JP2012164764A - Magnetic material and method for manufacturing the same - Google Patents

Magnetic material and method for manufacturing the same Download PDF

Info

Publication number
JP2012164764A
JP2012164764A JP2011022975A JP2011022975A JP2012164764A JP 2012164764 A JP2012164764 A JP 2012164764A JP 2011022975 A JP2011022975 A JP 2011022975A JP 2011022975 A JP2011022975 A JP 2011022975A JP 2012164764 A JP2012164764 A JP 2012164764A
Authority
JP
Japan
Prior art keywords
grain boundary
crystal grains
magnetic body
amorphous
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011022975A
Other languages
Japanese (ja)
Other versions
JP5732877B2 (en
Inventor
Takeshi Sato
佐藤  岳
Yuji Kaneko
裕治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2011022975A priority Critical patent/JP5732877B2/en
Publication of JP2012164764A publication Critical patent/JP2012164764A/en
Application granted granted Critical
Publication of JP5732877B2 publication Critical patent/JP5732877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic material capable of developing high coercive force even without using Dy, etc.SOLUTION: The magnetic material comprises a main phase including a RFeB crystal grain (R: rare earth elements), and a grain boundary phase formed between the crystal grains. The crystal grain has a shape with round corners, and a maximum width of 500 nm or less, and the grain boundary phase include a crystal aggregate with nano size of a minimum width of one nm or more. The magnetic material is obtained, for example, by heating an adhesion amorphous material with a diffusion material (for example, R-Cu) adhered to a R-Fe-B amorphous material to form in parallel the main phase including the RFeB crystal grain, and the grain boundary phase formed between the crystal grains. Thereby, the magnetic material with very high coercive force is obtained even without diffusing Dy, etc. being rare elements into the grain boundary.

Description

本発明は、ナノサイズの結晶粒が集合してなる高保磁力を発現する磁性体とその製造方法に関する。   The present invention relates to a magnetic body that exhibits a high coercive force formed by agglomeration of nano-sized crystal grains and a method for producing the same.

Nd−Fe−B系を代表とする希土類(永久)磁石は、非常に高い磁気特性を示す。この希土類磁石を用いると、電磁機器や電動機の小型化、高出力化、高密度化さらには環境負荷の低減化等を図ることが可能となる。このため、幅広い分野で希土類磁石の利用が検討されている。この希土類磁石の実用化に際して、厳しい環境下でも高い磁気特性が長期的に安定して発揮されることが求められる。このような観点から、希土類磁石の磁化(残留磁束密度)のみならず、その保磁力を向上させる研究開発が盛んに行われている。   Rare earth (permanent) magnets typified by the Nd—Fe—B system exhibit very high magnetic properties. When this rare earth magnet is used, it is possible to reduce the size, increase the output, increase the density, and reduce the environmental load of the electromagnetic device and the electric motor. For this reason, the use of rare earth magnets is being studied in a wide range of fields. When this rare earth magnet is put to practical use, it is required that high magnetic properties be stably exhibited over a long period even in a severe environment. From such a viewpoint, research and development for improving not only the magnetization (residual magnetic flux density) of a rare earth magnet but also its coercive force are being actively conducted.

従来は、ジルコニウム(Dy)やテルビウム(Tb)等の重希土類元素を、磁石合金に直接添加したり、磁石表面から拡散させることにより、異方性磁界を高くして保磁力の向上が図られてきた。最近では、さらなる保磁力の向上やDy等の稀少元素の使用量を削減するため、主相を構成するNdFe14B結晶粒の微細化が進められている。これらに関連する記載が下記の特許文献等にある。 Conventionally, by adding a heavy rare earth element such as zirconium (Dy) or terbium (Tb) directly to the magnet alloy or diffusing from the magnet surface, the anisotropic magnetic field is increased and the coercive force is improved. I came. Recently, in order to further improve the coercive force and reduce the amount of rare elements such as Dy, the Nd 2 Fe 14 B crystal grains constituting the main phase have been refined. There are descriptions related to these in the following patent documents.

特開2010−98115号公報JP 2010-98115 A 特開2010−114200号公報JP 2010-114200 A 特開2010−10665号公報JP 2010-10665 A 特開2010−222601号公報JP 2010-222601 A

上記の特許文献1および特許文献2では、急冷凝固させた薄片の破砕粉からなる磁石片に、DyF等を塗布してDy等を表面から内部に拡散させている。 In Patent Document 1 and Patent Document 2 described above, DyF 3 or the like is applied to a magnet piece made of crushed powder of a thin piece that has been rapidly cooled and solidified to diffuse Dy and the like from the surface to the inside.

また特許文献3では、磁石合金溶湯の急冷速度を制御して、単磁区粒子径以下(<100nm)の結晶粒からなる純三元系Nd−Fe−B磁石を得ている。また特許文献4では、HfCを添加した磁石合金溶湯を急冷して、結晶粒を微細化させた希土類永久磁石を得ている。ちなみに特許文献3では、アモルファス相の出現を抑制するために、急冷速度の上限を制限している。また特許文献4では、急冷凝固後の加熱により、出現したアモルファス相を結晶化させている。   Further, in Patent Document 3, a pure ternary Nd—Fe—B magnet composed of crystal grains having a single domain particle diameter or less (<100 nm) is obtained by controlling the quenching speed of the molten magnet alloy. In Patent Document 4, a rare earth permanent magnet having crystal grains refined is obtained by quenching a molten magnet alloy to which HfC is added. Incidentally, in patent document 3, in order to suppress the appearance of an amorphous phase, the upper limit of the rapid cooling rate is limited. In Patent Document 4, the appearing amorphous phase is crystallized by heating after rapid solidification.

このように従来は、磁石合金の溶湯を急冷凝固させて微細な結晶粒からなる希土類磁石を得ており、結晶粒界にDy等を拡散させる場合は、その晶出後に拡散処理を別途行っていた。   In this way, conventionally, a rare earth magnet made of fine crystal grains is obtained by rapidly solidifying a melt of a magnet alloy, and when diffusing Dy or the like in a crystal grain boundary, a diffusion treatment is separately performed after the crystallization. It was.

本発明は、このような従来のものとは異なり、結晶粒の形態や製法が新規な磁性体およびその製造方法を提供することを目的とする。   The object of the present invention is to provide a magnetic material having a novel crystal grain shape and manufacturing method, and a method for manufacturing the same, unlike such conventional ones.

本発明者が鋭意研究し試行錯誤を重ねた結果、希土類元素(R1)と鉄(Fe)とホウ素(B)からなる非晶質体に拡散材を付着させた付着非晶質体を加熱することにより、R1Fe14B結晶粒の生成と、結晶粒間にできる粒界相の生成とが並行してなされることを新たに発見した。しかも、その結晶粒は従来の結晶粒と形態が異なることもわかった。この画期的な成果を発展させることにより、以降に述べるような本発明を完成するに至った。 As a result of extensive research and trial and error by the present inventors, the attached amorphous body in which the diffusing material is attached to the amorphous body made of rare earth element (R1), iron (Fe), and boron (B) is heated. Thus, it has been newly discovered that the generation of R1 2 Fe 14 B crystal grains and the generation of a grain boundary phase formed between the crystal grains are performed in parallel. Moreover, it was also found that the crystal grains are different in form from the conventional crystal grains. By developing this groundbreaking result, the present invention as described below has been completed.

《磁性体》
(1)本発明の磁性体は、R1とFeとBの正方晶金属間化合物(R1Fe14B)の結晶粒からなる主相と該結晶粒間に形成された粒界相とを有する磁性体であって、前記結晶粒は、最長幅が500nm以下の角丸形状をしており、前記粒界相は、最小幅が1nm以上であることを特徴とする。
<Magnetic material>
(1) The magnetic body of the present invention has a main phase composed of crystal grains of a tetragonal intermetallic compound of R1, Fe, and B (R1 2 Fe 14 B) and a grain boundary phase formed between the crystal grains. A magnetic material, wherein the crystal grains have a rounded round shape with a maximum width of 500 nm or less, and the grain boundary phase has a minimum width of 1 nm or more.

(2)本発明の磁性体は、先ず、微細なR1Fe14Bの結晶粒(適宜「R1Fe14B結晶粒」または「結晶粒」という。)からなる主相と、それら結晶粒間に存在する薄い粒界相とからなり、Dy等の稀少元素を拡散等させるまでもなく高い保磁力を発現する。従って、本発明の磁性体によれば、高磁気特性の希土類磁石を工業的に安定して供給し得る。 (2) The magnetic body of the present invention first comprises a main phase composed of fine R1 2 Fe 14 B crystal grains (referred to as “R1 2 Fe 14 B crystal grains” or “crystal grains” as appropriate), and those crystal grains. It consists of a thin grain boundary phase existing between them, and exhibits a high coercive force without diffusing rare elements such as Dy. Therefore, according to the magnetic body of the present invention, a rare earth magnet having high magnetic properties can be supplied industrially stably.

次に本発明の磁性体は、R1Fe14B結晶粒が単に微細なだけではなく、従来の結晶粒と異なる角丸形状をしている(図1B、図3A〜図3C参照)。現状、結晶粒の形状と磁気特性(特に保磁力)との相関は必ずしも定かではないが、次のような理由により、結晶粒の角丸形状が保磁力の向上に寄与していると考えられる。すなわち、結晶粒が丸みを帯びた角丸形状をしていることにより、結晶粒の角部における反磁界が低減される。その結果、結晶粒における逆磁区の生成等が抑制され、磁性体の保磁力が著しく高まったと考えられる。 Next, in the magnetic body of the present invention, the R1 2 Fe 14 B crystal grains are not only fine, but also have rounded shapes different from those of conventional crystal grains (see FIGS. 1B and 3A to 3C). At present, the correlation between crystal grain shape and magnetic properties (especially coercive force) is not necessarily clear, but it is thought that the rounded shape of crystal grains contributes to the improvement of coercive force for the following reasons. . That is, the demagnetizing field at the corners of the crystal grains is reduced due to the rounded round shape of the crystal grains. As a result, it is considered that the generation of reverse magnetic domains in the crystal grains is suppressed and the coercive force of the magnetic material is remarkably increased.

なお本発明でいう「角丸形状」は、結晶粒ごとに形状やサイズは多少異なるため、厳密に定義することは容易ではないが、少なくとも、R1Fe14B結晶粒を磁化容易軸(c軸)に平行な面で切断したときの断面形状を、走査透過型電子顕微鏡(STEM)等で観察した場合に、特に角張った部位が観られないことを意味する。例えば、従来の結晶粒のような方形状ではなく、その方形状を構成する角部が略円弧状になっている形状である。 The “rounded corner shape” as used in the present invention has a slightly different shape and size for each crystal grain, so it is not easy to define exactly, but at least the R1 2 Fe 14 B crystal grain has an easy axis (c This means that when the cross-sectional shape when cut along a plane parallel to the (axis) is observed with a scanning transmission electron microscope (STEM) or the like, a particularly angular portion is not observed. For example, it is not a square shape like a conventional crystal grain, but a shape in which corner portions constituting the square shape are substantially arc-shaped.

また、結晶粒の最長幅は、前記断面形状に現れたc軸に垂直な方向における結晶粒の最大長さである。多数の結晶粒がある場合、各結晶粒の最長幅の相加平均をもって、本発明でいう「最長幅」とする。   The longest width of the crystal grain is the maximum length of the crystal grain in the direction perpendicular to the c-axis appearing in the cross-sectional shape. When there are a large number of crystal grains, the arithmetic average of the longest width of each crystal grain is defined as the “longest width” in the present invention.

さらに、粒界相の最小幅は、前記断面形状に現れた結晶粒間の距離の最小長さである。この場合も、各粒界相の最小幅の相加平均をもって、本発明でいう「最小幅」とする。   Further, the minimum width of the grain boundary phase is the minimum length of the distance between crystal grains appearing in the cross-sectional shape. Also in this case, the arithmetic average of the minimum widths of the grain boundary phases is set as the “minimum width” in the present invention.

結晶粒の最長幅は、500nm以下、300nm以下、250nm以下さらには200nm以下であると磁気特性の向上を図れてより好ましい。この最長幅の下限値は特に限定されないが、20nm以上さらには30nm以上であると、熱擾乱の影響を受けにくくなり好ましい。   The longest width of the crystal grains is more preferably 500 nm or less, 300 nm or less, 250 nm or less, and even 200 nm or less, since it is possible to improve the magnetic characteristics. The lower limit of the longest width is not particularly limited, but is preferably 20 nm or more, more preferably 30 nm or more, because it is less susceptible to thermal disturbance.

粒界相は、結晶粒を包囲して各結晶粒を孤立させることにより、磁性体の保磁力を向上させ得る。もっとも、この粒界相が厚くなると磁性体の磁化が相対的に低下する。そこで粒界相の最小幅は、1nm以上さらには2nm以上であり、その最大幅は15nmさらには10nm以下であると好ましい。   The grain boundary phase can improve the coercive force of the magnetic material by surrounding the crystal grains and isolating each crystal grain. However, as the grain boundary phase becomes thicker, the magnetization of the magnetic material relatively decreases. Therefore, the minimum width of the grain boundary phase is preferably 1 nm or more and further 2 nm or more, and the maximum width is preferably 15 nm or more and 10 nm or less.

磁性体の厚さ(c軸方向の長さ)は特に問わない。もっとも本発明のように、ナノサイズの結晶粒や粒界相が集合してできたナノ結晶集合体(ひいては磁性体)は、厚さが1〜500nmさらには5〜200nmの薄膜状であると製造が容易である。   The thickness of the magnetic material (the length in the c-axis direction) is not particularly limited. However, as in the present invention, a nanocrystal aggregate (and hence a magnetic substance) formed by aggregating nanosized crystal grains and grain boundary phases is a thin film having a thickness of 1 to 500 nm, and further 5 to 200 nm. Easy to manufacture.

《磁性体の製造方法》
(1)本発明は磁性体としてのみならず、それに適した製造方法としても把握される。すなわち本発明は、R1とFeとBからなる非晶質体内に拡散し得る拡散元素を含む拡散材を、該非晶質体へ付着させた付着非晶質体を得る付着工程と、該付着非晶質体を加熱して、R1Fe14Bの結晶粒からなる主相と該結晶粒間に形成され該拡散元素を含む粒界相とを並行して形成させ得る加熱工程とを備え、上述した本発明の磁性体が得られることを特徴とする磁性体の製造方法でもよい。
<Method for manufacturing magnetic material>
(1) The present invention is understood not only as a magnetic material but also as a manufacturing method suitable for it. That is, the present invention provides an attachment step of obtaining an attached amorphous body in which a diffusing material containing a diffusing element that can diffuse into an amorphous body composed of R1, Fe, and B is attached to the amorphous body; A heating step of heating the crystalline body so that a main phase composed of crystal grains of R1 2 Fe 14 B and a grain boundary phase formed between the crystal grains and containing the diffusing element can be formed in parallel. A method for producing a magnetic material characterized in that the magnetic material of the present invention described above can be obtained.

(2)本発明の製造方法によれば、角丸形状の微細な結晶粒と薄い粒界相とからなる磁性体を容易に製造することができる。本発明の製造方法により、そのような結晶粒や粒界相が形成される理由は必ずしも定かではないが、現状では次のように考えられる。 (2) According to the production method of the present invention, it is possible to easily produce a magnetic body composed of rounded round crystal grains and a thin grain boundary phase. The reason why such crystal grains and grain boundary phases are formed by the production method of the present invention is not necessarily clear, but at present, it is considered as follows.

先ず従来のように、磁石合金の溶湯を急冷凝固させて得た非晶質体を加熱してR1Fe14B結晶粒を晶出させた場合、結晶粒はその成長と共に隣接する結晶粒間で相互にぶつかり合いながら晶出する。このため、結晶粒がぶつかりあった部分で、結晶粒は角ばった形状(方形状)となる。なお、結晶粒の晶出後に熱処理や拡散処理を別途施さない限り、その晶出過程中に粒界相が形成されることはない。 First, when an amorphous body obtained by rapidly solidifying a magnetic alloy melt is heated to crystallize R1 2 Fe 14 B crystal grains as in the prior art, the crystal grains grow between the adjacent crystal grains as they grow. Crystallize while colliding with each other. For this reason, the crystal grains have an angular shape (rectangular shape) at the portion where the crystal grains collide. Note that a grain boundary phase is not formed during the crystallization process unless heat treatment or diffusion treatment is separately performed after the crystallization of crystal grains.

次に本発明の製造方法の場合、R1−Fe−B非晶質体に拡散材を付着させて加熱することにより、R1Fe14B結晶粒の晶出(生成)および成長と、粒界相の形成が並行して進行する。つまり粒界相が、結晶粒の生成および成長に誘起されつつ、その結晶粒を包囲するように形成される。このような晶出過程を経る場合、粒界相は緩衝帯(層)となって成長時の結晶粒の衝突を抑制する。こうして本発明の製造方法によると、丸みを帯びたナノサイズの結晶粒が薄い粒界相により包み込まれたような結晶組織が形成されたと考えられる。 Next, in the case of the production method of the present invention, a diffusing material is attached to the R1-Fe-B amorphous body and heated, so that crystallization (generation) and growth of R1 2 Fe 14 B crystal grains, and grain boundaries Phase formation proceeds in parallel. That is, the grain boundary phase is formed so as to surround the crystal grains while being induced by the generation and growth of the crystal grains. In such a crystallization process, the grain boundary phase becomes a buffer zone (layer) and suppresses collision of crystal grains during growth. Thus, according to the production method of the present invention, it is considered that a crystal structure in which rounded nano-sized crystal grains are encapsulated by a thin grain boundary phase is formed.

ちなみに本発明の製造方法によれば、非晶質体からR1Fe14B結晶粒が晶出する際の結晶化温度が、従来の結晶化温度(665℃)よりも低い。これは、非晶質体内へ拡散した拡散元素が、非晶質体としての安定性を下げ、R1Fe14B結晶の核生成エネルギーを低下させたためと考えられる。なお、これを逆に観ると、本発明でいう拡散元素(さらには粒界構成元素)は、非晶質体中においてR1Fe14B結晶の核生成エネルギーを低下させる元素であると好ましいといえる。 Incidentally, according to the production method of the present invention, the crystallization temperature when the R1 2 Fe 14 B crystal grains are crystallized from the amorphous body is lower than the conventional crystallization temperature (665 ° C.). This is presumably because the diffusion element diffused into the amorphous body lowered the stability as the amorphous body and lowered the nucleation energy of the R1 2 Fe 14 B crystal. In reverse, when the diffusion element (and the grain boundary constituent element) referred to in the present invention is preferably an element that reduces the nucleation energy of the R1 2 Fe 14 B crystal in the amorphous body. I can say that.

いずれにしても本発明の製造方法によれば、上述したような特異なナノ結晶集合体からなる磁性体を容易に得ることが可能となる。ちなみに、こうして得られた磁性体は、Dy等の稀少元素を用いるまでもなく、例えば、20kOe以上、25kOe以上さらに27kOe以上の高い保磁力を発現し得る。   In any case, according to the production method of the present invention, it is possible to easily obtain a magnetic material composed of the unique nanocrystal aggregate as described above. Incidentally, the magnetic material thus obtained does not need to use a rare element such as Dy, and can exhibit a high coercive force of, for example, 20 kOe or more, 25 kOe or more, and 27 kOe or more.

《その他》
(1)本発明に係るナノ結晶集合体や磁性体は、巨視的な形態を問わない。つまり、薄膜体でも、その薄膜体が基板上に積層された積層体でも、薄膜体を粉砕した粉砕粉でも、その粉砕粉を成形した成形体でも、さらにはその成形体を焼結させた焼結体でもよい。また本発明の磁性体は、バルクのような素材であっても最終的な希土類磁石であってもよく、着磁の有無を問わない。
<Others>
(1) The nanocrystal aggregate and magnetic body according to the present invention may be in any macroscopic form. That is, a thin film body, a laminated body in which the thin film body is laminated on a substrate, a pulverized powder obtained by pulverizing a thin film body, a molded body obtained by molding the pulverized powder, and a sintered body obtained by sintering the molded body. It may be a ligation. Further, the magnetic body of the present invention may be a material such as a bulk or a final rare earth magnet, regardless of whether it is magnetized.

(2)本明細書でいう「x〜y」は、特に断らない限り下限値xおよび上限値yを含む。また本明細書に記載した種々の数値や数値範囲内に含まれる数値を、新たな下限値または上限値としては、「a〜b」のような数値範囲を任意に設定し得る。 (2) “x to y” in the present specification includes the lower limit value x and the upper limit value y unless otherwise specified. In addition, as numerical values included in various numerical values and numerical ranges described in the present specification, new numerical values such as “ab” can be arbitrarily set as the lower limit value or the upper limit value.

本発明に係る付着非晶質体を模式的に示した断面図である。It is sectional drawing which showed typically the adhesion amorphous body which concerns on this invention. 本発明に係るナノ結晶集合体を模式的に示した断面図である。It is sectional drawing which showed typically the nanocrystal aggregate | assembly which concerns on this invention. 実施例に係る磁性体の製造時に得られた積層体である。It is the laminated body obtained at the time of manufacture of the magnetic body which concerns on an Example. 実施例に係る磁性体の断面をSTEMで観察した写真である。It is the photograph which observed the cross section of the magnetic body which concerns on an Example by STEM. 従来の磁性体の断面をSTEMで観察した写真である。It is the photograph which observed the cross section of the conventional magnetic body with STEM. 比較例である磁性体の断面をSTEMで観察した写真である。It is the photograph which observed the cross section of the magnetic body which is a comparative example by STEM. 実施例に係る磁性体の断面をSTEMで観察した写真である。It is the photograph which observed the cross section of the magnetic body which concerns on an Example by STEM. 実施例に係る磁性体の断面をSTEMで拡張して観察した写真である。It is the photograph which expanded and observed the cross section of the magnetic body which concerns on an Example by STEM. 実施例をエネルギー分散型X線分光法(EDX)により観察したNd像の写真である。It is the photograph of the Nd image which observed the Example by energy dispersive X ray spectroscopy (EDX). 同EDXにより観察したFe像の写真である。It is the photograph of Fe image observed with the EDX. 同EDXにより観察したCu像の写真である。It is a photograph of Cu image observed by the EDX. 同EDXにより観察したMo像の写真である。It is a photograph of Mo image observed with the EDX. 同EDXにより観察したCr像の写真である。It is the photograph of Cr image observed with the EDX.

発明の実施形態を挙げて本発明をより詳しく説明する。本明細書中から任意に選択した一つまたは二つ以上の構成を上述した本発明に付加し得る。本明細書で説明する内容は、磁性体のみならずその製造方法にも適用される。製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成になり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. One or more configurations arbitrarily selected from the present specification may be added to the present invention described above. The contents described in this specification are applied not only to the magnetic material but also to the manufacturing method thereof. A configuration related to a manufacturing method can be a configuration related to an object if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.

《主相と粒界相》
(1)主相
主相は、希土類元素(R1)、FeおよびBの正方晶金属間化合物であるR1Fe14Bの結晶粒からなる。R1は一種のみならず二種以上であってもよい。本明細書でいう希土類元素には、スカンジウム(Sc)、イットリウム(Y)、ランタノイドを含む。ランタノイドは、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)などがある。もっともR1は、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbの少なくとも1種以上であると好ましく、特にコストや磁気特性の観点からR1はNdであるとよい。この点は後述のR2についても同様である。
《Main phase and grain boundary phase》
(1) Main phase The main phase consists of crystal grains of rare earth element (R1), R1 2 Fe 14 B which is a tetragonal intermetallic compound of Fe and B. R1 may be not only one type but also two or more types. The rare earth elements referred to in this specification include scandium (Sc), yttrium (Y), and lanthanoids. Lanthanoids include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). However, R1 is preferably at least one of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. R1 is particularly Nd from the viewpoint of cost and magnetic properties. Good. This also applies to R2 described later.

(2)粒界相
粒界相は、結晶粒を孤立させて磁性体の保磁力の向上に寄与し、またR1Fe14B結晶の核生成エネルギーを低下させ、角丸形状の結晶粒を安定的に形成させ得る粒界構成元素を含むと好ましい。この粒界構成元素は、結晶粒の構成元素(R1、FeおよびB)以外であって、例えば、アルミニウム(Al)、銅(Cu)、マンガン(Mn)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ガリウム(Ga)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、銀(Ag)、金(Au)、白金(Pt)、ルテニウム(Ru)、スズ(Sn)、酸素(O)、窒素(N)、C(炭素)、水素(H)、マグネシウム(Mg)、ケイ素(Si)、ニッケル(Ni)、コバルト(Co)、ゲルマニウム(Ge)および鉛(Pb)からなる元素群中の一種以上である。特に粒界構成元素はCuであり、粒界相はR1および/またはR1と異なる希土類元素(R2)とCuからなると好ましい。ここでR1およびR2は異種でも同種でもよいが、R1およびR2が共にNdであれば磁性体の磁気特性向上およびコスト低減を図れて好ましい。
(2) Grain boundary phase The grain boundary phase contributes to the improvement of the coercive force of the magnetic material by isolating the crystal grains, and also reduces the nucleation energy of the R1 2 Fe 14 B crystal. It preferably contains a grain boundary constituent element that can be stably formed. This grain boundary constituent element is other than the constituent elements (R1, Fe and B) of the crystal grains, for example, aluminum (Al), copper (Cu), manganese (Mn), titanium (Ti), vanadium (V). , Chromium (Cr), gallium (Ga), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), tungsten (W), silver (Ag) , Gold (Au), platinum (Pt), ruthenium (Ru), tin (Sn), oxygen (O), nitrogen (N), C (carbon), hydrogen (H), magnesium (Mg), silicon (Si) , Nickel (Ni), cobalt (Co), germanium (Ge) and lead (Pb). In particular, the grain boundary constituent element is Cu, and the grain boundary phase is preferably composed of R1 and / or a rare earth element (R2) different from R1 and Cu. Here, R1 and R2 may be different types or the same type, but it is preferable that both R1 and R2 are Nd in order to improve the magnetic characteristics and reduce the cost of the magnetic material.

《非晶質体と拡散材》
(1)非晶質体
本発明の磁性体のベースとなるR1−Fe−Bの非晶質体は、具体的な組成を問わない。もっとも、正方晶金属間化合物(R1Fe14B)の生成に適した組成、例えば、非晶質体全体を100原子%としたとき、R1:8〜30原子%、B:4〜20原子%、Fe:残部からなる組成が好ましい。R1リッチな組成の場合、粒界相の形成が容易となり、ひいては磁性体の保磁力が向上し易くなる。さらには非晶質体は、R1、FeおよびB以外に、種々の改質元素を少量含有してもよいし、当然に不可避不純物を含む。この点は拡散材についても同様である。
《Amorphous material and diffusion material》
(1) Amorphous body The R1-Fe-B amorphous body serving as the base of the magnetic body of the present invention may be of any specific composition. However, a composition suitable for the formation of a tetragonal intermetallic compound (R1 2 Fe 14 B), for example, when the whole amorphous body is 100 atomic%, R1: 8-30 atomic%, B: 4-20 atomic %, Fe: A composition comprising the balance is preferred. In the case of the R1-rich composition, the formation of the grain boundary phase is facilitated, and as a result, the coercive force of the magnetic material is easily improved. Furthermore, the amorphous body may contain a small amount of various modifying elements in addition to R1, Fe and B, and naturally contains unavoidable impurities. This also applies to the diffusing material.

ところで、このような非晶質体は、所望組成の合金溶湯の急冷凝固、所望組成の合金等をターゲットとしたスパッタリング、蒸着等によって形成され得る(非晶質体形成工程)。この形成時の温度が高温の場合、非晶質体よりも結晶質体の形成が容易となり好ましくない。そこで非晶質体形成工程は590℃以下さらには560℃以下でなされると好ましい。   By the way, such an amorphous body can be formed by rapid solidification of a molten alloy having a desired composition, sputtering, vapor deposition or the like using an alloy having a desired composition as a target (amorphous body forming step). When the temperature at the time of formation is high, formation of a crystalline material is easier than that of an amorphous material, which is not preferable. Therefore, the amorphous body forming step is preferably performed at 590 ° C. or lower, more preferably 560 ° C. or lower.

スパッタリング等により非晶質体を形成する基材は、その材質や形態を問わない。もっとも、非晶質体から晶出する結晶粒がエピタキシャル成長し易い基材を用いると、結晶方位が特定方向に揃った配向度の大きな(つまり残留磁化の大きな)ナノ結晶集合体ひいては磁性体を得ることができる。具体的には、R1Fe14B結晶粒と格子定数がほぼ等しい結晶からなる基材、表面が平坦な基材あるいは熱膨張係数が近接している基材を用いるとよい。例えば、酸化マグネシウム(MgO)の単結晶からなるMgO単結晶基材、W、Mo、Cu、Si、Al、SiOの単結晶基材などである。この際、基材の積層面(ミラー指数でいう(001)面)を磁化容易軸(c軸)に垂直な面とするとよい。 The base material on which the amorphous body is formed by sputtering or the like may be of any material or form. However, when a base material on which crystal grains crystallized from an amorphous material are easy to grow epitaxially is used, a nanocrystal aggregate with a high degree of orientation (that is, a large residual magnetization) with a crystal orientation aligned in a specific direction, and thus a magnetic material is obtained. be able to. Specifically, it is preferable to use a base material made of a crystal having substantially the same lattice constant as that of the R1 2 Fe 14 B crystal grains, a base material having a flat surface, or a base material having a close thermal expansion coefficient. For example, an MgO single crystal base material made of a single crystal of magnesium oxide (MgO), a single crystal base material of W, Mo, Cu, Si, Al 2 O 3 , SiO 2 or the like. At this time, the laminated surface of the base material (the (001) surface in terms of the Miller index) is preferably a surface perpendicular to the easy magnetization axis (c-axis).

なお、基材自体がそのような結晶構造をもたない場合は、そのような結晶構造をもつ下地層を基材の表面に形成してもよい。勿論、基材および下地層が共にそのような結晶構造をもつとより好ましい。この下地層の構成材として、Mo、Ta、W、Ti、Cr、V、Nbなどがある。なお下地層も、例えば、スパッタリングにより形成し得る。   In addition, when the base material itself does not have such a crystal structure, an underlayer having such a crystal structure may be formed on the surface of the base material. Of course, it is more preferable that both the base material and the underlayer have such a crystal structure. Examples of the constituent material of the underlayer include Mo, Ta, W, Ti, Cr, V, and Nb. The underlayer can also be formed by sputtering, for example.

(2)拡散材
拡散材は、非晶質体内に拡散し得る拡散元素を含むものであればよい。拡散元素は粒界構成元素を兼ね、上述した粒界構成元素に関する内容は拡散元素にも該当する。但し、拡散元素がR1Fe14B結晶粒中に固溶すると、磁性体の磁気特性の低下を招くため、拡散元素は結晶粒内に非固溶なものほど好ましい。
(2) Diffusion material A diffusion material should just contain the diffusion element which can be diffused in an amorphous body. The diffusion element also serves as a grain boundary constituent element, and the above-described content relating to the grain boundary constituent element also applies to the diffusion element. However, if the diffusing element is dissolved in the R1 2 Fe 14 B crystal grains, the magnetic properties of the magnetic material are deteriorated. Therefore, it is preferable that the diffusing element is insoluble in the crystal grains.

拡散材は、比較的低温で液相を生じて濡れ性に優れると、拡散元素の非晶質体内への拡散が容易となり好ましい。具体的にいうと、拡散材は、R1−Fe−Bの共晶点(Nd−Fe−B系なら665℃)よりも低い温度で液相を生じるものであると好ましい。   A diffusing material that produces a liquid phase at a relatively low temperature and has excellent wettability is preferable because diffusion of the diffusing element into the amorphous body is facilitated. Specifically, it is preferable that the diffusing material generates a liquid phase at a temperature lower than the eutectic point of R1-Fe—B (665 ° C. in the case of Nd—Fe—B).

このような拡散材として、例えば、R−Cu系合金、R−Al系合金等がある(R:R1および/またはR2)。特に共晶点の低いNd−Cu合金(共晶点:520℃)が好適である。この銅合金の組成は特に限定されないが、例えば、全体を100原子%としたときにCuが20〜90原子%で残部がNdであると好ましい。   Examples of such a diffusing material include an R—Cu alloy, an R—Al alloy, and the like (R: R1 and / or R2). In particular, an Nd—Cu alloy having a low eutectic point (eutectic point: 520 ° C.) is suitable. The composition of the copper alloy is not particularly limited. For example, when the whole is 100 atomic%, Cu is preferably 20 to 90 atomic% and the balance is Nd.

《磁性体の製造方法》
本発明の希土類磁石の製造方法は主に付着工程と加熱工程とからなる。
(1)付着工程
付着工程は、R1−Fe−B非晶質体へ拡散材を付着させた付着非晶質体(図1A参照)を得る工程である。ここでいう「付着」は、拡散元素が非晶質体内へ拡散し得る程度に、非晶質体と拡散材とが接触していれば足りる。従って、非晶質体と拡散材とは脱離可能でもよく、必ずしも溶着等している必要はない。もっとも、拡散材が非晶質体の少なくとも一面を被覆していると、効率的な拡散が可能となり好ましい。
<Method for manufacturing magnetic material>
The method for producing a rare earth magnet of the present invention mainly comprises an adhesion step and a heating step.
(1) Adhesion process An adhesion process is a process of obtaining the adhesion amorphous body (refer FIG. 1A) which made the diffusion material adhere to R1-Fe-B amorphous body. The “adhesion” here is sufficient if the amorphous body and the diffusing material are in contact with each other to such an extent that the diffusing element can diffuse into the amorphous body. Therefore, the amorphous body and the diffusing material may be detachable, and are not necessarily welded. However, it is preferable that the diffusing material covers at least one surface of the amorphous body because efficient diffusion is possible.

このような付着工程は、例えば、拡散材をターゲットとして非晶質体に対してスパッタリングすることでなされる。このとき、全体組成が所望組成となっていれば、ターゲット自体は、単種でも複数種でもよい。これにより、一般的に製造困難な組成の拡散材も非晶質体へ付着可能となる。なお、これらのことは本明細書で述べるスパッタリング全般についていえることである。
(2)加熱工程
加熱工程は、付着非晶質体を加熱して、R1Fe14Bの結晶粒からなる主相と結晶粒間に拡散元素を含む粒界相とを並行して生成させる工程である。これにより角丸形状の結晶粒が粒界相で被包されたナノ結晶集合体(図1B参照)が得られる。このときの加熱温度は、拡散材の液相温度(共晶点)以上であると好ましい。Nd−Fe−B系非晶質体にNd−Cu系拡散材を付着させた付着非晶質体を加熱する場合なら、その加熱温度は540〜680℃さらには560〜660℃で加熱すると好ましい。
Such an adhesion process is performed, for example, by sputtering an amorphous body using a diffusion material as a target. At this time, if the overall composition is a desired composition, the target itself may be a single type or a plurality of types. Accordingly, a diffusion material having a composition that is generally difficult to manufacture can be attached to the amorphous body. These can be said for the general sputtering described in this specification.
(2) Heating step In the heating step, the attached amorphous body is heated to generate a main phase composed of R1 2 Fe 14 B crystal grains and a grain boundary phase containing a diffusing element between the crystal grains in parallel. It is a process. As a result, a nanocrystal aggregate (see FIG. 1B) in which rounded crystal grains are encapsulated in the grain boundary phase is obtained. The heating temperature at this time is preferably equal to or higher than the liquid phase temperature (eutectic point) of the diffusing material. In the case of heating the attached amorphous body in which the Nd—Fe—B based amorphous material is adhered to the Nd—Fe—B based amorphous body, the heating temperature is preferably 540 to 680 ° C., more preferably 560 to 660 ° C. .

(3)その他
加熱工程後に得られたナノ結晶集合体の酸化等を抑止するため、その表面に保護被膜(保護層)を設けると好適である。このような保護被膜の形成も前述したスパッタリングにより行える。そのターゲットには、Cr、Ag、Au、Pd、Pt、Mo、Cu、Ti、Ta、Ru、V、Hf、W、Ir、Al、Nbなどの単体、合金または化合物などを用いることができる。このスパッタリングは通常、室温域で行えば足りる。
(3) Others In order to suppress oxidation and the like of the nanocrystal aggregate obtained after the heating step, it is preferable to provide a protective film (protective layer) on the surface. Such a protective film can also be formed by the sputtering described above. As the target, a simple substance such as Cr, Ag, Au, Pd, Pt, Mo, Cu, Ti, Ta, Ru, V, Hf, W, Ir, Al, and Nb, an alloy, a compound, or the like can be used. Usually, it is sufficient to perform this sputtering at room temperature.

《磁性体》
本発明の磁性体は、磁気ディスクなどの磁気記録媒体、電動機のロータまたはステータなどに用いることができる
<Magnetic material>
The magnetic material of the present invention can be used for a magnetic recording medium such as a magnetic disk, a rotor or a stator of an electric motor, or the like.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
図2に示すような試料を表1に示すように種々製造した。
(1)基材および下地層
先ず、試料(磁性体)を形成する基材としてMgO単結晶基板(以下単に「基板」という。)を用意した。このMgO単結晶基板は、(001)面が基板面になるように加工し、表面粗度を小さくするため研磨を行ったものである(フルウチ化学株式会社製、MgO(100)単結晶)。
The present invention will be described more specifically with reference to examples.
<Production of sample>
Various samples as shown in FIG. 2 were produced as shown in Table 1.
(1) Base Material and Underlayer First, an MgO single crystal substrate (hereinafter simply referred to as “substrate”) was prepared as a base material for forming a sample (magnetic material). This MgO single crystal substrate is processed so that the (001) plane becomes the substrate surface and polished to reduce the surface roughness (MgO (100) single crystal manufactured by Furuuchi Chemical Co., Ltd.).

この基板の(001)面上にMoからなる平坦な下地層を形成した(下地層形成工程)。この下地層は、Moをスパッタリングにより積層した後、加熱処理して形成した。下地層の厚さは20nmとした。ちなみに、Moは、NdFe14B結晶配向面(c面)と格子整合性の高いb.c.c.材料である。なお、本実施例では基板上にMo下地層を直接形成したが、その形成前に基板上にCrからなるシード層(厚さ数nm程度)を形成しておいてもよい。 A flat underlayer made of Mo was formed on the (001) plane of this substrate (underlayer forming step). This underlayer was formed by laminating Mo by sputtering and then heat-treating it. The thickness of the underlayer was 20 nm. Incidentally, Mo is a bcc material having high lattice matching with the Nd 2 Fe 14 B crystal orientation plane (c plane). In this embodiment, the Mo underlayer is directly formed on the substrate, but a seed layer (thickness of about several nm) made of Cr may be formed on the substrate before the formation.

なお、本実施例で用いたスパッタリングは、マグネトロンスパッタ法に基づき、積層(成膜)前の到達真空度を1x10−8Pa以下、製膜形状をφ8mmとして行った。また、各層の厚さ(層厚)は、積層速度と積層時間の積から算出した。本実施例では、積層速度を0.4〜1Å/sとした。 Sputtering used in this example was performed based on a magnetron sputtering method with an ultimate vacuum before lamination (film formation) of 1 × 10 −8 Pa or less and a film forming shape of φ8 mm. The thickness of each layer (layer thickness) was calculated from the product of the lamination speed and the lamination time. In this example, the stacking speed was set to 0.4 to 1 cm / s.

(2)Nd−Fe−B層の形成(非晶質体形成工程)
上述のスパッタリングにより、基板を加熱しつつ下地層上にNd−Fe−B層を形成した。基板の加熱温度は表1に示すように試料毎に変更した。ターゲットには、Nd、Fe、Fe8020(単位:原子%)合金を用いた。こうして厚さ20nmのNd−Fe−B層を形成した。
(2) Formation of Nd—Fe—B layer (amorphous body forming step)
By the above-described sputtering, an Nd—Fe—B layer was formed on the base layer while heating the substrate. The heating temperature of the substrate was changed for each sample as shown in Table 1. As a target, an Nd, Fe, Fe 80 B 20 (unit: atomic%) alloy was used. Thus, a 20 nm thick Nd—Fe—B layer was formed.

(3)Nd−Cu層の形成(付着工程)
Nd−Fe−B層を形成した基板を室温域まで冷却し、室温域で、Nd−Fe−B層上へNd−Cu層(拡散層、拡散材)を上述したスパッタリングにより積層した。このときターゲットには、Nd30Cu70(原子%)の銅合金を用いた。Nd−Cu層の厚さは全試料とも1nmとした。なお、比較のため、このNd−Cu層の形成を行わない試料も並行して用意した。
(3) Formation of Nd—Cu layer (attachment process)
The substrate on which the Nd—Fe—B layer was formed was cooled to room temperature, and an Nd—Cu layer (diffusion layer, diffusion material) was laminated on the Nd—Fe—B layer at room temperature by sputtering as described above. At this time, a copper alloy of Nd 30 Cu 70 (atomic%) was used as a target. The thickness of the Nd—Cu layer was 1 nm for all samples. For comparison, a sample on which this Nd—Cu layer was not formed was also prepared in parallel.

(4)拡散結晶化(加熱工程)
Nd−Cu層の有る基板およびNd−Cu層の無い基板を、表1に示す各温度で加熱した。この熱処理は、前述した1x10−8Pa以下の真空雰囲気中で1時間行った。
(4) Diffusion crystallization (heating process)
A substrate with an Nd—Cu layer and a substrate without an Nd—Cu layer were heated at each temperature shown in Table 1. This heat treatment was performed for 1 hour in the aforementioned vacuum atmosphere of 1 × 10 −8 Pa or less.

(5)保護層の形成
この熱処理後、基板を室温域まで冷却し、室温域で、各試料の最表面に、CrあるいはMoからなる保護層を上述したスパッタリングにより形成した。保護層の厚さは全試料とも10nmとした。こうして図2に示す積層体(Nd−Cu層が残存している場合)からなる試料が得られた。
(5) Formation of protective layer After this heat treatment, the substrate was cooled to room temperature, and a protective layer made of Cr or Mo was formed on the outermost surface of each sample in the room temperature by sputtering as described above. The thickness of the protective layer was 10 nm for all samples. Thus, a sample made of the laminate shown in FIG. 2 (when the Nd—Cu layer remained) was obtained.

《各試料の測定》
上述した各試料の保磁力を超伝導量子干渉型磁束計(SQUID)により測定した。その結果を表1に併せて記載した。なお、表1中に示した保磁力増加率は、上述したNd−Cu層の無い試料の保磁力(H)に対する、Nd−Cu層の有る試料の保磁力(H)の比率(H/H)である。
<< Measurement of each sample >>
The coercivity of each sample described above was measured with a superconducting quantum interference magnetometer (SQUID). The results are also shown in Table 1. Incidentally, the coercive force increased rate shown in Table 1, the ratio of relative coercivity of sample without a Nd-Cu layer as described above (H 0), the coercive force of the sample having the Nd-Cu layer (H 1) (H 1 / H 0 ).

またNd−Fe−B層が非晶質か結晶質かは、X線回折法およびSTEM観察により判断した。
《試料の観察》
(1)Nd−Fe−B層(非晶質)にNd−Cu層を積層した試料(試料No.A3参照)と、Nd−Fe−B層(非晶質)にNd−Cu層を積層しなかった試料(試料No.A3参照)と、Nd−Fe−B層(結晶質)にNd−Cu層を積層した試料(試料No.A9参照)とについて、各積層断面を走査透過型電子顕微鏡(STEM)で観察した。それらの画像をそれぞれ図3A〜図3Cに示した。
(2)試料No.A3(Nd−Cu層有り)の積層断面をSTEMで観察した画像を図4Aに、また同試料をより広範囲でSTEM観察した画像を図4Bに示した。なお、図4Bでは、Nd−Fe−B層中に観察された複数の結晶粒に、順次、粒子1〜8を付した。これら粒子1〜粒子8の最長幅を図4BのSTEM像から読み取り、その結果を表2にまとめた。
(3)図4Aに示した試料No.A3の断面を、エネルギー分散型X線分光法(EDX)により観察した。得られた各元素の分布像を図5A〜図5Eにそれぞれ示した。
Whether the Nd-Fe-B layer is amorphous or crystalline was determined by X-ray diffraction and STEM observation.
<< Observation of sample >>
(1) A sample (see sample No. A3) in which an Nd—Cu—layer is laminated on an Nd—Fe—B layer (amorphous), and an Nd—Cu layer is laminated on an Nd—Fe—B layer (amorphous). For the sample (see sample No. A3) that was not performed and the sample (see sample No. A9) in which the Nd—Cu layer was laminated on the Nd—Fe—B layer (crystalline) (see sample No. A9) It observed with the microscope (STEM). The images are shown in FIGS. 3A to 3C, respectively.
(2) Sample No. FIG. 4A shows an image obtained by observing a laminated section of A3 (with an Nd—Cu layer) with a STEM, and FIG. 4B shows an image obtained by observing the sample in a wider range with a STEM. In FIG. 4B, particles 1 to 8 are sequentially attached to a plurality of crystal grains observed in the Nd—Fe—B layer. The longest widths of these particles 1 to 8 were read from the STEM image of FIG. 4B and the results are summarized in Table 2.
(3) Sample No. shown in FIG. The cross section of A3 was observed by energy dispersive X-ray spectroscopy (EDX). The obtained distribution images of each element are shown in FIGS. 5A to 5E.

《各試料の評価》
(1)結晶粒と粒界相
先ず図3Aから明らかなように、非晶質のNd−Fe−B層にNd−Cu層を積層して加熱した試料では、角丸形状の微細な結晶粒(ナノサイズ結晶粒)と、それら結晶粒間に非常に薄い粒界相が同時に形成されていた。
<< Evaluation of each sample >>
(1) Crystal Grain and Grain Boundary Phase First, as apparent from FIG. 3A, in a sample heated by laminating an Nd—Cu—layer on an amorphous Nd—Fe—B layer, fine crystal grains with rounded corners are used. (Nano-sized crystal grains) and a very thin grain boundary phase were simultaneously formed between the crystal grains.

一方、図3Bからわかるように、Nd−Cu層を積層せずに非晶質のNd−Fe−B層のみを加熱した試料では、そのような角丸形状の結晶粒は形成されず、粗大な結晶粒が副相と共に晶出した。さらに図3Cからわかるように、結晶質のNd−Fe−B層へNd−Cu層を積層して加熱した試料では、粒界相が形成されるものの、結晶粒は角張った比較的長大なものとなった。   On the other hand, as can be seen from FIG. 3B, in the sample in which only the amorphous Nd—Fe—B layer is heated without laminating the Nd—Cu layer, such rounded crystal grains are not formed. Crystal grains crystallized with the subphase. Furthermore, as can be seen from FIG. 3C, in the sample heated by laminating the Nd—Cu layer on the crystalline Nd—Fe—B layer, a grain boundary phase is formed, but the crystal grains are relatively long and angular. It became.

(2)結晶粒のサイズ
図4A、図4Bおよび表2から、非晶質のNd−Fe−B層とNd−Cu層との積層体を加熱して得られた試料は、結晶粒の最長幅がいずれも500nm以下、具体的には50〜150nmであり、相加平均すると約75nm程度であった。また、それら結晶粒間にできた粒界相の最小幅はいずれも1nm以上さらには2nm以上あった。
(2) Size of Crystal Grain From FIGS. 4A, 4B and Table 2, the sample obtained by heating the laminate of the amorphous Nd—Fe—B layer and the Nd—Cu layer is the longest of the crystal grains. All of the widths were 500 nm or less, specifically 50 to 150 nm, and an arithmetic average was about 75 nm. In addition, the minimum width of the grain boundary phase formed between the crystal grains was 1 nm or more, further 2 nm or more.

(3)結晶粒および粒界相の構成元素
先ず、図5Aおよび図5Bから明らかなように、Feは主に結晶粒中に存在し、粒界相中に殆ど存在していない。またNdは結晶粒中および粒界相中に存在している。次に、図5Cから明らかなように、Cuは結晶粒および粒界相を含む広い領域に分布しているが、図5Dおよび図5Eから明らかなように下地層のMoおよび保護層のCrは、結晶粒や粒界相にほとんど存在していない。これらのことから、上述した結晶粒はNdFe14Bからなる結晶粒であり、粒界相はNdとCuの合金または化合物からなるといえる。
(3) Constituent Elements of Crystal Grain and Grain Boundary Phase First, as is apparent from FIGS. 5A and 5B, Fe is mainly present in the crystal grain and hardly present in the grain boundary phase. Nd exists in the crystal grains and the grain boundary phase. Next, as is clear from FIG. 5C, Cu is distributed over a wide region including the crystal grains and the grain boundary phase, but as is clear from FIGS. 5D and 5E, the Mo of the underlayer and the Cr of the protective layer are , Hardly exist in crystal grains and grain boundary phases. From these facts, it can be said that the crystal grains described above are crystal grains made of Nd 2 Fe 14 B, and the grain boundary phase is made of an alloy or compound of Nd and Cu.

(4)非晶質体の形成
先ず表1の試料No.A1〜A12より、非晶質のNd−Fe−B層は、基板の加熱温度をNd−Fe−Bの共晶点(結晶化温度)より低い590℃以下で形成されることが解る。
(4) Formation of amorphous body First, sample No. From A1 to A12, it is understood that the amorphous Nd—Fe—B layer is formed at a heating temperature of the substrate at 590 ° C. or lower which is lower than the eutectic point (crystallization temperature) of Nd—Fe—B.

次に試料No.A1〜A6より、非晶質のNd−Fe−B層上にNd−Cu層を積層して加熱した試料は、いずれも保磁力が飛躍的に向上することがわかる。特に非晶質のNd−Fe−B層の形成温度が低い程、保磁力増加率が大きくなった。もっとも、保磁力自体は、非晶質のNd−Fe−B層の形成温度が325〜590℃、450〜590℃さらには525〜590℃のときに大きくなった。   Next, sample no. From A1 to A6, it can be seen that the coercive force of the samples heated by laminating the Nd—Cu layer on the amorphous Nd—Fe—B layer is dramatically improved. In particular, the lower the formation temperature of the amorphous Nd—Fe—B layer, the greater the coercivity increase rate. However, the coercive force itself increased when the amorphous Nd—Fe—B layer was formed at temperatures of 325 to 590 ° C., 450 to 590 ° C., and further 525 to 590 ° C.

(5)拡散・結晶化
表1の試料No.B1〜B9より明らかなように、非晶質のNd−Fe−B層上にNd−Cu層を積層した試料の加熱温度が510〜680℃さらには540〜670℃であると、保磁力増加率が大きくなることがわかる。また、その加熱温度をさらには560〜660℃とすると、保磁力自体も非常に大きくなることがわかる。
(5) Diffusion / crystallization Sample No. of Table 1 As apparent from B1 to B9, when the heating temperature of the sample in which the Nd—Cu layer is laminated on the amorphous Nd—Fe—B layer is 510 to 680 ° C., further 540 to 670 ° C., the coercive force is increased. It can be seen that the rate increases. It can also be seen that when the heating temperature is further 560 to 660 ° C., the coercive force itself becomes very large.

(6)総括
表1に示した各試料の結果から、300〜590℃さらには325〜590℃で加熱しつつ形成した非晶質なNd−Fe−B層上に、Nd−Cu層を積層した積層体を、さらに540〜680℃さらには560〜660℃で加熱することにより、Dy等の稀少元素を用いるまでもなく、30kOe前後の大きな保磁力を発現する磁性体が得られることがわかった。そして、このような磁性体は、角丸形状の結晶粒(主相)とそれを包囲する粒界相とにより構成されたナノサイズの結晶集合体からなることが明らかとなった。
(6) Summary From the results of each sample shown in Table 1, an Nd—Cu layer was laminated on an amorphous Nd—Fe—B layer formed while heating at 300 to 590 ° C., further 325 to 590 ° C. It is found that by heating the laminated body at 540 to 680 ° C., further at 560 to 660 ° C., a magnetic body that exhibits a large coercive force of about 30 kOe can be obtained without using rare elements such as Dy. It was. And it became clear that such a magnetic body consists of a nano-sized crystal | crystallization aggregate | assembly comprised by the round-corner-shaped crystal grain (main phase) and the grain-boundary phase surrounding it.

Claims (13)

希土類元素(R1)と鉄(Fe)とホウ素(B)の正方晶金属間化合物(R1Fe14B)の結晶粒からなる主相と該結晶粒間に形成された粒界相とを有する磁性体であって、
前記結晶粒は、最長幅が500nm以下の角丸形状をしており、
前記粒界相は、最小幅が1nm以上であることを特徴とする磁性体。
A main phase composed of crystal grains of a rare earth element (R1), iron (Fe), and boron (B) tetragonal intermetallic compound (R1 2 Fe 14 B), and a grain boundary phase formed between the crystal grains A magnetic material,
The crystal grains have a rounded corner shape with a maximum width of 500 nm or less,
The magnetic substance characterized in that the grain boundary phase has a minimum width of 1 nm or more.
前記粒界相は、前記R1、FeおよびB以外の粒界構成元素を含む請求項1に記載の磁性体。   The magnetic body according to claim 1, wherein the grain boundary phase includes grain boundary constituent elements other than R1, Fe, and B. 前記粒界構成元素は、アルミニウム(Al)、銅(Cu)、マンガン(Mn)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ガリウム(Ga)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、銀(Ag)、金(Au)、白金(Pt)、ルテニウム(Ru)、スズ(Sn)、酸素(O)、窒素(N)、C(炭素)、水素(H)、マグネシウム(Mg)、ケイ素(Si)、ニッケル(Ni)、コバルト(Co)、ゲルマニウム(Ge)および鉛(Pb)からなる元素群中の一種以上である請求項2に記載の磁性体。   The grain boundary constituent elements are aluminum (Al), copper (Cu), manganese (Mn), titanium (Ti), vanadium (V), chromium (Cr), gallium (Ga), yttrium (Y), zirconium (Zr). ), Niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), tungsten (W), silver (Ag), gold (Au), platinum (Pt), ruthenium (Ru), tin (Sn) ), Oxygen (O), nitrogen (N), C (carbon), hydrogen (H), magnesium (Mg), silicon (Si), nickel (Ni), cobalt (Co), germanium (Ge) and lead (Pb) The magnetic body according to claim 2, which is one or more of the element group consisting of 前記粒界相は、前記R1および/または該R1と異なる希土類元素(R2)と、Cuとからなる請求項1〜3のいずれかに記載の磁性体。   The magnetic body according to any one of claims 1 to 3, wherein the grain boundary phase includes R1 and / or a rare earth element (R2) different from R1 and Cu. 前記R1および前記R2はネオジム(Nd)である請求項4に記載の磁性体。   5. The magnetic body according to claim 4, wherein R1 and R2 are neodymium (Nd). 前記結晶質の最長幅は、20nm以上であり、
前記粒界相の最小幅は、15nm以下である請求項1に記載の磁性体。
The longest width of the crystalline is 20 nm or more,
The magnetic body according to claim 1, wherein a minimum width of the grain boundary phase is 15 nm or less.
厚さが1〜500nmの薄膜である請求項1に記載の磁性体。   The magnetic body according to claim 1, which is a thin film having a thickness of 1 to 500 nm. R1とFeとBからなる非晶質体内に拡散し得る拡散元素を含む拡散材を、該非晶質体へ付着させた付着非晶質体を得る付着工程と、
該付着非晶質体を加熱して、R1Fe14Bの結晶粒からなる主相と該結晶粒間に形成され該拡散元素を含む粒界相とを並行して形成させる加熱工程とを備え、
請求項1〜7のいずれかに記載の磁性体が得られることを特徴とする磁性体の製造方法。
An attachment step of obtaining an attached amorphous body in which a diffusion material containing a diffusing element that can diffuse into the amorphous body composed of R1, Fe, and B is attached to the amorphous body;
Heating the adhering amorphous body to form a main phase composed of R1 2 Fe 14 B crystal grains and a grain boundary phase formed between the crystal grains and containing the diffusing element in parallel. Prepared,
A method for producing a magnetic body, wherein the magnetic body according to claim 1 is obtained.
前記拡散材は、請求項3に記載した粒界構成元素を含む合金である請求項8に記載の磁性体の製造方法。   The method for producing a magnetic body according to claim 8, wherein the diffusion material is an alloy containing a grain boundary constituent element according to claim 3. 前記粒界構成元素を含む合金は、前記R1および/またはR2とCuとからなる銅合金である請求項9に記載の磁性体の製造方法。   The method for producing a magnetic body according to claim 9, wherein the alloy containing the grain boundary constituent element is a copper alloy composed of the R1 and / or R2 and Cu. 前記加熱工程は、前記付着非晶質体を540〜680℃で加熱する工程である請求項8〜10のいずれかに記載の磁性体の製造方法。   The said heating process is a process of heating the said adhesion | attachment amorphous body at 540-680 degreeC, The manufacturing method of the magnetic body in any one of Claims 8-10. さらに、590℃以下で前記非晶質体を形成する非晶質体形成工程を備える請求項8または11に記載の磁性体の製造方法。   Furthermore, the manufacturing method of the magnetic body of Claim 8 or 11 provided with the amorphous body formation process which forms the said amorphous body at 590 degrees C or less. 前記非晶質体は、前記主相の配向結晶面と整合的な結晶構造を有する基材上または下地材上に形成される請求項8または12に記載の磁性体の製造方法。   The method of manufacturing a magnetic body according to claim 8 or 12, wherein the amorphous body is formed on a base material or a base material having a crystal structure consistent with an oriented crystal plane of the main phase.
JP2011022975A 2011-02-04 2011-02-04 Magnetic material and method for producing the same Active JP5732877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011022975A JP5732877B2 (en) 2011-02-04 2011-02-04 Magnetic material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022975A JP5732877B2 (en) 2011-02-04 2011-02-04 Magnetic material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012164764A true JP2012164764A (en) 2012-08-30
JP5732877B2 JP5732877B2 (en) 2015-06-10

Family

ID=46843885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022975A Active JP5732877B2 (en) 2011-02-04 2011-02-04 Magnetic material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5732877B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104419A1 (en) 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
JP2014225537A (en) * 2013-05-15 2014-12-04 株式会社豊田中央研究所 Permanent magnet and method of manufacturing the same
CN104575903A (en) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 Neodymium iron boron magnet added with Dy powder and preparation method thereof
CN104851545A (en) * 2015-05-21 2015-08-19 唐海峰 Production method of permanent magnet material with grain boundary diffusion layer
CN109979743A (en) * 2017-12-27 2019-07-05 宁波科宁达工业有限公司 A kind of method and rare-earth magnet of neodymium iron boron magnetic body grain boundary decision

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093731A (en) * 2003-09-17 2005-04-07 Daido Steel Co Ltd Anisotropic magnet, its manufacturing method, and motor using it
JP2011009495A (en) * 2009-06-26 2011-01-13 Nagasaki Univ Nd-Fe-B MAGNET, AND METHOD OF MANUFACTURING THE SAME
JP2011061038A (en) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc Rare-earth magnet, method for manufacturing the same, and magnet composite member
JP2012234985A (en) * 2011-05-02 2012-11-29 Toyota Motor Corp Method for manufacturing neodymium-iron-boron magnet having large coercive force

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093731A (en) * 2003-09-17 2005-04-07 Daido Steel Co Ltd Anisotropic magnet, its manufacturing method, and motor using it
JP2011009495A (en) * 2009-06-26 2011-01-13 Nagasaki Univ Nd-Fe-B MAGNET, AND METHOD OF MANUFACTURING THE SAME
JP2011061038A (en) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc Rare-earth magnet, method for manufacturing the same, and magnet composite member
JP2012234985A (en) * 2011-05-02 2012-11-29 Toyota Motor Corp Method for manufacturing neodymium-iron-boron magnet having large coercive force

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104419A1 (en) 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
JP2014209547A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
US10546672B2 (en) 2013-03-28 2020-01-28 Tdk Corporation Rare earth based magnet
JP2014225537A (en) * 2013-05-15 2014-12-04 株式会社豊田中央研究所 Permanent magnet and method of manufacturing the same
CN104575903A (en) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 Neodymium iron boron magnet added with Dy powder and preparation method thereof
CN104851545A (en) * 2015-05-21 2015-08-19 唐海峰 Production method of permanent magnet material with grain boundary diffusion layer
CN104851545B (en) * 2015-05-21 2017-11-17 王怡 A kind of permanent-magnet material preparation method with grain boundary decision layer
CN109979743A (en) * 2017-12-27 2019-07-05 宁波科宁达工业有限公司 A kind of method and rare-earth magnet of neodymium iron boron magnetic body grain boundary decision

Also Published As

Publication number Publication date
JP5732877B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5739093B2 (en) Rare earth magnet, manufacturing method thereof, and magnet composite member
Liu Sm–Co high-temperature permanent magnet materials
US10332661B2 (en) Rare earth-free permanent magnetic material
US20060054245A1 (en) Nanocomposite permanent magnets
JPH01103805A (en) Permanent magnet
JP5284394B2 (en) Rare earth magnet and manufacturing method thereof
JP3311907B2 (en) Permanent magnet material, permanent magnet, and method of manufacturing permanent magnet
JP5732877B2 (en) Magnetic material and method for producing the same
JP3317646B2 (en) Manufacturing method of magnet
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP4687662B2 (en) Iron-based rare earth alloy magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPH1088294A (en) Hard magnetic material
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
Saito High coercivity in Sm5Fe17 melt-spun ribbon
JP6398911B2 (en) Permanent magnet and method for manufacturing the same
JP2000003808A (en) Hard magnetic material
JPH06207204A (en) Production of rare earth permanent magnet
JP4898366B2 (en) Rare earth magnet alloy ribbon and manufacturing method, rare earth magnet alloy
JP7166615B2 (en) Rare earth magnets, films, laminates, methods of manufacturing rare earth magnets, motors, generators, and automobiles.
KR0168495B1 (en) Ñß-FE BASE RE-FE-B NM CRYSTAL ALLOY AND ITS PRODUCING METHOD AND USE
JP5390996B2 (en) Rare earth highly oriented magnetic thin film and manufacturing method thereof, porcelain member and rare earth permanent magnet
JP2017166018A (en) Neodymium-iron-boron-based alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5732877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150