JP2012165189A - ズームマイク装置 - Google Patents

ズームマイク装置 Download PDF

Info

Publication number
JP2012165189A
JP2012165189A JP2011024178A JP2011024178A JP2012165189A JP 2012165189 A JP2012165189 A JP 2012165189A JP 2011024178 A JP2011024178 A JP 2011024178A JP 2011024178 A JP2011024178 A JP 2011024178A JP 2012165189 A JP2012165189 A JP 2012165189A
Authority
JP
Japan
Prior art keywords
microphone array
microphone
reflector
fixed
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024178A
Other languages
English (en)
Other versions
JP5395822B2 (ja
Inventor
Kenta Niwa
健太 丹羽
Sumitaka Sakauchi
澄宇 阪内
Kenichi Furuya
賢一 古家
Yoichi Haneda
陽一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011024178A priority Critical patent/JP5395822B2/ja
Publication of JP2012165189A publication Critical patent/JP2012165189A/ja
Application granted granted Critical
Publication of JP5395822B2 publication Critical patent/JP5395822B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

【課題】従来よりも鋭い指向性を有する狭指向音声強調技術を実現可能なズームマイク装置を提供する。
【解決手段】支持構造体1基と、固定反射板2N枚(Nは1以上の整数)と、複数のマイクロホンを直線状に配置してなるマイクロホンアレー2N個とを備え、固定反射板の面とマイクロホンアレーのマイクロホン配列方向とが平行になるようにマイクロホンアレーが固定反射板の面に1つずつ取り付けられ、2枚の固定反射板のマイクロホンアレーを取り付けた面同士が90度をなし、一方の固定反射板に取り付けられたマイクロホンアレーのマイクロホン配列方向と、他方の固定反射板に取り付けられたマイクロホンアレーのマイクロホン配列方向とが90度をなすように2枚の固定反射板同士を向き合わせて固定した固定反射板の組(N組)が支持構造体に取り付けられる。
【選択図】図18

Description

本発明は所望の方向を含む狭い範囲の音声を強調する技術(狭指向音声強調技術)を実現するズームマイク装置に関する。
例えばマイクロホンを備えた動画撮影装置(ビデオカメラやカムコーダ)で被写体をズームイン撮影する場合を考えると、ズームイン撮影に連動して被写体近傍のみからの音声が強調されることが動画撮影にとって好ましい。このような、所望の方向(目的方向)を含む狭い範囲の音声を強調する技術(狭指向音声強調技術)は、従来から研究・開発されている。なお、マイクロホンの周囲の方向とマイクロホンの感度との関係は指向性と呼ばれ、或る方向への指向性が鋭いほど、当該方向を含む狭い範囲の音声を強調し、当該範囲以外の範囲の音声を抑圧することができる。ここでは、狭指向音声強調技術に関する従来技術<反射音を選択収音することによる狭指向音声強調技術>を例示する。なお、この明細書では、「音声」は、人の発する声に限定されるものではなく、人や動物の声はもとより楽音や環境雑音など「音」一般を指す。
<反射音を選択収音することによる狭指向音声強調技術>
この技術の代表的な例として、マルチビームフォーミング法がある(非特許文献1参照)。マルチビームフォーミング法は、直接音や反射音という個々の音を寄せ集めることで、高SN比で目的方向の音声を収音することができる狭指向音声強調技術であり、音声分野よりも無線分野でよく研究されている。
以下、周波数領域でのマルチビームフォーミング法の処理内容を説明する。説明に先立ち、記号を定義する。周波数のインデックスをω、フレーム番号のインデックスをkとする。M個のマイクロホンで受音したアナログ信号の周波数領域表現をX(ω,k)=[X1(ω,k),…,XM(ω,k)]T、方向θsにある強調したい音源からの直接音の到来方向をθs1、反射音の到来方向をθs2,…,θsRとする。Tは転置を表し、R-1は反射音の総数である。方向θsrの音声を強調するフィルタをW(ω,θsr)とする。ここで、rは1≦r≦Rを満たす各整数である。
マルチビームフォーミング法では、直接音および反射音の到来方向や到来時間が既知であることが前提である。つまり、音の反射が明らかに予想できる壁、床、反射板といった物体の数がR-1に等しい。また、反射音数R-1は3あるいは4という比較的小さな値に設定されることが多い。これは、直接音と低次の反射音との間に高い相関性が認められることに基づく。マルチビームフォーミング法は、各々の音声を個別に強調して同期加算する方式なので、出力信号Y(ω,k,θs)は式(1)で与えられる。Hはエルミート転置を表す。
Figure 2012165189
フィルタW(ω,θsr)の設計法として遅延合成法を説明する。直接音や反射音が平面波到来すると仮定すると、フィルタW(ω,θsr)は式(2)で与えられる。h(ω,θsr)=[h1(ω,θsr),…,hM(ω,θsr)]Tは、方向θsrから到来する音声の伝搬ベクトルである。
Figure 2012165189
線形マイクロホンアレー(M個のマイクロホンが直線状に並べられたマイクロホンアレー)に平面波が到来することを仮定すると、h(ω,θsr)を構成する要素hm(ω,θsr)は式(3)で与えられる。mは1≦m≦Mを満たす各整数である。cは音速を、uは隣り合うマイクロホン間の距離を表す。jは虚数単位である。τ(θsr)は、方向θsrから到来する反射音の直接音に対する時間遅延を表す。
Figure 2012165189
最後に、出力信号Y(ω,k,θs)を時間領域に変換することによって、目的方向θsにある音源の音声を強調した信号が得られる。
マルチビームフォーミング法による狭指向音声強調技術の機能構成を図1に示す。
ステップ1
AD変換部110は、M個のマイクロホン100−1,…,100−Mの出力であるアナログ信号をディジタル信号x(t)=[x1(t),…,xM(t)]Tに変換する。ここでtは離散時間のインデックスを表す。
ステップ2
周波数領域変換部120は、各チャネルのディジタル信号を高速離散フーリエ変換などの手法で周波数領域信号に変換する。例えば、m番目(1≦m≦M)のマイクロホンについて、N点の信号xm((k-1)N+1),…,xm(kN)をバッファに貯める。Nは16KHzサンプリングの場合で512程度である。バッファに貯められたMチャネルのアナログ信号を高速離散フーリエ変換処理することによって、周波数領域信号X(ω,k)=[X1(ω,k),…,XM(ω,k)]Tを得る。
ステップ3
各強調フィルタリング部130−r(1≦r≦R)は、周波数領域信号X(ω,k)=[X1(ω,k),…,XM(ω,k)]Tに対して方向θsrのフィルタW→H(ω,θsr)を適用し、方向θsrの音声が強調された信号Zr(ω,k)を出力する。つまり、各強調フィルタリング部130−r(1≦r≦R)は、式(4)で表される処理を行う。
Figure 2012165189
ステップ4
加算部140は、信号Z1(ω,k),…,ZR(ω,k)を入力として、加算信号Y(ω,k)を出力する。加算処理は式(5)で表わされる。
Figure 2012165189
ステップ5
時間領域変換部150は、加算信号Y(ω,k)を時間領域に変換して方向θsの音声が強調された時間領域信号y(t)を出力する。
J.L.Flanagan, A.C.Surendran, E.E.Jan, "Spatially selective sound capture for speech and audio processing," Speech Communication, Volume 13, Issue 1-2, pp.207-222, October 1993.
上述した狭指向音声強調技術によると、目的方向以外の方向の音声に埋もれないように目的方向の音声を高SN比で収音することや上述の駆動制御手段を要することなく任意の方向の音声を強調することは可能であるが、狭指向性を実現することが難しい。特に、人の声は100Hz程度から2kHz程度の周波数成分を多く含んでいるが、上述の従来技術によって、このような低周波帯域で目的方向に対して±5°〜±10°程度の鋭い指向性を実現することは困難である。このような現状にあって、十分なSN比で収音し、マイクロホンの物理的な移動を要することなく任意の方向の音声に追従可能でもありながら、所望の方向に対して従来よりも鋭い指向性を有する狭指向音声強調技術を実現するのに適した装置が従来存在しなかった。
そこで、本発明では従来よりも鋭い指向性を有する狭指向音声強調技術を実現可能なズームマイク装置を提供することを目的とする。
本発明のズームマイク装置は、支持構造体1基と、固定反射板2N枚(Nは1以上の整数)と、複数のマイクロホンを直線状に配置してなるマイクロホンアレー2N個とを備える。本発明のズームマイク装置は、固定反射板の面とマイクロホンアレーのマイクロホン配列方向とが平行になるようにマイクロホンアレーが固定反射板の面に1つずつ取り付けられ、2枚の固定反射板のマイクロホンアレーを取り付けた面同士が90度をなし、一方の固定反射板に取り付けられたマイクロホンアレーのマイクロホン配列方向と、他方の固定反射板に取り付けられたマイクロホンアレーのマイクロホン配列方向とが90度をなすように2枚の固定反射板同士を向き合わせて固定した固定反射板の組(N組)が支持構造体に取り付けられてなる。
本発明のズームマイク装置により、従来よりも鋭い指向性を有する狭指向音声強調技術を実現できる。
従来技術の一例としてマルチビームフォーミング法による狭指向音声強調技術の機能構成を示す図。 (a)直接音だけを考慮した場合に狭指向性が十分に実現できないことを模式的に示す図、(b)直接音と反射音を考慮した場合に狭指向性が十分に実現できることを模式的に示す図。 従来技術による場合と本発明の原理による場合のコヒーレンスの方向依存性を示す図。 実施形態に係る狭指向音声強調装置の機能構成を示す図。 実施形態に係る狭指向音声強調方法の処理手順を示す図。 第1の実施例の構成を示す図。 第1の実施例の実験結果を示す図。 第1の実施例の実験結果を示す図。 第1の実施例にてフィルタW(ω,θ)による指向性を示す図。 第2の実施例の構成を示す図。 第2の実施例の実験結果を示す図。 第2の実施例の実験結果を示す図。 本発明の実施構成例を示す図。(a)平面図。(b)正面図。(c)側面図。 (a)本発明の別の実施構成例を示す側面図。(b)本発明の別の実施構成例を示す側面図。 図14(b)に示す実施構成例における使用形態を示す図。 本発明の実施構成例を示す図。(a)平面図。(b)正面図。(c)側面図。 本発明の実施構成例を示す側面図。 第3の実施例の構成を示す正面図。 第3の実施例の構成を示す側面図。 第3の実施例の第1の変形例の構成を示す正面図。 第3の実施例の第2の変形例の構成を示す正面図。 第3の実施例の第3の変形例の構成を示す正面図。 第3の実施例の第4の変形例の構成を示す正面図。 第3の実施例の第5の変形例の構成を示す正面図。
《原理》
本発明の原理について説明する。本発明は、信号処理に基づいて任意の方向の音声に追従できるというマイクロホンアレー技術の本質と、反射音を積極的に利用することによって高SN比で収音することとを基本としつつ、鋭い指向性を可能とする信号処理技術を組み合わせたことを特徴の一つとしている。
説明に先立ち、改めて記号を定義する。離散周波数のインデックスをω(周波数fと角周波数ωとの間にはω=2πfの関係があるから、離散周波数のインデックスωをこの角周波数ωと同一視してもかまわない。ωに関して「離散周波数のインデックス」を単に「周波数」ともいう)、フレーム番号のインデックスをkとする。M個のマイクロホンで受音したアナログ信号の第kフレームの周波数領域表現をX(ω,k)=[X1(ω,k),…,XM(ω,k)]T、マイクロホンアレーの中心から見て目的方向θsの音声の周波数領域表現を周波数ωで強調するフィルタをW(ω,θs)とする。Mは2以上の整数とする。Tは転置を表す。このとき、目的方向θsの音声の周波数領域表現が周波数ωで強調された周波数領域信号(以下、出力信号と呼ぶ)Y(ω,k,θs)は式(6)で与えられる。Hはエルミート転置を表す。
Figure 2012165189
「マイクロホンアレーの中心」は任意に定めることができるが、一般的にはM個のマイクロホンの配置の幾何学的中心が「マイクロホンアレーの中心」とされ、例えば線形マイクロホンアレーであれば両端のマイクロホンの中間点が「マイクロホンアレーの中心」とされ、例えばm×m(m2=M)の正方マトリックス状に配置された平面マイクロホンアレーであれば、四隅のマイクロホンの対角線が交わる位置が「マイクロホンアレーの中心」とされる。
フィルタW(ω,θs)の設計法としては種々あるが、ここでは最小分散無歪応答法(MVDR method;minimum variance distortion response method)に拠る場合を説明する。最小分散無歪応答法では、フィルタW(ω,θs)は、式(8)の拘束条件の下、空間相関行列Q(ω)を用いて目的方向θs以外の方向の音声(以下、「目的方向θs以外の方向の音声」を「雑音」とも呼ぶ)のパワーが周波数ωで最小となるように設計される(式(7)参照)。a(ω,θs)=[a1(ω,θs),…,aM(ω,θs)]Tは、方向θsに音源が在ると仮定した場合の、当該音源とM本のマイクロホンとの間の周波数ωでの伝達特性である。換言すれば、a(ω,θs)=[a1(ω,θs),…,aM(ω,θs)]Tは、マイクロホンアレーに含まれる各マイクロホンへの方向θsの音声の周波数ωでの伝達特性である。
Figure 2012165189
式(7)の最適解であるフィルタW(ω,θs)は式(9)で与えられることが知られている。
(参考文献1)Simon Haykin著、鈴木博他訳、「適応フィルタ理論」、初版、株式会社科学技術出版、2001.pp.66-73,248-255
Figure 2012165189
空間相関行列Q(ω)の逆行列が式(9)に含まれることから察せられるように、空間相関行列Q(ω)の構造は鋭い指向性を実現する上で重要であることがわかる。また、式(7)から、雑音のパワーは空間相関行列Q(ω)の構造に依存することもわかる。
雑音の到来方向のインデックスpが属する集合を{1,2,…,P-1}とする。目的方向θsのインデックスsは集合{1,2,…,P-1}に属さないとする。P-1個の雑音が任意の方向から到来すると仮定すると、空間相関行列Q(ω)は式(10a)で与えられる。多くの雑音が存在する中でも十分に機能するフィルタを作る観点から、Pはある程度大きい値であることが好ましく、M程度の整数であるとする。なお、ここでは発明の原理を分かり易く説明する観点から目的方向θsがあたかも特定の方向の如く説明しているが(それ故、目的方向θs以外の方向を「雑音」の方向としている)、後述の実施形態で明らかになるように、実際には、目的方向θsは音声強調の対象となりえる任意の方向であり、目的方向θsになりえる方向として一般的に複数の方向が想定される。このような観点からすると、目的方向θsと雑音の方向との区別は凡そ主観的なものであり、目的音か雑音かの区別なく音声の到来方向として想定される複数の方向としてP個の異なる方向を予め決めておき、P個の方向のうち選択された一つの方向が目的方向であり、それ以外の方向が雑音の方向であると理解することがより正確である。そこで、集合{1,2,…,P-1}と集合{s}との和集合をΦとすると、空間相関行列Q(ω)は、音声の到来方向として想定される複数の方向に含まれる各方向θφの音声の各マイクロホンへの伝達特性a(ω,θφ)=[a1(ω,θφ),…,aM(ω,θφ)]T(φ∈Φ)によって表される空間相関行列であり、式(10b)で表される。なお、|Φ|=Pである。|Φ|は集合Φの要素数を表す。
Figure 2012165189
ここで、目的方向θsの音声の伝達特性a(ω,θs)と、方向p∈{1,2,…,P-1}の音声の伝達特性a(ω,θp)=[a1(ω,θp),…,aM(ω,θp)]Tがお互いに直交すると仮定する。つまり、式(11)で表される条件を満たすP個の直交基底系が存在すると仮定する。記号⊥は直交性を表す。A⊥Bである場合、ベクトルAとベクトルBの内積値はゼロである。ここではP≦Mを満たすとする。なお、式(11)で表される条件を緩和し、近似的に直交基底系と見なせるP個の基底系が存在すると仮定できるような場合には、PはM程度、あるいはM以上のある程度大きい値であることが好ましい。
Figure 2012165189
このとき、空間相関行列Q(ω)は式(12)のように展開できる。式(12)は、直交性を満たすP個の伝達特性で構成された行列V(ω)=[a(ω,θs),a(ω,θ1),…,a(ω,θP-1)]Tと単位行列Λ(ω)によって空間相関行列Q(ω)を分解できることを意味している。ρは空間相関行列Q(ω)による式(11)を満たす伝達特性a(ω,θφ)の固有値であり実数である。
Figure 2012165189
このとき、空間相関行列Q(ω)の逆行列は式(13)で与えられる。
Figure 2012165189
式(13)を式(7)に代入すると、雑音のパワーが最小となることがわかる。雑音のパワーが最小となれば目的方向θsに対する指向性が実現する。よって、異なる方向の伝達特性の間に直交性が成り立っていることは、目的方向θsに対する指向性を実現する上で、重要な条件となる。
以下、従来技術において目的方向θsに対して鋭い指向性を実現することが困難な理由について考察する。
従来技術では、伝達特性が直接音のみで構成されると仮定してフィルタの設計を行っていた。現実には同じ音源から発せられた音声が壁や天井等で反射してマイクロホンに到達する反射音が存在するが、反射音は指向性を悪化させる要因と考えて反射音の存在を無視していたのである。方向θから到来する直接音のみのステアリングベクトルをh d(ω,θ)=[hd1(ω,θ),…,hdM(ω,θ)]Tとすると、従来では、伝達特性a conv(ω,θ)=[a1(ω,θ),…,aM(ω,θ)]Tをa conv(ω,θ)=h d(ω,θ)としていた。なお、ステアリングベクトルは、マイクロホンアレーの中心から見て方向θの音波について、基準点に対する各マイクロホンの周波数ωでの位相応答特性を並べた複素ベクトルである。
線形マイクロホンアレーに音声が平面波として到来すると仮定すると、直接音のステアリングベクトルh d(ω,θ)を構成するm番目の要素hdm(ω,θ)は例えば式(14a)で与えられる。mは1≦m≦Mを満たす各整数である。cは音速を、uは隣り合うマイクロホン間の距離を表す。jは虚数単位である。基準点は線形マイクロホンアレーの全長の半分の位置(線形マイクロホンアレーの中心)である。方向θは線形マイクロホンアレーの中心から見て直接音の到来方向と線形マイクロホンアレーに含まれるマイクロホンの配列方向とがなす角度として定義した(図6参照)。なお、ステアリングベクトルの表し方は種々あり、例えば、基準点を線形マイクロホンアレーの一端にあるマイクロホンの位置とすれば、直接音のステアリングベクトルh d(ω,θ)を構成するm番目の要素hdm(ω,θ)は例えば式(14b)で与えられる。以下、直接音のステアリングベクトルh d(ω,θ)を構成するm番目の要素hdm(ω,θ)は式(14a)で与えられるとして説明する。
Figure 2012165189
方向θの伝達特性と目的方向θsの伝達特性との内積値γconv(ω,θ)は式(15)で表される。なお、θ≠θsとする。
Figure 2012165189
以後、γconv(ω,θ)をコヒーレンスと呼称する。コヒーレンスγconv(ω,θ)が0となる方向θは式(16)で与えられる。qは0を除く任意の整数である。また、0<θ<π/2であるから、qの範囲は周波数帯域ごとに制限されることになる。
Figure 2012165189
式(16)にて、変更可能なパラメータはマイクロホンアレーのサイズに関わるパラメータ(Mとu)のみであるから、方向の差(角度差)|θ-θs|が小さい場合には、マイクロホンアレーのサイズに関わるパラメータを変更することなくコヒーレンスγconv(ω,θ)を小さくすることは困難である。この場合、雑音のパワーは十分に小さくならず、図2(a)に模式的に示すように、目的方向θsに対して広いビーム幅を持った指向性となってしまう。
他方、本発明は、このような考察に基づき、目的方向θsに対して鋭い指向性を持つためのフィルタ設計には、方向の差(角度差)|θ-θs|が小さい場合でもコヒーレンスを十分に小さくできるようにすることが重要であるとの知見に基づき、従来技術と異なり反射音を積極的に考慮することを特徴とする。
マイクロホンアレーの各マイクロホンには、音源からの直接音と、当該音源からの音が反射物300で反射した反射音との二種類の平面波が混入することになる。反射音の数をΞとする。Ξは1以上の予め定められた整数である。このとき、伝達特性a(ω,θ)=[a1(ω,θ),…,aM(ω,θ)]Tは、音声強調の対象となりえる方向の音声がマイクロホンアレーに直接届く直接音の伝達特性と当該音声が反射物で反射してマイクロホンアレーに届く一つ以上の反射音の各伝達特性との和、具体的には、直接音とξ番目(1≦ξ≦Ξ)の反射音との到来時間差をτξ(θ)とし、αξ(1≦ξ≦Ξ)を反射による音の減衰を考慮するための係数とすると、式(17a)のように、直接音のステアリングベクトルと、反射による音の減衰および直接音に対する到来時間差が補正されたΞ個の反射音のステアリングベクトルの和で表現できる。h (ω,θ)=[hr1ξ(ω,θ),…,hrMξ(ω,θ)]Tは方向θの直接音に対応する反射音のステアリングベクトルを表す。αξ(1≦ξ≦Ξ)は、通常、αξ≦1(1≦ξ≦Ξ)である。各反射音について、音源からマイクロホンに到達するまでの反射回数が1回であるならば、αξ(1≦ξ≦Ξ)は、ξ番目の反射音が反射した物体の音の反射率を表していると考えて差し支えない。
Figure 2012165189
M個のマイクロホンで構成されるマイクロホンアレーに対して一つ以上の反射音を与えることが望まれるので、一つ以上の反射物が存在することが好ましい。このような観点からすると、目的方向に音源が在るとして、当該音源とマイクロホンアレーと一つ以上の反射物との位置関係は、当該音源からの音が少なくとも一つの反射物で反射してマイクロホンアレーに届くように、各反射物が配置されていることが好ましい。各反射物の形状は、2次元形状(例えば平板)または3次元形状(例えばパラボラ形状)である。また、各反射物の大きさはマイクロホンアレーと同等かそれ以上(1〜2倍程度)の大きさを持つことが好ましい。反射音を効果的に活用するためには、各反射物の反射率αξ(1≦ξ≦Ξ)は少なくとも0よりも大きく、さらに言えば、マイクロホンアレーに届いた反射音の振幅が直接音の振幅の例えば0.2倍以上であることが望ましく、例えば各反射物は剛性を有する固体とされる。反射物は移動可能な物体(例えば反射板)であっても移動不能な物体(床や壁や天井)であってもよい。なお、移動不能な物体を反射物として設定するとマイクロホンアレーの設置位置の変更などに伴って、反射音のステアリングベクトルの変更を要することとなり(後述する関数Ψ(θ)やΨξ(θ)を参照のこと)、ひいてはフィルタ計算のやり直し(再設定)が余儀なくされる。そこで、環境変化に対して頑健であるためには、各反射物はマイクロホンアレーの従物であることが好ましい(この場合、想定されるΞ個の反射音は各反射物によるものであると考えることになる)。ここで「マイクロホンアレーの従物」とは、「マイクロホンアレーに対する配置関係(幾何学的関係)を維持したままマイクロホンアレーの位置や向きなどの変更に従うことができる有体物」のことである。単純な例として、マイクロホンアレーに各反射物が固定されている構成が挙げられる。
以下、本発明の利点を具体的に説明する観点から、Ξ=1とし、反射音の反射回数は1回であって、マイクロホンアレーの中心からLメートル離れた位置に一つの反射物が存在すると仮定する。反射物は厚みのある剛体とする。この場合、Ξ=1であるからこれを表す添え字を略することとして、式(17a)は式(17b)のように表すことができる。
Figure 2012165189
反射音のステアリングベクトルh r(ω,θ)=[hr1(ω,θ),…,hrM(ω,θ)]Tのm番目の要素は、直接音のステアリングベクトルの表し方と同様に(式(14a)参照)、式(18a)で表される。関数Ψ(θ)は反射音の到来方向を出力する。なお、直接音のステアリングベクトルを式(14b)で表す場合には、反射音のステアリングベクトルh r(ω,θ)=[hr1(ω,θ),…,hrM(ω,θ)]Tのm番目の要素は式(18b)で表される。一般的に、ξ番目(1≦ξ≦Ξ)のステアリングベクトルh (ω,θ)=[hr1ξ(ω,θ),…,hrMξ(ω,θ)]Tのm番目の要素は、式(18c)や式(18d)で表される。関数Ψξ(θ)はξ番目(1≦ξ≦Ξ)の反射音の到来方向を出力する。
Figure 2012165189
反射物の位置は適宜に設定可能であるから、反射音の到来方向は変更可能なパラメータとして扱うことができる。
平板状の反射物がマイクロホンアレーの近傍にある(距離Lがマイクロホンアレーのサイズに比して極端に大きくない)と仮定すると、コヒーレンスγ(ω,θ)は式(19)で表される。なお、θ≠θsとする。
Figure 2012165189
式(19)から、式(15)の従来のコヒーレンスγconv(ω,θ)よりも式(19)のコヒーレンスγ(ω,θ)の方が小さくなる可能性があることがわかる。反射物の置き方によって変更できるパラメータ(Ψ(θ)やL)が式(19)の第2〜4項目の中に存在するので第1項目のh d H(ω,θ)h d(ω,θ)を除去できる可能性がある。
例えば、線形マイクロホンアレーに対して、マイクロホンの配列方向が反射板の法線となるように平板の反射板を配置すると、関数Ψ(θ)についてΨ(θ)=π-θが成立し、直接音と反射音との到来時間差τ(θ)について式(20)が成立するので、式(19)を構成する要素に式(21)(22)の各条件が生成される。記号*は複素共役を表す演算子である。
Figure 2012165189
h d H(ω,θ)h r(ω,θ)の絶対値はh d H(ω,θ)h d(ω,θ)よりも十分に小さいので、式(19)の第2項、第3項を無視すると、コヒーレンスγ(ω,θ)は式(23)のように近似できる。
Figure 2012165189
仮にh d H(ω,θ)h d(ω,θ)≠0であるとしても、近似コヒーレンスγ~(ω,θ)は式(24)の極小解θを持つ。qは任意の正整数である。また、qの範囲は周波数帯域ごとに制限される。
Figure 2012165189
つまり、式(16)で与えられる方向だけではなく、式(24)で与えられる方向でもコヒーレンスを抑圧できる。コヒーレンスを抑圧できれば、雑音のパワーをより小さくできるので、図2(b)に模式的に示すように、鋭い指向性の実現が可能になる。
なお、図2では本発明の原理に拠る場合と従来技術に拠る場合の指向性の違いを模式的に示したが、図3に、式(16)で与えられるθと式(24)で与えられるθの違いを具体的に示す。ω=2π×1000[rad/s],L=0.70[m],θs=π/4[rad]である。図3では両者の比較のために正規化されたコヒーレンスの方向依存性を示してあり、記号○で示された方向が式(16)で与えられるθであり、記号+で示された方向が式(24)で与えられるθである。図3から明らかなように、従来技術に拠るとθs=π/4[rad]に対してコヒーレンスがゼロとなるθは記号○で示された方向だけであるが、本発明の原理に拠るとθs=π/4[rad]に対してコヒーレンスがゼロとなるθは記号+で示される多数の方向に存在し、特に、記号○で示された方向よりもθs=π/4[rad]にはるかに近い方向に記号+で示された方向が存在するため、従来技術に比べて鋭い指向性が実現されることが理解できる。
上述の説明から明らかなように、本発明の特徴の要点は、伝達特性a(ω,θ)=[a1(ω,θ),…,aM(ω,θ)]Tを、例えば式(17a)のように、直接音のステアリングベクトルとΞ個の反射音のステアリングベクトルの和で表現していることにある。従って、フィルタの設計コンセプト自体に影響を与えないので、最小分散無歪応答法以外の手法によってフィルタW(ω,θs)を設計することができる。
最小分散無歪応答法以外の手法として、SN比最大化規準によるフィルタ設計法とパワーインバージョン(Power Inversion)に基づくフィルタ設計法を説明する。SN比最大化規準によるフィルタ設計法とパワーインバージョンに基づくフィルタ設計法については参考文献2を参照のこと。
(参考文献2)菊間信良著、「アダプティブアンテナ技術」、第1版、株式会社オーム社、2003年、pp.35-90
<1>SN比最大化規準によるフィルタ設計法
SN比最大化規準によるフィルタ設計法では、目的方向θsでのSN比(SNR)を最大化する規準でフィルタW(ω,θs)を決定する。目的方向θsの音声の空間相関行列をRss(ω)、目的方向θs以外の方向の音声の空間相関行列をRnn(ω)とする。このとき、SNRは式(25)で表される。なお、Rss(ω)は式(26)、Rnn(ω)は式(27)で表される。伝達特性a(ω,θs)=[a1(ω,θs),…,aM(ω,θs)]Tは式(17a)で表される(正確には、式(17a)のθをθsとしたものである)。
Figure 2012165189
式(25)のSNRを最大にするフィルタW(ω,θs)は、フィルタW(ω,θs)に関する勾配をゼロとすること、つまり式(28)によって求めることができる。
Figure 2012165189
これにより、式(25)のSNRを最大にするフィルタW(ω,θs)は式(29)で与えられる。
Figure 2012165189
式(29)には目的方向θs以外の方向の音声の空間相関行列Rnn(ω)の逆行列が含まれているが、Rnn(ω)の逆行列を、目的方向θsの音声と目的方向θs以外の方向の音声を含む入力全体の空間相関行列Rxx(ω)の逆行列に置換してもよいことが知られている。なお、Rxx(ω)=Rss(ω)+Rnn(ω)=Q(ω)である(式(10a)、式(26)、式(27)参照)。つまり、式(25)のSNRを最大にするフィルタW(ω,θs)を式(30)で求めてもよい。
Figure 2012165189
<2>パワーインバージョンに基づくフィルタ設計法
パワーインバージョンに基づくフィルタ設計法では、一つのマイクロホンに対するフィルタ係数を一定値に固定した状態で出力のパワーを最小化する基準でフィルタW(ω,θs)を決定する。ここでは、一例として、M個のマイクロホンのうち1番目のマイクロホンに対するフィルタ係数を固定するとして説明する。この設計法では、フィルタW(ω,θs)は、式(32)の拘束条件の下、空間相関行列Rxx(ω)を用いて全方向(音声の到来方向として想定される全ての方向)の音声のパワーが最小となるように設計される(式(31)参照)。伝達特性a(ω,θs)=[a1(ω,θs),…,aM(ω,θs)]Tは式(17a)で表される(正確には、式(17a)のθをθsとしたものである)。なお、Rxx(ω)=Q(ω)である(式(10a)、式(26)、式(27)参照)。
Figure 2012165189
式(31)の最適解であるフィルタW(ω,θs)は式(33)で与えられることが知られている(参考文献2参照)。
Figure 2012165189
《実施形態》
本発明の実施形態の機能構成および処理フローを図4と図5に示す。この実施形態の狭指向音声強調装置1は、AD変換部210、フレーム生成部220、周波数領域変換部230、フィルタ適用部240、時間領域変換部250、フィルタ設計部260、記憶部290を含む。
ステップS1
予め、フィルタ設計部260が音声強調の対象となりえる離散的な方向ごとに、周波数ごとのフィルタW(ω,θi)を計算しておく。音声強調の対象となりえる離散的な方向の総数をI(Iは1以上の予め定められた整数であり、I≦Pを満たす)とすると、W(ω,θ1),…,W(ω,θi),…,W(ω,θI)(1≦i≦I, ω∈Ω; iは整数、Ωは周波数ωの集合)を事前に計算しておくのである。このためには、伝達特性a(ω,θi)=[a1(ω,θi),…,aM(ω,θi)]T(1≦i≦I, ω∈Ω)を求める必要があるが、これは、マイクロホンアレーにおけるマイクロホンの配置、反射物である例えば反射板、床、壁、天井のマイクロホンアレーに対する位置関係、直接音とξ番目(1≦ξ≦Ξ)の反射音との到来時間差、反射物の音の反射率などの環境情報を基に式(17a)によって具体的に計算できる(正確には、式(17a)のθをθiとしたものである)。反射音の数Ξは1≦Ξを満たす整数に設定されるが、Ξの値として特に限定はなく計算能力などに応じて適宜に設定すればよい。一つの反射板をマイクロホンアレーの近傍に設置する場合には、伝達特性a(ω,θi)は式(17b)によって具体的に計算できる(正確には、式(17b)のθをθiとしたものである)。ステアリングベクトルの計算には、例えば式(14a)、式(14b)、式(18a)、式(18b)、式(18c)、式(18d)を用いることができる。なお、式(17a)や式(17b)に拠らず、例えば実環境下における実測で得られた伝達特性を用いてもよい。そして、伝達特性a(ω,θi)を用いて、例えば式(9)、式(29)、式(30)、式(33)のいずれかによってW(ω,θi)(1≦i≦I)を求める。なお、式(9)または式(30)または式(33)を用いる場合には空間相関行列Q(ω)(あるいはRxx(ω))は式(10b)で計算できる。式(29)を用いる場合には空間相関行列Rnn(ω)は式(27)で計算できる。I×|Ω|個のフィルタW(ω,θi)(1≦i≦I,ω∈Ω)は記憶部290に記憶される。|Ω|は集合Ωの要素数を表す。
ステップS2
マイクロホンアレーを構成するM個のマイクロホン200−1,…,200−Mを用いて収音する。Mは2以上の整数である。
M個のマイクロホンの並べ方に制限は無い。ただし、2次元または3次元的にM個のマイクロホンを配置することによって、音声強調する方向の不確定性がなくなるという利点がある。つまり、M個のマイクロホンを水平方向に直線状に並べたときに例えば正面方向から到来する音声と真上から到来する音声との区別ができなくなるという問題を、マイクロホンを平面的ないし立体的に並べることで防ぐことができる。また、収音方向として設定できる方向を広くとるためには、各マイクロホンの指向性は、収音方向である目的方向θsになり得る方向にある程度の音圧で音声を収音可能な指向性を持っていたほうがよい。したがって、無指向性マイクロホンや単一指向性マイクロホンといった指向性が比較的緩やかなマイクロホンが好適である。
ステップS3
AD変換部210が、M個のマイクロホン200−1,…,200−Mで収音されたアナログ信号(収音信号)をディジタル信号x(t)=[x1(t),…,xM(t)]Tへ変換する。tは離散時間のインデックスを表す。
ステップS4
フレーム生成部220は、AD変換部210が出力したディジタル信号x(t)=[x1(t),…,xM(t)]Tを入力とし、チャネルごとにNサンプルをバッファに貯めてフレーム単位のディジタル信号x(k)=[x 1(k),…,x M(k)]Tを出力する。kはフレーム番号のインデックスである。x m(k)=[xm((k-1)N+1),…,xm(kN)](1≦m≦M)である。Nはサンプリング周波数にもよるが、16kHzサンプリングの場合には512点あたりが妥当である。
ステップS5
周波数領域変換部230は、各フレームのディジタル信号x(k)を周波数領域の信号X(ω,k)=[X1(ω,k),…,XM(ω,k)]Tに変換して出力する。ωは離散周波数のインデックスである。時間領域信号を周波数領域信号に変換する方法の一つに高速離散フーリエ変換があるが、これに限定されず、周波数領域信号に変換する他の方法を用いてもよい。周波数領域信号X(ω,k)は、各周波数ω、フレームkごとに出力される。
ステップS6
フィルタ適用部240は、フレームkごとに、各周波数ω∈Ωについて、周波数領域信号X(ω,k)=[X1(ω,k),…,XM(ω,k)]Tに、強調したい目的方向θsに対応するフィルタW(ω,θs)を適用して、出力信号Y(ω,k,θs)を出力する(式(34)参照)。目的方向θsのインデックスsは、s∈{1,…,I}であり、フィルタW(ω,θs)は記憶部290に記憶されているので、例えば、ステップS6の処理の都度、フィルタ適用部240は、強調したい目的方向θsに対応するフィルタW(ω,θs)を記憶部290から取得すればよい。目的方向θsのインデックスsが集合{1,…,I}に属さない場合、つまり、目的方向θsに対応するフィルタW(ω,θs)がステップS1の処理で計算されていない場合、臨時に目的方向θsに対応するフィルタW(ω,θs)をフィルタ設計部260に計算させてもよいし、あるいは目的方向θsに近い方向θs'に対応するフィルタW(ω,θs')を用いてよい。
Figure 2012165189
ステップS7
時間領域変換部250は、第kフレームの各周波数ω∈Ωの出力信号Y(ω,k,θs)を時間領域に変換して第kフレームのフレーム単位時間領域信号y(k)を得て、さらに、得られたフレーム単位時間領域信号y(k)をフレーム番号のインデックスの順番に連結して目的方向θsの音声が強調された時間領域信号y(t)を出力する。周波数領域信号を時間領域信号に変換する方法は、ステップS5の処理で用いた変換方法に対応する逆変換であり、例えば高速離散逆フーリエ変換である。
ここでは、ステップS1の処理で予めフィルタW(ω,θi)を計算しておく実施形態を説明したが、狭指向音声強調装置1の計算処理能力などに応じて、目的方向θsが定まってからフィルタ設計部260が周波数ごとのフィルタW(ω,θs)を計算する実施形態を採用することもできる。
本発明の実施形態(最小分散無歪応答法)による実験結果を説明する。図6に示すように、24本のマイクロホンを直線的に配置し、この線形マイクロホンアレーに含まれるマイクロホンの配列方向が反射板300の法線となるように反射板300を配置した。反射板300の形状に制限はないが、反射面が平面であって、1.0m×1.0mのサイズと適度な厚みと剛性を持つ平板の反射板を用いた。隣り合うマイクロホンの間隔を4cm、反射板300の反射率αを0.8とした。目的方向θsを45度に設定した。線形マイクロホンアレーに音声が平面波として到来すると仮定し、伝達特性を式(17b)(式(14a)、式(18a)を参照)で算出して、生成されるフィルタの指向性を検証した。比較対象として、2つの従来法(反射板無しの最小分散無歪応答法と反射板有りの遅延合成法)を用いた。
実験結果を図7、図8に示す。2つの従来法と比較して、どの周波数帯域でも本発明の実施形態の方が、目的方向に対して鋭い指向性を実現できていることが分かる。特に、低周波数帯域ほど本発明の有用性が理解される。また、図9には、本発明の実施形態に従って生成したフィルタW(ω,θ)による指向性を示した。図9から、直接音だけでなく、反射音も強調していることが分かる。
また、図10に示すように、線形マイクロホンアレーに含まれるマイクロホンの配列方向と反射板300の平面とのなす角が45度になるように反射板300を配置した場合についても上述の実験と同様の実験を行った。目的方向θsを22.5度に設定し、その他の実験条件は線形マイクロホンアレーに含まれるマイクロホンの配列方向が反射板300の法線となるように反射板300を配置した場合と同じとした。
実験結果を図11、図12に示す。2つの従来法と比較して、どの周波数帯域でも本発明の実施形態の方が、目的方向に対して鋭い指向性を実現できていることが分かる。特に、低周波数帯域ほど本発明の有用性が理解される。
次に、本発明の実施構成の例を図13〜図17を参照して説明する。これらの例ではマイクロホンアレーの構成は線形マイクロホンアレーとして図示されているが、線形マイクロホンアレーの構成に限定されない。
図13に示す実施構成例では、線形マイクロホンアレーを構成するM個のマイクロホン200−1,…,200−Mは矩形平板状の支持部材400に固定されており、この状態で各マイクロホンの収音孔は支持部材400の或る一つの平面(以下、開口面と呼ぶ)に配置されている(図示の例ではM=13)。なお、各マイクロホン200−1,…,200−Mに接続される配線は図示していない。そして、各マイクロホン200−1,…,200−Mの配列方向が矩形平板状の反射板300の法線となるように反射板300が支持部材400の端部に固定されている。支持部材400の開口面は、反射板300と90度をなす面である。図13に示す実施構成例では、反射板300の好ましいとされる性状は既述の反射物の性状と同じであり、支持部材400の性状については特に限定はなく各マイクロホン200−1,…,200−Mをしっかりと固定できる剛性を持っていれば十分である。
図14(a)に示す実施構成例では、支持部材400の端部に軸部410が固定されており、反射板300は軸部410に回動自在に取り付けられている。この実施構成例によると、マイクロホンアレーに対する反射板300の幾何学的配置を変更することが可能である。
図14(b)に示す実施構成例では、図13に示す実施構成例において、さらに二つの反射板310,320が追加されている。追加された二つの反射板310,320の性状は反射板300の性状と同じでも異なってもよい。また、反射板310の性状は反射板320の性状と同じでも異なってもよい。以下、反射板300を固定反射板300と呼称する。固定反射板300の端部(支持部材400に固定されている固定反射板300の端部とは反対側の端部)に軸部510が固定されており、反射板310は軸部510に回動自在に取り付けられている。また、支持部材400の端部(固定反射板300が固定されている支持部材400の端部とは反対側の端部)に軸部520が固定されており、反射板320は軸部520に回動自在に取り付けられている。以下、反射板310,320を可動反射板310,320と呼称する。図14(b)に示す実施構成例によると、例えば固定反射板300の反射面と可動反射板310の反射面が一致するように可動反射板310の位置を設定すると、固定反射板300と可動反射板310の組み合わせを、固定反射板300よりも大きい反射面を持つ反射板として機能させることができる。また、図14(b)に示す実施構成例によると、可動反射板310,320を適切な位置に設定することによって、例えば図15に示すように支持部材400、固定反射板300、可動反射板310,320で囲まれた空間内で何度も音声を反射させることができるので、反射音の数Ξを制御することができる。なお、図14(b)に示す実施構成例の場合、支持部材400は反射物としての役割を果たすことになるので、既述の反射物の性状と同じ性状を持つことが好ましい。
図16に示す実施構成例は、反射板300にもマイクロホンアレー(図示の例では線形マイクロホンアレー)が設けられていることが図13に示す実施構成例と異なる。図16に示す実施構成例では、支持部材400に固定されたM個のマイクロホンの配列方向と反射板300に固定されたM’個のマイクロホンの配列方向が同一平面上にあるが、このような配置構成に限定されない(図示の例ではM’=13)。例えば、支持部材400に固定されたM個のマイクロホンの配列方向と直交するような配列方向を持つように反射板300にM’個のマイクロホンが固定されていてもよい。図16に示す実施構成例によると、支持部材400に設けられたマイクロホンアレーと反射板300(反射板300に設けられたマイクロホンアレーを使用せず、反射板300を反射物として使用する)との組み合わせで本発明を実施したり、支持部材400(支持部材400に設けられたマイクロホンアレーを使用せず、支持部材400を反射物として使用する)と反射板300に設けられたマイクロホンアレーとの組み合わせで本発明を実施したりすることができる。
また、図16に示す実施構成例の拡張実施構成例として、図14(b)に示す実施構成例と同様に、図16に示す実施構成例においてさらに二つの反射板310,320を追加した構成としてもよい(図17参照)。また、図示していないが、可動反射板310,320の少なくとも一つにマイクロホンアレーを設けてもよい。可動反射板310に設けられるマイクロホンアレーを構成する各マイクロホンの収音孔は、例えば、支持部材400の開口面と対向可能な可動反射板310の平面(開口面)に配置される。可動反射板320に設けられるマイクロホンアレーを構成する各マイクロホンの収音孔は、例えば、支持部材400の開口面と同一平面を形成可能な可動反射板320の平面(開口面)に配置される。このような実施構成例であっても図14(b)に示す実施構成例と同様の使用形態が可能である。また、この実施構成例によると、例えば支持部材400の開口面と可動反射板320の開口面が一致するように可動反射板320の位置を設定すると、支持部材400と可動反射板320の組み合わせを、支持部材400に設けられたマイクロホンアレーよりも大きいマイクロホンアレーとして機能させることができる。図17に示す実施構成例においても、可動反射板310,320の少なくとも一つにマイクロホンアレーを設けた実施構成例においても、図15に示す実施構成例と同様の使用形態が可能である。また、図17に示す実施構成例においても、可動反射板310,320の少なくとも一つにマイクロホンアレーを設けた実施構成例においても、例えば、可動反射板310,320を通常の反射物として用い、支持部材400に設けられたマイクロホンアレーと固定反射板300に設けられたマイクロホンアレーとを一体のマイクロホンアレーとして用いる使用形態も可能である。この場合、(M+M’)個のマイクロホンで構成されたマイクロホンアレーと二つの反射物を使用する実施構成例と等価となる。
可動反射板310にマイクロホンアレーを設ける場合、可動反射板310に設けられるマイクロホンアレーを構成する各マイクロホンの収音孔が、支持部材400の開口面と対向可能な可動反射板310の平面の反対側の平面(開口面)に配置されるように、可動反射板310にマイクロホンアレーを設けてもよい。また、可動反射板320にマイクロホンアレーを設ける場合、可動反射板320に設けられるマイクロホンアレーを構成する各マイクロホンの収音孔が、支持部材400の開口面と同一平面を形成可能な可動反射板320の平面の反対側の平面(開口面)に配置されるように、可動反射板320にマイクロホンアレーを設けてもよい。もちろん、可動反射板310,320の少なくとも一つについて、その両面に開口面とするように当該可動反射板にマイクロホンアレーを設けてもよい。
[A]マイクロホンアレーを可動反射板310,320の少なくとも一つに設けた場合であって、可動反射板310の開口面を支持部材400の開口面と対向可能な平面とした場合ないし可動反射板320の開口面を支持部材400の開口面と同一平面を形成可能な平面とした場合、図15に示す使用形態では、視線方向に対して可動反射板310および/または可動反射板320の開口面が見えないように可動反射板310および/または可動反射板320が配置されることによって視線方向の見かけ上のアレーサイズは小さくなるものの、可動反射板310および/または可動反射板320に設けられたマイクロホンアレーを利用することによって、アレーサイズを大きくした場合と同じ効果を得ることができる。
[B]マイクロホンアレーを可動反射板310,320の少なくとも一つに設けた場合であって、可動反射板310の開口面を支持部材400の開口面と対向可能な平面の反対側の平面とした場合ないし可動反射板320の開口面を支持部材400の開口面と同一平面を形成可能な平面の反対側の平面とした場合、図15に示す使用形態では、視線方向に対して見かけ上のアレーサイズを保ったまま、アレーサイズを大きくした場合と同じ効果を得ることができる。
可動反射板310,320の少なくとも一つについて、その両面に開口面とするように当該可動反射板にマイクロホンアレーを設けた場合には、[A]と[B]の双方の効果を得ることも可能である。
上述したように、線形マイクロホンアレーの配列方向と垂直に平板型の反射板を設置することは、狭指向性のビームを生成出来る条件の一つである。図16、図17に示した実施形態では、1次元状にマイクロホンが展開されているので、例えばこれらのマイクロホンの配列方向を水平方向として設置した場合には、水平角方向の方向制御は可能であるが、仰角方向の方向制御を行うことが出来ない。そこで、図17において述べた実施構成例を3次元状に展開することで、3次元空間における任意の方向を強調できるようにした実施形態について以下説明する。図18、図19を参照して、上述した図17の実施構成例における固定反射板300、支持部材400が正八角錘の向かい合う角錘面を構成するように組み合せた第3の実施例に係るズームマイク装置600について説明する。図18は、本実施例に係るズームマイク装置600の正面図である。図19は、本実施例に係るズームマイク装置600の側面図である。なお、本実施例では、図17で呼び分けていた固定反射板300、支持部材400を全て固定反射板と総称する。また図17で可動反射板310、320として示した構成は、本実施例においても可動反射板と呼ばれる。本実施例のズームマイク装置600は、1基の支持構造体601、8枚の固定反射板611〜618、8個の固定マイクロホンアレー621〜628、8枚の可動反射板631〜638、8個の可動マイクロホンアレー641〜648、1枚の中央反射板651、1個の中央マイクロホンアレー661、8個の蝶番671〜678、8枚の支持金属板(大)681〜688、8枚の支持金属板(小)691〜698および、ボルトやビスなどの接合用部品からなる。支持構造体601は固定反射板611〜618、中央反射板651を所定の位置、向きに固定指示することを目的としている。支持構造体601は例えば型鋼、角鋼管などにより組み上げることができる。固定反射板611〜618は台形形状をした平板であり、反射率の高い素材で構成されている。例えば、固定反射板611〜618には厚み1cm程度の木材、ABS樹脂素材などを用いることができる。固定マイクロホンアレー621〜628は、複数のマイクロホンが一直線上に並ぶように構成されている。本実施例では固定マイクロホンアレー621〜628は、複数のマイクロホンを長板形状の支持金属板(大)681〜688上に、支持金属板(大)681〜688の長手方向に一直線上に並ぶように配置して、それぞれのマイクロホンをボルトやねじなどの接合部材で支持金属板(大)681〜688上に固定することで、構成されている。固定反射板611〜618には固定マイクロホンアレー621〜628が、固定反射板611〜618の面と固定マイクロホンアレー621〜628のマイクロホン配列方向とがそれぞれ平行になるように、各固定反射板の面に対して1つずつ取り付けられている。本実施例では、各固定反射板に、複数の小孔を一直線上に設けてある。複数の小孔は台形形状をなす固定反射板の上底または下底の垂直二等分線上に配置されているものとする。この小孔を覗くように固定マイクロホンアレー621〜628の各マイクロホンの受音部が配置された状態で、前述の支持金属板(大)681〜688を長ボルトなどで固定反射板611〜618に取り付けることで、固定反射板611〜618に固定マイクロホンアレー621〜628を固定している。固定反射板611〜618は、相対する角錘面が垂直をなす正八角錘台の、8つの角錘面を構成するように組み合わせられ互いの斜辺が接合されている。正八角錘台の上底には、正八角形の平板形状の中央反射板651を配置し、中央反射板651の各辺には、台形形状の固定反射板611〜618の上底が接合されている。これら固定反射板611〜618と中央反射板651とによって形成される正八角錘台の凹面側の面をオモテ面とし、凸面側の面をウラ面とすれば、前述の支持金属板(大)681〜688は凸面側であるウラ面側に長ボルトなどで取り付けられているものとし、固定マイクロホンアレー621〜628の各マイクロホンの受音部は、凹面側であるオモテ面に向かって、小孔から露出しているものとする。固定反射板611〜618と中央反射板651とによって形成される正八角錘台は、前述した支持構造体601の所定の位置に所定の向きで取り付けられている。固定反射板611〜618と中央反射板651とによって形成される正八角錘台開口端辺には蝶番671〜678が1辺につき1個ずつ取り付けられている。本実施例においては、この蝶番671〜678には任意の角度で静止可能なヒンジ(例えば、フリーストップヒンジ)を用いている。この蝶番671〜678を介して、正八角錘台開口端辺の一辺につき1枚ずつ可動反射板631〜638が正八角錘台開口端辺を軸として回動可能に取り付けられている。本実施例では、可動反射板631〜638は台形形状をした平板であり、固定反射板611〜618と同じ素材からなる。固定反射板611〜618の下底の長さと、固定反射板631〜638の下底の長さは等しい。固定反射板611〜618と可動反射板631〜638の下底同士が蝶番671〜678を介して接続されている。蝶番671〜678には任意の角度で静止可能なヒンジを用いているため、可動反射板631〜638は手動で角度を変更でき、かつ手動で動かされた角度を維持することができる。可動反射板631〜638には、前述の固定反射板611〜618と同様に上底または下底の垂直二等分線上に一直線に小孔が設けられている。可動反射板631〜638には、可動マイクロホンアレー641〜648が取り付けられている。可動マイクロホンアレー641〜648は、前述の固定マイクロホンアレー621〜628と同様に、複数のマイクロホンを長板形状の支持金属板(小)691〜698上に長手方向に一直線上に並ぶように配置して、支持金属板(小)691〜698に固定することで構成されている。可動マイクロホンアレー641〜648は、固定マイクロホンアレー621〜628と同様、その受音部が凹面側であるオモテ面に向かって小孔から露出するように、支持金属板(小)691〜698と長ボルトを用いて可動反射板631〜638に取り付けられている。各反射板に設けられている小孔の位置は、可動反射板631〜638を可動軸回りに回動させて、可動反射板631〜638の凹面側の板面と固定反射板611〜618の凹面側の板面とが同一平面内となる場合に、可動反射板に設けられた小孔と、それに接続された固定反射板に設けられた小孔が同一直線上に配置されるように決められている。前述の中央反射板651には、中央マイクロホンアレー661が取り付けられている。この中央マイクロホンアレー661は、支持棒と、複数のマイクロホンとからなる。支持棒は、丸棒の径方向に貫通する丸穴が軸方向に複数配置されてなる。マイクロホンはこの支持棒に空けられた丸穴に配置固定されている。このように構成された中央マイクロホンアレー661は、その支持棒が固定反射板611〜618の面を角錘面として形成される正八角錘の頭頂点を通り正八角錘の底面と垂直となる直線上に配置されるよう、中央反射板651のオモテ面(凹面側)に垂直に取り付けられている。
前述したように、固定反射板611〜618の反射面(オモテ面)と可動反射板631〜638の反射面(オモテ面)が同一平面内に配置されるように可動反射板631〜638の位置を設定すると、固定反射板611〜618と可動反射板631〜638の組み合わせを、固定反射板611〜618よりも大きい反射面を持つ反射板として機能させることができる。さらに、可動反射板631〜638により背面から回り込む音を遮断することもできる。これらはどちらも狭指向性のビームを生成しやすい環境を創出することに役立つ。また、可動反射板631〜638を適切な位置に回動静止することによって、図15で述べたように固定反射板611〜618、可動反射板631〜638で囲まれた空間内で何度も音声を反射させることができるので、反射音の数Ξを制御することができ、高いエネルギーで音を収音することができる。これにより、目的音と到来方向差のない角度から到来する雑音の伝達特性の間に差分を生じさせやすいことから狭指向性のビームを生成しやすい環境を創出することに役立つ。また、上述した構成により特定の方向からの音声と同方向の音声を距離別に収音したい場合には前述の正八角錘台の高さや角度を調整可能とすればよい。また、本実施例では固定反射板611〜618の面を角錘面として形成される正八角錘の頭頂点を通り正八角錘の底面と垂直となる直線上に配置されるよう、中央マイクロホンアレー661を取り付けている。これは直線形状のマイクロホンアレーの特徴である鉛直方向への指向性の強さを利用して、本ズームマイク装置600の指向特性をさらに鋭角とするためのものである。
[変形例1〜5]
第3の実施例では正八角錘の向かい合う角錘面が垂直をなすように組み合せたズームマイク装置を示したが、これに限られない。上述したように、線形マイクロホンアレーの配列方向と垂直に平板型の反射板を設置してあり、水平角方向、仰角方向に方向制御が可能であれば固定反射板の形状は正八角錘台の角錘面を構成する配置でなくともよい。また、可動反射板631〜638により反射音の数Ξの制御に用いることができるが、これは必須ではない。中央反射板651、中央マイクロホンアレー661も適宜省略することができる。反射板は対であるほうがよいので、2の倍数個の角錘面を持つ正角錘台、もしくは正角錘形状をしていることが望ましい。例えば、正四角錘(台)、正六角錘(台)、正八角錘(台)などである。また、正十六角錘(台)、正三十二角錘(台)など、反射板の数を多くしすぎてしまうと反射音のエネルギーが小さくなる、一枚の反射板に設置できるマイクロホンの数が少なくなり、マイクロホン間隔が広くなってしまうため制御できる周波数帯域が狭くなってしまう問題が生じる。使用できるマイクロホン数が16〜96本程度であれば正四角錘(台)、正六角錘(台)、正八角錘(台)形状が丁度よい。以下、図20〜24を参照して第3の実施例の第1〜第5の変形例について以下に説明する。図20は本実施例の第1の変形例の構成を示す正面図である。図21は本実施例の第2の変形例の構成を示す正面図である。図22は本実施例の第3の変形例の構成を示す正面図である。図23は本実施例の第4の変形例の構成を示す正面図である。図24は本実施例の第5の変形例の構成を示す正面図である。第1の変形例におけるズームマイク装置600aは、前述のズームマイク装置600の固定反射板、可動反射板をそれぞれ4枚ずつとし、固定反射板が正四角錘台の角錘面を構成するように組み合わせたものである。ズームマイク装置600と同様、相対する角錘面が垂直をなすように取り付けられている。この構成においても前述のズームマイク装置600と同様、3次元空間における任意の方向を強調できる。第2の変形例におけるズームマイク装置600bは、前述のズームマイク装置600の固定反射板、可動反射板をそれぞれ6枚ずつとし、固定反射板が正六角錘台の角錘面を構成するように組み合わせたものである。ズームマイク装置600と同様、相対する角錘面が垂直をなすように取り付けられている。この構成においても前述のズームマイク装置600と同様、3次元空間における任意の方向を強調できる。また、前述したように可動反射板、中央反射板、中央マイクロホンアレーは必須の構成要素ではない。従って、第1の変形例におけるズームマイク装置600aから、可動反射板、中央反射板、中央マイクロホンアレーを略した構成をズームマイク装置600c、第2の変形例におけるズームマイク装置600bから、可動反射板、中央反射板、中央マイクロホンアレーを略した構成をズームマイク装置600d、第3の実施例におけるズームマイク装置600から、可動反射板、中央反射板、中央マイクロホンアレーを略した構成をズームマイク装置600eとして示す。これらのズームマイク装置600c、600d、600eにおいても従来よりも鋭い指向性を有する狭指向音声強調技術の実現できる。
<応用例>
狭指向音声強調技術は、画像に譬えて表現すれば、不鮮明な惚けた画像から鮮明な画像を生成することに対応し、音場の情報をより詳細に得ることに役立つ。以下、本発明が有用なサービス例について述べる。
第1の例として、映像と組み合わせたコンテンツ制作が挙げられる。本発明の実施形態を利用すると、雑音(目的外音声等)が多い雑音環境でも遠方の目的音声をクリアに強調することができるので、例えば、フィールド外から撮影したサッカー選手がドリブルするズームイン映像に対応した音声付けを行うことができる。
第2の例として、TV会議システム(音声会議システムでもよい)への応用が挙げられる。狭い部屋で会議する場合には、従来技術でも、数本のマイクロホンを用いて発言者の音声を強調することがそれなりに可能であったが、広い会議室(例えばマイクロホンから5m以上離れた位置に話者が存在するような広い空間)では、クリアに遠方話者の音声を強調することが困難であり、このため、各発言者の前にマイクロホンを設置する必要があった。しかし、本発明の実施形態を利用すると、遠方の音をクリアに強調することが可能であるため、各発言者の前にマイクロホンを設置することなく、広い会議室に対応したTV会議システムを構築することが可能となる。

Claims (4)

  1. 支持構造体1基と、固定反射板2N枚(Nは1以上の整数)と、複数のマイクロホンを直線状に配置してなるマイクロホンアレー2N個とを備えるズームマイク装置であって、
    前記固定反射板の面と前記マイクロホンアレーのマイクロホン配列方向とが平行になるように前記マイクロホンアレーを前記固定反射板の面に1つずつ取り付け、
    2枚の固定反射板の前記マイクロホンアレーを取り付けた面同士が90度をなし、一方の固定反射板に取り付けられたマイクロホンアレーのマイクロホン配列方向と、他方の固定反射板に取り付けられたマイクロホンアレーのマイクロホン配列方向とが90度をなすように前記2枚の固定反射板同士を向き合わせて固定した固定反射板の組をN組作成し、前記作成されたN組の固定反射板を前記支持構造体に取り付けたこと
    を特徴とするズームマイク装置。
  2. 請求項1記載のズームマイク装置であって、
    前記N組の固定反射板の開口端に、前記マイクロホンアレーのマイクロホン配列方向と垂直な平面と前記固定反射板の板面を含む平面とが交差してなる直線を軸として可動する可動反射板を取り付け、前記可動反射板には複数のマイクロホンを直線状に配置してなるマイクロホンアレーが、前記可動反射板の面と前記マイクロホンアレーのマイクロホン配列方向とが平行になるように取り付けられたことを特徴とし、
    前記可動反射板の板面と前記固定反射板の板面とが同一平面内にある場合に、
    前記可動反射板のマイクロホンアレーを取り付けた面と、前記固定反射板のマイクロホンアレーを取り付けた面とが同じ向きとなり、
    前記可動反射板に取り付けられたマイクロホンアレーと、前記固定反射板に取り付けられたマイクロホンアレーとが同一直線上に配置されること
    を特徴とするズームマイク装置。
  3. 請求項1または2に記載のズームマイク装置であって、
    前記N組の固定反射板が、正2N角錘の向かい合う角錘面を構成するように組み合わされたこと
    を特徴とするズームマイク装置。
  4. 請求項3に記載のズームマイク装置であって、
    前記正2N角錘の頭頂点を通り、前記正2N角錘の底面と垂直な直線上に複数のマイクロホンを直線状に配置してなるマイクロホンアレーを取り付けたこと
    を特徴とするズームマイク装置。
JP2011024178A 2011-02-07 2011-02-07 ズームマイク装置 Active JP5395822B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024178A JP5395822B2 (ja) 2011-02-07 2011-02-07 ズームマイク装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024178A JP5395822B2 (ja) 2011-02-07 2011-02-07 ズームマイク装置

Publications (2)

Publication Number Publication Date
JP2012165189A true JP2012165189A (ja) 2012-08-30
JP5395822B2 JP5395822B2 (ja) 2014-01-22

Family

ID=46844157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024178A Active JP5395822B2 (ja) 2011-02-07 2011-02-07 ズームマイク装置

Country Status (1)

Country Link
JP (1) JP5395822B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187685A (ja) * 2013-01-24 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> 収音装置
JP2018515028A (ja) * 2015-04-30 2018-06-07 シュアー アクイジッション ホールディングス インコーポレイテッドShure Acquisition Holdings,Inc. アレイマイクシステム、及びアレイマイクシステムの組み立て方法
US10219076B2 (en) 2016-06-27 2019-02-26 Canon Kabushiki Kaisha Audio signal processing device, audio signal processing method, and storage medium
US10375499B2 (en) 2016-06-29 2019-08-06 Canon Kabushiki Kaisha Sound signal processing apparatus, sound signal processing method, and storage medium
US11297423B2 (en) 2018-06-15 2022-04-05 Shure Acquisition Holdings, Inc. Endfire linear array microphone
US11297426B2 (en) 2019-08-23 2022-04-05 Shure Acquisition Holdings, Inc. One-dimensional array microphone with improved directivity
US11303981B2 (en) 2019-03-21 2022-04-12 Shure Acquisition Holdings, Inc. Housings and associated design features for ceiling array microphones
US11310596B2 (en) 2018-09-20 2022-04-19 Shure Acquisition Holdings, Inc. Adjustable lobe shape for array microphones
US11438691B2 (en) 2019-03-21 2022-09-06 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
US11445294B2 (en) 2019-05-23 2022-09-13 Shure Acquisition Holdings, Inc. Steerable speaker array, system, and method for the same
US11477327B2 (en) 2017-01-13 2022-10-18 Shure Acquisition Holdings, Inc. Post-mixing acoustic echo cancellation systems and methods
US11552611B2 (en) 2020-02-07 2023-01-10 Shure Acquisition Holdings, Inc. System and method for automatic adjustment of reference gain
US11558693B2 (en) 2019-03-21 2023-01-17 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition and voice activity detection functionality
US11678109B2 (en) 2015-04-30 2023-06-13 Shure Acquisition Holdings, Inc. Offset cartridge microphones
US11688418B2 (en) 2019-05-31 2023-06-27 Shure Acquisition Holdings, Inc. Low latency automixer integrated with voice and noise activity detection
US11706562B2 (en) 2020-05-29 2023-07-18 Shure Acquisition Holdings, Inc. Transducer steering and configuration systems and methods using a local positioning system
US11785380B2 (en) 2021-01-28 2023-10-10 Shure Acquisition Holdings, Inc. Hybrid audio beamforming system
US11800281B2 (en) 2018-06-01 2023-10-24 Shure Acquisition Holdings, Inc. Pattern-forming microphone array
US12028678B2 (en) 2020-10-30 2024-07-02 Shure Acquisition Holdings, Inc. Proximity microphone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002135879A (ja) * 2000-10-27 2002-05-10 Masayuki Takizawa 集音方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002135879A (ja) * 2000-10-27 2002-05-10 Masayuki Takizawa 集音方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187685A (ja) * 2013-01-24 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> 収音装置
JP7098328B2 (ja) 2015-04-30 2022-07-11 シュアー アクイジッション ホールディングス インコーポレイテッド アレイマイクシステム、及びアレイマイクシステムの組み立て方法
US11832053B2 (en) 2015-04-30 2023-11-28 Shure Acquisition Holdings, Inc. Array microphone system and method of assembling the same
JP2018515028A (ja) * 2015-04-30 2018-06-07 シュアー アクイジッション ホールディングス インコーポレイテッドShure Acquisition Holdings,Inc. アレイマイクシステム、及びアレイマイクシステムの組み立て方法
US11310592B2 (en) 2015-04-30 2022-04-19 Shure Acquisition Holdings, Inc. Array microphone system and method of assembling the same
US11678109B2 (en) 2015-04-30 2023-06-13 Shure Acquisition Holdings, Inc. Offset cartridge microphones
US10219076B2 (en) 2016-06-27 2019-02-26 Canon Kabushiki Kaisha Audio signal processing device, audio signal processing method, and storage medium
US10375499B2 (en) 2016-06-29 2019-08-06 Canon Kabushiki Kaisha Sound signal processing apparatus, sound signal processing method, and storage medium
US11477327B2 (en) 2017-01-13 2022-10-18 Shure Acquisition Holdings, Inc. Post-mixing acoustic echo cancellation systems and methods
US11800281B2 (en) 2018-06-01 2023-10-24 Shure Acquisition Holdings, Inc. Pattern-forming microphone array
US11297423B2 (en) 2018-06-15 2022-04-05 Shure Acquisition Holdings, Inc. Endfire linear array microphone
US11770650B2 (en) 2018-06-15 2023-09-26 Shure Acquisition Holdings, Inc. Endfire linear array microphone
US11310596B2 (en) 2018-09-20 2022-04-19 Shure Acquisition Holdings, Inc. Adjustable lobe shape for array microphones
US11303981B2 (en) 2019-03-21 2022-04-12 Shure Acquisition Holdings, Inc. Housings and associated design features for ceiling array microphones
US11558693B2 (en) 2019-03-21 2023-01-17 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition and voice activity detection functionality
US11778368B2 (en) 2019-03-21 2023-10-03 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
US11438691B2 (en) 2019-03-21 2022-09-06 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
US11445294B2 (en) 2019-05-23 2022-09-13 Shure Acquisition Holdings, Inc. Steerable speaker array, system, and method for the same
US11800280B2 (en) 2019-05-23 2023-10-24 Shure Acquisition Holdings, Inc. Steerable speaker array, system and method for the same
US11688418B2 (en) 2019-05-31 2023-06-27 Shure Acquisition Holdings, Inc. Low latency automixer integrated with voice and noise activity detection
US11750972B2 (en) 2019-08-23 2023-09-05 Shure Acquisition Holdings, Inc. One-dimensional array microphone with improved directivity
US11297426B2 (en) 2019-08-23 2022-04-05 Shure Acquisition Holdings, Inc. One-dimensional array microphone with improved directivity
US11552611B2 (en) 2020-02-07 2023-01-10 Shure Acquisition Holdings, Inc. System and method for automatic adjustment of reference gain
US11706562B2 (en) 2020-05-29 2023-07-18 Shure Acquisition Holdings, Inc. Transducer steering and configuration systems and methods using a local positioning system
US12028678B2 (en) 2020-10-30 2024-07-02 Shure Acquisition Holdings, Inc. Proximity microphone
US11785380B2 (en) 2021-01-28 2023-10-10 Shure Acquisition Holdings, Inc. Hybrid audio beamforming system

Also Published As

Publication number Publication date
JP5395822B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5395822B2 (ja) ズームマイク装置
JP5486694B2 (ja) 音声強調方法、装置、プログラム、記録媒体
Huang et al. Design of robust concentric circular differential microphone arrays
Habets et al. Generating sensor signals in isotropic noise fields
US9820036B1 (en) Speech processing of reflected sound
Yan et al. Optimal modal beamforming for spherical microphone arrays
Elko et al. Microphone arrays
Fernandez-Grande et al. Compressive sensing with a spherical microphone array
CN103339961A (zh) 用于通过声波三角测量进行空间性选择声音获取的装置及方法
CN102440002A (zh) 用于传感器阵列的优化模态波束成型器
Huang et al. On the design of differential beamformers with arbitrary planar microphone array geometry
Tiana-Roig et al. Beamforming with a circular array of microphones mounted on a rigid sphere (L)
Chang et al. Experimental validation of sound field control with a circular double-layer array of loudspeakers
Simón-Gálvez et al. The effect of reverberation on personal audio devices
Pan et al. Design of robust differential microphone arrays with orthogonal polynomials
US10375474B2 (en) Hybrid horn microphone
JP6117142B2 (ja) 変換装置
Bouchard et al. Beamforming with microphone arrays for directional sources
JP6691494B2 (ja) 収音装置、及び収音方法
JP5337189B2 (ja) フィルタ設計における反射物の配置決定方法、装置、プログラム
Tu et al. Array configuration optimization of first-order steerable differential arrays with minimum number of microphones
Li et al. Beamforming based on null-steering with small spacing linear microphone arrays
JP2013135373A (ja) ズームマイク装置
Stefanakis Efficient implementation of superdirective beamforming in a half-space environment
JP5486567B2 (ja) 狭指向音声再生処理方法、装置、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Ref document number: 5395822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350