JP2012173158A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2012173158A
JP2012173158A JP2011035945A JP2011035945A JP2012173158A JP 2012173158 A JP2012173158 A JP 2012173158A JP 2011035945 A JP2011035945 A JP 2011035945A JP 2011035945 A JP2011035945 A JP 2011035945A JP 2012173158 A JP2012173158 A JP 2012173158A
Authority
JP
Japan
Prior art keywords
voltage
measurement
terminal
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011035945A
Other languages
Japanese (ja)
Inventor
Shinichi Koike
伸一 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2011035945A priority Critical patent/JP2012173158A/en
Publication of JP2012173158A publication Critical patent/JP2012173158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid reduction of measurement range of parameters such as a resistance value while reducing the power source voltage.SOLUTION: The measurement device includes an intermediate voltage generating section 6, a constant current supply section 7, and a processing section 14. The intermediate voltage generating section 6 generates a first intermediate voltage Vf1(=Vcc/2) which is an intermediate voltage of a battery voltage Vcc and outputs the voltage to a common terminal 4 in a voltage measurement mode, and generates a second intermediate voltage Vf2 lower than the first intermediate voltage Vf1 and outputs the voltage to the common terminal 4 in a resistance measurement mode. The constant current supply section 7 is connected to a voltage measurement terminal 2 and supplies a direct constant current I1 to a measurement object 21 connected between the voltage measurement terminal 2 and the common terminal 4 in a resistance measurement mode. The processing section 14 measures an inter-terminal voltage between the voltage measurement terminal 2 and the common terminal 4 as a measurement object voltage V in a voltage measurement mode, and calculates a resistance value Rob based on the voltage value of the inter-terminal voltage and the current value of the direct constant current I1 in a resistance measurement mode.

Description

本発明は、電池などの電源から供給される電源電圧で作動して、入力される測定対象電圧、および接続される測定対象体についての抵抗値などのパラメータを測定対象体に直流電流を供給して測定する測定装置に関するものである。   The present invention operates with a power supply voltage supplied from a power source such as a battery, and supplies a DC current to the measurement object with parameters such as the input measurement object voltage and the resistance value of the connected measurement object. It is related with the measuring device which measures.

この種の測定装置に類似する測定装置として、下記特許文献1に開示された電圧電流測定器が知られている。この電圧電流測定器は、ハンディタイプのデジタル電圧電流測定器であって、絶縁性材料で成形された筐体と、液晶表示器等から成るデジタル表示部と、測定に関する機能等を選択するための複数の押しボタンと、動作モードを選択するためのダイヤル式モード切替スイッチと、測定プローブが接続される電圧測定端子と、電流測定端子と、共通端子(COM)とを備えている。また、電流測定端子と共通端子との間に電流検出用抵抗器(抵抗値は既知)が接続されている。   As a measuring apparatus similar to this type of measuring apparatus, a voltage / current measuring instrument disclosed in Patent Document 1 below is known. This voltage / current measuring instrument is a handy type digital voltage / current measuring instrument for selecting a case formed of an insulating material, a digital display unit including a liquid crystal display, and a function related to measurement. It has a plurality of push buttons, a dial type mode changeover switch for selecting an operation mode, a voltage measurement terminal to which a measurement probe is connected, a current measurement terminal, and a common terminal (COM). Further, a current detection resistor (resistance value is known) is connected between the current measurement terminal and the common terminal.

また、機器内部に配設された電気回路(A/D変換回路(ADC)、マイクロプロセッサおよび表示部など)は、機器内に配設された電池から電池電圧(直流電圧)の供給を受けて作動する。この場合、A/D変換回路は、電池電圧の供給を受けつつ、共通端子を基準として電圧測定端子に入力される直流電圧や交流電圧をデジタル値に変換して出力可能に構成されている必要がある。このため、この電圧電流測定器では、電池電圧に基づいて、A/D変換回路のアナログ入力電圧範囲の1/2の電位(通常は、電池電圧の1/2の電圧(中間電圧))をフローティング電位(電圧)として生成して、共通端子に供給(印加)すると共に、A/D変換回路に基準電圧として供給する構成を採用している。   In addition, an electric circuit (A / D conversion circuit (ADC), microprocessor, display unit, etc.) disposed in the device receives supply of battery voltage (DC voltage) from a battery disposed in the device. Operate. In this case, the A / D conversion circuit needs to be configured to be capable of converting a DC voltage or an AC voltage input to the voltage measurement terminal with a common terminal as a reference and converting it to a digital value while receiving supply of the battery voltage. There is. For this reason, in this voltage / current measuring device, based on the battery voltage, the potential of 1/2 of the analog input voltage range of the A / D converter circuit (usually, the voltage of 1/2 of the battery voltage (intermediate voltage)) A configuration in which a floating potential (voltage) is generated and supplied (applied) to the common terminal and supplied as a reference voltage to the A / D conversion circuit is adopted.

以上のように構成された電圧電流測定器では、電圧測定を行う場合には、電圧測定端子および共通端子に2本の測定プローブを接続すると共にモード切替スイッチを電圧測定モードに切り替えることで、両測定プローブを介して測定する電圧を入力する。入力した電圧はA/D変換回路に供給され、A/D変換回路がこの電圧をデジタル値に変換してマイクロプロセッサに送る。マクロプロセッサは、電圧測定時には、入力したデジタル値を電圧測定値として表示部に表示させる。   In the voltage / current measuring device configured as described above, when performing voltage measurement, two measurement probes are connected to the voltage measurement terminal and the common terminal, and the mode changeover switch is switched to the voltage measurement mode. Input the voltage to be measured through the measurement probe. The input voltage is supplied to the A / D conversion circuit, and the A / D conversion circuit converts this voltage into a digital value and sends it to the microprocessor. At the time of voltage measurement, the macro processor displays the input digital value as a voltage measurement value on the display unit.

また、この電圧電流測定器では、電流測定を行う場合には、電流測定端子および共通端子に2本の測定プローブを接続すると共にモード切替スイッチを電流測定モードに切り換えた状態で、測定する電流の経路に配設される。これにより、この電流の経路中に電流測定端子および共通端子を介して電流検出用抵抗器が接続されるため、電流が電流検出用抵抗器に流れることに起因して電流検出用抵抗器に発生する両端電圧が、A/D変換回路に供給される。A/D変換回路は、この両端電圧をデジタル値に変換してマイクロプロセッサに送る。マクロプロセッサは、電流測定時には、入力したデジタル値と電流検出用抵抗器の抵抗値(既知)とに基づいて電流値を算出して、表示部に表示させる。   Further, in this voltage / current measuring instrument, when measuring current, two measuring probes are connected to the current measuring terminal and the common terminal, and the mode changeover switch is switched to the current measuring mode, and the current to be measured is measured. Arranged in the path. As a result, the current detection resistor is connected to the current path through the current measurement terminal and the common terminal, so that the current is generated in the current detection resistor due to the current flowing through the current detection resistor. The voltage between both ends is supplied to the A / D conversion circuit. The A / D conversion circuit converts the voltage across this terminal into a digital value and sends it to the microprocessor. At the time of current measurement, the macro processor calculates a current value based on the input digital value and the resistance value (known) of the current detection resistor, and displays the current value on the display unit.

また、この電圧電流測定器では、単独では測定対象体の抵抗値測定を行うことはできないが、以下のようにすることで、この抵抗値を測定することも可能である。例えば、直流定電流源を別途用意して直流定電流を測定対象体に供給し、この状態において測定対象体に発生する電圧(両端電圧)を電圧電流測定器で測定すると共に、測定した電圧の電圧値を定電流の電流値で除算することにより、測定対象体の抵抗値を測定する。   In addition, this voltage / current measuring device alone cannot measure the resistance value of the measurement object, but it is also possible to measure the resistance value as follows. For example, a DC constant current source is prepared separately and a DC constant current is supplied to the measurement object. In this state, the voltage (both ends voltage) generated in the measurement object is measured with a voltage / current measuring instrument, and the measured voltage The resistance value of the measurement object is measured by dividing the voltage value by the constant current value.

特開平8−5675号公報(第2−3頁、第1図)JP-A-8-5675 (page 2-3, FIG. 1)

ところで、装置単体で、電圧測定や電流測定と共に抵抗測定も実行し得るハンディタイプの測定装置も開発されており、この測定装置は、例えば、上記した電圧電流測定器内に、電池からの電池電圧で作動して直流定電流を生成する定電流回路(直流定電流回路)を配設し、電圧測定モードおよび電流測定モードのときには、定電流回路を電圧測定端子、電流測定端子および共通端子のいずれからも切り離し、抵抗測定モードのときにのみ、定電流回路を電圧測定端子に接続する構成となっている。   By the way, a handy type measuring device capable of performing resistance measurement as well as voltage measurement and current measurement with a single device has been developed. For example, this measuring device includes a battery voltage from a battery in the above-described voltage / current measuring device. A constant current circuit (DC constant current circuit) that generates a DC constant current by operating is provided. In the voltage measurement mode and current measurement mode, the constant current circuit can be any of the voltage measurement terminal, current measurement terminal, and common terminal. The constant current circuit is connected to the voltage measurement terminal only in the resistance measurement mode.

この構成の測定装置では、抵抗測定モードのときには、定電流回路から出力された直流定電流は、電圧測定端子、測定対象体および共通端子を経由してフローティング電位に流れる構成となる。また、抵抗測定に際して十分な測定精度を常に確保するには、常に規定以上の電流値の直流定電流を測定対象体に供給する必要があるが、この測定装置では、定電流回路から出力する直流定電流の電流値は、電池電圧と共通端子の電位(フローティング電位)との電位差によって制限される。このため、低い電池電圧では、この電位差も小さくなることから、測定対象体の抵抗値の測定範囲が狭まる(縮小する)ことになる。つまり、測定対象体の抵抗値が大きいときには、この測定範囲を超えるため、抵抗値の測定が困難となる。したがって、旧来の測定装置の多くでは、多数の電池を直列に接続したり、また起電圧の高い電池を使用したりして、電池から高い電池電圧(例えば6V以上)を出力する構成として、測定対象体の抵抗値の測定範囲を広げるようにしていた。   In the measurement device having this configuration, in the resistance measurement mode, the DC constant current output from the constant current circuit flows to the floating potential via the voltage measurement terminal, the measurement object, and the common terminal. In addition, in order to always ensure sufficient measurement accuracy in resistance measurement, it is necessary to always supply a DC constant current with a current value exceeding the specified value to the measurement object. In this measuring device, the DC current output from the constant current circuit is required. The current value of the constant current is limited by the potential difference between the battery voltage and the common terminal potential (floating potential). For this reason, at a low battery voltage, this potential difference also becomes small, so that the measurement range of the resistance value of the measurement object is narrowed (reduced). That is, when the resistance value of the measurement object is large, this measurement range is exceeded, making it difficult to measure the resistance value. Therefore, in many of the conventional measuring devices, a configuration in which a high battery voltage (for example, 6 V or more) is output from a battery by connecting a large number of batteries in series or using a battery with a high electromotive voltage is used. The measurement range of the resistance value of the object was expanded.

一方、近年では、A/Dコンバータやマイクロプロセッサなどの電子デバイスの低電圧化が進み、これらの電子デバイスを作動させるのに必要な電池電圧の低電圧化が可能になると共に、測定装置のさらなる小型化・軽量化の要請もあることから、より低い電池電圧(より数の少ない電池)で動作可能な測定装置が望まれている。しかしながら、上記したように、電池電圧の低下、すなわち電源電圧の低下は、抵抗測定モードにおける電圧測定端子と共通端子との間の電位差の低下を引き起こすため、測定対象体の抵抗値の測定範囲を狭めるという課題が発生する。   On the other hand, in recent years, the voltage of electronic devices such as A / D converters and microprocessors has been lowered, and the battery voltage required to operate these electronic devices can be lowered. Since there is a demand for a reduction in size and weight, a measuring apparatus that can operate at a lower battery voltage (a smaller number of batteries) is desired. However, as described above, a decrease in the battery voltage, that is, a decrease in the power supply voltage causes a decrease in the potential difference between the voltage measurement terminal and the common terminal in the resistance measurement mode. The problem of narrowing occurs.

本発明は、かかる課題を解決すべくなされたものであり、電源電圧の低電圧化を図りつつ、抵抗値などの測定対象体のパラメータの測定範囲の縮小を回避し得る測定装置を提供することを主目的とする。   The present invention has been made to solve such a problem, and provides a measuring apparatus capable of avoiding a reduction in measurement range of a parameter of a measurement object such as a resistance value while reducing a power supply voltage. The main purpose.

上記目的を達成すべく請求項1記載の測定装置は、電源から供給される電源電圧で作動して、電圧測定のときには電圧測定端子および共通端子間に入力される測定対象電圧の電圧値を測定し、抵抗体、コンデンサおよびダイオードのうちのいずれか1つを測定対象体として抵抗値、静電容量値および順方向電圧値のうちの1つのパラメータを測定するパラメータ測定のときにはパラメータ測定端子および前記共通端子間に接続される前記測定対象体に直流電流を供給して前記パラメータを測定する測定装置であって、前記電圧測定のときには前記電源電圧の中間電圧である第1中間電圧を生成して前記共通端子に出力し、前記パラメータ測定のときには、前記第1中間電圧よりも低い電圧の第2中間電圧を生成して前記共通端子に出力する中間電圧生成部と、前記パラメータ測定のときに、前記パラメータ測定端子を介して前記測定対象体に前記直流電流をソース電流として供給する電流供給部と、前記電圧測定のときには前記電圧測定端子および前記共通端子間の端子間電圧を前記測定対象電圧として測定し、前記パラメータ測定のときには前記パラメータ測定端子および前記共通端子間の端子間電圧の電圧値と前記直流電流の電流値とに基づいて前記パラメータを測定する処理部とを備えている。   In order to achieve the above object, the measuring apparatus according to claim 1 operates with a power supply voltage supplied from a power supply, and measures a voltage value of a voltage to be measured input between the voltage measurement terminal and the common terminal when measuring the voltage. In the case of parameter measurement for measuring one of a resistance value, a capacitance value, and a forward voltage value using any one of a resistor, a capacitor, and a diode as a measurement object, the parameter measurement terminal and the aforementioned A measuring device that measures a parameter by supplying a direct current to the measurement object connected between common terminals, and generates a first intermediate voltage that is an intermediate voltage of the power supply voltage during the voltage measurement. Outputting to the common terminal and generating a second intermediate voltage lower than the first intermediate voltage and outputting to the common terminal during the parameter measurement. A voltage generation unit; a current supply unit configured to supply the DC current as a source current to the measurement object via the parameter measurement terminal during the parameter measurement; and the voltage measurement terminal and the common during the voltage measurement. The voltage between terminals is measured as the voltage to be measured, and the parameter is measured based on the voltage value between the parameter measurement terminal and the common terminal and the current value of the direct current when measuring the parameter. And a processing unit for measuring.

また、請求項2記載の測定装置は、電源から供給される電源電圧で作動して、電圧測定のときには電圧測定端子および共通端子間に入力される測定対象電圧の電圧値を測定し、抵抗体、コンデンサおよびダイオードのうちのいずれか1つを測定対象体として抵抗値、静電容量値および順方向電圧値のうちの1つのパラメータを測定するパラメータ測定のときにはパラメータ測定端子および前記共通端子間に接続される前記測定対象体に直流電流を供給して前記パラメータを測定する測定装置であって、前記電圧測定のときには前記電源電圧の中間電圧である第1中間電圧を生成して前記共通端子に出力し、前記パラメータ測定のときには、前記第1中間電圧よりも高い電圧の第2中間電圧を生成して前記共通端子に出力する中間電圧生成部と、前記パラメータ測定のときに、前記パラメータ測定端子を介して前記測定対象体に前記直流電流をシンク電流として供給する電流供給部と、前記電圧測定のときには前記電圧測定端子および前記共通端子間の端子間電圧を前記測定対象電圧として測定し、前記パラメータ測定のときには前記パラメータ測定端子および前記共通端子間の端子間電圧の電圧値と前記直流電流の電流値とに基づいて前記パラメータを測定する処理部とを備えている。   The measuring device according to claim 2 operates with a power supply voltage supplied from a power supply, measures a voltage value of a voltage to be measured input between the voltage measurement terminal and the common terminal at the time of voltage measurement, In the case of parameter measurement for measuring one parameter of a resistance value, a capacitance value, and a forward voltage value using any one of a capacitor and a diode as a measurement object, between the parameter measurement terminal and the common terminal A measuring device for measuring the parameter by supplying a direct current to the measurement object to be connected, and at the time of the voltage measurement, generates a first intermediate voltage that is an intermediate voltage of the power supply voltage and supplies the first common voltage to the common terminal. An intermediate voltage generation unit that generates a second intermediate voltage that is higher than the first intermediate voltage and outputs the second intermediate voltage to the common terminal during the parameter measurement; A current supply unit that supplies the DC current as a sink current to the measurement object via the parameter measurement terminal during the parameter measurement, and a terminal between the voltage measurement terminal and the common terminal during the voltage measurement. A processing unit that measures a voltage as the measurement target voltage and measures the parameter based on a voltage value of a voltage between terminals between the parameter measurement terminal and the common terminal and a current value of the direct current when the parameter is measured. It has.

請求項1記載の測定装置では、電圧測定のときには、共通端子に対して第1中間電圧を出力し、抵抗測定のときには、共通端子に対して第1中間電圧よりも低い電圧の第2中間電圧を出力する。したがって、この測定装置によれば、電源電圧を低電圧化した場合においても、パラメータ測定のときの例えば増幅部やA/D変換部などにおける正電圧側の入力電圧範囲を拡大することができるため、同一の電流値の直流電流を測定対象体に電流供給部からソース電流として供給するという条件下において、従来の測定装置よりも、測定対象体が抵抗体のときには、より大きな抵抗値の測定対象体を測定することができ(つまり、測定し得る測定対象体の抵抗値の上限(測定範囲の上限)を高めることができ)、測定対象体がコンデンサのときには、静電容量値の測定精度を高めることができ、測定対象体がダイオードのときには、順方向電圧の大きなダイオード(白色LEDなど)の順方向電圧の測定をすることができる。   In the measuring apparatus according to claim 1, the first intermediate voltage is output to the common terminal during voltage measurement, and the second intermediate voltage, which is lower than the first intermediate voltage relative to the common terminal, during resistance measurement. Is output. Therefore, according to this measuring apparatus, even when the power supply voltage is lowered, the input voltage range on the positive voltage side in the parameter measurement, for example, the amplification unit or the A / D conversion unit can be expanded. Under the condition that a direct current of the same current value is supplied to the measurement object as a source current from the current supply unit, when the measurement object is a resistor, a measurement object having a larger resistance value than the conventional measurement device The body can be measured (that is, the upper limit of the measurable resistance of the measurement object (the upper limit of the measurement range) can be increased), and when the measurement object is a capacitor, the measurement accuracy of the capacitance value can be increased. When the measurement object is a diode, the forward voltage of a diode having a large forward voltage (such as a white LED) can be measured.

請求項2記載の測定装置では、電圧測定のときには、共通端子に対して第1中間電圧を出力し、抵抗測定のときには、共通端子に対して第1中間電圧よりも高い電圧の第2中間電圧を出力する。したがって、この測定装置によれば、電源電圧を低電圧化した場合においても、パラメータ測定のときの例えば増幅部やA/D変換部などにおける負電圧側の入力電圧範囲を拡大することができるため、同一の電流値の直流電流を測定対象体に電流供給部からシンク電流として供給するという条件下において、従来の測定装置よりも、測定対象体が抵抗体のときには、より大きな抵抗値の測定対象体を測定することができ(つまり、測定し得る測定対象体の抵抗値の上限(測定範囲の上限)を高めることができ)、測定対象体がコンデンサのときには、静電容量値の測定精度を高めることができ、測定対象体がダイオードのときには、順方向電圧の大きなダイオード(白色LEDなど)の順方向電圧の測定をすることができる。   In the measuring apparatus according to claim 2, the first intermediate voltage is output to the common terminal at the time of voltage measurement, and the second intermediate voltage higher than the first intermediate voltage to the common terminal at the time of resistance measurement. Is output. Therefore, according to this measurement apparatus, even when the power supply voltage is lowered, the input voltage range on the negative voltage side in the parameter measurement, for example, the amplification unit or the A / D conversion unit can be expanded. Under the condition that a DC current having the same current value is supplied as a sink current from the current supply unit to the measurement object, when the measurement object is a resistor, the measurement object having a larger resistance value is used. The body can be measured (that is, the upper limit of the measurable resistance of the measurement object (the upper limit of the measurement range) can be increased), and when the measurement object is a capacitor, the measurement accuracy of the capacitance value can be increased. When the measurement object is a diode, the forward voltage of a diode having a large forward voltage (such as a white LED) can be measured.

測定装置1の構成図である。1 is a configuration diagram of a measuring device 1. FIG. 測定装置1Aの構成図である。It is a block diagram of the measuring apparatus 1A.

以下、添付図面を参照して、測定装置の実施の形態について説明する。なお、測定対象体のパラメータとして、抵抗体の抵抗値を測定する例を挙げて説明する。また、このパラメータの測定に際して測定対象体を接続するパラメータ測定端子を、電圧測定端子と兼用する例を挙げて説明する。また、電源として電池を使用する例を挙げて説明する。   Hereinafter, embodiments of a measuring apparatus will be described with reference to the accompanying drawings. An example in which the resistance value of the resistor is measured as a parameter of the measurement object will be described. An example in which a parameter measurement terminal for connecting a measurement object for measurement of the parameter is also used as a voltage measurement terminal will be described. An example in which a battery is used as the power source will be described.

測定装置1は、図1に示すように、電圧測定端子(パラメータ測定端子を兼用する)2、電流測定端子3、共通端子4、電池5、中間電圧生成部6、定電流供給部7、第1スイッチ8、電流検出抵抗9、第2スイッチ10、差動増幅部11、A/D変換部12、操作部13、処理部14および表示部15を備えている。この測定装置1は、電源としての電池5から供給される電池電圧Vccを電源電圧(作動電圧)として作動して、電圧測定モードのときには電圧測定端子2および共通端子4間に入力される測定対象電圧Vの電圧値Vobを測定し、電流測定モードのときには電流測定端子3および共通端子4間に入力される測定対象電流Iの電流値Iobを測定し、抵抗測定モード(パラメータ測定モード)のときには電圧測定端子2および共通端子4間に接続される測定対象体(本例では抵抗体)21の抵抗値Robを測定する。   As shown in FIG. 1, the measuring device 1 includes a voltage measuring terminal (also serving as a parameter measuring terminal) 2, a current measuring terminal 3, a common terminal 4, a battery 5, an intermediate voltage generating unit 6, a constant current supplying unit 7, 1 switch 8, current detection resistor 9, second switch 10, differential amplification unit 11, A / D conversion unit 12, operation unit 13, processing unit 14, and display unit 15. This measuring apparatus 1 operates with a battery voltage Vcc supplied from a battery 5 as a power supply as a power supply voltage (operation voltage), and is a measurement object input between the voltage measurement terminal 2 and the common terminal 4 in the voltage measurement mode. The voltage value Vob of the voltage V is measured. In the current measurement mode, the current value Iob of the measurement target current I input between the current measurement terminal 3 and the common terminal 4 is measured. In the resistance measurement mode (parameter measurement mode), A resistance value Rob of a measurement object (a resistor in this example) 21 connected between the voltage measurement terminal 2 and the common terminal 4 is measured.

電圧測定端子2、電流測定端子3および共通端子4は、不図示の測定プローブを接続可能に構成されている。電池5は、測定装置1内に、一例として交換可能に内蔵されている。本例では、一例として、電池5は、2つの乾電池が直列に接続されて構成されて、約3Vの電池電圧Vccを出力する。   The voltage measurement terminal 2, the current measurement terminal 3, and the common terminal 4 are configured to be connectable with a measurement probe (not shown). The battery 5 is built in the measuring apparatus 1 so as to be replaceable as an example. In this example, as an example, the battery 5 is configured by connecting two dry batteries in series and outputs a battery voltage Vcc of about 3V.

中間電圧生成部6は、電池電圧Vccに基づいて、電池電圧Vccの中間電圧(Vcc/2)である第1中間電圧Vf1(=Vcc/2)、および第1中間電圧Vf1よりも低い電圧の第2中間電圧Vf2のうちの処理部14から出力される制御信号S1によって選択された一方の電圧をフローティング電圧Vfとして生成して共通端子4に出力する。本例では一例として、中間電圧生成部6は、分圧回路6aおよびバッファ回路6bを備えている。分圧回路6aは、一例としてスイッチを切り替えることによって分圧比を変更可能な抵抗回路で構成されて、電池電圧Vccを分圧して、電圧Vf1および電圧Vf2のうちの一方の電圧を生成する。バッファ回路6bは、電池電圧Vccで作動して、分圧回路6aから出力される電圧(電圧Vf1または電圧Vf2)を入力すると共に、1倍の増幅率で増幅してフローティング電圧Vfとして出力する。本例では、電池電圧Vccは、上記したように約3Vであるため、中間電圧生成部6は、第1中間電圧Vf1としてその半分の1.5Vを出力し、第2中間電圧Vf2として第1中間電圧Vf1よりも1V低い、0.5Vを出力するものとする。   Based on the battery voltage Vcc, the intermediate voltage generator 6 has a first intermediate voltage Vf1 (= Vcc / 2), which is an intermediate voltage (Vcc / 2) of the battery voltage Vcc, and a voltage lower than the first intermediate voltage Vf1. One of the second intermediate voltages Vf2 selected by the control signal S1 output from the processing unit 14 is generated as a floating voltage Vf and output to the common terminal 4. In this example, as an example, the intermediate voltage generation unit 6 includes a voltage dividing circuit 6a and a buffer circuit 6b. As an example, the voltage dividing circuit 6a is configured by a resistance circuit that can change a voltage dividing ratio by switching a switch, and divides the battery voltage Vcc to generate one of the voltage Vf1 and the voltage Vf2. The buffer circuit 6b operates with the battery voltage Vcc, receives the voltage (voltage Vf1 or voltage Vf2) output from the voltage dividing circuit 6a, amplifies it with a gain of 1 and outputs it as a floating voltage Vf. In this example, since the battery voltage Vcc is about 3V as described above, the intermediate voltage generation unit 6 outputs 1.5V that is half of the first intermediate voltage Vf1 and the first intermediate voltage Vf2 as the first intermediate voltage Vf2. It is assumed that 0.5V, which is 1V lower than the intermediate voltage Vf1, is output.

定電流供給部7は、電流供給部の一例であって、電池電圧Vccで作動すると共に処理部14によって制御されて、予め規定された電流値の直流定電流I1を生成してソース電流として出力する。定電流供給部7から出力された直流定電流I1は、第1スイッチ8を介して電圧測定端子2に出力される。なお、定電流供給部7は、予め規定された複数の抵抗測定レンジに対応して、複数の電流値の直流定電流I1を生成するが、本例では、発明の理解を容易にするため、1つの測定レンジの場合について説明する。第1スイッチ8は、オン・オフスイッチで構成されると共に処理部14によって制御されて、定電流供給部7と電圧測定端子2とを、接続状態および非接続状態(切り離し状態)のいずれか一方に移行させる。   The constant current supply unit 7 is an example of a current supply unit, and operates at the battery voltage Vcc and is controlled by the processing unit 14 to generate a DC constant current I1 having a predetermined current value and output it as a source current. To do. The DC constant current I1 output from the constant current supply unit 7 is output to the voltage measurement terminal 2 via the first switch 8. In addition, although the constant current supply part 7 produces | generates the direct current constant current I1 of several electric current values corresponding to several resistance measurement ranges prescribed | regulated previously, in this example, in order to make an understanding of invention easy, The case of one measurement range will be described. The first switch 8 is composed of an on / off switch and is controlled by the processing unit 14 so that the constant current supply unit 7 and the voltage measurement terminal 2 are either connected or disconnected (disconnected state). To migrate.

電流検出抵抗9は、予め規定された抵抗値に規定されて、電流測定端子3と共通端子4との間に接続されている。第2スイッチ10は、一例として、1回路2接点のスイッチで構成されて、電圧測定端子2および電流測定端子3と、差動増幅部11における一方の入力端子との間に配設されている。また、第2スイッチ10は、処理部14によって制御されて、電圧測定端子2および電流測定端子3のうちのいずれか一方を差動増幅部11の一方の入力端子に選択的に接続する。   The current detection resistor 9 is defined by a predetermined resistance value and is connected between the current measurement terminal 3 and the common terminal 4. As an example, the second switch 10 is composed of a switch with one circuit and two contacts, and is disposed between the voltage measurement terminal 2 and the current measurement terminal 3 and one input terminal of the differential amplifier 11. . Further, the second switch 10 is controlled by the processing unit 14 to selectively connect one of the voltage measurement terminal 2 and the current measurement terminal 3 to one input terminal of the differential amplification unit 11.

差動増幅部11は、増幅部の一例であって、電池電圧Vccで作動する。また、差動増幅部11は、他方の入力端子が共通端子4に接続されることにより、第2スイッチ10によって電圧測定端子2が一方の入力端子に接続されたときには、電圧測定端子2および共通端子4間に入力される電圧(電圧測定端子2および共通端子4間の端子間電圧)を入力電圧V1として入力すると共に増幅して、増幅電圧V2として出力する。一方、差動増幅部11は、第2スイッチ10によって電流測定端子3が一方の入力端子に接続されたときには、電流測定端子3と共通端子4との間に接続された電流検出抵抗9の両端間に発生する両端電圧(電流測定端子3および共通端子4間の端子間電圧)を入力電圧V1として入力すると共に増幅して、増幅電圧V2として出力する。   The differential amplifying unit 11 is an example of an amplifying unit and operates at the battery voltage Vcc. Further, the differential amplifier 11 is connected to the common terminal 4 at the other input terminal, so that when the voltage measuring terminal 2 is connected to one input terminal by the second switch 10, the differential amplifying unit 11 is shared with the voltage measuring terminal 2. A voltage input between the terminals 4 (inter-terminal voltage between the voltage measuring terminal 2 and the common terminal 4) is input as the input voltage V1, amplified, and output as the amplified voltage V2. On the other hand, when the current measurement terminal 3 is connected to one input terminal by the second switch 10, the differential amplifier 11 has both ends of the current detection resistor 9 connected between the current measurement terminal 3 and the common terminal 4. A voltage between both ends (a voltage between terminals between the current measuring terminal 3 and the common terminal 4) generated between them is input as an input voltage V1, amplified, and output as an amplified voltage V2.

A/D変換部12は、電池電圧Vccで作動して、入力した増幅電圧V2をデジタルデータDv(増幅電圧V2の瞬時値を示すデータ)に変換して出力する。操作部13は、一例としてロータリースイッチおよびコード生成回路(いずれも図示せず)を備えると共に電池電圧Vccで作動して、ロータリースイッチの操作によって選択された電圧測定モード、抵抗測定モードおよび電流測定モードのうちの1つの測定モードを示すモードデータDmを処理部14に出力する。   The A / D converter 12 operates with the battery voltage Vcc, converts the input amplified voltage V2 into digital data Dv (data indicating an instantaneous value of the amplified voltage V2), and outputs the digital data Dv. The operation unit 13 includes, as an example, a rotary switch and a code generation circuit (both not shown), operates at a battery voltage Vcc, and is selected by a voltage measurement mode, a resistance measurement mode, and a current measurement mode selected by operating the rotary switch. Mode data Dm indicating one of the measurement modes is output to the processing unit 14.

処理部14は、一例として、電池電圧Vccで作動するCPUおよびメモリ(いずれも図示せず)を備え、操作部13から出力されるモードデータDmで示される測定モードに応じて、中間電圧生成部6、定電流供給部7、第1スイッチ8および第2スイッチ10に対する制御処理、およびA/D変換部12からのデジタルデータDvに基づく測定処理を実行する。一例として、処理部14は、中間電圧生成部6に対しては、制御信号S1を出力することにより、第1中間電圧Vf1および第2中間電圧Vf2のうちのいずれか一方をフローティング電圧Vfとして出力させる。また、処理部14は、測定処理において算出した測定値Ddを表示部15に表示させる表示処理を実行する。表示部15は、電池電圧Vccで作動する表示装置(一例としてLCD)で構成されて、測定値Ddを画面上に表示する。   The processing unit 14 includes, as an example, a CPU and a memory (both not shown) that operate at the battery voltage Vcc, and an intermediate voltage generation unit according to the measurement mode indicated by the mode data Dm output from the operation unit 13. 6. Control processing for the constant current supply unit 7, the first switch 8 and the second switch 10, and measurement processing based on the digital data Dv from the A / D conversion unit 12 are executed. As an example, the processing unit 14 outputs either the first intermediate voltage Vf1 or the second intermediate voltage Vf2 as the floating voltage Vf by outputting the control signal S1 to the intermediate voltage generation unit 6. Let In addition, the processing unit 14 executes display processing for displaying the measurement value Dd calculated in the measurement processing on the display unit 15. The display part 15 is comprised with the display apparatus (LCD as an example) which operate | moves with the battery voltage Vcc, and displays the measured value Dd on a screen.

次に、測定装置1の動作について、図1を参照して説明する。   Next, the operation of the measuring apparatus 1 will be described with reference to FIG.

まず、操作部13のロータリースイッチが操作されて、電圧測定モードが選択された場合の測定装置1の動作について説明する。なお、この電圧測定モードでは、電圧測定端子2および共通端子4に測定プローブ(不図示)がそれぞれ接続されているものとする。   First, the operation of the measurement apparatus 1 when the rotary switch of the operation unit 13 is operated and the voltage measurement mode is selected will be described. In this voltage measurement mode, it is assumed that measurement probes (not shown) are connected to the voltage measurement terminal 2 and the common terminal 4, respectively.

測定装置1では、電圧測定モードが選択されると、操作部13が、電圧測定モードを示すモードデータDmを処理部14に出力する。処理部14は、このモードデータDmを入力したときには、まず、制御処理を実行する。   In the measuring apparatus 1, when the voltage measurement mode is selected, the operation unit 13 outputs mode data Dm indicating the voltage measurement mode to the processing unit 14. When the mode data Dm is input, the processing unit 14 first executes a control process.

この制御処理では、処理部14は、第1スイッチ8に対する制御を実行して、第1スイッチ8をオフ状態に移行させることにより、電圧測定端子2と定電流供給部7とを切り離す。また、処理部14は、第2スイッチ10に対する制御を実行して、差動増幅部11の一方の入力端子に電圧測定端子2を接続する。また、処理部14は、中間電圧生成部6に対する制御を実行して、第1中間電圧Vf1をフローティング電圧Vfとして出力させる。これにより、制御処理が完了する。   In this control process, the processing unit 14 performs control on the first switch 8 and shifts the first switch 8 to the off state, thereby disconnecting the voltage measurement terminal 2 and the constant current supply unit 7. Further, the processing unit 14 controls the second switch 10 to connect the voltage measurement terminal 2 to one input terminal of the differential amplification unit 11. In addition, the processing unit 14 executes control on the intermediate voltage generation unit 6 to output the first intermediate voltage Vf1 as the floating voltage Vf. Thereby, the control process is completed.

次いで、処理部14は、測定処理を開始する。この状態において、両測定プローブ間に測定対象電圧Vが入力されると、差動増幅部11は、電圧測定端子2および第2スイッチ10と、共通端子4とを介してこの測定対象電圧Vを入力電圧V1として入力すると共に増幅して、増幅電圧V2として出力する。この測定対象電圧Vが直流電圧のときには、差動増幅部11における一方の入力端子の電位は、フローティング電圧Vfが印加(供給)されている他方の入力端子の電位(共通端子4の電位)に対して常に正電圧側において変動する。一方、この測定対象電圧Vが交流電圧のときには、差動増幅部11における一方の入力端子の電位は、フローティング電圧Vfが印加(供給)されている他方の入力端子の電位(共通端子4の電位)を基準として、正電圧側(フローティング電圧Vfよりも高電圧側)および負電圧側(フローティング電圧Vfよりも低電圧側)において同じ電圧幅で変動する。   Next, the processing unit 14 starts a measurement process. In this state, when the measurement target voltage V is input between the two measurement probes, the differential amplifying unit 11 supplies the measurement target voltage V via the voltage measurement terminal 2, the second switch 10, and the common terminal 4. The input voltage V1 is input and amplified, and the amplified voltage V2 is output. When the measurement target voltage V is a DC voltage, the potential of one input terminal in the differential amplifier 11 is the potential of the other input terminal to which the floating voltage Vf is applied (supplied) (the potential of the common terminal 4). On the other hand, it always fluctuates on the positive voltage side. On the other hand, when the measurement target voltage V is an AC voltage, the potential of one input terminal in the differential amplifier 11 is the potential of the other input terminal to which the floating voltage Vf is applied (supplied) (the potential of the common terminal 4). ) On the positive voltage side (a higher voltage side than the floating voltage Vf) and a negative voltage side (a lower voltage side than the floating voltage Vf) with the same voltage width.

本例の電圧測定モードでは、上記したようにフローティング電圧Vfが電池電圧Vcc(3V)の1/2の電圧(1.5V)に規定されているため、差動増幅部11での正電圧側および負電圧側の各入力電圧範囲が同一となるように規定されている。これにより、差動増幅部11は、測定対象電圧Vが直流電圧のときには、正電圧側の入力電圧範囲内である限りにおいて、測定対象電圧Vを歪ませることなく増幅して増幅電圧V2として出力する。また、差動増幅部11は、測定対象電圧Vが交流電圧のときには、この測定対象電圧Vに対する入力電圧範囲を最大にした状態で、測定対象電圧Vを歪ませることなく増幅して増幅電圧V2として出力する。   In the voltage measurement mode of this example, the floating voltage Vf is regulated to a voltage (1.5 V) that is ½ of the battery voltage Vcc (3 V) as described above. In addition, the input voltage ranges on the negative voltage side are defined to be the same. As a result, when the measurement target voltage V is a DC voltage, the differential amplifier 11 amplifies the measurement target voltage V without distortion as long as it is within the input voltage range on the positive voltage side, and outputs the amplified voltage V2. To do. Further, when the measurement target voltage V is an AC voltage, the differential amplifier 11 amplifies the measurement target voltage V without distorting the amplified voltage V2 while maximizing the input voltage range with respect to the measurement target voltage V. Output as.

A/D変換部12は、この増幅電圧V2をデジタルデータDvに変換して処理部14に出力する。測定処理を開始している処理部14は、このデジタルデータDvを所定の周期で入力すると共に、デジタルデータDvを入力する都度、このデジタルデータDvに基づいて測定対象電圧Vの電圧値Vob(電圧測定端子2および共通端子4間の端子間電圧)を算出する。また、処理部14は、電圧値Vobを算出する都度、表示処理を実行して、算出した電圧値Vobを表示部15に測定値Ddとして更新しつつ表示させる。これにより、測定対象電圧Vの電圧値Vobが表示部15に測定値Ddとして表示されるため、測定装置1を使用した測定対象電圧Vの測定が可能となる。   The A / D conversion unit 12 converts the amplified voltage V2 into digital data Dv and outputs the digital data Dv to the processing unit 14. The processing unit 14 that has started the measurement process inputs the digital data Dv at a predetermined cycle, and each time the digital data Dv is input, the voltage value Vob (voltage) of the measurement target voltage V based on the digital data Dv. The inter-terminal voltage between the measurement terminal 2 and the common terminal 4 is calculated. Further, each time the voltage value Vob is calculated, the processing unit 14 executes display processing, and displays the calculated voltage value Vob on the display unit 15 while being updated as the measured value Dd. As a result, the voltage value Vob of the measurement target voltage V is displayed on the display unit 15 as the measurement value Dd, so that the measurement target voltage V using the measurement device 1 can be measured.

次に、操作部13のロータリースイッチが操作されて、電流測定モードが選択された場合の測定装置1の動作について説明する。なお、この電流測定モードでは、電流測定端子3および共通端子4に測定プローブ(不図示)がそれぞれ接続されているものとする。   Next, the operation of the measurement apparatus 1 when the rotary switch of the operation unit 13 is operated and the current measurement mode is selected will be described. In this current measurement mode, it is assumed that measurement probes (not shown) are connected to the current measurement terminal 3 and the common terminal 4, respectively.

測定装置1では、電流測定モードが選択されると、操作部13が、電流測定モードを示すモードデータDmを処理部14に出力する。処理部14は、このモードデータDmを入力したときには、まず、制御処理を実行する。   In the measurement apparatus 1, when the current measurement mode is selected, the operation unit 13 outputs mode data Dm indicating the current measurement mode to the processing unit 14. When the mode data Dm is input, the processing unit 14 first executes a control process.

この制御処理では、処理部14は、第2スイッチ10に対する制御を実行して、差動増幅部11の一方の入力端子に電流測定端子3を接続するという制御を除く他の制御については、上記した電圧測定モードの制御処理と同様の制御を各構成要素に対して実行する。   In this control process, the processing unit 14 executes the control for the second switch 10 and performs the other control except the control of connecting the current measurement terminal 3 to one input terminal of the differential amplifier unit 11. The same control as the control process in the voltage measurement mode is executed for each component.

次いで、処理部14は、測定処理を開始する。この状態において、測定装置1が、両測定プローブを介して、測定対象電流Iの電流経路に接続されたときには、電流測定端子3および共通端子4間に接続された電流検出抵抗9に測定対象電流Iが流れることにより、電流検出抵抗9の両端間に両端電圧(電流測定端子3および共通端子4間の端子間電圧でもある)が発生する。差動増幅部11は、この両端電圧を入力電圧V1として入力すると共に増幅して、増幅電圧V2として出力する。この場合、フローティング電圧Vfとしての第1中間電圧Vf1が共通端子4に供給されているため、測定対象電流Iが交流電流のときであっても、差動増幅部11は、上記した測定対象電圧Vが交流電圧であるときと同様にして、交流の両端電圧を、歪ませることなく増幅して増幅電圧V2として出力する。   Next, the processing unit 14 starts a measurement process. In this state, when the measuring apparatus 1 is connected to the current path of the measurement target current I via both measurement probes, the measurement target current is connected to the current detection resistor 9 connected between the current measurement terminal 3 and the common terminal 4. When I flows, a voltage between both ends of the current detection resistor 9 (which is also a voltage between the current measuring terminal 3 and the common terminal 4) is generated between both ends. The differential amplifying unit 11 inputs and amplifies the both-end voltage as the input voltage V1, and outputs the amplified voltage as the amplified voltage V2. In this case, since the first intermediate voltage Vf1 as the floating voltage Vf is supplied to the common terminal 4, even when the measurement target current I is an alternating current, the differential amplifying unit 11 performs the measurement target voltage described above. In the same manner as when V is an AC voltage, the voltage at both ends of the AC is amplified without distortion and output as an amplified voltage V2.

A/D変換部12は、この増幅電圧V2をデジタルデータDvに変換して処理部14に出力する。測定処理を開始している処理部14は、このデジタルデータDvを所定の周期で入力すると共に、デジタルデータDvを入力する都度、このデジタルデータDvおよび電流検出抵抗9の抵抗値(既知)に基づいて測定対象電流Iの電流値Iobを算出する。また、処理部14は、電流値Iobを算出する都度、表示処理を実行して、算出した電流値Iobを表示部15に測定値Ddとして更新しつつ表示させる。これにより、測定対象電流Iの電流値Iobが表示部15に測定値Ddとして表示されるため、測定装置1を使用した測定対象電流Iの測定が可能となる。   The A / D conversion unit 12 converts the amplified voltage V2 into digital data Dv and outputs the digital data Dv to the processing unit 14. The processing unit 14 that has started the measurement process inputs the digital data Dv at a predetermined cycle, and each time the digital data Dv is input, based on the resistance value (known) of the digital data Dv and the current detection resistor 9. Thus, the current value Iob of the measurement target current I is calculated. Further, each time the current value Iob is calculated, the processing unit 14 executes display processing, and displays the calculated current value Iob on the display unit 15 while being updated as the measured value Dd. Thereby, since the current value Iob of the measurement target current I is displayed on the display unit 15 as the measurement value Dd, the measurement target current I using the measurement apparatus 1 can be measured.

次に、操作部13のロータリースイッチが操作されて、抵抗測定モードが選択された場合の測定装置1の動作について説明する。なお、この抵抗測定モードでは、電圧測定端子2および共通端子4に測定プローブ(不図示)がそれぞれ接続されているものとする。   Next, the operation of the measuring apparatus 1 when the rotary switch of the operation unit 13 is operated and the resistance measurement mode is selected will be described. In this resistance measurement mode, it is assumed that measurement probes (not shown) are connected to the voltage measurement terminal 2 and the common terminal 4, respectively.

測定装置1では、抵抗測定モードが選択されると、操作部13が、抵抗測定モードを示すモードデータDmを処理部14に出力する。処理部14は、このモードデータDmを入力したときには、まず、制御処理を実行する。   In the measurement apparatus 1, when the resistance measurement mode is selected, the operation unit 13 outputs mode data Dm indicating the resistance measurement mode to the processing unit 14. When the mode data Dm is input, the processing unit 14 first executes a control process.

この制御処理では、処理部14は、第1スイッチ8に対する制御を実行して、第1スイッチ8をオン状態に移行させることにより、電圧測定端子2と定電流供給部7とを接続する。また、処理部14は、第2スイッチ10に対する制御を実行して、差動増幅部11の一方の入力端子に電圧測定端子2を接続する。また、処理部14は、中間電圧生成部6に対する制御を実行して、中間電圧生成部6内のスイッチをオン状態に移行させることで、第2中間電圧Vf2をフローティング電圧Vfとして出力させる。また、処理部14は、定電流供給部7に対する制御を実行して、直流定電流I1を生成して出力可能な状態に移行させる。これにより、制御処理が完了する。   In this control process, the processing unit 14 controls the first switch 8 to shift the first switch 8 to the ON state, thereby connecting the voltage measurement terminal 2 and the constant current supply unit 7. Further, the processing unit 14 controls the second switch 10 to connect the voltage measurement terminal 2 to one input terminal of the differential amplification unit 11. In addition, the processing unit 14 performs control on the intermediate voltage generation unit 6 to shift the switch in the intermediate voltage generation unit 6 to the on state, thereby outputting the second intermediate voltage Vf2 as the floating voltage Vf. Further, the processing unit 14 executes control on the constant current supply unit 7 to generate a DC constant current I1 and shift to a state where it can be output. Thereby, the control process is completed.

次いで、処理部14は、測定処理を開始する。この状態において、両測定プローブ間に測定対象体21が接続されると、定電流供給部7から、第1スイッチ8、電圧測定端子2、測定対象体21および共通端子4を介して第2中間電圧Vf2に至る電流経路が形成される。これにより、定電流供給部7によるこの電流経路への直流定電流I1の出力(供給)が開始されるため、測定対象体21の両端間、すなわち電圧測定端子2および共通端子4間に、測定対象体21の抵抗値Robに直流定電流I1の電流値を乗算して得られる電圧が発生する。   Next, the processing unit 14 starts a measurement process. In this state, when the measurement object 21 is connected between both measurement probes, the constant current supply unit 7 supplies the second intermediate via the first switch 8, the voltage measurement terminal 2, the measurement object 21, and the common terminal 4. A current path reaching the voltage Vf2 is formed. As a result, the output (supply) of the DC constant current I1 to this current path by the constant current supply unit 7 is started, so that the measurement is performed between both ends of the measurement object 21, that is, between the voltage measurement terminal 2 and the common terminal 4. A voltage obtained by multiplying the resistance value Rob of the object 21 by the current value of the DC constant current I1 is generated.

本例では、第1中間電圧Vf1(本例では1.5V)よりも低い第2中間電圧Vf2(本例では0.5V)がフローティング電圧Vfとして共通端子4に印加されていることから、第1中間電圧Vf1をフローティング電圧Vfとして共通端子4に印加する従来の構成と比較して、差動増幅部11における正電圧側の入力電圧範囲が拡大されている(本例では、1Vだけ拡大されている)。したがって、この測定装置1では、同一の電流値の直流定電流I1を測定対象体21に供給するという条件の下で、従来の測定装置よりも、より大きな抵抗値の測定対象体21を測定可能となっている。   In this example, the second intermediate voltage Vf2 (0.5V in this example) lower than the first intermediate voltage Vf1 (1.5V in this example) is applied to the common terminal 4 as the floating voltage Vf. Compared with the conventional configuration in which one intermediate voltage Vf1 is applied to the common terminal 4 as the floating voltage Vf, the input voltage range on the positive voltage side in the differential amplifier 11 is expanded (in this example, it is expanded by 1 V). ing). Therefore, this measuring apparatus 1 can measure the measuring object 21 having a larger resistance value than the conventional measuring apparatus under the condition that the DC constant current I1 having the same current value is supplied to the measuring object 21. It has become.

差動増幅部11は、この電圧測定端子2および共通端子4間に発生する端子間電圧を入力電圧V1として入力すると共に増幅して、増幅電圧V2として出力する。A/D変換部12は、この増幅電圧V2をデジタルデータDvに変換して処理部14に出力する。   The differential amplifier 11 inputs and amplifies the inter-terminal voltage generated between the voltage measuring terminal 2 and the common terminal 4 as the input voltage V1, and outputs the amplified voltage V2. The A / D conversion unit 12 converts the amplified voltage V2 into digital data Dv and outputs the digital data Dv to the processing unit 14.

測定処理を開始している処理部14は、このデジタルデータDvを所定の周期で入力すると共に、デジタルデータDvを入力する都度、このデジタルデータDvおよび直流定電流I1の電流値(既知)に基づいて測定対象体21の抵抗値Robを算出する。また、処理部14は、抵抗値Robを算出する都度、表示処理を実行して、算出した抵抗値Robを表示部15に測定値Ddとして更新しつつ表示させる。これにより、測定対象体21の抵抗値Robが表示部15に測定値Ddとして表示されるため、測定装置1を使用した測定対象体21の抵抗測定が可能となる。   The processing unit 14 that has started the measurement process inputs the digital data Dv at a predetermined cycle, and each time the digital data Dv is input, based on the current value (known) of the digital data Dv and the DC constant current I1. Thus, the resistance value Rob of the measuring object 21 is calculated. In addition, the processing unit 14 executes display processing each time the resistance value Rob is calculated, and displays the calculated resistance value Rob on the display unit 15 while being updated as the measured value Dd. Thereby, since the resistance value Rob of the measurement object 21 is displayed as the measurement value Dd on the display unit 15, it is possible to measure the resistance of the measurement object 21 using the measurement device 1.

このように、この測定装置1では、電圧測定モードおよび電流測定モードのときには、共通端子4に対して第1中間電圧Vf1を出力(印加)し、抵抗測定モードのときには、共通端子4に対して第1中間電圧Vf1よりも低い電圧の第2中間電圧Vf2を出力(印加)する。   As described above, in the measurement apparatus 1, the first intermediate voltage Vf1 is output (applied) to the common terminal 4 in the voltage measurement mode and the current measurement mode, and the common terminal 4 is output in the resistance measurement mode. A second intermediate voltage Vf2 having a voltage lower than the first intermediate voltage Vf1 is output (applied).

したがって、この測定装置1によれば、電源電圧としての電池電圧Vccを低電圧化した場合においても、抵抗測定モードのときの差動増幅部11における正電圧側の入力電圧範囲を拡大することができるため、同一の電流値の直流定電流I1を測定対象体21に供給するという条件下において、従来の測定装置よりも、より大きな抵抗値Robの測定対象体21を測定することができる(つまり、測定し得る測定対象体21の抵抗値の上限(測定範囲の上限)を高めることができる)。   Therefore, according to this measuring apparatus 1, even when the battery voltage Vcc as the power supply voltage is lowered, the input voltage range on the positive voltage side in the differential amplifier 11 in the resistance measurement mode can be expanded. Therefore, under the condition that the DC constant current I1 having the same current value is supplied to the measuring object 21, it is possible to measure the measuring object 21 having a larger resistance value Rob than the conventional measuring device (that is, The upper limit of the resistance value of the measurement object 21 that can be measured (the upper limit of the measurement range) can be increased).

また、測定可能な測定対象体21の抵抗値の上限を高めずに、従来の測定装置と同一とするときには、定電流供給部7から測定対象体21に供給する直流定電流I1の電流値を大きくすることができるため、抵抗測定時のSN比を向上させることができる結果、抵抗値の測定精度を向上させることができる。また、処理部14において、入力したデジタルデータDvに対するフィルタリング処理を実行しているときには、このSN比の向上に伴い、フィルタリング処理を簡易な処理で済ますことができ、これによってフィルタリング処理に要する時間を短縮することができる結果、抵抗値Robの測定時間を短縮することができる。   Further, when the same resistance device as that of the conventional measuring device is used without increasing the upper limit of the resistance value of the measurable measurement object 21, the current value of the DC constant current I1 supplied from the constant current supply unit 7 to the measurement object 21 is set. Since it can be increased, the SN ratio at the time of resistance measurement can be improved. As a result, the measurement accuracy of the resistance value can be improved. Further, when the filtering process is executed on the input digital data Dv in the processing unit 14, the filtering process can be simplified with the improvement of the S / N ratio, thereby reducing the time required for the filtering process. As a result of shortening, the measurement time of the resistance value Rob can be shortened.

なお、上記の測定装置1では、処理部14が、操作部13から出力されるモードデータDmに基づいて制御処理を実行することにより、第1スイッチ8および第2スイッチ10に対する切替、並びに中間電圧生成部6に対する各中間電圧Vf1,Vf2の切替を実行する構成を採用しているが、操作部13が、ロータリースイッチの切替位置に基づいて、第1スイッチ8および第2スイッチ10に対して、これらの状態を切り替えるための制御信号を出力すると共に、中間電圧生成部6に対して、各中間電圧Vf1,Vf2を切り替えるための制御信号を出力する構成を採用することもできる。   In the measurement apparatus 1 described above, the processing unit 14 executes control processing based on the mode data Dm output from the operation unit 13, thereby switching between the first switch 8 and the second switch 10 and the intermediate voltage. Although the configuration for executing the switching of the intermediate voltages Vf1 and Vf2 with respect to the generation unit 6 is employed, the operation unit 13 is configured to switch the first switch 8 and the second switch 10 based on the switching position of the rotary switch. A configuration in which a control signal for switching these states is output and a control signal for switching the intermediate voltages Vf1 and Vf2 is output to the intermediate voltage generation unit 6 may be employed.

また、測定対象体21としての抵抗体の抵抗値Robをパラメータとして測定する例について説明したが、測定対象体21は抵抗体に限定されず、コンデンサおよびダイオードを測定対象体とすることもできる。この場合、コンデンサを測定対象体21としたときには、処理部14は、パラメータ測定モード(容量測定モード)において、コンデンサに直流定電流I1を供給したときの一定時間後の入力電圧V1の変化量を測定し、この電圧の変化量、この一定時間の時間長、および直流定電流I1の電流値に基づいて、コンデンサについてのパラメータである静電容量値を測定(算出)する。また、ダイオードを測定対象体21としたときには、処理部14は、パラメータ測定モード(順方向電圧測定モード)において、ダイオードに直流定電流I1を供給したときの順方向電圧(入力電圧V1)を測定する。このようにコンデンサやダイオードを測定対象体21としたときにも、正電圧側の入力電圧範囲を拡大することができるため、コンデンサについては、電圧の変化量を大きくすることが可能となって、静電容量値の測定精度を高めることができ、ダイオードについては、順方向電圧の大きなダイオード(白色LEDなど)の順方向電圧の測定をすることができる。   Moreover, although the example which measures using resistance value Rob of the resistor as the measuring object 21 as a parameter was demonstrated, the measuring object 21 is not limited to a resistor, A capacitor | condenser and a diode can also be used as a measuring object. In this case, when the capacitor is used as the measurement object 21, the processing unit 14 indicates the amount of change in the input voltage V1 after a certain time when the DC constant current I1 is supplied to the capacitor in the parameter measurement mode (capacitance measurement mode). Measure and calculate (calculate) a capacitance value, which is a parameter for the capacitor, based on the amount of change in voltage, the length of this fixed time, and the current value of DC constant current I1. When the diode is the measurement object 21, the processing unit 14 measures the forward voltage (input voltage V1) when the DC constant current I1 is supplied to the diode in the parameter measurement mode (forward voltage measurement mode). To do. As described above, even when a capacitor or a diode is used as the measurement object 21, since the input voltage range on the positive voltage side can be expanded, the amount of change in voltage can be increased for the capacitor. The measurement accuracy of the capacitance value can be increased, and the forward voltage of a diode having a large forward voltage (such as a white LED) can be measured for the diode.

また、上記の測定装置1では、電源として電池5を使用しているが、電圧値が一定の電圧を作動電圧として出力し得るものであれば、電池5に限定されず、種々の電源を使用することができる。   Further, in the measurement apparatus 1 described above, the battery 5 is used as a power source. However, the battery 5 is not limited to the battery 5 as long as it can output a voltage having a constant voltage value as an operating voltage. can do.

また、上記の測定装置1では、中間電圧生成部6が、第1中間電圧Vf1よりも低い第2中間電圧Vf2をフローティング電圧Vfとして共通端子4に印加すると共に、定電流供給部7が、電圧測定端子2を介して測定対象体21に直流定電流I1をソース電流として供給する(流し込む)構成を採用して、差動増幅部11における正電圧側の入力電圧範囲を拡大しているが、この構成に代えて、中間電圧生成部6が、第1中間電圧Vf1よりも高い第2中間電圧Vf2をフローティング電圧Vfとして共通端子4に印加すると共に、定電流供給部7が、電圧測定端子2を介して測定対象体21に直流定電流I1をシンク電流として供給する(吸い出す。図1での矢印の向きと逆向きに直流定電流I1を流す)構成を採用することもできる。この構成では、差動増幅部11における負電圧側の入力電圧範囲を拡大することができ、正電圧側の入力電圧範囲を拡大する上記の構成と同様にして、測定対象体21が抵抗体のときには、より大きな抵抗値の測定を可能とし、コンデンサについては、静電容量値の測定精度を高めることを可能とし、ダイオードについては、順方向電圧の大きなダイオードの順方向電圧の測定を可能とすることができる。また、測定した電圧に基づいて、ダイオードの極性を測定することもできる。   In the measuring apparatus 1, the intermediate voltage generator 6 applies the second intermediate voltage Vf 2 lower than the first intermediate voltage Vf 1 to the common terminal 4 as the floating voltage Vf, and the constant current supply unit 7 The input voltage range on the positive voltage side in the differential amplifying unit 11 is expanded by adopting a configuration in which the DC constant current I1 is supplied (flowed) as a source current to the measurement object 21 via the measurement terminal 2. Instead of this configuration, the intermediate voltage generating unit 6 applies the second intermediate voltage Vf2 higher than the first intermediate voltage Vf1 to the common terminal 4 as the floating voltage Vf, and the constant current supply unit 7 includes the voltage measuring terminal 2. It is also possible to employ a configuration in which the DC constant current I1 is supplied as a sink current to the measuring object 21 via (sucking out. The DC constant current I1 flows in the direction opposite to the direction of the arrow in FIG. 1). In this configuration, the input voltage range on the negative voltage side in the differential amplifying unit 11 can be expanded, and in the same manner as the above configuration that expands the input voltage range on the positive voltage side, the measurement object 21 is a resistor. Sometimes it is possible to measure a larger resistance value, it is possible to increase the measurement accuracy of the capacitance value for the capacitor, and it is possible to measure the forward voltage of a diode having a large forward voltage for the diode. be able to. Also, the polarity of the diode can be measured based on the measured voltage.

また、上記の測定装置1では、電圧測定モード、電流測定モード、およびパラメータ測定モード(抵抗測定モードや容量測定モードや順方向電圧測定モード)の3つの測定モードから任意の1つを選択して測定し得る構成を採用しているが、電流測定モードを省いて(つまり、電流測定に必要な電流測定端子3および電流検出抵抗9を省いて)、電圧測定モードおよび抵抗測定モードの2つの測定モードのうちの任意の一方を選択して測定する構成とすることもできる。また、上記の測定装置1では、定電流供給部7を備え、抵抗測定モードにおいて測定対象体21に測定レンジに対応した直流定電流I1を供給する構成を採用しているが、定電流供給部7に代えて、測定対象体21に供給している直流電流の電流値をリアルタイムで測定して処理部14に出力する電流供給部を使用する構成を採用することもできる。この構成においては、処理部14は、デジタルデータDvおよび電流供給部において測定される直流電流の電流値に基づいて測定対象体21の抵抗値Robを算出する。   Further, in the measurement apparatus 1 described above, any one of the three measurement modes of the voltage measurement mode, the current measurement mode, and the parameter measurement mode (resistance measurement mode, capacitance measurement mode, and forward voltage measurement mode) is selected. Although the measurement configuration is adopted, the current measurement mode is omitted (that is, the current measurement terminal 3 and the current detection resistor 9 necessary for current measurement are omitted), and the voltage measurement mode and the resistance measurement mode are measured. It is also possible to select and measure any one of the modes. In addition, the measurement apparatus 1 includes the constant current supply unit 7 and supplies the DC constant current I1 corresponding to the measurement range to the measurement object 21 in the resistance measurement mode. Instead of 7, it is also possible to employ a configuration in which a current supply unit that measures the current value of the direct current supplied to the measurement object 21 in real time and outputs the current value to the processing unit 14 is used. In this configuration, the processing unit 14 calculates the resistance value Rob of the measurement object 21 based on the digital data Dv and the current value of the direct current measured by the current supply unit.

また、上記の測定装置1では、電圧測定端子2がパラメータ測定端子を兼用する構成を採用しているが、図2に示す測定装置1Aのように、パラメータ測定端子2Aを電圧測定端子2と別個に備える構成を採用することもできる。この測定装置1Aでは、定電流供給部7は、電圧測定端子2に代えて、パラメータ測定端子2Aに接続される。また、このようにパラメータ測定端子2Aを専用に設けたことにより、第1スイッチ8を省いた構成となっている。また、第2スイッチ10Aは、1回路3接点のスイッチで構成されて、パラメータ測定端子2A、電圧測定端子2および電流測定端子3と、差動増幅部11における一方の入力端子との間に配設されている。また、第2スイッチ10Aは、処理部14によって制御されて、パラメータ測定端子2A、電圧測定端子2および電流測定端子3のうちのいずれか1つを差動増幅部11の一方の入力端子に選択的に接続する。なお、測定装置1と同一の構成については同一の符号を付して重複する説明を省略する。   Further, in the measurement apparatus 1 described above, the voltage measurement terminal 2 is also used as the parameter measurement terminal. However, the parameter measurement terminal 2A is separated from the voltage measurement terminal 2 as in the measurement apparatus 1A shown in FIG. It is also possible to adopt a configuration provided for. In this measurement apparatus 1A, the constant current supply unit 7 is connected to the parameter measurement terminal 2A instead of the voltage measurement terminal 2. Further, by providing the parameter measurement terminal 2A exclusively, the first switch 8 is omitted. The second switch 10 </ b> A is composed of a switch with one circuit and three contacts, and is arranged between the parameter measurement terminal 2 </ b> A, the voltage measurement terminal 2, the current measurement terminal 3, and one input terminal in the differential amplifier 11. It is installed. Further, the second switch 10A is controlled by the processing unit 14 to select any one of the parameter measurement terminal 2A, the voltage measurement terminal 2 and the current measurement terminal 3 as one input terminal of the differential amplifier 11. Connect. In addition, about the structure same as the measuring apparatus 1, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

この測定装置1Aにおいても、上記したように作動する中間電圧生成部6および定電流供給部7を測定装置1と同様に備えたことにより、上記した測定装置1と同様の効果を奏することができる。   Also in this measuring apparatus 1A, by providing the intermediate voltage generating section 6 and the constant current supply section 7 that operate as described above in the same manner as the measuring apparatus 1, the same effects as in the measuring apparatus 1 described above can be achieved. .

1,1A 測定装置
2 電圧測定端子
2A パラメータ測定端子
3 電流測定端子
4 共通端子
5 電池
6 中間電圧生成部
7 定電流供給部
11 差動増幅部
12 A/D変換部
14 処理部
21 測定対象体
Dv デジタルデータ
I1 直流定電流
Rob 抵抗値
V1 入力電圧
V2 増幅電圧
Vcc 電池電圧
Vf フローティング電圧
Vf1 第1中間電圧
Vf2 第2中間電圧
DESCRIPTION OF SYMBOLS 1,1A Measuring apparatus 2 Voltage measuring terminal 2A Parameter measuring terminal 3 Current measuring terminal 4 Common terminal 5 Battery 6 Intermediate voltage generation part 7 Constant current supply part 11 Differential amplification part 12 A / D conversion part 14 Processing part 21 Measurement object Dv Digital data I1 DC constant current Rob Resistance value V1 Input voltage V2 Amplified voltage Vcc Battery voltage Vf Floating voltage Vf1 First intermediate voltage Vf2 Second intermediate voltage

Claims (2)

電源から供給される電源電圧で作動して、電圧測定のときには電圧測定端子および共通端子間に入力される測定対象電圧の電圧値を測定し、抵抗体、コンデンサおよびダイオードのうちのいずれか1つを測定対象体として抵抗値、静電容量値および順方向電圧値のうちの1つのパラメータを測定するパラメータ測定のときにはパラメータ測定端子および前記共通端子間に接続される前記測定対象体に直流電流を供給して前記パラメータを測定する測定装置であって、
前記電圧測定のときには前記電源電圧の中間電圧である第1中間電圧を生成して前記共通端子に出力し、前記パラメータ測定のときには、前記第1中間電圧よりも低い電圧の第2中間電圧を生成して前記共通端子に出力する中間電圧生成部と、
前記パラメータ測定のときに、前記パラメータ測定端子を介して前記測定対象体に前記直流電流をソース電流として供給する電流供給部と、
前記電圧測定のときには前記電圧測定端子および前記共通端子間の端子間電圧を前記測定対象電圧として測定し、前記パラメータ測定のときには前記パラメータ測定端子および前記共通端子間の端子間電圧の電圧値と前記直流電流の電流値とに基づいて前記パラメータを測定する処理部とを備えている測定装置。
It operates with the power supply voltage supplied from the power supply, and measures the voltage value of the voltage to be measured input between the voltage measurement terminal and the common terminal at the time of voltage measurement, and any one of a resistor, a capacitor and a diode When measuring a parameter of one of a resistance value, a capacitance value, and a forward voltage value as a measurement object, a direct current is applied to the measurement object connected between the parameter measurement terminal and the common terminal. A measuring device for supplying and measuring the parameters,
When the voltage is measured, a first intermediate voltage that is an intermediate voltage of the power supply voltage is generated and output to the common terminal, and when the parameter is measured, a second intermediate voltage that is lower than the first intermediate voltage is generated. And an intermediate voltage generator that outputs to the common terminal,
A current supply unit configured to supply the DC current as a source current to the measurement object via the parameter measurement terminal during the parameter measurement;
In the voltage measurement, the voltage between the voltage measurement terminal and the common terminal is measured as the voltage to be measured, and in the parameter measurement, the voltage value of the voltage between the parameter measurement terminal and the common terminal is And a processing unit that measures the parameter based on a current value of a direct current.
電源から供給される電源電圧で作動して、電圧測定のときには電圧測定端子および共通端子間に入力される測定対象電圧の電圧値を測定し、抵抗体、コンデンサおよびダイオードのうちのいずれか1つを測定対象体として抵抗値、静電容量値および順方向電圧値のうちの1つのパラメータを測定するパラメータ測定のときにはパラメータ測定端子および前記共通端子間に接続される前記測定対象体に直流電流を供給して前記パラメータを測定する測定装置であって、
前記電圧測定のときには前記電源電圧の中間電圧である第1中間電圧を生成して前記共通端子に出力し、前記パラメータ測定のときには、前記第1中間電圧よりも高い電圧の第2中間電圧を生成して前記共通端子に出力する中間電圧生成部と、
前記パラメータ測定のときに、前記パラメータ測定端子を介して前記測定対象体に前記直流電流をシンク電流として供給する電流供給部と、
前記電圧測定のときには前記電圧測定端子および前記共通端子間の端子間電圧を前記測定対象電圧として測定し、前記パラメータ測定のときには前記パラメータ測定端子および前記共通端子間の端子間電圧の電圧値と前記直流電流の電流値とに基づいて前記パラメータを測定する処理部とを備えている測定装置。
It operates with the power supply voltage supplied from the power supply, and measures the voltage value of the voltage to be measured input between the voltage measurement terminal and the common terminal at the time of voltage measurement, and any one of a resistor, a capacitor and a diode When measuring a parameter of one of a resistance value, a capacitance value, and a forward voltage value as a measurement object, a direct current is applied to the measurement object connected between the parameter measurement terminal and the common terminal. A measuring device for supplying and measuring the parameters,
When the voltage is measured, a first intermediate voltage that is an intermediate voltage of the power supply voltage is generated and output to the common terminal, and when the parameter is measured, a second intermediate voltage that is higher than the first intermediate voltage is generated. And an intermediate voltage generator that outputs to the common terminal,
A current supply unit configured to supply the DC current as a sink current to the measurement object via the parameter measurement terminal during the parameter measurement;
In the voltage measurement, the voltage between the voltage measurement terminal and the common terminal is measured as the voltage to be measured, and in the parameter measurement, the voltage value of the voltage between the parameter measurement terminal and the common terminal is And a processing unit that measures the parameter based on a current value of a direct current.
JP2011035945A 2011-02-22 2011-02-22 Measurement device Pending JP2012173158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035945A JP2012173158A (en) 2011-02-22 2011-02-22 Measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035945A JP2012173158A (en) 2011-02-22 2011-02-22 Measurement device

Publications (1)

Publication Number Publication Date
JP2012173158A true JP2012173158A (en) 2012-09-10

Family

ID=46976194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035945A Pending JP2012173158A (en) 2011-02-22 2011-02-22 Measurement device

Country Status (1)

Country Link
JP (1) JP2012173158A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145750A (en) * 1995-11-22 1997-06-06 Advantest Corp Constant-current circuit for digital multimeter
JPH10319056A (en) * 1997-04-09 1998-12-04 Fluke Corp Measuring front-end for measuring device, and method for providing plural measuring parameters from signal voltage
US20070069716A1 (en) * 2003-09-01 2007-03-29 Elan Digital Systems Limited Digital multi-meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145750A (en) * 1995-11-22 1997-06-06 Advantest Corp Constant-current circuit for digital multimeter
JPH10319056A (en) * 1997-04-09 1998-12-04 Fluke Corp Measuring front-end for measuring device, and method for providing plural measuring parameters from signal voltage
US20070069716A1 (en) * 2003-09-01 2007-03-29 Elan Digital Systems Limited Digital multi-meter

Similar Documents

Publication Publication Date Title
TWI418114B (en) Compensating circuit and method in battery packs
US9618540B2 (en) Current sensing module and power conversion apparatus and electronic apparatus using the same
JP6628552B2 (en) Semiconductor device and method for measuring cell voltage
JP2015190799A (en) Temperature measurement device, integrated circuit, and temperature measurement method
JP3170470U (en) Integrated value measurement circuit
JP2015206604A (en) Electrochemical measurement device
JP2006250831A (en) Current measuring system and insulation resistance measuring system
JP5638293B2 (en) Four-terminal impedance measuring device
JP2007205891A (en) Measuring apparatus
JP2015137989A (en) Signal switching circuit and impedance measurement device
JP2012173158A (en) Measurement device
JP2015014564A (en) Battery state detector
JP5717427B2 (en) Resistance measuring device
JP2007132777A (en) Impedance measuring apparatus
JP5734015B2 (en) measuring device
TWI310840B (en) Ic tester
JP2010145373A (en) Resistance measuring apparatus
JP2015036649A (en) Voltage measuring apparatus and voltage measuring method
JP5981320B2 (en) Impedance measuring apparatus and impedance measuring method
CN114236226B (en) Voltage measuring circuit
JP6132718B2 (en) Impedance measuring apparatus and impedance measuring method
US8546975B2 (en) Power supply device
JP2009186469A (en) Impedance measuring instrument
JP2017142068A (en) Current sensor and filtering method thereof
CN101833042B (en) Capacitance measuring circuit and comprehensive control circuit applying same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331