)やレーザーダイオード(LD)等の半導体発光素子は、小型で電力効率がよく鮮やかな色に発光し、また半導体素子であるため球切れ等の心配がなく、さらに初期駆動特性が優れ、振動やオン・オフ点灯の繰返しに強いという特徴を有する。このような優れた特性を有するため、半導体発光素子を光源として搭載した発光装置は、照明器具や液晶ディスプレイ(LCD)のバックライトの一般的民生用光源として、その用途に対応した構造のものが利用されている。例えば、表面にリード電極のパターンが金属膜で形成された平板形状の基板に、半導体素子を搭載してリード電極に電気的に接続し、樹脂で封止したCOB(Chip on Board)構造がある。   Semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) are small, power efficient and emit light in vivid colors, and because they are semiconductor elements, there is no fear of running out of spheres, and initial drive characteristics are further improved. It has the characteristics that it is excellent and strong against vibration and repeated on / off lighting. Because of such excellent characteristics, a light emitting device equipped with a semiconductor light emitting element as a light source has a structure corresponding to its use as a general consumer light source for backlights of luminaires and liquid crystal displays (LCD). It's being used. For example, there is a COB (Chip on Board) structure in which a semiconductor element is mounted on a flat substrate having a lead electrode pattern formed of a metal film on the surface, electrically connected to the lead electrode, and sealed with resin. .

COB構造の発光装置は、基板の所定の実装領域に、半導体発光素子(以下、発光素子)を搭載して発光素子の電極を基板上のリード電極(インナーリード)にワイヤボンディング等で電気的に接続し、あるいは発光素子をフリップチップ実装でリード電極に接続し、発光素子やボンディングワイヤを被覆するように実装領域を透光性樹脂等の封止部材で封止して製造される。COB構造の発光装置は、複数の発光素子をマトリクス状に配列して面状の光を照射する面状発光装置として好適である。   A light emitting device having a COB structure has a semiconductor light emitting element (hereinafter referred to as a light emitting element) mounted in a predetermined mounting region of a substrate, and the electrodes of the light emitting element are electrically connected to lead electrodes (inner leads) on the substrate by wire bonding or the like. The light emitting element is connected to the lead electrode by flip chip mounting, and the mounting area is sealed with a sealing member such as a translucent resin so as to cover the light emitting element and the bonding wire. A light emitting device having a COB structure is suitable as a planar light emitting device that irradiates planar light by arranging a plurality of light emitting elements in a matrix.

このような発光装置の基板は、一般的な半導体素子のCOBパッケージ用の基板と同様に、ある程度の強度を有するセラミックスや樹脂のような絶縁性材料で形成されたものと、熱伝導性に優れた銅やアルミニウム等の金属板で形成されたものとがあり、発光装置の機能等に応じて選択される。特に近年は、LEDの高輝度・高出力化に伴い発熱が大きくなり、LEDの温度が約100℃に上昇し得ることから、高温によるLEDの破壊を防止するために、放熱手段として金属板を適用した発光装置が開発されている。   The substrate of such a light-emitting device is excellent in thermal conductivity, and is formed of an insulating material such as ceramics or resin having a certain degree of strength, like a substrate for a general semiconductor element COB package. Some of them are made of a metal plate such as copper or aluminum, and are selected according to the function of the light emitting device. Particularly in recent years, heat generation increases with the increase in brightness and output of LEDs, and the temperature of the LEDs can rise to about 100 ° C. Therefore, in order to prevent destruction of the LEDs due to high temperatures, a metal plate is used as a heat dissipation means. Applied light-emitting devices have been developed.

基板表面には金属膜や導電ペースト等でリード電極等の配線が形成されるが、基板が金属板である場合は、金属膜のような導電層は基板で短絡しないように絶縁層(サブマウント基板)を介して形成する必要がある。具体的には、金属板(金属基板)に、表面に銅箔で配線パターンを形成した絶縁性のフレキシブルシート(プリント基板)を貼り付けて、銅箔表面に発光素子を実装した発光装置がある(例えば特許文献1参照)。このようなフレキシブルなプリント基板は、一般的な半導体素子の実装用基板として、実装時のはんだ付け等に対応可能な耐熱性を有し、銅等の金属材料に比較的熱膨張率の近いポリイミドで形成したフィルムの表面に、銅箔を積層したものが広く知られている。さらに、放熱性を向上させるために、発光素子の載置領域に孔を空けたプリント基板を金属板に貼り付けて、発光素子を金属板に直接にフェースアップ実装して、プリント基板表面の配線にワイヤボンディングで接続した発光装置がある(例えば特許文献2参照)。さらに、金属板をリード電極の一方として、この金属板上に、発光素子の載置領域の周囲に前記リード電極の他方の配線パターンのみを絶縁材を介して形成して、発光素子を金属板に直接にフェースアップ実装して、当該金属板と絶縁材上の配線とにワイヤボンディングで接続した発光装置がある(例えば特許文献3参照)。   Wirings such as lead electrodes are formed on the surface of the substrate with a metal film or conductive paste. If the substrate is a metal plate, an insulating layer (submount) is used so that the conductive layer such as the metal film is not short-circuited with the substrate. Substrate). Specifically, there is a light emitting device in which an insulating flexible sheet (printed circuit board) having a wiring pattern formed on a copper foil is attached to a metal plate (metal board) and a light emitting element is mounted on the copper foil surface. (For example, refer to Patent Document 1). Such a flexible printed circuit board is a general semiconductor device mounting board that has heat resistance that can be used for soldering during mounting, and is a polyimide that has a relatively close thermal expansion coefficient to a metal material such as copper. What laminated | stacked copper foil on the surface of the film formed in (1) is known widely. Furthermore, in order to improve heat dissipation, a printed circuit board with a hole in the mounting area of the light emitting element is attached to a metal plate, and the light emitting element is directly face-up mounted on the metal plate, and wiring on the surface of the printed circuit board is performed. There is a light emitting device connected by wire bonding (see, for example, Patent Document 2). Furthermore, the metal plate is used as one of the lead electrodes, and only the other wiring pattern of the lead electrode is formed on the metal plate around the mounting region of the light emitting element via an insulating material. There is a light-emitting device that is directly face-up mounted on and connected to the metal plate and a wiring on an insulating material by wire bonding (see, for example, Patent Document 3).

前記プリント基板におけるポリイミドフィルムと銅箔との貼合わせ、さらに金属板への貼付けには、金属への密着性に優れていることからエポキシ系熱硬化型接着剤が一般的に適用される。しかし、エポキシ樹脂は熱膨張率が銅等の金属材料と比較して極めて高く、その差により、発光装置に使用されると、ON/OFFの繰返しに伴う温度変化で熱応力が生じ、ポリイミドフィルムが金属板や配線から剥離したり、割れを生じる等の不具合が生じる虞がある。さらに、エポキシ樹脂およびポリイミドは室温近傍における熱伝導率は0.2W/m・℃程度であり、銅の約2000分の1と低い。そのため、ポリイミドフィルムが発光装置に使用された場合、金属板上に接着剤層、絶縁層(ポリイミドフィルム)、さらに接着剤層を介した配線に搭載された発光素子から発生した熱(ジュール熱)は金属板へ伝導され難く十分に放熱されずに発光素子の温度が上昇することになる。   An epoxy thermosetting adhesive is generally applied to the bonding of the polyimide film and the copper foil on the printed board and further to the metal plate because of its excellent adhesion to metal. However, the thermal expansion coefficient of epoxy resin is extremely higher than that of metal materials such as copper, and due to the difference, when used in a light emitting device, thermal stress is generated due to temperature change with repeated ON / OFF, and polyimide film May cause problems such as peeling from the metal plate or wiring or causing cracks. Furthermore, epoxy resin and polyimide have a thermal conductivity in the vicinity of room temperature of about 0.2 W / m · ° C., which is as low as about 2000 times that of copper. Therefore, when a polyimide film is used in a light-emitting device, heat generated from a light-emitting element mounted on a metal plate with an adhesive layer, an insulating layer (polyimide film), and a wiring via the adhesive layer (Joule heat) Is not easily conducted to the metal plate, and the temperature of the light emitting element rises without being sufficiently radiated.

一方、特許文献2,3のような発光素子を金属板に直接に載置する発光装置は、フェースアップ実装対応の発光素子か上下面にパッド電極を一方ずつ備えた発光素子に限られる。また、プリント基板に形成した孔の端面で発光素子からの光が遮られて、光の取出し効率が低下する。さらに、金属板表面が発光素子の光の反射面となるので、金属板として銅板を適用して、これに最も可視光反射率の高い銀をめっきにて被覆して反射率を高くしている(特許文献3)が、発光装置の軽量化やコスト低減等のために金属板にアルミニウム板を適用しようとすると、アルミニウム板はめっき浴に溶解するので、銀めっき膜を被覆するためには前処理が必要となり、あるいは鏡面仕上げにて反射率を高くする等、製造工程が複雑化する。   On the other hand, the light emitting device in which the light emitting elements as disclosed in Patent Documents 2 and 3 are directly mounted on a metal plate is limited to a light emitting element compatible with face-up mounting or a light emitting element having one pad electrode on each of upper and lower surfaces. In addition, light from the light emitting element is blocked by the end face of the hole formed in the printed circuit board, and the light extraction efficiency is lowered. Furthermore, since the surface of the metal plate becomes the light reflecting surface of the light emitting element, a copper plate is applied as the metal plate, and silver having the highest visible light reflectance is coated with this to increase the reflectance. (Patent Document 3), when an aluminum plate is applied to a metal plate in order to reduce the weight of the light emitting device or reduce the cost, the aluminum plate dissolves in the plating bath. Processing is required, or the manufacturing process becomes complicated, such as increasing the reflectance by mirror finishing.

そこで、プリント基板の絶縁性のフレキシブルシートとして、熱可塑性樹脂、中でも高い耐熱性を有する液晶ポリマー(LCP)を適用して、これをシート状に成形したものを、接着剤を使用せずに熱圧着にて金属板や金属箔と貼り合わせて製造可能な発光装置用の回路基板がある(例えば特許文献4,5参照)。このような液晶ポリマーをシート状に成形した液晶ポリマーフィルムは、近年、半導体素子の搭載用のフレキシブル基板として開発され、従来のポリイミドフィルムよりも低吸収性、寸法安定性、誘電特性に優れるとされる。さらに液晶ポリマーは、ポリイミドと同様に熱膨張率が銅等の金属材料に近く、一方でポリイミドよりも弾性率が低く、さらにポリイミドと同等以上の熱伝導性を有する。したがって、液晶ポリマーフィルムは、金属板や金属箔との熱圧着が可能でかつ耐熱性に優れ、また金属板に追随して変形し易いので、金属板から剥離する等の不具合が生じ難く、さらに接着剤層がないので、発光素子から発生した熱を金属板へより効率的に伝導させて放熱することができる。   Therefore, a thermoplastic resin, especially a liquid crystal polymer (LCP) having a high heat resistance, is applied as an insulating flexible sheet of a printed circuit board, and this is molded into a sheet shape without using an adhesive. There is a circuit board for a light emitting device that can be manufactured by bonding with a metal plate or a metal foil by pressure bonding (see, for example, Patent Documents 4 and 5). In recent years, liquid crystal polymer films formed from such liquid crystal polymers in the form of sheets have been developed as flexible substrates for mounting semiconductor elements, and are considered to have lower absorption, dimensional stability, and dielectric properties than conventional polyimide films. The Furthermore, the liquid crystal polymer has a coefficient of thermal expansion close to that of a metal material such as copper, like the polyimide, while it has a lower elastic modulus than polyimide and has a thermal conductivity equal to or higher than that of polyimide. Therefore, the liquid crystal polymer film is capable of thermocompression bonding with a metal plate or a metal foil, has excellent heat resistance, and easily deforms following the metal plate. Since there is no adhesive layer, the heat generated from the light emitting element can be more efficiently conducted to the metal plate and radiated.

特開2009−260396号公報JP 2009-260396 A 特開2006−295085号公報JP 2006-295085 A 特許第4349032号公報Japanese Patent No. 4349032 特開2009−231584号公報JP 2009-231584 A 特許第4163228号公報Japanese Patent No. 4163228

特許文献4,5においては、液晶ポリマーフィルムをさらに反射率の高いものを適用して、反射率の高い回路基板としている。しかしながら、比較的熱伝導率が高い材料を適用しても、反射率の高い膜を形成するためにはある程度厚膜化する必要があるため、膜としては熱伝導性が低下する。一方、液晶ポリマーフィルム上の配線等の金属膜については、一般的な発光素子用の回路基板と同様に銀をめっきにて被覆している。しかし、銀は硫黄やハロゲンと反応し易く、発光素子を封止する透光性樹脂等に含まれるこれらの成分によりめっき膜表面が黒褐色に変色して、初期反射率から劣化し易い。そこで、銀による高反射率を維持するために、発光装置に使用する封止部材に硫黄およびハロゲンを含有しない樹脂材料が開発されているが、これらの樹脂もある程度のガス透過性を有しているため、大気中の硫化物に対する遮蔽性が不完全である。   In Patent Documents 4 and 5, a liquid crystal polymer film having a higher reflectance is applied to obtain a circuit board having a higher reflectance. However, even when a material having a relatively high thermal conductivity is applied, it is necessary to increase the film thickness to some extent in order to form a film having a high reflectance, so that the thermal conductivity of the film is lowered. On the other hand, about metal films, such as wiring on a liquid crystal polymer film, silver is coat | covered with plating similarly to the circuit board for general light emitting elements. However, silver easily reacts with sulfur and halogen, and the surface of the plating film is easily changed to black brown by these components contained in the translucent resin that seals the light emitting element, so that the initial reflectance easily deteriorates. Therefore, in order to maintain a high reflectance by silver, resin materials that do not contain sulfur and halogen have been developed for sealing members used in light emitting devices, but these resins also have a certain degree of gas permeability. Therefore, shielding against sulfides in the atmosphere is incomplete.

あるいは、配線を絶縁材料で被覆して、当該絶縁材料で反射面を形成することもでき、具体的には、高反射率の面を形成するシリコーン系等の白色のソルダーレジストを塗布することが知られている。しかしながら、ソルダーレジストはエポキシ樹脂と同様に金属板等との熱膨張率の差が大きいために、発光装置に使用されると割れを生じる虞があり、また、高出力の発光素子を搭載した場合は、長期の動作において発光素子から発生した熱により劣化して反射率が低下するため、このような発光装置に使用するには耐久性が不十分である。   Alternatively, the wiring can be covered with an insulating material, and the reflective surface can be formed with the insulating material. Specifically, a white solder resist such as a silicone that forms a highly reflective surface can be applied. Are known. However, since the solder resist has a large difference in thermal expansion coefficient with a metal plate, etc. like an epoxy resin, there is a risk of cracking when used in a light emitting device, and when a high output light emitting element is mounted. Is deteriorated by heat generated from the light-emitting element in a long-term operation, and the reflectance is lowered. Therefore, the durability is insufficient for use in such a light-emitting device.

本発明は前記問題点に鑑みてなされたものであり、金属板を基板として放熱性に優れ、光の取出し効率に優れかつそれを長期間維持できる発光装置の発光素子搭載用基板および発光装置を提供することを目的とする。   The present invention has been made in view of the above problems, and a light-emitting element mounting substrate and a light-emitting device of a light-emitting device that are excellent in heat dissipation, excellent in light extraction efficiency and can be maintained for a long time using a metal plate as a substrate. The purpose is to provide.

本発明者は、絶縁層として金属板から剥離し難い液晶ポリマーフィルムを適用し、その熱伝導性を活かしつつ光の取出し効率を向上させるために、別の液晶ポリマーフィルムを反射層として配線上に設けることに想到した。   The present inventor applied a liquid crystal polymer film that is difficult to peel from the metal plate as an insulating layer, and in order to improve the light extraction efficiency while taking advantage of its thermal conductivity, another liquid crystal polymer film as a reflective layer on the wiring I came up with it.

すなわち本発明に係る発光素子搭載用基板は、1以上の発光素子をそれぞれの所定の載置領域上に載置して実装する発光装置に使用される配線付きの基板である。前記発光素子搭載用基板は、金属板と、液晶ポリマーからなる絶縁層と、金属膜からなる導電層と、液晶ポリマーからなる絶縁性の反射層と、をこの順に積層して備え、前記導電層は前記絶縁層上で互いに離間した前記発光装置の一対のリード電極を形成し、前記反射層は少なくとも前記載置領域を空けて形成されて前記導電層の一部を表面に露出させていることを特徴とする。前記絶縁層および前記反射層は、面方向における線膨張係数が1〜30ppm/℃であることが好ましい。   That is, the substrate for mounting a light emitting element according to the present invention is a substrate with wiring used for a light emitting device in which one or more light emitting elements are mounted on each predetermined mounting region. The light emitting element mounting substrate includes a metal plate, an insulating layer made of a liquid crystal polymer, a conductive layer made of a metal film, and an insulating reflective layer made of a liquid crystal polymer in this order, and the conductive layer Forming a pair of lead electrodes of the light-emitting device spaced apart from each other on the insulating layer, and the reflective layer is formed with at least the above-described region to be exposed to expose a part of the conductive layer on the surface. It is characterized by. The insulating layer and the reflective layer preferably have a linear expansion coefficient in the plane direction of 1 to 30 ppm / ° C.

このように、発光素子搭載用基板は、金属板を支持体として、導電層を液晶ポリマーのみで絶縁することにより、発光装置としたときに発光素子から発生する熱が効率よく放熱されて、発光素子の温度の上昇を抑制することができる。また、液晶ポリマーを金属板に近い熱膨張率とすることで、発光素子から発生する熱による温度変化で導電層が剥離する等の不具合が生じることを防止することができる。さらに、反射層を発光素子の載置領域を空けて導電層上に備えることで、導電層および発光素子と金属板との間に形成されているのは絶縁層のみなので反射層を厚膜化しても放熱性が低下せず、また発光素子の近傍に反射層の有無の境界による当該反射層の端面が形成されるものの、この端面で光が好適に反射するので光の取出し効率の低下は抑制される。さらに、導電層の多くが液晶ポリマーからなる反射層で被覆されるため、発光装置としたときに反射率の経時劣化が少ない。   As described above, the substrate for mounting a light-emitting element has a metal plate as a support and the conductive layer is insulated only by a liquid crystal polymer, so that heat generated from the light-emitting element is efficiently dissipated when the light-emitting device is formed. An increase in the temperature of the element can be suppressed. In addition, by setting the liquid crystal polymer to have a thermal expansion coefficient close to that of a metal plate, it is possible to prevent problems such as peeling of the conductive layer due to a temperature change caused by heat generated from the light emitting element. Furthermore, by providing the reflective layer on the conductive layer with a mounting region for the light emitting element, only the insulating layer is formed between the conductive layer and the light emitting element and the metal plate, so that the reflective layer is thickened. However, the heat dissipation performance does not decrease, and the end face of the reflection layer is formed near the light emitting element by the boundary of the presence or absence of the reflection layer, but the light is suitably reflected by this end face, so the light extraction efficiency is reduced. It is suppressed. Furthermore, since many of the conductive layers are covered with a reflective layer made of a liquid crystal polymer, the reflectance is less deteriorated with time when a light emitting device is obtained.

また、本発明に係る発光素子搭載用基板は、前記絶縁層および前記反射層が、それぞれシート状に成形された液晶ポリマーを熱圧着して形成されていることが好ましく、特に反射層は絶縁層が熱変形しない温度および圧力で熱圧着することを特徴とする。さらに反射層においては、シート状に成形された液晶ポリマーが反射層の形状に合わせて加工されていることが好ましい。   In the light-emitting element mounting substrate according to the present invention, the insulating layer and the reflective layer are preferably formed by thermocompression bonding of a liquid crystal polymer formed into a sheet shape, and the reflective layer is particularly an insulating layer. It is characterized in that thermocompression bonding is performed at a temperature and pressure at which no heat deformation occurs. Furthermore, in the reflective layer, it is preferable that the liquid crystal polymer formed into a sheet is processed according to the shape of the reflective layer.

このように、液晶ポリマーがシート状に成形されてから熱圧着されることで、金属板等に好適に密着されて、発光素子搭載用基板は製造が容易となる。また、反射層を形成する際の熱圧着を絶縁層が熱変形可能な温度および圧力よりも低い温度や圧力で行うことで、先に形成された絶縁層が反射層の形成時に変形することがない。さらに反射層とする液晶ポリマーが当該反射層の形状に合わせて加工されていることで、積層後に発光素子の載置領域等の部分を除去する必要がないため、反射層の加工部分の形状が損なわれることがない。   As described above, the liquid crystal polymer is formed into a sheet shape and then thermocompression bonded, so that the liquid crystal polymer is suitably adhered to a metal plate or the like, and the light emitting element mounting substrate can be easily manufactured. In addition, by performing thermocompression bonding when forming the reflective layer at a temperature or pressure lower than the temperature and pressure at which the insulating layer can be thermally deformed, the previously formed insulating layer may be deformed when the reflective layer is formed. Absent. Furthermore, since the liquid crystal polymer used as the reflective layer is processed according to the shape of the reflective layer, there is no need to remove a portion such as a mounting region of the light emitting element after lamination, so that the shape of the processed portion of the reflective layer is It will not be damaged.

また、本発明に係る発光素子搭載用基板は、前記導電層が、前記反射層から露出した表面に光反射率の高い金属からなるめっき膜を備えることが好ましい。   In the light emitting element mounting substrate according to the present invention, it is preferable that the conductive layer includes a plating film made of a metal having high light reflectance on a surface exposed from the reflective layer.

このように、発光素子搭載用基板は、露出した表面に反射率の高い金属でめっき膜を形成することで、発光装置としたときに反射率がいっそう高いものとなる。   As described above, the light emitting element mounting substrate has a higher reflectance when the light emitting device is formed by forming a plating film with a metal having a high reflectance on the exposed surface.

また、本発明に係る発光装置は、前記本発明に係る発光素子搭載用基板と、前記発光素子搭載用基板の一対のリード電極に電気的に接続された1以上の発光素子と、前記発光素子を封止する当該発光素子が発光した光を透過させる封止部材とを備え、前記発光素子が前記発光素子搭載用基板の前記載置領域上で前記導電層の露出した表面に接触して載置されていることを特徴とする。さらに本発明に係る発光装置は、前記発光素子搭載用基板の所定の実装領域に複数の発光素子を配列されて載置されていてもよい。   The light emitting device according to the present invention includes a light emitting element mounting substrate according to the present invention, one or more light emitting elements electrically connected to a pair of lead electrodes of the light emitting element mounting substrate, and the light emitting element. A sealing member that transmits the light emitted by the light emitting element, and the light emitting element is placed in contact with the exposed surface of the conductive layer on the mounting region of the light emitting element mounting substrate. It is characterized by being placed. Furthermore, in the light emitting device according to the present invention, a plurality of light emitting elements may be arranged and placed in a predetermined mounting region of the light emitting element mounting substrate.

このように、発光装置は、本発明に係る発光素子搭載用基板を適用することで、耐久性に優れ、高い反射率を長期間維持できるものとなる。   Thus, the light-emitting device is excellent in durability and can maintain a high reflectance for a long time by applying the light-emitting element mounting substrate according to the present invention.

本発明に係る発光素子搭載用基板によれば、COB構造の発光装置として、特に複数の発光素子を搭載する高出力型の発光装置のための放熱性のよい発光素子搭載用基板となり、このような発光素子搭載用基板を用いて製造された発光装置は、自身の発熱による温度上昇で発光素子が劣化することなく長寿命となり、また光の取出し効率に優れたものとなる。   The light emitting element mounting substrate according to the present invention is a light emitting element mounting substrate with good heat dissipation, particularly for a high power type light emitting device in which a plurality of light emitting elements are mounted as a COB structure light emitting device. A light-emitting device manufactured using such a light-emitting element mounting substrate has a long life without deterioration of the light-emitting element due to a temperature rise due to its own heat generation, and has excellent light extraction efficiency.

本発明の第1実施形態に係る発光素子搭載用基板および発光装置の外観図である。1 is an external view of a light emitting element mounting substrate and a light emitting device according to a first embodiment of the present invention. 本発明の第1実施形態に係る発光素子搭載用基板および発光装置の部分断面図であり、図1のA−A線矢視断面図である。It is a fragmentary sectional view of the light emitting element mounting substrate and light emitting device concerning a 1st embodiment of the present invention, and is an AA line arrow sectional view of Drawing 1. 本発明の第1実施形態に係る発光素子搭載用基板の製造方法の一例を説明する断面図である。It is sectional drawing explaining an example of the manufacturing method of the light emitting element mounting substrate which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る発光素子搭載用基板および発光装置の部分断面図である。It is a fragmentary sectional view of the light emitting element mounting substrate and light emitting device concerning a 2nd embodiment of the present invention.

本発明に係る発光素子搭載用基板および発光装置について、図面を参照して説明する。なお、本明細書における平面(上面)は、発光装置の光の照射面であり、別途記載ない限り、表面とは上面側の面を指す。以下、本発明の第1実施形態に係る発光装置およびその発光素子搭載用基板について、図1ないし図3を参照して説明する。なお、図2は、図1の部分断面図であるが、要部を詳細に表すために、図1とは寸法は一致しない。   A light-emitting element mounting substrate and a light-emitting device according to the present invention will be described with reference to the drawings. Note that a plane (upper surface) in this specification is a light irradiation surface of a light-emitting device, and unless otherwise specified, a surface refers to a surface on the upper surface side. Hereinafter, a light-emitting device and a light-emitting element mounting substrate according to a first embodiment of the present invention will be described with reference to FIGS. 2 is a partial cross-sectional view of FIG. 1, but the dimensions do not match those of FIG. 1 in order to show the main part in detail.

〔第1実施形態〕
本発明の第1実施形態に係る発光装置50は、LED電球やスポットライト等の照明器具に用いられ、公知のCOB構造の発光装置と同様の外観とすることができる。図1に示すように、発光装置50は、概形が板状の発光素子搭載用基板10の所定の発光素子載置領域(1個分を図中に破線枠で示す)上に発光素子5,5,…が実装され、これら複数の発光素子5をまとめて囲うように形成された円環形状の枠体4の内側に透光性樹脂からなる封止部材9が充填されて発光素子5を封止している。さらに、発光装置50は、発光素子5と同様に枠体4の内側の所定の載置領域に保護素子6が実装され、また、発光素子搭載用基板10の上面の枠体4の外側に、外部から駆動電圧を印加するための一対のパッド電極(アウターリード)として、正極31および負極32の各パッド部31b,32bを備える。発光装置50は、パッド部31b,32bにて駆動電圧を印加されることにより発光素子5,5,…が発光して、これらの光が一体となって封止部材9を透過して枠体4の内側を照射領域として上方に光を照射する。したがって、本実施形態に係る発光装置50は、照射領域の形状が円形である。なお、図1に示す発光素子搭載用基板10については、図の奥(上)側半分だけ発光素子5等を実装した発光装置50として示す。同様に、図2に示す発光素子搭載用基板10については、発光素子5の2個分の載置領域を含むが、発光素子5は1個だけ実装して示す。
[First Embodiment]
The light emitting device 50 according to the first embodiment of the present invention is used in a lighting fixture such as an LED bulb or a spotlight, and can have the same appearance as a light emitting device having a known COB structure. As shown in FIG. 1, the light emitting device 50 has a light emitting element 5 on a predetermined light emitting element mounting region (one portion is indicated by a broken line frame in the drawing) of a light emitting element mounting substrate 10 having a plate-like shape. , 5,... Are mounted, and a sealing member 9 made of a translucent resin is filled inside the annular frame 4 formed so as to collectively surround the plurality of light emitting elements 5. Is sealed. Further, in the light emitting device 50, similarly to the light emitting element 5, the protective element 6 is mounted on a predetermined placement region inside the frame body 4, and outside the frame body 4 on the upper surface of the light emitting element mounting substrate 10, As a pair of pad electrodes (outer leads) for applying a driving voltage from the outside, each of the pad portions 31b and 32b of the positive electrode 31 and the negative electrode 32 is provided. The light-emitting device 50 emits light from the light-emitting elements 5, 5,... When a drive voltage is applied at the pad portions 31b, 32b, and these lights are integrated and transmitted through the sealing member 9 to form a frame. The light is irradiated upward using the inside of 4 as an irradiation region. Therefore, in the light emitting device 50 according to this embodiment, the shape of the irradiation region is circular. Note that the light-emitting element mounting substrate 10 shown in FIG. 1 is shown as a light-emitting device 50 in which the light-emitting elements 5 and the like are mounted only in the back (upper) side half of the figure. Similarly, the light-emitting element mounting substrate 10 shown in FIG. 2 includes a mounting area for two light-emitting elements 5, but only one light-emitting element 5 is mounted and shown.

(発光素子)
発光素子5は、電圧を印加することで自ら発光する半導体素子であり、窒化物半導体等から構成される発光ダイオード(LED)やレーザーダイオード(LD)等の公知の半導体発光素子を適用できる。例えば、発光素子5は、サファイアのような透光性の基板に、n型窒化物半導体層、活性層(発光層)、p型窒化物半導体層の、窒化物半導体の各層を順次、エピタキシャル成長させて積層した後、n型窒化物半導体層、p型窒化物半導体層にそれぞれ接続するパッド電極(n電極、p電極)を形成して製造される。本実施形態に係る発光装置50においては、発光素子5は平面視長方形であり、その長手方向に6個を並べて1列とし、短手方向に4列を並べた計24個を、向きを揃えてマトリクス状に配列される。また、発光素子5は高出力(高輝度)であり、発光装置50の照射領域における中心に集中して配列されており、発光素子5が発光した光(以下、適宜、発光素子5の光)は、封止部材9を透過しながら拡散して、照射領域全体から照射される。
(Light emitting element)
The light emitting element 5 is a semiconductor element that emits light by applying a voltage, and a known semiconductor light emitting element such as a light emitting diode (LED) or a laser diode (LD) made of a nitride semiconductor or the like can be applied. For example, the light-emitting element 5 is formed by sequentially epitaxially growing the nitride semiconductor layers of the n-type nitride semiconductor layer, the active layer (light-emitting layer), and the p-type nitride semiconductor layer on a light-transmitting substrate such as sapphire. Then, pad electrodes (n electrode, p electrode) connected to the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, respectively, are formed. In the light emitting device 50 according to the present embodiment, the light emitting elements 5 have a rectangular shape in plan view, and six elements are arranged in one row in the longitudinal direction to form one row, and a total of 24 elements are arranged in the short direction. Arranged in a matrix. The light-emitting elements 5 have high output (high luminance) and are arranged in a concentrated manner in the center of the irradiation region of the light-emitting device 50, and light emitted from the light-emitting elements 5 (hereinafter, light from the light-emitting elements 5 as appropriate). Is diffused while passing through the sealing member 9 and irradiated from the entire irradiation region.

また、本実施形態に係る発光装置50に搭載された発光素子5は、図2に示すように、一対のパッド電極(p電極とn電極)を下に向けて載置されたフェースダウン実装にて発光素子搭載用基板10に実装される。すなわち、発光素子5は、フリップチップ実装対応であり、当該発光素子5の発光層から発光した光が発光素子基板(サファイア基板)を透過して、上方へ比較的多く光を出射できる構造であることが好ましい。発光素子5は、発光素子搭載用基板10の発光素子載置領域に載置される際に、当該発光素子載置領域に設けられた正極31および負極32の各リード部31c,32c表面に、後記の導電性の接合部材7によりパッド電極を接合されて電気的に接続されている。   Further, as shown in FIG. 2, the light emitting element 5 mounted on the light emitting device 50 according to the present embodiment is mounted face-down with a pair of pad electrodes (p electrode and n electrode) placed downward. And mounted on the light emitting element mounting substrate 10. That is, the light emitting element 5 is compatible with flip chip mounting, and has a structure in which light emitted from the light emitting layer of the light emitting element 5 can pass through the light emitting element substrate (sapphire substrate) and emit a relatively large amount of light upward. It is preferable. When the light emitting element 5 is mounted on the light emitting element mounting region of the light emitting element mounting substrate 10, the surfaces of the lead portions 31 c and 32 c of the positive electrode 31 and the negative electrode 32 provided in the light emitting element mounting region are arranged on the surface. Pad electrodes are joined and electrically connected by a conductive joining member 7 described later.

(保護素子)
保護素子6は、ツェナーダイオード、バリスタ、またはコンデンサ等であり、過電圧印加による発光素子5の破壊を防止するために搭載され、発光素子5と共通の電圧を印加されるように正極31および負極32に電気的に接続される。詳しくは、保護素子6は、発光素子5と同様に、フリップチップ実装にて発光素子搭載用基板10に設けられた正極31および負極32の各リード部31d,32dに接合部材7(図示省略)により接続されている。保護素子6は、発光素子5からの光をできるだけ遮らないように配置されることが好ましい。本実施形態に係る発光装置50においては、保護素子6は照射領域(枠体4の内側)に、発光素子5と距離を空けるように24個の発光素子5が配列された領域の外側に載置される。この場合、保護素子6は高さ(厚さ)が小さい(薄い)形状であることがより好ましい。あるいは、保護素子6は枠体4が形成される位置に配置されてもよく、この場合は、保護素子6の実装後に、後記するように液状やペースト状の材料を硬化させて枠体4を形成して保護素子6を埋設する。このような構造とすることで、保護素子6は照射領域の外側に載置されるため、発光素子5からの光を遮ることがなく、かつ枠体4により封止される。
(Protective element)
The protection element 6 is a Zener diode, a varistor, a capacitor, or the like, and is mounted to prevent destruction of the light emitting element 5 due to overvoltage application, and a positive electrode 31 and a negative electrode 32 are applied so that a voltage common to the light emitting element 5 is applied. Is electrically connected. Specifically, like the light emitting element 5, the protective element 6 is bonded to the lead portions 31 d and 32 d of the positive electrode 31 and the negative electrode 32 provided on the light emitting element mounting substrate 10 by flip chip mounting (not shown). Connected by. The protective element 6 is preferably arranged so as not to block light from the light emitting element 5 as much as possible. In the light emitting device 50 according to the present embodiment, the protection element 6 is mounted on the irradiation area (inside the frame 4) outside the area where the 24 light emitting elements 5 are arranged so as to be separated from the light emitting elements 5. Placed. In this case, it is more preferable that the protective element 6 has a shape with a small (thin) height (thickness). Alternatively, the protective element 6 may be disposed at a position where the frame body 4 is formed. In this case, after mounting the protective element 6, a liquid or paste-like material is cured as will be described later. Then, the protective element 6 is embedded. By adopting such a structure, the protection element 6 is placed outside the irradiation region, so that the light from the light emitting element 5 is not blocked and is sealed by the frame body 4.

接合部材7は、発光素子5とリード部31c,32c、保護素子6とリード部31d,32dを、電気的に接続する。このような接合部材7は、一般的なフリップチップ実装対応の半導体素子の実装に適用される導電性の接合部材(ダイボンディング材)であるはんだ、銀ペースト等の導電ペースト、Au−Sn共晶合金、金バンプ等から、発光素子5および保護素子6のパッド電極形状等の仕様、さらに発光装置50の二次実装仕様に応じて選択できる。したがって、例えば発光装置50の回路基板等への二次実装にてパッド部31b,32b等がはんだ付けされる場合、接合部材7は、はんだ付けにおける温度(Pbフリー:約260℃)よりも高い耐熱性を有するAu−Sn共晶合金や金バンプが好ましい。そして接合部材7は、その材料に対応した公知の方法により発光素子5等のパッド電極とリード部31c,32c等とを接合するが、このとき接合部材7は、Au−Sn共晶合金:280〜315℃(合金組成による)、金バンプ:約200℃(超音波併用による熱圧着)の高温にそれぞれ加熱される。すなわち、発光素子搭載用基板10もかかる高温に加熱され、あるいはかかる高温の接合部材7に接触するため、発光素子搭載用基板10の特に発光素子載置領域においては、これらの一時的な高温に対する耐熱性を要する。また、接合部材7は、特に発光素子5の接続においては、発光素子5から発生した熱が当該接合部材7を介してリード部31c,32cにより多く伝導されるように、より広い面積で発光素子5と接続されることが好ましい。ただし、接合部材7は、発光素子5の載置領域(直下の領域)の多くに形成されると、発光素子5から下方に出射する光を遮ることになるため、光の取出し効率が低下しない程度に広い面積に形成されることが好ましい。このような適度に広い面積に形成し易く、かつ信頼性の高い材料として、接合部材7はAu−Sn共晶合金を適用することが特に好ましい。   The joining member 7 electrically connects the light emitting element 5 and the lead parts 31c and 32c, and the protection element 6 and the lead parts 31d and 32d. Such a bonding member 7 is a conductive bonding member (die bonding material) applied to mounting of a general semiconductor device corresponding to flip chip mounting, such as solder, silver paste or other conductive paste, Au-Sn eutectic crystal. It can be selected from an alloy, a gold bump, or the like according to specifications such as pad electrode shapes of the light emitting element 5 and the protective element 6, and further, secondary mounting specifications of the light emitting device 50. Therefore, for example, when the pad portions 31b and 32b are soldered in the secondary mounting on the circuit board or the like of the light emitting device 50, the joining member 7 is higher than the temperature in soldering (Pb free: about 260 ° C.). An Au—Sn eutectic alloy or gold bump having heat resistance is preferred. And the joining member 7 joins pad electrodes, such as the light emitting element 5, etc., and the lead parts 31c and 32c etc. by the well-known method corresponding to the material, At this time, the joining member 7 is Au-Sn eutectic alloy: 280. ˜315 ° C. (depending on alloy composition), gold bump: heated to about 200 ° C. (thermocompression using ultrasonic wave). That is, since the light emitting element mounting substrate 10 is also heated to such a high temperature or is in contact with the high temperature bonding member 7, particularly in the light emitting element mounting region of the light emitting element mounting substrate 10, Requires heat resistance. In addition, the bonding member 7 has a wider area so that heat generated from the light emitting element 5 is more conducted to the lead portions 31c and 32c through the bonding member 7, particularly when the light emitting element 5 is connected. 5 is preferably connected. However, if the joining member 7 is formed in many of the mounting regions (directly below the region) of the light emitting element 5, light emitted downward from the light emitting element 5 is blocked, so that the light extraction efficiency does not decrease. It is preferable to form an area as wide as possible. As such a material that can be easily formed in a reasonably wide area and has high reliability, it is particularly preferable that the bonding member 7 is made of an Au—Sn eutectic alloy.

本実施形態に係る発光装置50において、発光素子搭載用基板10は、発光素子5の仕様および配列等に応じて設計される。以下、発光素子搭載用基板10について、図1および図2を参照して詳細に説明する。   In the light emitting device 50 according to the present embodiment, the light emitting element mounting substrate 10 is designed according to the specifications and arrangement of the light emitting elements 5. Hereinafter, the light emitting element mounting substrate 10 will be described in detail with reference to FIGS. 1 and 2.

〔発光素子搭載用基板〕
本発明の第1実施形態に係る発光素子搭載用基板10は、金属板1の上面に、絶縁層21、導電層3、反射層22の順に、それぞれ所定の領域に積層されてなる。さらに本実施形態に係る発光素子搭載用基板10は、反射層22の上に枠体4を備える。ここで、導電層3は平面上で互いに離間した一対のリード電極(正極31および負極32)を形成し、正極31および負極32はさらにそれぞれリード部31c,32c,31d,32dおよびパッド部31b,32bを含む。
[Light emitting element mounting substrate]
The light emitting element mounting substrate 10 according to the first embodiment of the present invention is formed by laminating an insulating layer 21, a conductive layer 3, and a reflective layer 22 in a predetermined region on the upper surface of the metal plate 1. Furthermore, the light emitting element mounting substrate 10 according to the present embodiment includes the frame body 4 on the reflective layer 22. Here, the conductive layer 3 forms a pair of lead electrodes (positive electrode 31 and negative electrode 32) spaced apart from each other on a plane, and the positive electrode 31 and the negative electrode 32 are further connected to lead portions 31c, 32c, 31d, 32d and pad portions 31b, respectively. 32b is included.

(金属板)
金属板1は、発光素子搭載用基板10の基材であり、発光装置50においては発光素子5等を配置する支持体であって、かつ発光素子5から発生する熱(以下、適宜、発光素子5の熱)の放熱手段であり、図1に示すように平板形状に形成されている。詳しくは、平面視で正方形の一組の対角を円弧で切り欠いた形状である。金属板1は、一般的な半導体発光素子のCOBパッケージ用の金属製基板と同様に、アルミニウム、銅、銀、鋼等の金属または合金を、ある程度の強度を有する板厚に公知の方法で形成して製造することができ、特に軽量で加工性がよく、低コストなアルミニウムまたはその合金が好ましい。金属板1の形状および大きさは限定されず、製品としてユーザに提供する発光素子搭載用基板または発光装置の形態や用途に応じて、適宜設計される。
(Metal plate)
The metal plate 1 is a base material of the light-emitting element mounting substrate 10, and is a support body on which the light-emitting element 5 and the like are disposed in the light-emitting device 50, and heat generated from the light-emitting element 5 (hereinafter appropriately referred to as light-emitting element) 5) and is formed in a flat plate shape as shown in FIG. Specifically, it is a shape in which a pair of diagonals of a square is cut out by an arc in a plan view. The metal plate 1 is formed of a metal or an alloy such as aluminum, copper, silver, steel, or the like with a known method to a plate thickness having a certain degree of strength in the same manner as a metal substrate for a COB package of a general semiconductor light emitting device. In particular, aluminum or an alloy thereof is preferable because it is lightweight, has good workability, and is low in cost. The shape and size of the metal plate 1 are not limited, and are appropriately designed according to the form and application of the light emitting element mounting substrate or the light emitting device provided as a product to the user.

(絶縁層)
絶縁層21は、金属板1の表面に形成されて、金属板1と後記の導電層3とを絶縁する層である。したがって、絶縁層21は導電層3が形成される領域には必ず形成され、当該領域よりも外側にまで形成されることが好ましい。本実施形態においては、絶縁層21は金属板1の表面全体に形成される。また、絶縁層21は、発光素子載置領域であって導電層3(リード部31c,32c)の形成されていない領域には、露出しているので、発光素子5から下方に出射した光が入射される。絶縁層21は、このような露出した領域は比較的狭いが、反射率の高い膜とすることが、発光装置50としたときに光の取出し効率をより高いものとするために好ましい。絶縁層21の厚さは特に規定しないが、発光装置50としたとき、薄過ぎると発光素子5の光を透過、吸収し、さらに金属板1と導電層3との絶縁が保持されなくなり、厚くなると発光素子5の熱が金属板1へ伝導し難くなる。したがって、絶縁層21の厚さは25〜100μm程度の範囲が好ましい。そして、本発明に係る発光素子搭載用基板10において、絶縁層21は以下の特性を示すように、後記の液晶ポリマーで形成される。
(Insulating layer)
The insulating layer 21 is a layer that is formed on the surface of the metal plate 1 and insulates the metal plate 1 from a conductive layer 3 described later. Therefore, it is preferable that the insulating layer 21 is always formed in a region where the conductive layer 3 is formed, and is formed outside the region. In the present embodiment, the insulating layer 21 is formed on the entire surface of the metal plate 1. Further, the insulating layer 21 is exposed in a region where the conductive layer 3 (lead portions 31c and 32c) is not formed, which is a light emitting element mounting region, so that light emitted downward from the light emitting element 5 is emitted. Incident. Although the insulating layer 21 has a relatively narrow exposed region, it is preferable that the insulating layer 21 be a film having a high reflectivity in order to increase the light extraction efficiency when the light emitting device 50 is used. Although the thickness of the insulating layer 21 is not particularly defined, when the light emitting device 50 is used, if it is too thin, the light from the light emitting element 5 is transmitted and absorbed, and further, the insulation between the metal plate 1 and the conductive layer 3 is not maintained and is thick. Then, it becomes difficult for the heat of the light emitting element 5 to be conducted to the metal plate 1. Therefore, the thickness of the insulating layer 21 is preferably in the range of about 25 to 100 μm. And in the light emitting element mounting substrate 10 which concerns on this invention, the insulating layer 21 is formed with the below-mentioned liquid crystal polymer so that the following characteristics may be shown.

絶縁層21は熱伝導率が高いほど好ましく、具体的には面方向または厚さ方向の一方において0.2W/m・℃以上、他方において0.2W/m・℃超であることが好ましい。より好ましくは、厚さ方向において0.2W/m・℃以上、面方向において0.6W/m・℃以上である。このような熱伝導性を有する絶縁層21であれば、発光素子搭載用基板10の中心近傍に配列された発光素子5の熱が面方向に沿って外側へ好適に伝導されつつ、深さ方向に金属板1へ伝導され、熱が、発光装置50の発光素子5が配列された領域の裏面に集中せずに外部へ放熱される。   The insulating layer 21 preferably has a higher thermal conductivity. Specifically, the insulating layer 21 preferably has a thermal conductivity of 0.2 W / m · ° C. or more in one of the plane direction and the thickness direction and more than 0.2 W / m · ° C. in the other. More preferably, it is 0.2 W / m · ° C. or more in the thickness direction and 0.6 W / m · ° C. or more in the plane direction. With the insulating layer 21 having such thermal conductivity, the heat of the light-emitting elements 5 arranged in the vicinity of the center of the light-emitting element mounting substrate 10 is suitably conducted to the outside along the plane direction, and the depth direction The heat is conducted to the metal plate 1 and the heat is radiated to the outside without being concentrated on the back surface of the region where the light emitting elements 5 of the light emitting device 50 are arranged.

絶縁層21は、その熱膨張率が金属板1および導電層3と近いことが好ましく、特に本実施形態に係る発光素子搭載用基板10においては全面(金属板1の全面)に設けられているため、面方向における線膨張係数が金属板1等と差が大きいと、発光素子搭載用基板10に生じる熱応力が大きくなる。金属の線膨張係数は、例えば、アルミニウム:23.6ppm/℃、銀:18.9ppm/℃、銅:16.8ppm/℃、金:14.2ppm/℃である。したがって、絶縁層21は、面方向における線膨張係数が1〜30ppm/℃の範囲であることが好ましく、10〜30ppm/℃の範囲がさらに好ましい。   It is preferable that the thermal expansion coefficient of the insulating layer 21 is close to that of the metal plate 1 and the conductive layer 3. In particular, in the light emitting element mounting substrate 10 according to the present embodiment, the insulating layer 21 is provided on the entire surface (the entire surface of the metal plate 1). For this reason, if the linear expansion coefficient in the surface direction has a large difference from the metal plate 1 or the like, the thermal stress generated in the light emitting element mounting substrate 10 increases. The linear expansion coefficient of the metal is, for example, aluminum: 23.6 ppm / ° C., silver: 18.9 ppm / ° C., copper: 16.8 ppm / ° C., and gold: 14.2 ppm / ° C. Therefore, the insulating layer 21 preferably has a linear expansion coefficient in the plane direction of 1 to 30 ppm / ° C, and more preferably 10 to 30 ppm / ° C.

絶縁層21は、発光素子搭載用基板10の発光装置50への組立てにおいて、当該絶縁層21上の導電層3(リード部31c,32c,31d,32d)に接合部材7を用いて発光素子5および保護素子6が実装され、さらに発光装置50が回路基板等に二次実装される際においても、導電層3のパッド部31b,32や金属板1(裏面)にはんだ付け等される場合があるため、高い耐熱性を有するものとする。具体的には、例えば接合部材7としてAu−Sn共晶合金を適用する場合は、280〜315℃の範囲における共晶温度に到達させるため、絶縁層21はかかる温度よりも高い耐熱温度(融点)を有する。さらに、絶縁層21は、後記の反射層22を熱圧着にて形成するための加熱および加圧により変形、溶融しないように、絶縁層22を形成する液晶ポリマーよりも熱変形等し難い液晶ポリマーが選択される(詳しくは後記する)。   In the assembly of the light emitting element mounting substrate 10 to the light emitting device 50, the insulating layer 21 is formed by using the bonding member 7 on the conductive layer 3 (lead portions 31 c, 32 c, 31 d, and 32 d) on the insulating layer 21. Even when the protective element 6 is mounted and the light emitting device 50 is secondarily mounted on a circuit board or the like, the pad portions 31b and 32 of the conductive layer 3 or the metal plate 1 (back surface) may be soldered. Therefore, it has high heat resistance. Specifically, for example, when an Au—Sn eutectic alloy is applied as the bonding member 7, the insulating layer 21 has a heat resistant temperature (melting point) higher than this temperature in order to reach the eutectic temperature in the range of 280 to 315 ° C. ). Furthermore, the insulating layer 21 is a liquid crystal polymer that is less likely to be thermally deformed than the liquid crystal polymer that forms the insulating layer 22 so as not to be deformed or melted by heating and pressurizing to form the reflective layer 22 described later by thermocompression bonding. Is selected (details will be described later).

(導電層)
導電層3は、発光装置50の一対のリード電極を形成する正極31および負極32として、絶縁層21上に形成された互いに離間した2つの金属膜である。正極31および負極32はそれぞれ、発光装置50の外部から発光素子5の駆動電圧を印加するためのパッド部31b,32b、各発光素子5のパッド電極を電気的に接続するためのリード部31c,32cを発光素子5の搭載個数分(24対)、同じく保護素子6を接続するためのリード部31d,32dを含んで形成される。そして、正極31および負極32は、さらに発光素子5が実装されてリード部31c,32cに接続されることで、それぞれの発光素子5が直列および並列にパッド部31b,32bに電気的に接続されるような配線が形成される(図示省略)。
(Conductive layer)
The conductive layer 3 is two metal films separated from each other formed on the insulating layer 21 as the positive electrode 31 and the negative electrode 32 that form a pair of lead electrodes of the light emitting device 50. The positive electrode 31 and the negative electrode 32 are respectively pad portions 31b and 32b for applying a driving voltage of the light emitting element 5 from the outside of the light emitting device 50, and lead portions 31c for electrically connecting pad electrodes of the light emitting elements 5. 32c is formed to include the lead portions 31d and 32d for connecting the protective element 6 as many as the number of mounted light emitting elements 5 (24 pairs). The positive electrode 31 and the negative electrode 32 are further mounted with the light emitting element 5 and connected to the lead portions 31c and 32c, whereby the respective light emitting elements 5 are electrically connected to the pad portions 31b and 32b in series and in parallel. Such wiring is formed (not shown).

パッド部31b,32bの形状および大きさならびに発光素子搭載用基板10における位置は、発光装置50において表面に露出して、外部から電気的に接続可能であれば特に限定されず、発光装置50の形態や用途に応じて適宜設計される。リード部31c,32cは、発光素子5を載置したときにパッド電極に対向して、接合部材7で接続可能な平面視形状に、各発光素子5の載置領域に形成される。また、リード部31c,32cは、接合部材7を介して接続された発光素子5から発生した熱が伝導されることで、導電層3の全体や絶縁層21を伝導して放熱され、また、発光素子5から下方に出射する光の反射面となる。保護素子6を接続するリード部31d,32dは、リード部31c,32cと同様に、保護素子6のパッド電極(図示せず)に対向するように形成される。   The shape and size of the pad portions 31b and 32b and the position on the light emitting element mounting substrate 10 are not particularly limited as long as they are exposed on the surface of the light emitting device 50 and can be electrically connected from the outside. It is designed appropriately according to the form and application. The lead portions 31 c and 32 c are formed in the placement region of each light emitting element 5 in a planar view shape that can be connected by the bonding member 7 so as to face the pad electrode when the light emitting element 5 is placed. Further, the heat generated from the light emitting element 5 connected through the bonding member 7 is conducted to the lead portions 31c and 32c, so that the whole conductive layer 3 and the insulating layer 21 are conducted and radiated, It becomes a reflection surface of light emitted downward from the light emitting element 5. The lead portions 31d and 32d that connect the protection element 6 are formed to face the pad electrodes (not shown) of the protection element 6 in the same manner as the lead portions 31c and 32c.

ここで、同じ仕様(駆動電圧等)の発光素子5が複数個実装された発光装置50において、発光素子5を直列に接続する場合は、当該直列に接続される発光素子5の組は、その発光素子5の個数が同数に統一されているようにする。発光素子5,5,…は、組単位で並列にパッド部31b,32bに接続されて、共通の電圧を印加されるので、組毎に発光素子5の個数が異なると抵抗が異なって、組によって発光素子5の1個あたりに印加される電圧に差が生じて発光する光の光量が一様にならず、また、適正な電圧が印加されないことで早期に駆動不能に至る発光素子5が生じる虞がある。本実施形態に係る発光素子搭載用基板10は24個の発光素子5を搭載されて発光装置50となるため、例えば3個の発光素子5を一組として直列に接続されるように、隣り合うリード部31c,32cを接続し、さらに8組および保護素子6が並列にパッド部31b,32bに接続されるように配線を設ける。このように、導電層3は、正極31および負極32として、発光素子5の搭載個数や発光装置50の仕様に応じて配線形状を設計される。   Here, in the light-emitting device 50 in which a plurality of light-emitting elements 5 having the same specifications (such as drive voltage) are mounted, when the light-emitting elements 5 are connected in series, the set of the light-emitting elements 5 connected in series is The number of the light emitting elements 5 is made uniform. The light emitting elements 5, 5,... Are connected to the pad portions 31b and 32b in parallel in units of groups, and a common voltage is applied. Therefore, when the number of the light emitting elements 5 is different for each group, the resistance differs. As a result, there is a difference in the voltage applied to each light emitting element 5 and the amount of emitted light is not uniform, and the light emitting element 5 that cannot be driven at an early stage due to the application of an appropriate voltage is provided. May occur. Since the light emitting element mounting substrate 10 according to the present embodiment is mounted with 24 light emitting elements 5 to form the light emitting device 50, for example, the three light emitting elements 5 are adjacent to each other so as to be connected in series. The lead portions 31c and 32c are connected, and wiring is provided so that eight sets and the protection element 6 are connected to the pad portions 31b and 32b in parallel. As described above, the conductive layer 3 is designed as the positive electrode 31 and the negative electrode 32 according to the number of the light emitting elements 5 mounted and the specifications of the light emitting device 50.

導電層3は、正極31および負極32としては、発光素子5および保護素子6を実装するためのリード部31c,32c,31d,32d、パッド部31b,32b、およびこれらを互いに接続する配線を備えていればよい。しかし、前記したようにリード部31c,32cに発光素子5が直接に接続されるため、発光素子5の熱がリード部31c,32cから効率的に発光装置50の外部に放熱されることが好ましい。そこで、金属膜からなり熱伝導性に優れた導電層3は、正極31および負極32が互いに短絡しない程度に広い面積で形成されることが好ましい。例えば、図1に示す24個の発光素子5が配列された領域の周囲に、発光装置50の照射領域の外側まで延設された幅広の配線を形成して、この幅広の配線に各リード部31c,32cおよび保護素子6のリード部31d,32dが接続されるようにすればよい。さらにこの幅広の配線は、パッド部31b,32bを内包して、発光素子搭載用基板10(金属板1)の周縁近傍まで延設されて形成されてもよい。図2に、負極32についてパッド部32bを内包する配線を示す。これにより、各発光素子5の熱が、当該発光素子5に接続するリード部31c,32cから正極31および負極32の幅広の配線を介して面方向に沿って外側へ好適に伝導されて、発光装置50の外部へ効率的に放熱される。   The conductive layer 3 includes, as the positive electrode 31 and the negative electrode 32, lead portions 31c, 32c, 31d, and 32d for mounting the light emitting element 5 and the protection element 6, pad portions 31b and 32b, and wirings that connect them to each other. It only has to be. However, since the light emitting element 5 is directly connected to the lead parts 31c and 32c as described above, it is preferable that the heat of the light emitting element 5 is efficiently radiated from the lead parts 31c and 32c to the outside of the light emitting device 50. . Therefore, the conductive layer 3 made of a metal film and having excellent thermal conductivity is preferably formed in a wide area so that the positive electrode 31 and the negative electrode 32 do not short-circuit each other. For example, a wide wiring extending to the outside of the irradiation region of the light emitting device 50 is formed around the area where the 24 light emitting elements 5 shown in FIG. 1 are arranged, and each lead portion is connected to the wide wiring. The lead portions 31d and 32d of the protection element 6 may be connected to 31c and 32c. Further, the wide wiring may be formed so as to extend to the vicinity of the periphery of the light emitting element mounting substrate 10 (metal plate 1), including the pad portions 31b and 32b. FIG. 2 shows the wiring that includes the pad portion 32 b in the negative electrode 32. Thereby, the heat of each light emitting element 5 is suitably conducted to the outside along the surface direction from the lead portions 31c and 32c connected to the light emitting element 5 through the wide wiring of the positive electrode 31 and the negative electrode 32, and the light emission The heat is efficiently radiated to the outside of the device 50.

導電層3は、一般的な半導体素子の配線基板に適用される金属材料を適用することができ、銅、銀、金、アルミニウム等が挙げられ、熱伝導性や加工性の点から銅が特に好ましい。また、前記した通り、箔を絶縁層21の形成時に当該絶縁層21の熱圧着にて貼り合わせてもよいし、めっきや蒸着等の公知の方法で絶縁層21の表面に成膜することもできる。導電層3の膜厚は特に限定されず、リード電極としての抵抗、発光装置50に搭載される発光素子5の駆動電圧および駆動電流等に応じて適宜設計される。そして、金属膜を例えばエッチングにて前記リード部31c,32c等を含む正極31および負極32の配線パターンを形成して、導電層3となる。なお、金属膜(箔)は、絶縁層21となる液晶ポリマーフィルムに先に貼り合わせられていてもよいし、さらに液晶ポリマーフィルム上で正極31および負極32の配線パターンが形成されてもよい。   The conductive layer 3 can be a metal material that is applied to a wiring board of a general semiconductor element, and examples thereof include copper, silver, gold, and aluminum. Copper is particularly preferable from the viewpoint of thermal conductivity and workability. preferable. Further, as described above, the foil may be bonded by thermocompression bonding of the insulating layer 21 when the insulating layer 21 is formed, or may be formed on the surface of the insulating layer 21 by a known method such as plating or vapor deposition. it can. The film thickness of the conductive layer 3 is not particularly limited, and is appropriately designed according to the resistance as a lead electrode, the driving voltage and driving current of the light emitting element 5 mounted on the light emitting device 50, and the like. Then, a wiring pattern of the positive electrode 31 and the negative electrode 32 including the lead portions 31c, 32c and the like is formed by etching the metal film, for example, to form the conductive layer 3. In addition, the metal film (foil) may be previously bonded to the liquid crystal polymer film to be the insulating layer 21, and the wiring patterns of the positive electrode 31 and the negative electrode 32 may be formed on the liquid crystal polymer film.

また、導電層3は、表面に金属めっき膜(めっき膜)3aを備えてもよい。後記するように、導電層3は、発光素子5の載置領域等を除いて反射層22で被覆されるが、この載置領域にて露出した部分すなわちリード部31c,32c,31d,32dは、発光素子5から下方に出射した光の反射面となる。したがって、発光素子5が発光する光の波長について反射率の高い金属を表面が平滑なめっき膜として設けて、発光装置50の光の取出し効率を向上させることが好ましい。このような金属材料としては、銀、ロジウム、金、アルミニウムから選択される1種の金属、または前記金属の合金が挙げられ、可視光については銀が最も反射率が高く好ましい。また、銀めっき膜の下地にニッケルめっき膜を積層してもよい(図示省略)。金属めっき膜3aは、その材料に応じて、電気めっき等の公知の方法で形成できる。また、導電層3は、図2に示すように、発光装置50において表面に露出するパッド部31b,32bにも金属めっき膜3aを備えることが好ましい。特に導電層3が銅からなる場合は、表面が酸化することではんだの濡れ性が低下して、発光装置50の二次実装においてパッド部31b,32bで実装不良に至る虞がある。パッド部31b,32bに備える金属めっき膜3aとしては、表面に信頼性を付与するため、金が特に好ましく、例えばリード部31c,32c等と共に設けた銀めっき膜の上に積層して金めっき膜を形成してもよいし、金めっき膜単層でもよい。   The conductive layer 3 may include a metal plating film (plating film) 3a on the surface. As will be described later, the conductive layer 3 is covered with the reflective layer 22 except for the mounting region of the light emitting element 5. The exposed portions of the mounting region, that is, the lead portions 31 c, 32 c, 31 d, and 32 d are This is a reflective surface for light emitted downward from the light emitting element 5. Therefore, it is preferable to improve the light extraction efficiency of the light emitting device 50 by providing a metal having a high reflectance with respect to the wavelength of light emitted from the light emitting element 5 as a plating film having a smooth surface. Examples of such a metal material include one kind of metal selected from silver, rhodium, gold, and aluminum, or an alloy of the metal. Silver is most preferable for visible light because it has the highest reflectance. Further, a nickel plating film may be laminated on the base of the silver plating film (not shown). The metal plating film 3a can be formed by a known method such as electroplating according to the material. In addition, as shown in FIG. 2, the conductive layer 3 preferably includes a metal plating film 3 a on the pad portions 31 b and 32 b exposed on the surface of the light emitting device 50. In particular, when the conductive layer 3 is made of copper, the wettability of the solder is lowered due to oxidation of the surface, and there is a possibility that the pad portions 31b and 32b may cause mounting failure in the secondary mounting of the light emitting device 50. As the metal plating film 3a provided in the pad portions 31b and 32b, gold is particularly preferable in order to impart reliability to the surface. For example, the gold plating film is laminated on a silver plating film provided together with the lead portions 31c and 32c and the like. Or a gold plating film single layer.

金属めっき膜3aは、反射層22が形成されていない領域、すなわちリード部31c,32c,31d,32d(31d,32dは図示省略)およびパッド部31b,32bのみに設ければよいが、導電層3の全面等の反射層22に被覆される領域に設けてもよい(図4参照)。金属めっき膜3aを導電層3の全面に設ける場合は、反射層22の形成前にめっき処理を施せばよく、図2に示すように反射層22が形成されていない領域に設ける場合は、反射層22の形成後にめっき処理を施し、さらに金属めっき膜3aを形成しない部分があればめっき処理の際にマスクすればよい。例えばパッド部31b,32bのみに金めっき膜を形成する場合は、発光装置50の照射領域をマスクしてめっき処理を行う。   The metal plating film 3a may be provided only in a region where the reflective layer 22 is not formed, that is, in the lead portions 31c, 32c, 31d, and 32d (31d and 32d are not shown) and the pad portions 31b and 32b. 3 may be provided in a region covered by the reflective layer 22 such as the entire surface of 3 (see FIG. 4). When the metal plating film 3 a is provided on the entire surface of the conductive layer 3, the plating process may be performed before the formation of the reflection layer 22. When the metal plating film 3 a is provided in a region where the reflection layer 22 is not formed as shown in FIG. After forming the layer 22, a plating process is performed, and if there is a portion where the metal plating film 3a is not formed, it may be masked during the plating process. For example, when a gold plating film is formed only on the pad portions 31b and 32b, the irradiation process of the light emitting device 50 is masked to perform the plating process.

(反射層)
反射層22は、発光装置50の照射領域(枠体4の内側)において、図2に示すように発光素子5から下方へ出射した光を反射して発光装置50から上方へ照射させる反射膜であり、また、導電層3に対して、発光素子5および保護素子6との電気的接続部分であるリード部31c,32c,31d,32d以外を被覆して封止部材9との接触面積を少ないものとする保護膜である。また、反射層22が発光素子5の載置領域を空けて形成されていることで、発光素子5と金属板1との間に反射層22が介在しないため、発光素子5の熱が金属板1に伝導し易い。本実施形態においては、反射層22は、発光素子5および保護素子6の載置領域(発光素子5および保護素子6の平面視形状)よりも一回り大きい孔が形成され、さらに発光素子5については、1列分(6個)を内包する細長い孔を4列分(4本)形成されている。反射層22の形成されない領域(反射層22の孔)の平面視形状は、少なくとも発光素子5等の載置領域(平面視形状)であって、発光素子5等を実装可能であれば特に限定されず、発光装置50の形態、発光素子5の実装形態や配列等に応じて適宜設計される。また、反射層22の発光素子5の載置領域における孔は、上方に拡がるように端面が垂直よりも傾斜した、テーパを付けて形成されていることが好ましい。反射層22の孔をこのようなテーパを付けた形状とすることにより、発光素子5から前記孔の端面に出射した光をより多く上方へ反射させて、光の取出し効率を向上させることができる。
(Reflective layer)
The reflection layer 22 is a reflection film that reflects light emitted downward from the light emitting element 5 and irradiates upward from the light emitting device 50 as shown in FIG. 2 in the irradiation region of the light emitting device 50 (inside the frame body 4). In addition, the conductive layer 3 is covered with portions other than the lead portions 31c, 32c, 31d, and 32d, which are electrically connected to the light emitting element 5 and the protective element 6, so that the contact area with the sealing member 9 is small. This is a protective film. In addition, since the reflective layer 22 is formed with a mounting region for the light emitting element 5, the reflective layer 22 is not interposed between the light emitting element 5 and the metal plate 1. 1 is easy to conduct. In the present embodiment, the reflective layer 22 is formed with a hole that is slightly larger than the mounting region of the light emitting element 5 and the protective element 6 (the planar view shape of the light emitting element 5 and the protective element 6). Are formed with four rows (four) of elongated holes enclosing one row (six). The planar view shape of the region where the reflective layer 22 is not formed (the hole of the reflective layer 22) is at least a placement region (planar view shape) of the light emitting element 5 or the like, and is particularly limited as long as the light emitting element 5 or the like can be mounted. However, the light emitting device 50 is appropriately designed according to the form of the light emitting device 50, the mounting form and arrangement of the light emitting elements 5, and the like. Moreover, it is preferable that the hole in the mounting area | region of the light emitting element 5 of the reflection layer 22 is formed in the taper which the end surface inclined rather than perpendicular | vertical so that it might expand upward. By making the hole of the reflective layer 22 into such a tapered shape, more light emitted from the light emitting element 5 to the end face of the hole is reflected upward, and the light extraction efficiency can be improved. .

反射層22は、発光装置50の照射領域の外側(枠体4の配置領域およびその外側)においては、導電層3の発光装置50の外部との電気的接続部分であるパッド部31b,32b以外を被覆して短絡等を防止する保護膜(絶縁膜)である。すなわち、本実施形態に係る発光素子搭載用基板10においては、導電層3にパッド部31b,32bを内包して幅広の配線が形成されているため、反射層22にパッド部31b,32bの形状および位置に合わせた孔を形成して被覆することにより、外部との接続用のパッド部31b,32bが形成される。また、枠体4が光を透過する材料で形成されて内壁面が反射面にならない場合、さらに発光素子搭載用基板10(発光装置50)に枠体4を設けない場合は、発光装置50のパッド部31b,32bを除く全面が、反射層22により照射領域となる。   The reflection layer 22 is outside the irradiation region of the light emitting device 50 (the arrangement region of the frame body 4 and the outside thereof) except for the pad portions 31b and 32b that are electrically connected portions of the conductive layer 3 to the outside of the light emitting device 50. It is a protective film (insulating film) that prevents the short circuit and the like by covering. That is, in the light emitting element mounting substrate 10 according to the present embodiment, since the conductive layer 3 includes the pad portions 31b and 32b and the wide wiring is formed, the shape of the pad portions 31b and 32b is formed in the reflective layer 22. Then, by forming and covering holes corresponding to the positions, pad portions 31b and 32b for connection to the outside are formed. Further, when the frame body 4 is formed of a material that transmits light and the inner wall surface does not become a reflection surface, and when the frame body 4 is not provided on the light emitting element mounting substrate 10 (light emitting device 50), The entire surface excluding the pad portions 31 b and 32 b becomes an irradiation region by the reflective layer 22.

反射層22の厚さは特に規定しないが、当該反射層22の下に設けられた絶縁層21と合わせて、発光素子5の光を透過せずに反射させることができる厚さとする。一方、反射層22が厚くなると、発光素子5の載置領域に形成された孔の端面で反射して当該発光素子5との間で反射を繰り返す光が多くなり、発光装置50の光の取出し効率が低下する。したがって、反射層22の厚さは10〜100μm程度の範囲が好ましい。反射層22は、高さ(厚さ)方向において、表面(上面)の位置が、実装された発光素子5の発光層よりも下となる厚さであることが特に好ましい。そして、本発明に係る発光素子搭載用基板10において、反射層22は絶縁性の反射膜として、以下の特性を示すように、液晶ポリマーで形成される。   Although the thickness of the reflective layer 22 is not particularly defined, it is set to a thickness that allows the light from the light-emitting element 5 to be reflected without being transmitted together with the insulating layer 21 provided under the reflective layer 22. On the other hand, when the reflective layer 22 becomes thicker, more light is reflected from the end face of the hole formed in the mounting region of the light emitting element 5 and repeatedly reflected from the light emitting element 5, and the light from the light emitting device 50 is extracted. Efficiency is reduced. Therefore, the thickness of the reflective layer 22 is preferably in the range of about 10 to 100 μm. The reflective layer 22 is particularly preferably such that the position of the surface (upper surface) is lower than the light emitting layer of the mounted light emitting element 5 in the height (thickness) direction. In the light emitting element mounting substrate 10 according to the present invention, the reflective layer 22 is formed of a liquid crystal polymer as an insulating reflective film so as to exhibit the following characteristics.

反射層22を形成する液晶ポリマーは、白色等の反射率が高い膜を形成するものとする。一方、反射層22は、熱伝導性は絶縁層21ほどには必要ではないが、導電層3から発光素子5の熱が伝導するので、この熱が面方向に沿って外側へ好適に伝導されるように、熱伝導率が高いことが好ましく、特に面方向において高いことが好ましい。また、反射層22は、絶縁層21と同様にその熱膨張率が金属板1および導電層3と近いことが好ましく、すなわち面方向における線膨張係数が1〜30ppm/℃の範囲であることが好ましい。   The liquid crystal polymer forming the reflective layer 22 is to form a film having a high reflectance such as white. On the other hand, the thermal conductivity of the reflective layer 22 is not as high as that of the insulating layer 21, but the heat of the light emitting element 5 is conducted from the conductive layer 3, so that this heat is suitably conducted to the outside along the surface direction. As described above, it is preferable that the thermal conductivity is high, and it is particularly preferable that the thermal conductivity is high in the plane direction. Further, like the insulating layer 21, the reflective layer 22 preferably has a thermal expansion coefficient close to that of the metal plate 1 and the conductive layer 3, that is, the linear expansion coefficient in the plane direction is in the range of 1 to 30 ppm / ° C. preferable.

反射層22は、絶縁層21と同様に、発光装置50への組立て、さらに発光装置50が回路基板に搭載される際の一時的な高温に対する耐熱性を要する。さらに、反射層22は、発光装置50としての長期間の動作において、発光素子5の熱で劣化して反射率が低下しないような高い耐熱性を要する。一方、反射層22は、その形成の際の加熱および加圧により、絶縁層21を変形、溶融させないような条件での熱圧着が可能な液晶ポリマーが材料に選択される(詳しくは後記する)。   Similar to the insulating layer 21, the reflective layer 22 needs to be assembled to the light emitting device 50 and further to have heat resistance against a temporary high temperature when the light emitting device 50 is mounted on a circuit board. Furthermore, the reflective layer 22 requires high heat resistance so that the reflectance does not decrease due to the heat of the light emitting element 5 during long-term operation as the light emitting device 50. On the other hand, the reflective layer 22 is selected from a liquid crystal polymer that can be thermocompression bonded under the condition that the insulating layer 21 is not deformed or melted by heating and pressurization during the formation (details will be described later). .

(液晶ポリマー)
ここで、絶縁層21および反射層22を形成する液晶ポリマーについて、詳細に説明する。絶縁層21および反射層22は、液晶ポリマーをシート状に成形してなる液晶ポリマーフィルム(LCPフィルム)で形成することができる。一般的に、液晶ポリマーは、当該液晶ポリマーの液晶転移点以上に加熱されると変形可能となって、温度が上昇するにしたがい硬さ(弾性率)が漸減し、融点以上で溶融する。液晶ポリマーフィルムには、融点に到達していなくても(融点未満の温度でも)厚さ方向に加圧されることで、表層が溶融して金属板1や導電層3等の金属や液晶ポリマーフィルム同士に接着する(熱圧着する)ことができるものがある。このような液晶ポリマーフィルムは、熱や圧力によって相変化をするサーモトロピック型液晶からなり、さらに本実施形態に係る発光素子搭載用基板10においては、液晶ポリマーの中でも耐熱性の高い全芳香族系が好適であり、具体的には全芳香族ポリエステルが挙げられる。このような液晶ポリマーは、通常、黄みがかった乳白色を呈するが、高い反射率とするために、酸化チタン、シリカ、アルミナ、硫酸バリウム等からなる粒径0.1〜20μm程度の白色無機フィラーを添加されたものが好ましい。なお、液晶ポリマーは、成形時のピーク温度によって熱膨張率が変化するものがあり、このような液晶ポリマーを適用する場合は、絶縁層21および反射層22のそれぞれの形成における熱圧着において、前記範囲の線膨張係数となるようにピーク温度を制御する。
(Liquid crystal polymer)
Here, the liquid crystal polymer forming the insulating layer 21 and the reflective layer 22 will be described in detail. The insulating layer 21 and the reflective layer 22 can be formed of a liquid crystal polymer film (LCP film) formed by forming a liquid crystal polymer into a sheet shape. Generally, a liquid crystal polymer becomes deformable when heated above the liquid crystal transition point of the liquid crystal polymer, and the hardness (elastic modulus) gradually decreases as the temperature rises, and melts at or above the melting point. Even if the melting point of the liquid crystal polymer film does not reach the melting point (even if the temperature is lower than the melting point), the surface layer melts by pressing in the thickness direction, and the metal such as the metal plate 1 and the conductive layer 3 or the liquid crystal polymer. Some films can be bonded to each other (thermocompression bonding). Such a liquid crystal polymer film is composed of a thermotropic liquid crystal that undergoes a phase change by heat or pressure. Further, in the light emitting element mounting substrate 10 according to the present embodiment, a wholly aromatic system having high heat resistance among liquid crystal polymers. Are preferred, and specific examples include wholly aromatic polyesters. Such a liquid crystal polymer usually exhibits a yellowish milky white, but in order to obtain a high reflectance, a white inorganic filler having a particle size of about 0.1 to 20 μm made of titanium oxide, silica, alumina, barium sulfate or the like. Those to which is added are preferred. In addition, some liquid crystal polymers have a coefficient of thermal expansion that changes depending on the peak temperature at the time of molding. When applying such a liquid crystal polymer, in the thermocompression bonding in the formation of each of the insulating layer 21 and the reflective layer 22, The peak temperature is controlled to achieve a linear expansion coefficient in the range.

絶縁層21は、金属板1に液晶ポリマーフィルム(LCPフィルム21a)を重ねて両面から加圧し、当該液晶ポリマーの融点近傍の温度に加熱することで、熱圧着(熱プレス)されて金属板1に貼り付けられて形成することができ、同時に、絶縁層21の上に設ける導電層3を形成する金属箔を貼り付けることができる。同様に、反射層22は、絶縁層21および導電層3が積層された金属板1に液晶ポリマーフィルム(LCPフィルム22a)を重ねて、熱圧着により貼り付けられて形成することができる(後記製造方法にて説明する)。このとき、先に形成された絶縁層21が変形、溶融しないように、絶縁層21、反射層22をそれぞれ形成する液晶ポリマー(LCPフィルム21a,22a)は、互いに液晶転移点等の熱的特性が異なるものを選択する。   The insulating layer 21 is thermocompression-bonded (heat-pressed) by superimposing a liquid crystal polymer film (LCP film 21a) on the metal plate 1 and applying pressure from both sides and heating to a temperature near the melting point of the liquid crystal polymer. At the same time, a metal foil for forming the conductive layer 3 provided on the insulating layer 21 can be attached. Similarly, the reflective layer 22 can be formed by laminating a liquid crystal polymer film (LCP film 22a) on the metal plate 1 on which the insulating layer 21 and the conductive layer 3 are laminated and pasting them by thermocompression bonding (manufactured later). Method). At this time, the liquid crystal polymers (LCP films 21 a and 22 a) that form the insulating layer 21 and the reflective layer 22, respectively, have thermal characteristics such as a liquid crystal transition point so that the previously formed insulating layer 21 is not deformed or melted. Choose a different one.

絶縁層21および反射層22を形成するためのLCPフィルム21a,22aは、回路基板用等に市販されている液晶ポリマーフィルムを適用でき、当該絶縁層21および反射層22に要求される特性に合った材料および厚さのものを選択する。反射層22を形成するLCPフィルム22aとしては、前記した通り、反射率の高い材料が好ましく、例えば(株)クラレ製のVecstar FB(白色、耐熱温度:300℃、熱圧着推奨条件:1MPa以上×300℃、線膨張係数:5ppm/℃、熱伝導率:(厚さ方向)0.2W/m・℃、(面方向)1.5W/m・℃)が適用できる。これに対して、絶縁層21を形成するLCPフィルム21aは、LCPフィルム22aよりも高耐熱性の、例えば多層回路基板用の高耐熱性の液晶ポリマーフィルムである(株)クラレ製のVecstar CT−Z(白色、耐熱温度:350℃、熱圧着推奨条件:4MPa以上×300〜305℃、線膨張係数:18ppm/℃、熱伝導率:(厚さ方向)0.2W/m・℃、(面方向)1.5W/m・℃)が適用できる。   As the LCP films 21 a and 22 a for forming the insulating layer 21 and the reflective layer 22, a liquid crystal polymer film that is commercially available for a circuit board or the like can be applied, which matches the characteristics required for the insulating layer 21 and the reflective layer 22. Choose the correct material and thickness. As described above, the LCP film 22a forming the reflective layer 22 is preferably a highly reflective material. For example, Vecstar FB manufactured by Kuraray Co., Ltd. (white, heat-resistant temperature: 300 ° C., recommended thermocompression bonding conditions: 1 MPa or more × 300 ° C., linear expansion coefficient: 5 ppm / ° C., thermal conductivity: (thickness direction) 0.2 W / m · ° C. (plane direction) 1.5 W / m · ° C.) can be applied. On the other hand, the LCP film 21a forming the insulating layer 21 has a higher heat resistance than the LCP film 22a, for example, a high heat-resistant liquid crystal polymer film for multilayer circuit boards. Vecstar CT- manufactured by Kuraray Co., Ltd. Z (white, heat-resistant temperature: 350 ° C., recommended thermocompression bonding conditions: 4 MPa or more × 300 to 305 ° C., linear expansion coefficient: 18 ppm / ° C., thermal conductivity: (thickness direction) 0.2 W / m · ° C. (surface Direction) 1.5 W / m · ° C. is applicable.

前記のLCPフィルム21a,22aの組み合わせにおいては、熱圧着温度は同程度であるが、LCPフィルム22aの方が、当該LCPフィルム22aの液晶転移点(熱変形温度)以上のある温度においてより軟化する。そこで、反射層22の形成においては、まず、LCPフィルム22aを重ねて、当該LCPフィルム22aの液晶転移点以上であって絶縁層21(LCPフィルム21a)が比較的硬い状態(好ましくは液晶転移点未満)の温度(推奨温度:150℃)に加熱して、LCPフィルム22aのみを変形し易い状態とする。このような温度下で加圧(推奨圧力:2MPa)することで、LCPフィルム22aのみを導電層3のパターンによる段差に合わせて変形させることができる。次に、絶縁層21が変形しないように圧力1MPaに低減して、熱圧着温度(300℃)に加熱することにより、LCPフィルム22aが導電層3および絶縁層21に接着されて反射層22を形成することができる。   In the combination of the LCP films 21a and 22a, the thermocompression bonding temperature is approximately the same, but the LCP film 22a is more softened at a temperature equal to or higher than the liquid crystal transition point (thermal deformation temperature) of the LCP film 22a. . Therefore, in the formation of the reflective layer 22, first, the LCP film 22a is overlapped, and the insulating layer 21 (LCP film 21a) is in a relatively hard state (preferably the liquid crystal transition point) above the liquid crystal transition point of the LCP film 22a. Temperature) (recommended temperature: 150 ° C.), and only the LCP film 22a is easily deformed. By applying pressure (recommended pressure: 2 MPa) at such a temperature, only the LCP film 22a can be deformed in accordance with the level difference due to the pattern of the conductive layer 3. Next, the pressure is reduced to 1 MPa so that the insulating layer 21 is not deformed, and the LCP film 22a is bonded to the conductive layer 3 and the insulating layer 21 by heating to a thermocompression bonding temperature (300 ° C.). Can be formed.

さらに反射層22を形成するLCPフィルム22aは、予め当該反射層22の形状に合わせて加工されている、詳しくは反射層22の平面視形状に切断されていることが好ましい(後記製造方法にて説明する)。反射層22とする液晶ポリマーの層を積層した後に加工する、具体的にはルーター加工等にて除去すると、端面にバリやスミアが発生して、これらを除去する後処理が必要となる。また、加工(除去)する領域の下に導電層3が形成されていない部分がある場合、液晶ポリマーの層は絶縁層21に直接に積層されているため、同じく液晶ポリマーからなる絶縁層21が同時に除去されないように加工することは困難である。   Further, the LCP film 22a for forming the reflective layer 22 is preferably processed in advance according to the shape of the reflective layer 22, and more specifically cut into a planar view shape of the reflective layer 22 (in the manufacturing method described later). explain). When the liquid crystal polymer layer serving as the reflective layer 22 is laminated and then processed, specifically, removed by router processing or the like, burrs and smears are generated on the end face, and post-processing for removing these is required. In addition, when there is a portion where the conductive layer 3 is not formed under the region to be processed (removed), the liquid crystal polymer layer is directly laminated on the insulating layer 21, and therefore the insulating layer 21 made of the liquid crystal polymer is also formed. It is difficult to process so as not to be removed at the same time.

(枠体)
枠体4は、発光装置50の照射領域を区画し、発光装置50の製造において、後記の透光性樹脂材料を当該枠体4の内側に充填させて封止部材9を形成するための堰として、発光素子搭載用基板10の上面に設けられる。また、枠体4は、図2に示すように、その内壁面で発光素子5から側方へ出射した光を上方へ反射させて発光装置50の光の取出し効率を向上させる。本実施形態に係る発光装置50は照射領域が円形であるため、枠体4は円環形状である。なお、枠体4は発光素子搭載用基板10に設けられていなくてもよく、発光装置50を製造する際に、例えば発光素子5および保護素子6の実装後に枠体4を形成することもできる。
(Frame)
The frame body 4 divides an irradiation area of the light emitting device 50, and a weir for forming the sealing member 9 by filling the inside of the frame body 4 with a translucent resin material described later in the manufacture of the light emitting device 50. Are provided on the upper surface of the light emitting element mounting substrate 10. Further, as shown in FIG. 2, the frame 4 reflects light emitted from the light emitting element 5 to the side by the inner wall surface thereof, and improves the light extraction efficiency of the light emitting device 50. Since the light emitting device 50 according to the present embodiment has a circular irradiation area, the frame body 4 has an annular shape. Note that the frame body 4 may not be provided on the light emitting element mounting substrate 10, and when manufacturing the light emitting device 50, for example, the frame body 4 can be formed after mounting the light emitting element 5 and the protection element 6. .

枠体4は、高さを特に限定しないが、図1および図2に示すように、内側に充填されて形成される封止部材9が発光素子5を完全に埋設して露出させない高さとなるようにする。また、枠体4は、発光素子5から側方へ出射して照射領域の外側へ向かう光をそのまま発光装置50の外に出射させないように、この外側へ向かう光を反射できる高さにすることが好ましい。   The frame 4 is not particularly limited in height, but as shown in FIGS. 1 and 2, the sealing member 9 formed by being filled inside has a height that does not completely expose the light emitting element 5 and expose it. Like that. Further, the frame body 4 is set to a height that can reflect the outward light so that the light emitted from the light emitting element 5 to the side and going to the outside of the irradiation region is not emitted to the outside of the light emitting device 50 as it is. Is preferred.

枠体4はある程度の強度を有し、発光素子5の光や外光の透過し難い光透過率の低いかつ反射率が高い材料で形成されることが好ましい。また、枠体4は、先に当該枠体4の形状に成形されてから、発光素子搭載用基板10の上面(反射層22の表面)に貼り付けることもできるが、発光素子搭載用基板10上に液状やペースト状で成形してそのまま凝固させて形成されることが好ましい。詳しくは後記製造方法にて説明する。このような材料として、一般的な半導体発光素子のCOBパッケージに適用されるものと同様に、熱硬化性樹脂や熱可塑性樹脂であるフェノール樹脂、エポキシ樹脂、BTレジン、PPA(ポリフタルアミド)、シリコーン等が挙げられるが、耐熱性および耐光性に優れるシリコーンが好ましい。シリコーンは硬化温度が最高で180℃程度であり、このような材料で枠体4を形成するにあたり、発光素子搭載用基板10(絶縁層21および反射層22)は十分な耐熱性を有する。また、枠体4は、反射率を高くするために白色であることが好ましく、前記のシリコーンに白色フィラーを混合した白色シリコーンが好適である。白色フィラーを混合することにより、シリコーンの高い熱膨張率を適度に低減して熱応力による不具合を防止することができる。さらに枠体4は、反射率をいっそう高くするために、前記樹脂材料に、発光素子5の光を吸収し難く、かつ母材である当該樹脂に対して屈折率差の大きい反射材料(例えばTiO2,Al23,ZrO2,MgO等)の粉末を、予め分散させて形成してもよい。 The frame body 4 is preferably formed of a material having a certain degree of strength, a low light transmittance that does not easily transmit light and external light of the light emitting element 5, and a high reflectance. In addition, the frame body 4 can be pasted on the upper surface of the light emitting element mounting substrate 10 (the surface of the reflective layer 22) after being previously formed into the shape of the frame body 4, but the light emitting element mounting substrate 10 It is preferably formed by forming it in a liquid or paste form and solidifying it as it is. Details will be described later in the manufacturing method. As such a material, a phenol resin, an epoxy resin, a BT resin, a PPA (polyphthalamide), which is a thermosetting resin or a thermoplastic resin, similar to those applied to a COB package of a general semiconductor light emitting device, Although silicone etc. are mentioned, the silicone which is excellent in heat resistance and light resistance is preferable. Silicone has a maximum curing temperature of about 180 ° C., and the light emitting element mounting substrate 10 (the insulating layer 21 and the reflective layer 22) has sufficient heat resistance when forming the frame 4 with such a material. The frame 4 is preferably white in order to increase the reflectance, and white silicone in which a white filler is mixed with the silicone is suitable. By mixing the white filler, the high thermal expansion coefficient of silicone can be appropriately reduced to prevent problems due to thermal stress. Further, in order to further increase the reflectance, the frame body 4 is made of a reflective material (for example, TiO) that hardly absorbs light from the light-emitting element 5 and has a large refractive index difference with respect to the resin that is a base material. 2 , Al 2 O 3 , ZrO 2 , MgO, etc.) powder may be dispersed in advance.

(封止部材)
封止部材9は、発光素子5、保護素子6、反射層22から露出した導電層3すなわちリード部31c,32c,31d,32d、および発光素子5等とリード部31c,32c等との接続部を封止(埋設)して、塵芥、水分、外力等から保護するための部材であり、図1および図2に示すように、発光素子搭載用基板10上において枠体4の内側に樹脂材料を充填されて形成される。封止部材9は発光素子5等を完全に埋設すればよく、その表面形状は限定されず、例えば平坦であっても凸レンズ状であってもよく、製品としてユーザに提供する発光装置50の形態や用途に応じて適宜設計される。封止部材9は、一般的な半導体発光素子を搭載した発光装置と同様に、発光素子5の光を透過させる透光性樹脂材料で形成され、具体的には、ハイブリッドシリコーンを含めたシリコーン、エポキシ樹脂、ユリア樹脂等が挙げられるが、枠体4と同じく耐熱性および耐光性に優れるシリコーンが好ましい。また、これらの樹脂材料に、発光装置50の目的や用途に応じて蛍光物質、着色剤、光拡散剤、フィラー等を含有させてもよく、特に前記した通り、シリコーンは熱膨張率が高いため、フィラー等により熱膨張率を適度に低減することが好ましい。あるいは、封止部材9は、硬さを発光素子5等を保護できる程度に抑えて、応力緩和されるような構造とすることが好ましい。
(Sealing member)
The sealing member 9 includes the light emitting element 5, the protective element 6, the conductive layer 3 exposed from the reflective layer 22, that is, the lead portions 31c, 32c, 31d, and 32d, and the connection portion between the light emitting element 5 and the lead portions 31c, 32c, and the like. Is a member for protecting (embedding) from dust, moisture, external force, and the like, and as shown in FIGS. 1 and 2, a resin material is provided inside the frame body 4 on the light emitting element mounting substrate 10. It is formed by filling. The sealing member 9 only needs to completely embed the light emitting element 5 and the like, and the surface shape is not limited. For example, the sealing member 9 may be flat or a convex lens shape, and the form of the light emitting device 50 provided to the user as a product It is designed appropriately according to the application. The sealing member 9 is formed of a light-transmitting resin material that transmits light from the light-emitting element 5 as in a light-emitting device equipped with a general semiconductor light-emitting element. Specifically, the sealing member 9 includes silicone including hybrid silicone, Although epoxy resin, urea resin, etc. are mentioned, the silicone which is excellent in heat resistance and light resistance like the frame 4 is preferable. In addition, these resin materials may contain a fluorescent material, a colorant, a light diffusing agent, a filler, and the like depending on the purpose and use of the light emitting device 50. As described above, silicone has a high coefficient of thermal expansion. It is preferable to moderately reduce the coefficient of thermal expansion with a filler or the like. Alternatively, it is preferable that the sealing member 9 has a structure in which the stress is reduced by suppressing the hardness to such an extent that the light emitting element 5 and the like can be protected.

〔発光素子搭載用基板の製造方法〕
次に、本発明の第1実施形態に係る発光素子搭載用基板の製造方法の一例を、図3を参照して説明する。なお、図3は、簡略化のため、発光素子5の2個分の発光素子載置領域を含んで示す。発光素子搭載用基板10は、発光装置50の複数台分が面方向にマトリクス状に連結した状態で製造されてもよく、発光素子搭載用基板10の完成後、あるいはさらに発光装置50の封止部材9を形成した後に、1台ずつに発光素子搭載用基板10を切断、分離して発光装置50が完成となる。
[Method for manufacturing substrate for mounting light emitting element]
Next, an example of a manufacturing method of the light emitting element mounting substrate according to the first embodiment of the present invention will be described with reference to FIG. Note that FIG. 3 shows a light emitting element mounting region for two light emitting elements 5 for simplification. The light emitting element mounting substrate 10 may be manufactured in a state where a plurality of light emitting devices 50 are connected in a matrix in the surface direction. After the light emitting element mounting substrate 10 is completed, or further, the light emitting device 50 is sealed. After the member 9 is formed, the light emitting element mounting substrates 10 are cut and separated one by one to complete the light emitting device 50.

まず、金属板1の表面(上面)に、金属板1と同じ平面視形状の、絶縁層21用の液晶ポリマーフィルム(LCPフィルム)21aおよび導電層3用の銅箔を重ねて(図3(a)参照)、さらに熱圧着用のプレス熱盤等(図示省略)で挟んで上下から加圧しながら加熱する。圧力および温度はLCPフィルム21aに応じて設定する。この処理により、LCPフィルム21aを金属板1および銅箔に熱圧着にて密着させ、絶縁層21を形成する(図3(b)参照)。   First, the liquid crystal polymer film (LCP film) 21a for the insulating layer 21 and the copper foil for the conductive layer 3 having the same planar view shape as the metal plate 1 and the copper foil for the conductive layer 3 are overlaid on the surface (upper surface) of the metal plate 1 (FIG. 3 ( a)), and further heated while being pressed from above and below by being sandwiched by a press heating plate for thermocompression bonding (not shown). The pressure and temperature are set according to the LCP film 21a. By this treatment, the LCP film 21a is brought into close contact with the metal plate 1 and the copper foil by thermocompression bonding to form the insulating layer 21 (see FIG. 3B).

次に、銅箔上にレジストマスクを形成してエッチングすることにより、正極31および負極32の配線パターンを形成し、導電層3とする(図3(c)参照)。この上に、別工程で反射層22の平面視形状に加工した液晶ポリマーフィルム(LCPフィルム)22aを重ね(図3(d)参照)、さらにその上にクッション材(図示省略)を重ねて、熱圧着用のプレス熱盤等(図示省略)で挟んで上下から加圧しながらLCPフィルム22aの熱変形温度(液晶転移点)以上に加熱して、LCPフィルム22aを導電層3のパターンによる段差に合わせて変形させる。このとき、絶縁層21が変形しないような圧力および温度に設定する。また、クッション材を挟むことにより、導電層3およびLCPフィルム22aのパターン(有無)によらず、均一に加圧され、またLCPフィルム22aに形成された孔が僅かに上方に拡がるように変形させてテーパを付けることができる。なお、LCPフィルム22aを加工する際に、端面が傾斜するように打ち抜いて、孔が上方に拡がるように形成することがより好ましい。次に、絶縁層21が変形しないように圧力を下げて加圧し、LCPフィルム22aの熱圧着温度(融点近傍)に加熱して、LCPフィルム22aを導電層3および絶縁層21に熱圧着にて密着させ、反射層22を形成する(図3(e)参照)。2段階の加圧および加熱により、絶縁層21が変形せず、かつ反射層22の表面の導電層3の配線パターンによる凹凸が平坦化される。   Next, a resist mask is formed on the copper foil and etched to form wiring patterns of the positive electrode 31 and the negative electrode 32, thereby forming the conductive layer 3 (see FIG. 3C). On top of this, a liquid crystal polymer film (LCP film) 22a processed into a planar view shape of the reflective layer 22 in another process is overlaid (see FIG. 3 (d)), and further a cushion material (not shown) is overlaid thereon, While being pressed from above and below with a press hot plate for thermocompression bonding or the like (not shown), the LCP film 22a is heated to a temperature higher than the heat deformation temperature (liquid crystal transition point) of the LCP film 22a to make a step due to the pattern of the conductive layer 3 Deform together. At this time, the pressure and temperature are set so that the insulating layer 21 does not deform. Further, by sandwiching the cushion material, the pressure is uniformly applied regardless of the pattern (presence or absence) of the conductive layer 3 and the LCP film 22a, and the holes formed in the LCP film 22a are deformed so as to slightly expand upward. Can be tapered. In addition, when processing the LCP film 22a, it is more preferable to punch it so that the end face is inclined so that the hole expands upward. Next, the pressure is lowered so that the insulating layer 21 is not deformed, and heated to the thermocompression bonding temperature (near the melting point) of the LCP film 22a, so that the LCP film 22a is thermally bonded to the conductive layer 3 and the insulating layer 21. The reflective layer 22 is formed in close contact (see FIG. 3E). By the two-stage pressurization and heating, the insulating layer 21 is not deformed, and the unevenness due to the wiring pattern of the conductive layer 3 on the surface of the reflective layer 22 is flattened.

次に、電気めっきにて導電層3(銅箔)表面に金属めっき膜3aを形成する。このとき、反射層22により、当該反射層22が形成されていない領域、すなわちパッド部31b,32bおよびリード部31c,32c,31d,32d(31d,32dは図示省略)に金属めっき膜3aが形成される。最後に、枠体4を形成して発光素子搭載用基板10が完成する(図3(f)参照)。詳しくは、枠体4の平面視形状に合わせた環形状の吐出口(ノズル)を備えた樹脂吐出装置にて、ペースト状の樹脂材料を金属板1上(反射層22表面)の枠体4の形成位置に吐出し、熱処理等の樹脂材料に対応した処理により硬化または凝固させる。あるいは、枠体4の幅(環の太さ)に合わせた口径の吐出口で、上面に円を描きながら樹脂材料を吐出して、枠体4を形成することもできる。なお、枠体4の形成後に金属めっき膜3aを形成してもよい。   Next, a metal plating film 3a is formed on the surface of the conductive layer 3 (copper foil) by electroplating. At this time, the metal plating film 3a is formed by the reflective layer 22 in regions where the reflective layer 22 is not formed, that is, in the pad portions 31b and 32b and the lead portions 31c, 32c, 31d and 32d (31d and 32d are not shown). Is done. Finally, the frame 4 is formed to complete the light emitting element mounting substrate 10 (see FIG. 3F). Specifically, in a resin discharge device provided with a ring-shaped discharge port (nozzle) that matches the shape of the frame 4 in plan view, paste-like resin material is applied to the frame 4 on the metal plate 1 (surface of the reflective layer 22). And is cured or solidified by a treatment corresponding to the resin material such as heat treatment. Alternatively, the frame body 4 can also be formed by discharging a resin material while drawing a circle on the upper surface with a discharge port having a diameter matched to the width of the frame body 4 (the thickness of the ring). The metal plating film 3a may be formed after the frame 4 is formed.

〔発光装置の製造方法〕
本発明の第1実施形態に係る発光装置50は、発光素子搭載用基板10を用いて、発光素子をフリップチップ実装した一般的なCOB構造の発光装置と同様の方法で製造できる。すなわち、発光素子搭載用基板10上に、発光素子5および保護素子6をそれぞれの載置領域でフリップチップ実装する。詳しくは、Au−Snペーストをリード部31c,32c,31d,32dの所定箇所に塗布して、発光素子5および保護素子6を載置し、共晶温度に加熱して、共晶接合する。あるいは、発光素子5および保護素子6のパッド電極の最上層にAu−Sn合金層を予め形成したものを共晶接合することもできる。そして、枠体4の内側に透光性樹脂材料を充填し、必要に応じて熱処理や光照射等の処理により硬化して封止部材9を形成することにより、発光装置50が完成する。なお、前記したように、発光素子搭載用基板10に枠体4が設けられていない場合は、発光素子5および保護素子6の実装の前または後に枠体4を形成すればよい。あるいは発光装置50は、枠体4を設けない構成として、比較的高粘度の透光性樹脂材料を発光素子搭載用基板10の発光素子5等が配置された領域に盛り上げるように吐出し、硬化して封止部材9を形成することもできる(図示省略)。
[Method of manufacturing light emitting device]
The light emitting device 50 according to the first embodiment of the present invention can be manufactured using the light emitting element mounting substrate 10 by the same method as a light emitting device having a general COB structure in which the light emitting elements are flip-chip mounted. That is, the light emitting element 5 and the protection element 6 are flip-chip mounted on the light emitting element mounting substrate 10 in the respective mounting regions. Specifically, Au—Sn paste is applied to predetermined portions of the lead portions 31c, 32c, 31d, and 32d, the light emitting element 5 and the protective element 6 are placed, and heated to the eutectic temperature to perform eutectic bonding. Or what formed Au-Sn alloy layer beforehand in the uppermost layer of the pad electrode of the light emitting element 5 and the protection element 6 can also be eutectic-bonded. Then, the inside of the frame body 4 is filled with a translucent resin material, and cured by a treatment such as heat treatment or light irradiation as necessary to form the sealing member 9, thereby completing the light emitting device 50. As described above, when the frame body 4 is not provided on the light emitting element mounting substrate 10, the frame body 4 may be formed before or after the light emitting element 5 and the protection element 6 are mounted. Alternatively, the light emitting device 50 has a configuration in which the frame body 4 is not provided, and discharges and cures a relatively high-viscosity translucent resin material so that the light emitting element 5 and the like of the light emitting element mounting substrate 10 are raised. Thus, the sealing member 9 can also be formed (not shown).

〔第2実施形態〕
第1実施形態に係る発光装置はフリップチップ実装型であったが、本発明に係る発光装置は、ワイヤボンディング実装型とすることもできる。以下、本発明の第2実施形態に係る発光装置およびその発光素子搭載用基板について、図4を参照して説明する。第1実施形態に係る発光装置および発光素子搭載用基板(図1、図2)と同一の要素については同じ符号を付して説明を省略する。
[Second Embodiment]
Although the light emitting device according to the first embodiment is a flip chip mounting type, the light emitting device according to the present invention may be a wire bonding mounting type. Hereinafter, a light-emitting device and a light-emitting element mounting substrate according to a second embodiment of the present invention will be described with reference to FIG. The same elements as those of the light emitting device and the light emitting element mounting substrate (FIGS. 1 and 2) according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

第2実施形態に係る発光装置50Aは、ワイヤボンディング実装対応の発光素子5Aを発光素子搭載用基板10Aの発光素子載置領域にフェースアップ(FU)実装して、発光素子5Aの上面に位置するパッド電極(p電極とn電極)を、当該発光装置50Aの一対のリード電極である正極31Aおよび負極32Aにボンディングワイヤ(ワイヤ)Wにて接続し、発光素子5AおよびワイヤWを封止部材9で封止している。発光装置50Aは、当該発光装置50Aの照射領域以外における発光素子搭載用基板10Aの形状、ならびに発光素子5Aの搭載個数および配列(6個×4列=24個)は、第1実施形態に係る発光装置50と同様であるので、発光装置50と同一の外観(図1参照)である。   In the light emitting device 50A according to the second embodiment, the light emitting element 5A corresponding to wire bonding mounting is mounted face up (FU) on the light emitting element mounting region of the light emitting element mounting substrate 10A, and is positioned on the upper surface of the light emitting element 5A. The pad electrodes (p electrode and n electrode) are connected to the positive electrode 31A and the negative electrode 32A which are a pair of lead electrodes of the light emitting device 50A by a bonding wire (wire) W, and the light emitting element 5A and the wire W are connected to the sealing member 9. It is sealed with. In the light emitting device 50A, the shape of the light emitting element mounting substrate 10A other than the irradiation region of the light emitting device 50A, and the number and arrangement of the light emitting elements 5A (6 × 4 rows = 24) are related to the first embodiment. Since it is similar to the light emitting device 50, it has the same appearance as the light emitting device 50 (see FIG. 1).

(発光素子、保護素子)
発光素子5Aは、ワイヤボンディング実装対応である以外は第1実施形態と同様に公知の半導体発光素子を適用できるが、パッド電極が設けられた上面側へ比較的多く光を出射する構造であることが好ましい。発光素子5Aは、発光素子基板側の面を、一般的なフェースアップ実装対応の半導体素子の実装に適用される接合部材7Aで発光素子搭載用基板10Aに接合され、また、発光装置50Aにおける搭載個数および配列は特に規定されない。なお、保護素子6(図示省略)については、第1実施形態と同様に発光装置50Aに搭載されるが、ワイヤボンディング実装対応でもよいし、第1実施形態と同じフリップチップ実装対応でもよく、あるいは上下に電極を備えたものでもよい。
(Light emitting element, protective element)
As the light emitting element 5A, a known semiconductor light emitting element can be applied as in the first embodiment except that the light emitting element 5A is compatible with wire bonding mounting. Is preferred. The surface of the light emitting element 5A is bonded to the light emitting element mounting substrate 10A by a bonding member 7A that is applied to mounting of a general face up mounting compatible semiconductor element, and mounted on the light emitting device 50A. The number and arrangement are not particularly defined. The protective element 6 (not shown) is mounted on the light emitting device 50A as in the first embodiment, but may be compatible with wire bonding mounting, may be compatible with the same flip chip mounting as in the first embodiment, or It may be provided with electrodes on the top and bottom.

(ワイヤ)
ワイヤWは、発光素子5Aのような電子部品を正極31Aおよび負極32Aへ電気的に接続するための導電性の配線である。ワイヤWは、ワイヤボンディングにて一般的に使用されるワイヤであり、材料としては、金、銅、白金、アルミニウムまたはそれらの合金が挙げられる。特に熱伝導率等に優れ、また発光素子5Aのパッド電極材料に一般に適用される金が好ましい。また、ワイヤWの径は特に限定されず、ワイヤWの材料、抵抗、ワイヤボンディングの条件、発光素子5Aや保護素子6の仕様等に応じて適宜選択される。
(Wire)
The wire W is a conductive wiring for electrically connecting an electronic component such as the light emitting element 5A to the positive electrode 31A and the negative electrode 32A. The wire W is a wire generally used in wire bonding, and examples of the material include gold, copper, platinum, aluminum, and alloys thereof. In particular, gold that is excellent in thermal conductivity and generally applied to the pad electrode material of the light emitting element 5A is preferable. The diameter of the wire W is not particularly limited, and is appropriately selected according to the material of the wire W, resistance, wire bonding conditions, specifications of the light emitting element 5A and the protection element 6, and the like.

〔発光素子搭載用基板〕
発光素子搭載用基板10Aは、発光装置50Aの照射領域における導電層3および反射層22の平面視形状以外は、第1実施形態に係る発光素子搭載用基板10と同じ構造であり、積層構造および各要素の材料、ならびに製造方法も同一である。したがって、金属板1およびその全面に形成される絶縁層21は第1実施形態にて説明した通りであるので、説明を省略する。
[Light emitting element mounting substrate]
The light emitting element mounting substrate 10A has the same structure as that of the light emitting element mounting substrate 10 according to the first embodiment, except for the planar view shape of the conductive layer 3 and the reflective layer 22 in the irradiation region of the light emitting device 50A. The material of each element and the manufacturing method are also the same. Therefore, since the metal plate 1 and the insulating layer 21 formed on the entire surface thereof are as described in the first embodiment, description thereof is omitted.

(導電層)
導電層3は第1実施形態と同様に金属膜からなり、発光装置50Aの一対のリード電極を形成する正極31Aおよび負極32Aとして、絶縁層21上に形成される。前記した通り、導電層3の形状すなわち正極31Aおよび負極32Aの形状は、照射領域において第1実施形態と異なる。具体的には、正極31Aおよび負極32Aは、ワイヤボンディングによる接続のために、発光素子5Aの載置領域(発光素子5Aの直下)の外にリード部を設ける。ここで、第1実施形態のリード部31c,32cと同様に、各発光素子5Aについてリード部を一対ずつ設けることもできるが、ワイヤWとの接続のために当該リード部まで反射層22を形成せずに孔を大きくする必要があり、発光装置50Aの照射領域において導電層3が反射層22に被覆されずに露出する領域が多くなる。また、配列した発光素子5A,5A間に十分な間隔がないと、ワイヤボンディングに必要なリード部を設けることができない。本実施形態においては、図4に示すように、隣り合う発光素子5A,5Aの各パッド電極をワイヤWで直列または並列に接続し、配列の端に載置された発光素子5Aについてのみ、そのパッド電極をワイヤWで直接に正極31Aまたは負極32Aに接続できるように、24個の発光素子5Aが配列された領域(以下、適宜、発光素子5Aの配列領域)の外にリード部31e,32eを一対以上設ける(図4では負極32Aのリード部32eを示す)。なお、ワイヤWによる接続においては、第1実施形態と同様に、パッド部31b,32bに直列に接続される発光素子5Aの組は、その発光素子5Aの個数が同数に統一されているようにする。
(Conductive layer)
The conductive layer 3 is made of a metal film as in the first embodiment, and is formed on the insulating layer 21 as a positive electrode 31A and a negative electrode 32A that form a pair of lead electrodes of the light emitting device 50A. As described above, the shape of the conductive layer 3, that is, the shape of the positive electrode 31A and the negative electrode 32A is different from that of the first embodiment in the irradiation region. Specifically, the positive electrode 31A and the negative electrode 32A are provided with lead portions outside the mounting region of the light emitting element 5A (directly under the light emitting element 5A) for connection by wire bonding. Here, like the lead portions 31c and 32c of the first embodiment, a pair of lead portions can be provided for each light emitting element 5A, but the reflective layer 22 is formed up to the lead portion for connection to the wire W. Therefore, it is necessary to enlarge the hole, and there are more regions where the conductive layer 3 is exposed without being covered with the reflective layer 22 in the irradiation region of the light emitting device 50A. Further, if there is no sufficient space between the arranged light emitting elements 5A, 5A, it is impossible to provide a lead portion necessary for wire bonding. In the present embodiment, as shown in FIG. 4, the pad electrodes of the adjacent light emitting elements 5A and 5A are connected in series or in parallel by wires W, and only the light emitting element 5A placed at the end of the array Lead portions 31e and 32e are provided outside the region where the 24 light emitting elements 5A are arranged (hereinafter, appropriately, the arrangement region of the light emitting elements 5A) so that the pad electrode can be directly connected to the positive electrode 31A or the negative electrode 32A by the wire W. Are provided (a lead portion 32e of the negative electrode 32A is shown in FIG. 4). In connection with the wire W, as in the first embodiment, the number of the light emitting elements 5A in the set of the light emitting elements 5A connected in series to the pad portions 31b and 32b is uniform. To do.

本実施形態においては、発光素子5Aの載置領域で当該発光素子5Aが電気的には接続されず、さらにリード部31e,32eは発光素子5Aの配列領域の外に設けられるので、前記領域において導電層3は、配線パターンに形成される必要がない。そこで、正極31Aを、負極32Aと短絡しないように、発光素子5Aの配列領域およびリード部31e(図示省略)を内包し、さらに発光装置50Aの照射領域の外側まで延設してパッド部31b(図1参照)を内包するように形成する。正極31Aに接合された発光素子5Aの熱が、当該正極31Aを伝導して効率的に発光装置50Aの外部に放熱される。なお、発光素子5Aの配列領域に設ける導電層3は負極32Aでもよく、この場合はリード部32eおよびパッド部32b(図1参照)を内包するように形成される。あるいは、発光素子5Aの配列領域において正極31Aと負極32Aとに二分して設けてもよく、正極31Aおよび負極32Aの両方から離間した金属膜としてもよい。   In the present embodiment, the light emitting element 5A is not electrically connected in the mounting area of the light emitting element 5A, and the lead portions 31e and 32e are provided outside the arrangement area of the light emitting element 5A. The conductive layer 3 does not need to be formed in a wiring pattern. Therefore, in order not to short-circuit the positive electrode 31A with the negative electrode 32A, the arrangement region of the light-emitting elements 5A and the lead portion 31e (not shown) are included, and further extended to the outside of the irradiation region of the light-emitting device 50A. (See FIG. 1). The heat of the light emitting element 5A bonded to the positive electrode 31A is conducted through the positive electrode 31A and efficiently radiated to the outside of the light emitting device 50A. The conductive layer 3 provided in the arrangement region of the light emitting element 5A may be the negative electrode 32A, and in this case, the conductive layer 3 is formed so as to include the lead portion 32e and the pad portion 32b (see FIG. 1). Alternatively, the positive electrode 31A and the negative electrode 32A may be divided into two in the arrangement region of the light emitting element 5A, or a metal film separated from both the positive electrode 31A and the negative electrode 32A may be used.

また、導電層3(正極31A)は、発光素子5Aの配列領域に広く設けずに、反射層22から露出する領域においては発光素子5Aの載置領域(直下の領域)のみとして、それぞれの載置領域から反射層22に被覆される領域へ接続するように設けてもよい(図示せず)。導電層3をこのような形状としても、発光素子5Aの熱が直下の導電層3に伝導されるために効率的に放熱され、さらに反射層22から露出する導電層3の面積が少ないため、導電層3の変色による発光装置50Aの光の取出し効率の経時劣化を抑制することができる。   In addition, the conductive layer 3 (the positive electrode 31A) is not provided widely in the arrangement region of the light emitting elements 5A, and only the mounting region (immediately below) of the light emitting element 5A is exposed in the region exposed from the reflective layer 22. You may provide so that it may connect to the area | region coat | covered with the reflective layer 22 from a mounting area | region (not shown). Even if the conductive layer 3 has such a shape, since the heat of the light emitting element 5A is conducted to the conductive layer 3 immediately below, the heat is efficiently radiated, and the area of the conductive layer 3 exposed from the reflective layer 22 is small. Deterioration with time of the light extraction efficiency of the light emitting device 50A due to discoloration of the conductive layer 3 can be suppressed.

導電層3は、第1実施形態と同様に、表面に金属めっき膜3aを備えてもよい。第2実施形態においても、金属めっき膜3aは、発光素子5Aの載置領域を含む反射層22で被覆されない領域、およびリード部31e,32e,31d,32dに設けることが好ましく、図4に示すように、導電層3の全面に設けてもよい。   As in the first embodiment, the conductive layer 3 may include a metal plating film 3a on the surface. Also in the second embodiment, the metal plating film 3a is preferably provided in the region not covered with the reflective layer 22 including the mounting region of the light emitting element 5A and the lead portions 31e, 32e, 31d, and 32d, as shown in FIG. Thus, it may be provided on the entire surface of the conductive layer 3.

(反射層)
反射層22は、第1実施形態に係る発光素子搭載用基板10(図1参照)と同様に、発光素子5Aの載置領域(発光素子5Aの6個分×4本)、保護素子6の載置領域、およびパッド部31b,32bを形成する領域に加え、リード部31e,32eのワイヤWで接続される箇所を空けて形成される。
(Reflective layer)
Similar to the light emitting element mounting substrate 10 (see FIG. 1) according to the first embodiment, the reflective layer 22 includes the light emitting element 5A placement area (six light emitting elements 5A × 4), and the protective element 6. In addition to the mounting region and the region where the pad portions 31b and 32b are formed, the lead portions 31e and 32e are formed with a place connected by the wire W.

〔発光装置の製造方法〕
本発明の第2実施形態に係る発光装置50Aは、発光素子搭載用基板10Aを用いて、発光素子をワイヤボンディング実装した一般的なCOB構造の発光装置と同様の方法で製造できる。すなわち、発光素子搭載用基板10A上に、発光素子5Aおよび保護素子6をそれぞれの載置領域で導電層3に接合する(ダイボンディング)。接合部材7Aの材料によっては、発光素子5Aおよび保護素子6を配列した後、発光素子搭載用基板10Aを加熱して接合部材7Aを硬化する、あるいは溶融して接着固定する。そして、ワイヤボンディングにより、発光素子5Aのそれぞれのパッド電極にワイヤWを接続し、リード部31e,32eへ電気的に接続する。同様に、保護素子6を接続する。そして、第1実施形態と同様に、枠体4の内側に透光性樹脂材料を充填し、硬化して封止部材9を形成することにより、発光装置50Aが完成する。
[Method of manufacturing light emitting device]
The light emitting device 50A according to the second embodiment of the present invention can be manufactured using the light emitting element mounting substrate 10A by the same method as the light emitting device having a general COB structure in which the light emitting elements are mounted by wire bonding. That is, the light emitting element 5A and the protective element 6 are bonded to the conductive layer 3 in each mounting region on the light emitting element mounting substrate 10A (die bonding). Depending on the material of the bonding member 7A, after the light emitting element 5A and the protective element 6 are arranged, the light emitting element mounting substrate 10A is heated to cure or melt and bond and fix the bonding member 7A. Then, the wire W is connected to each pad electrode of the light emitting element 5A by wire bonding, and is electrically connected to the lead portions 31e and 32e. Similarly, the protection element 6 is connected. Then, as in the first embodiment, the light-emitting device 50A is completed by filling the inside of the frame body 4 with a translucent resin material and curing to form the sealing member 9.

〔第2実施形態の変形例〕
第2実施形態に係る発光素子搭載用基板10Aは、両面電極型の発光素子を搭載することもできる。例えば上面(発光装置の光の照射面)にp電極が位置する発光素子を搭載する場合は、発光素子が配列される領域の導電層3を負極32Aとして、前記領域の外に正極31Aのみについてリード部31eを設ける。発光素子のn電極を導電性の接合部材7で負極32Aに接続し、p電極をワイヤボンディングでリード部31eに接続すればよい(図示省略)。保護素子6についても、その仕様に応じてリード部31d,32dの形状を設計し、また実装方法を選択すればよい。
[Modification of Second Embodiment]
The light emitting element mounting substrate 10A according to the second embodiment can be mounted with a double-sided electrode type light emitting element. For example, when a light emitting element having a p-electrode is mounted on the upper surface (light emitting surface of the light emitting device), the conductive layer 3 in the region where the light emitting element is arranged is the negative electrode 32A, and only the positive electrode 31A is outside the region. A lead portion 31e is provided. The n electrode of the light emitting element may be connected to the negative electrode 32A by the conductive bonding member 7 and the p electrode may be connected to the lead portion 31e by wire bonding (not shown). Also for the protection element 6, the shape of the lead portions 31d and 32d may be designed according to the specifications, and the mounting method may be selected.

前記第1、第2実施形態に係る発光装置において、発光素子は照射領域の中心に集中して配列させているが、配列および搭載個数は限定されず、1個の発光素子を搭載してもよいし、照射領域に均等に配列してもよい。同様に、発光装置の照射領域の形状は円形に限られず、したがって枠体の形状は円環形状に限られず前記照射領域に合わせて閉じた環状に形成される。また、発光素子搭載用基板の概形は平板形状に限られず、例えばプレス加工により成形した金属板を用いてもよい。これらは、製品としてユーザに提供する発光素子搭載用基板または発光装置の形態や用途に応じて、適宜設計される。   In the light emitting devices according to the first and second embodiments, the light emitting elements are arranged in a concentrated manner at the center of the irradiation area. However, the arrangement and the number of mounted elements are not limited, and one light emitting element may be mounted. Alternatively, they may be evenly arranged in the irradiation area. Similarly, the shape of the irradiation region of the light-emitting device is not limited to a circle, and thus the shape of the frame is not limited to an annular shape, and is formed in a closed annular shape in accordance with the irradiation region. Further, the general shape of the light emitting element mounting substrate is not limited to a flat plate shape, and a metal plate formed by press working, for example, may be used. These are appropriately designed according to the form and application of the light emitting element mounting substrate or the light emitting device provided to the user as a product.

以上、本発明に係る発光素子搭載用基板および発光装置について、本発明を実施するための形態について説明したが、本発明は前記実施形態に限定されるものではなく、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。   As mentioned above, although the form for implementing this invention was demonstrated about the light emitting element mounting substrate and light-emitting device which concern on this invention, this invention is not limited to the said embodiment, Based on these description, variously Needless to say, changes and modifications are also included in the spirit of the present invention.

10,10A 発光素子搭載用基板
1 金属板
21 絶縁層
22 反射層
21a,22a LCPフィルム(シート状に成形された液晶ポリマー)
3 導電層
3a 金属めっき膜(めっき膜)
31,31A 正極(リード電極)
31b パッド部
31c,31e リード部
31d リード部
32,32A 負極(リード電極)
32b パッド部
32c,32e リード部
32d リード部
4 枠体
50,50A 発光装置
5,5A 発光素子
6 保護素子
7,7A 接合部材
9 封止部材
W ワイヤ
10, 10A Light-emitting element mounting substrate 1 Metal plate 21 Insulating layer 22 Reflecting layer 21a, 22a LCP film (liquid crystal polymer formed into a sheet shape)
3 Conductive layer 3a Metal plating film (plating film)
31, 31A Positive electrode (lead electrode)
31b Pad part 31c, 31e Lead part 31d Lead part 32, 32A Negative electrode (lead electrode)
32b Pad part 32c, 32e Lead part 32d Lead part 4 Frame 50, 50A Light-emitting device 5, 5A Light-emitting element 6 Protection element 7, 7A Joining member 9 Sealing member W Wire

Claims (9)

1以上の発光素子をそれぞれの所定の載置領域上に載置して実装する発光装置に使用される発光素子搭載用基板であって、
金属板と、液晶ポリマーからなる絶縁層と、金属膜からなる導電層と、液晶ポリマーからなる絶縁性の反射層と、をこの順に積層して備え、
前記導電層は、前記絶縁層上で互いに離間した前記発光装置の一対のリード電極を形成し、
前記反射層は、少なくとも前記載置領域を空けて形成されて前記導電層の一部を表面に露出させていることを特徴とする発光素子搭載用基板。
A light-emitting element mounting substrate used in a light-emitting device that mounts one or more light-emitting elements on each predetermined mounting region,
A metal plate, an insulating layer made of a liquid crystal polymer, a conductive layer made of a metal film, and an insulating reflective layer made of a liquid crystal polymer are laminated in this order,
The conductive layer forms a pair of lead electrodes of the light emitting device spaced apart from each other on the insulating layer;
The light-emitting element mounting substrate, wherein the reflective layer is formed with at least the placement region described above to expose a part of the conductive layer on the surface.
前記絶縁層は、面方向における線膨張係数が1〜30ppm/℃であることを特徴とする請求項1に記載の発光素子搭載用基板。   The light-emitting element mounting substrate according to claim 1, wherein the insulating layer has a linear expansion coefficient in a plane direction of 1 to 30 ppm / ° C. 前記反射層は、面方向における線膨張係数が1〜30ppm/℃であることを特徴とする請求項1または請求項2に記載の発光素子搭載用基板。   The light emitting element mounting substrate according to claim 1, wherein the reflective layer has a linear expansion coefficient in a plane direction of 1 to 30 ppm / ° C. 3. 前記絶縁層は、シート状に成形された液晶ポリマーを熱圧着して形成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の発光素子搭載用基板。   The light emitting element mounting substrate according to any one of claims 1 to 3, wherein the insulating layer is formed by thermocompression bonding of a liquid crystal polymer formed in a sheet shape. 前記反射層は、シート状に成形された液晶ポリマーを、前記絶縁層が熱変形しない温度および圧力で熱圧着して形成されていることを特徴とする請求項1ないし請求項4のいずれか一項に記載の発光素子搭載用基板。   5. The reflective layer according to claim 1, wherein the reflective layer is formed by thermocompression bonding a liquid crystal polymer formed into a sheet shape at a temperature and pressure at which the insulating layer is not thermally deformed. The light emitting element mounting substrate according to item. 前記シート状に成形された液晶ポリマーは、前記反射層の形状に合わせて加工されていることを特徴とする請求項5に記載の発光素子搭載用基板。   The light-emitting element mounting substrate according to claim 5, wherein the liquid crystal polymer formed into a sheet shape is processed according to the shape of the reflective layer. 前記導電層は、前記反射層から露出した表面に、光反射率の高い金属からなるめっき膜を備えることを特徴とする請求項1ないし請求項6のいずれか一項に記載の発光素子搭載用基板。   7. The light-emitting element mounting according to claim 1, wherein the conductive layer includes a plating film made of a metal having high light reflectance on a surface exposed from the reflection layer. substrate. 請求項1ないし請求項7のいずれか一項に記載の発光素子搭載用基板と、前記発光素子搭載用基板の一対のリード電極に電気的に接続された1以上の発光素子と、前記発光素子を封止する当該発光素子が発光した光を透過させる封止部材と、を備え、
前記発光素子は、前記発光素子搭載用基板の前記載置領域上で前記導電層の露出した表面に接触して載置されていることを特徴とする発光装置。
The light emitting element mounting substrate according to claim 1, one or more light emitting elements electrically connected to a pair of lead electrodes of the light emitting element mounting substrate, and the light emitting element A sealing member that transmits the light emitted by the light emitting element that seals,
The light emitting device, wherein the light emitting device is placed in contact with the exposed surface of the conductive layer on the mounting region of the light emitting device mounting substrate.
前記発光素子は、前記発光素子搭載用基板の所定の実装領域に複数が配列されて載置されていることを特徴とする請求項8に記載の発光装置。   The light emitting device according to claim 8, wherein a plurality of the light emitting elements are arranged and placed in a predetermined mounting region of the light emitting element mounting substrate.
JP2011033856A 2011-02-18 2011-02-18 Light emitting device Active JP5673190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033856A JP5673190B2 (en) 2011-02-18 2011-02-18 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033856A JP5673190B2 (en) 2011-02-18 2011-02-18 Light emitting device

Publications (2)

Publication Number Publication Date
JP2012174808A true JP2012174808A (en) 2012-09-10
JP5673190B2 JP5673190B2 (en) 2015-02-18

Family

ID=46977462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033856A Active JP5673190B2 (en) 2011-02-18 2011-02-18 Light emitting device

Country Status (1)

Country Link
JP (1) JP5673190B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067846A (en) * 2012-09-26 2014-04-17 Rohm Co Ltd Led lighting device
JP2014160756A (en) * 2013-02-20 2014-09-04 Stanley Electric Co Ltd Light emitting element module
WO2016042788A1 (en) * 2014-09-18 2016-03-24 東芝ライテック株式会社 Light-emitting module substrate, light-emitting module, and illumination apparatus
JP2016115897A (en) * 2014-12-18 2016-06-23 シチズン電子株式会社 Light-emitting device and method of manufacturing the same
KR20160101056A (en) * 2013-12-18 2016-08-24 코닌클리케 필립스 엔.브이. Reflective solder mask layer for led phosphor package
KR20170049802A (en) * 2015-10-28 2017-05-11 엘지디스플레이 주식회사 Light-Emitting Module and Display Device having the same
JP2017118081A (en) * 2015-12-26 2017-06-29 日亜化学工業株式会社 Light-emitting device
JP2017224691A (en) * 2016-06-14 2017-12-21 日亜化学工業株式会社 Light-emitting device
US9887333B2 (en) 2015-11-27 2018-02-06 Nichia Corporation Light emitting device and element mounting board
CN108565325A (en) * 2018-02-01 2018-09-21 广州硅能照明有限公司 COB substrate
KR101922380B1 (en) 2018-07-06 2018-11-26 한영희 Flexible printed circuit board including heat dissipating member
US10276767B2 (en) 2016-05-31 2019-04-30 Nichia Corporation Light emitting device
JP2022031370A (en) * 2017-12-25 2022-02-18 日亜化学工業株式会社 Light-emitting device and light-emitting module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123560A (en) * 2003-09-25 2005-05-12 Nichia Chem Ind Ltd Light emitting device and its forming method
JP2006517738A (en) * 2003-02-07 2006-07-27 松下電器産業株式会社 Metal base substrate for light emitter, light emission source, illumination device and display device
JP2007109948A (en) * 2005-10-14 2007-04-26 Toyoda Gosei Co Ltd Light-emitting device and manufacturing method thereof
JP2008258080A (en) * 2007-04-09 2008-10-23 Hitachi Displays Ltd Light source module, light source unit, liquid crystal display device, and lighting system
JP2009176961A (en) * 2008-01-24 2009-08-06 Toyoda Gosei Co Ltd Method of manufacturing mounting substrate, and method of manufacturing linear light source
JP2009231584A (en) * 2008-03-24 2009-10-08 Japan Gore Tex Inc Method of manufacturing led substrate and the led substrate
JP2011014890A (en) * 2009-06-02 2011-01-20 Mitsubishi Chemicals Corp Metal substrate and light source device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517738A (en) * 2003-02-07 2006-07-27 松下電器産業株式会社 Metal base substrate for light emitter, light emission source, illumination device and display device
JP2005123560A (en) * 2003-09-25 2005-05-12 Nichia Chem Ind Ltd Light emitting device and its forming method
JP2007109948A (en) * 2005-10-14 2007-04-26 Toyoda Gosei Co Ltd Light-emitting device and manufacturing method thereof
JP2008258080A (en) * 2007-04-09 2008-10-23 Hitachi Displays Ltd Light source module, light source unit, liquid crystal display device, and lighting system
JP2009176961A (en) * 2008-01-24 2009-08-06 Toyoda Gosei Co Ltd Method of manufacturing mounting substrate, and method of manufacturing linear light source
JP2009231584A (en) * 2008-03-24 2009-10-08 Japan Gore Tex Inc Method of manufacturing led substrate and the led substrate
JP2011014890A (en) * 2009-06-02 2011-01-20 Mitsubishi Chemicals Corp Metal substrate and light source device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067846A (en) * 2012-09-26 2014-04-17 Rohm Co Ltd Led lighting device
JP2014160756A (en) * 2013-02-20 2014-09-04 Stanley Electric Co Ltd Light emitting element module
KR102305948B1 (en) 2013-12-18 2021-09-28 루미리즈 홀딩 비.브이. Reflective solder mask layer for led phosphor package
US10204887B2 (en) 2013-12-18 2019-02-12 Lumileds Llc Reflective solder mask layer for LED phosphor package
KR20160101056A (en) * 2013-12-18 2016-08-24 코닌클리케 필립스 엔.브이. Reflective solder mask layer for led phosphor package
JP2017501578A (en) * 2013-12-18 2017-01-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Reflective solder mask layer for LED phosphor package
US11189601B2 (en) 2013-12-18 2021-11-30 Lumileds Llc Reflective solder mask layer for LED phosphor package
JPWO2016042788A1 (en) * 2014-09-18 2017-04-27 東芝ライテック株式会社 Light emitting module substrate, light emitting module, and lighting fixture
WO2016042788A1 (en) * 2014-09-18 2016-03-24 東芝ライテック株式会社 Light-emitting module substrate, light-emitting module, and illumination apparatus
JP2016115897A (en) * 2014-12-18 2016-06-23 シチズン電子株式会社 Light-emitting device and method of manufacturing the same
KR20170049802A (en) * 2015-10-28 2017-05-11 엘지디스플레이 주식회사 Light-Emitting Module and Display Device having the same
KR102392698B1 (en) * 2015-10-28 2022-05-02 엘지디스플레이 주식회사 Light-Emitting Module and Display Device having the same, and Manufacturing Method of Light-Emitting Module
US9887333B2 (en) 2015-11-27 2018-02-06 Nichia Corporation Light emitting device and element mounting board
JP2017118081A (en) * 2015-12-26 2017-06-29 日亜化学工業株式会社 Light-emitting device
US10276767B2 (en) 2016-05-31 2019-04-30 Nichia Corporation Light emitting device
JP2017224691A (en) * 2016-06-14 2017-12-21 日亜化学工業株式会社 Light-emitting device
JP2022031370A (en) * 2017-12-25 2022-02-18 日亜化学工業株式会社 Light-emitting device and light-emitting module
JP7227531B2 (en) 2017-12-25 2023-02-22 日亜化学工業株式会社 Light-emitting device and light-emitting module
CN108565325A (en) * 2018-02-01 2018-09-21 广州硅能照明有限公司 COB substrate
KR101922380B1 (en) 2018-07-06 2018-11-26 한영희 Flexible printed circuit board including heat dissipating member

Also Published As

Publication number Publication date
JP5673190B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5673190B2 (en) Light emitting device
JP5665160B2 (en) Light emitting device and lighting apparatus
JP5842813B2 (en) Light emitting device and method for manufacturing light emitting device
JP4029843B2 (en) Light emitting device
JP5768435B2 (en) Light emitting device
WO2013168802A1 (en) Led module
WO2013137356A1 (en) Semiconductor light emitting device and method for manufacturing same
JP3872490B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP2012216808A (en) Luminous body flexible substrate and luminous body device
WO2008047933A1 (en) Package assembly for upper/lower electrode light-emitting diodes and light-emitting device manufacturing method using same
JP5011445B1 (en) Mounting board and light emitting module
WO2010050067A1 (en) Substrate for light emitting element package, and light emitting element package
JP2011035264A (en) Package for light emitting element and method of manufacturing light emitting element
JP6520663B2 (en) Element mounting substrate and light emitting device
US11611014B2 (en) Light-emitting module
JP2009111180A (en) Led unit
JP2008251664A (en) Illumination apparatus
JP2014103262A (en) Method of manufacturing light-emitting device, mounting board, and light-emitting device
JP6802620B2 (en) Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
JP5573602B2 (en) Light emitting device
JP5126127B2 (en) Method for manufacturing light emitting device
JP2010003946A (en) Package of light emitting element, and manufacturing method of light emitting element
JP2007329370A (en) Light-emitting device, and method of manufacturing light emitting device
JP6010891B2 (en) Semiconductor device
JPWO2008139981A1 (en) Light emitting device and package assembly for light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250