JP2012153057A - Conductive film with reflection prevention function - Google Patents

Conductive film with reflection prevention function Download PDF

Info

Publication number
JP2012153057A
JP2012153057A JP2011015315A JP2011015315A JP2012153057A JP 2012153057 A JP2012153057 A JP 2012153057A JP 2011015315 A JP2011015315 A JP 2011015315A JP 2011015315 A JP2011015315 A JP 2011015315A JP 2012153057 A JP2012153057 A JP 2012153057A
Authority
JP
Japan
Prior art keywords
film
layer
antireflection
antireflection layer
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011015315A
Other languages
Japanese (ja)
Other versions
JP5739176B2 (en
Inventor
Rei Nishio
玲 西尾
Tetsuo Yoshida
哲男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2011015315A priority Critical patent/JP5739176B2/en
Publication of JP2012153057A publication Critical patent/JP2012153057A/en
Application granted granted Critical
Publication of JP5739176B2 publication Critical patent/JP5739176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Hybrid Cells (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive film with a reflection prevention function which uses a polyester film high in dimension stability as a base material film, reduces a reflection loss caused by interfacial reflection between the polyester film and a transparent conductive layer, and has superior gas barrier properties and solution resistance properties.SOLUTION: In the conductive film with the reflection prevention function, the biaxial orientation polyester film, a reflection prevention layer and the transparent conductive layer are directly laminated in this order, a refraction factor of the reflection prevention layer is ≥1.75 and ≤2.00, the thickness of the reflection prevention layer is ≥25 nm and ≤110 nm, the reflection prevention layer is constituted of only an inorganic component or contains the inorganic component and an organic component, and a content of the organic component is ≤35 wt.% with the weight of the reflection prevention layer as a reference.

Description

本発明は反射防止機能付導電性フィルムに関し、さらに詳しくはポリエステルフィルム、反射防止層および透明導電層からなる反射防止機能付導電性フィルムであって、ポリエステルフィルムと透明導電層との界面反射を抑制して透過率を高め、さらにガスバリア性および耐溶剤性に優れる反射防止機能付導電性フィルムに関する。   The present invention relates to a conductive film with an antireflection function, and more specifically, an electroconductive film with an antireflection function comprising a polyester film, an antireflection layer and a transparent conductive layer, and suppresses interface reflection between the polyester film and the transparent conductive layer. Thus, the present invention relates to a conductive film with an antireflection function, which enhances transmittance and further has excellent gas barrier properties and solvent resistance.

ポリエステルフィルムは、従来より様々な用途に用いられ、近年は太陽電池用部材としても用いられるようになってきている。
太陽電池には一般的にガラスを基板材料とするリジットタイプのものとフィルムを基板材料とするフレキシブルタイプがあるが、時計あるいは携帯電話や携帯端末のような移動体通信機器の補助電源として、最近ではフレキシブルタイプの太陽電池が多く活用されるようになってきた。特に近年、新たな変換素子を用いた太陽電池の開発が盛んとなりフレキシブルタイプの研究も盛んになっている。このフレキシブルタイプの太陽電池の部材としてポリエステルフィルムが用いられるようになってきている(特許文献1など)。
Polyester films have been conventionally used for various applications, and in recent years, they have also been used as solar cell members.
There are two types of solar cells: a rigid type using glass as a substrate material and a flexible type using a film as a substrate material. Recently, as an auxiliary power source for mobile communication devices such as watches or mobile phones and mobile terminals, Then, a lot of flexible type solar cells have come to be used. In particular, in recent years, development of solar cells using new conversion elements has become active, and research on flexible types has also become active. A polyester film has come to be used as a member of this flexible solar cell (Patent Document 1, etc.).

この中でも色素増感太陽電池や有機薄膜太陽電池は、印刷技術を用いて加工することができることから、より安価により大量に生産されることが期待される一方、その効率や耐久性はまだ改善の必要があり、鋭意研究がすすめられている。
例えば特許文献2にはフレキシブルかつ軽量であり、有害物質をほとんど使っていない材料からなる大型の色素増感太陽電池の構成が開示されており、さらに基板と接着剤層との間に反射効率を高める目的で白色化熱可塑性フィルムや金属蒸着を有した熱可塑性フィルムなどの反射シートを設けることが記載されている。また、特許文献3は金属酸化物半導体の光触媒効果による基板などの有機物の分解を防ぐために、基板および透明導電層を合わせた部分の光線透過率が400nm以下の波長において80%以下である色素増感型太陽電池に関する発明であり、入射する光を有効に取り入れるために、光電極に用いる基材の透明導電層が積層されていない側の表面に反射防止層を設けてもよいことが記載されている。
Among them, dye-sensitized solar cells and organic thin-film solar cells can be processed using printing technology, so they are expected to be produced in large quantities at a lower cost, but their efficiency and durability are still not improved. There is a need, and intensive research is promoted.
For example, Patent Document 2 discloses a structure of a large-sized dye-sensitized solar cell made of a material that is flexible and lightweight and uses almost no harmful substances, and further has a reflection efficiency between the substrate and the adhesive layer. It is described that a reflective sheet such as a whitened thermoplastic film or a thermoplastic film with metal vapor deposition is provided for the purpose of enhancing. In addition, Patent Document 3 discloses a dye sensitizing method in which the light transmittance of the combined portion of the substrate and the transparent conductive layer is 80% or less at a wavelength of 400 nm or less in order to prevent decomposition of organic substances such as the substrate due to the photocatalytic effect of the metal oxide semiconductor. It is an invention related to a sensitive solar cell, and it is described that an antireflection layer may be provided on the surface of the substrate on which the transparent conductive layer of the substrate used for the photoelectrode is not laminated in order to effectively take in incident light. ing.

また特許文献4には薄膜太陽電池などの太陽電池モジュールにおいて、高湿度環境下での光電変換機能低下を抑制するために、光起電力素子の受光面側の有機高分子層中に透明無機絶縁体薄膜を表面に形成した高分子フィルム(透明防湿フィルム)を挿入することが記載されており、かかる透明無機絶縁体薄膜として、コーティングにより形成する場合には金属アルコキシド化合物を主成分として用い、スパッタ法で形成する場合には金属酸化物をフィルムにスパッタ蒸着することが記載されているが、透明無機絶縁体薄膜と透明導電層とを直接積層させる構成は開示されていない。   Further, Patent Document 4 discloses a transparent inorganic insulating layer in an organic polymer layer on the light receiving surface side of a photovoltaic device in order to suppress a decrease in photoelectric conversion function in a high humidity environment in a solar cell module such as a thin film solar cell. It is described that a polymer film (transparent moisture-proof film) having a body thin film formed on the surface is inserted, and when such a transparent inorganic insulator thin film is formed by coating, a metal alkoxide compound is used as a main component, and sputtering is performed. In the case of forming by a method, it is described that a metal oxide is sputter-deposited on a film, but a configuration in which a transparent inorganic insulator thin film and a transparent conductive layer are directly laminated is not disclosed.

一方、太陽電池の発電効率向上のためには光電変換素子への入射光量を十分とる必要があり、反射光を低減するために反射率低減などの検討がなされている。例えば特許文献5において、透明導電層側および裏面電極層側の少なくとも一方の面が光反射防止特性を有する少なくとも一層から構成される膜で被覆されかつ該膜が含フッ素芳香族樹脂を含太陽電池が検討されている。また、特許文献6には透明導電膜と光電変換層との界面の反射損失を大幅に低減するために、透明導電層上に特定の屈折率を有する酸化チタンを含む第1の反射防止層と、酸化亜鉛を含む第2の反射防止層とを設け、その上に光電変換層を有する太陽電池が開示されている。   On the other hand, in order to improve the power generation efficiency of the solar cell, it is necessary to take a sufficient amount of light incident on the photoelectric conversion element, and studies are being made to reduce the reflectance in order to reduce the reflected light. For example, in Patent Document 5, at least one surface of the transparent conductive layer side and the back electrode layer side is covered with a film composed of at least one layer having antireflection properties, and the film contains a fluorine-containing aromatic resin. Is being considered. Patent Document 6 discloses a first antireflection layer containing titanium oxide having a specific refractive index on the transparent conductive layer in order to significantly reduce reflection loss at the interface between the transparent conductive film and the photoelectric conversion layer. A solar cell having a second antireflection layer containing zinc oxide and having a photoelectric conversion layer thereon is disclosed.

また、基材フィルムと透明導電層との界面反射による反射損失を低減するために、特許文献7にはポリエステルフィルムと透明導電層との間に特定の屈折率を有する反射防止層を設けることが記載されており、その形成方法として金属酸化物にバインダー成分を加えた塗布組成物をポリエステルフィルムにコーティングさせることが記載されている。しかしながら、バインダーなどの有機成分を含む反射防止層の場合、例えば色素増感太陽電池は電池内に液体の電解質を含むために液体が反射防止層に到達すると反射防止層が膨潤し、その上に積層されている透明導電膜が不安定化して導電性に影響を与えることを新たに見出した。   Further, in order to reduce reflection loss due to interface reflection between the base film and the transparent conductive layer, Patent Document 7 may provide an antireflection layer having a specific refractive index between the polyester film and the transparent conductive layer. As a forming method, it is described that a coating composition in which a binder component is added to a metal oxide is coated on a polyester film. However, in the case of an antireflection layer containing an organic component such as a binder, for example, since a dye-sensitized solar cell contains a liquid electrolyte in the battery, when the liquid reaches the antireflection layer, the antireflection layer swells on top of it. The present inventors have newly found that the laminated transparent conductive film becomes unstable and affects the conductivity.

特開平1−198081号公報Japanese Patent Laid-Open No. 1-198081 特開2005−216504号公報JP 2005-216504 A 特開2003−031272号公報JP 2003-031272 A 特開平6−318728号公報JP-A-6-318728 特開2001−077396号公報Japanese Patent Laid-Open No. 2001-077396 特開2005−244073号公報JP 2005-244073 A 特開2008−168488号公報JP 2008-168488 A

本発明の目的は、かかる従来技術の課題を解消し、基材フィルムとして寸法安定性の高いポリエステルフィルムを用い、ポリエステルフィルムと透明導電層との界面反射による反射損失を低減し、さらにガスバリア性および耐溶剤性に優れる反射防止機能付導電性フィルムを提供することにある。   The object of the present invention is to eliminate the problems of the prior art, use a polyester film having high dimensional stability as a base film, reduce reflection loss due to interface reflection between the polyester film and the transparent conductive layer, and further provide gas barrier properties and An object of the present invention is to provide a conductive film with an antireflection function that is excellent in solvent resistance.

さらに本発明の別の目的は、太陽電池の部材、特に色素増感太陽電池や有機薄膜太陽電池の電極といった部材に好適な、優れた反射防止性、ガスバリア性および耐溶剤性を備える反射防止機能付導電性フィルムを提供することにある。   Furthermore, another object of the present invention is to provide an antireflection function having excellent antireflection properties, gas barrier properties and solvent resistance, suitable for members of solar cells, particularly members such as electrodes of dye-sensitized solar cells and organic thin film solar cells. It is in providing an electroconductive film with an attachment.

本発明者らは、前記課題を解決するために鋭意検討した結果、ポリエステルフィルムと透明導電層との間に特定の屈折率を有する反射防止層を設け、かかる反射防止層が無機成分のみで構成されて有機成分を含まないか、無機成分と有機成分とを含む場合には有機成分量を低減させた構成とすることによって、優れた反射防止性、ガスバリア性に加えて色素増感太陽電池の電解質などに対する耐溶剤性を備え、反射防止層の膨潤を抑制できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have provided an antireflection layer having a specific refractive index between the polyester film and the transparent conductive layer, and the antireflection layer is composed only of an inorganic component. In the case where the organic component is not included, or the inorganic component and the organic component are included, the amount of the organic component is reduced so that the dye-sensitized solar cell has an excellent antireflection property and gas barrier property. It has been found that it has solvent resistance to an electrolyte and the like and can suppress swelling of the antireflection layer, and has completed the present invention.

すなわち本発明の目的は、二軸配向ポリエステルフィルム、反射防止層および透明導電層がかかる順に直接積層され、該反射防止層の屈折率が1.75以上2.00以下かつ反射防止層の厚みが25nm以上110nm以下であり、該反射防止層が無機成分のみで構成されるかまたは無機成分と有機成分とを含んでなり、該有機成分の含有量が反射防止層の重量を基準として35重量%以下である反射防止機能付導電性フィルムによって達成される。   That is, an object of the present invention is to directly laminate a biaxially oriented polyester film, an antireflection layer, and a transparent conductive layer in this order, and the refractive index of the antireflection layer is 1.75 to 2.00 and the thickness of the antireflection layer is 25 nm or more and 110 nm or less, and the antireflection layer is composed only of an inorganic component or contains an inorganic component and an organic component, and the content of the organic component is 35% by weight based on the weight of the antireflection layer This is achieved by the following conductive film with antireflection function.

また本発明の反射防止機能付導電性フィルムは、その好ましい態様として、反射防止機能付導電性フィルムの水蒸気透過率が0.5g/m2/day以下であること、該反射防止層の軟化温度が100℃以上であること、該反射防止層の中心面平均表面粗さRaが30nm以下であること、透明導電層が導電性の金属酸化物で構成されてなること、の少なくともいずれか一つを具備するものを包含する。 The conductive film with antireflection function of the present invention preferably has a water vapor transmission rate of 0.5 g / m 2 / day or less, and the softening temperature of the antireflection layer. Is at least 100 ° C., the center surface average surface roughness Ra of the antireflection layer is 30 nm or less, and the transparent conductive layer is composed of a conductive metal oxide. The thing which comprises is included.

また本発明の反射防止機能付導電性フィルムは、太陽電池の部材として用いられること、さらに色素増感太陽電池もしくは有機薄膜太陽電池の部材として用いられることをその好ましい態様として包含するものである。   Moreover, the electroconductive film with an antireflection function of this invention includes using as a member of a solar cell, and also being used as a member of a dye-sensitized solar cell or an organic thin film solar cell as the preferable aspect.

本発明の反射防止機能付導電性フィルムは優れた反射防止性、ガスバリア性および耐溶剤性を備えており、かかる反射防止機能付導電性フィルムを太陽電池の部材、特に色素増感太陽電池や有機薄膜太陽電池の電極に用いることで、太陽電池の変換効率向上・耐久性向上効果が得られる。   The conductive film with antireflection function of the present invention has excellent antireflection properties, gas barrier properties and solvent resistance, and the conductive film with antireflection function is used as a member of a solar cell, particularly a dye-sensitized solar cell or an organic film. By using it for the electrode of a thin film solar cell, the conversion efficiency improvement and durability improvement effect of a solar cell are acquired.

[二軸配向ポリエステルフィルム]
(ポリエステル)
本発明において、導電層を支える支持体として二軸配向ポリエステルフィルムを用いる。この二軸配向ポリエステルフィルムを構成するポリエステルは、芳香族二塩基酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。
[Biaxially oriented polyester film]
(polyester)
In the present invention, a biaxially oriented polyester film is used as a support that supports the conductive layer. The polyester constituting the biaxially oriented polyester film is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.

かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−ナフタレートを例示することができる。これらの共重合体またはこれと小割合の他樹脂とのブレンドであってもよい。これらのポリエステルのうち、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートが力学的物性や光学物性等のバランスが良いので好ましい。
特にポリエチレン−2,6−ナフタレートは機械的強度の大きさ、熱収縮率の小ささ、加熱時のオリゴマー発生量の少なさなどの点で最も好ましい。
Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-naphthalate. It may be a blend of these copolymers or a small proportion of other resins. Among these polyesters, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable because of a good balance between mechanical properties and optical properties.
In particular, polyethylene-2,6-naphthalate is most preferable from the viewpoints of high mechanical strength, low heat shrinkage, and low oligomer generation amount during heating.

ポリエチレンテレフタレートとしては、ポリマーの全繰り返し単位を基準としてエチレンテレフタレート単位を好ましくは90モル%以上、さらに好ましくは95モル%以上、特に好ましくは97モル%以上有するものを用いるとよい。ポリエチレン−2,6−ナフタレートとしては、ポリマーの全繰り返し単位を基準としてエチレン−2,6−ナフタレート単位を好ましくは90モル%以上、さらに好ましくは95モル%以上、特に好ましくは97モル%以上有するものを用いるとよい。ポリエステルは、ホモポリマーでも、第三成分を共重合したコポリマーでもよいが、ホモポリマーが好ましい。   As the polyethylene terephthalate, those having an ethylene terephthalate unit of preferably 90 mol% or more, more preferably 95 mol% or more, particularly preferably 97 mol% or more based on all repeating units of the polymer may be used. The polyethylene-2,6-naphthalate preferably has an ethylene-2,6-naphthalate unit of 90 mol% or more, more preferably 95 mol% or more, particularly preferably 97 mol% or more, based on all repeating units of the polymer. Use a good one. The polyester may be a homopolymer or a copolymer obtained by copolymerizing the third component, but a homopolymer is preferred.

ポリエステルの固有粘度は、好ましくは0.40dl/g以上、さらに好ましくは0.40〜0.90dl/gである。固有粘度が0.40dl/g未満では工程切断が多発することがあり、0.90dl/gを超えると溶融粘度が高いため溶融押出しが困難になることがあり、また重合時間の長化につながる。   The intrinsic viscosity of the polyester is preferably 0.40 dl / g or more, more preferably 0.40 to 0.90 dl / g. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently, and if it exceeds 0.90 dl / g, melt extrusion may be difficult due to the high melt viscosity, leading to a longer polymerization time. .

ポリエステルは従来公知の方法で得ることができる。例えば、ジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得た後、重合反応触媒の存在下で重合反応を行う方法で得ることができる。また、ジカルボン酸の低級アルキルエステルとグリコールとをエステル交換反応触媒を用いて反応させた後、重合反応触媒の存在下で重合反応を行う方法で得ることができる。エステル交換反応触媒としては、従来公知のもの、例えばナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物を用いることができる。重合反応触媒としては、従来公知のもの、例えば三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物を用いることができる。エステル交換反応を経由して重合を行う場合は、重合反応前にエステル交換触媒を失活させる目的でトリメチルホスフェート、トリエチルホスフェート、トリ−n−ブチルホスフェート、正リン酸等のリン化合物が通常は添加されるが、リン元素としてのポリエステル中の含有量が20〜100ppmであることが熱安定性の点から好ましい。なお、ポリエステルは、溶融重合後これをチップ化し、加熱減圧下または窒素などの不活性気流中においてさらに固相重合を施してもよい。   Polyester can be obtained by a conventionally known method. For example, it can be obtained by a method in which a low polymerization degree polyester is obtained directly by the reaction of dicarboxylic acid and glycol, and then a polymerization reaction is carried out in the presence of a polymerization reaction catalyst. Alternatively, it can be obtained by a method in which a lower alkyl ester of dicarboxylic acid and glycol are reacted with each other using a transesterification catalyst, and then a polymerization reaction is performed in the presence of a polymerization reaction catalyst. As the transesterification reaction catalyst, conventionally known compounds such as sodium, potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt can be used. Examples of the polymerization reaction catalyst include those conventionally known, for example, antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate, or parts thereof. Titanium compounds such as hydrolysates, titanyl ammonium oxalate, potassium titanyl oxalate, and titanium trisacetylacetonate can be used. When polymerization is performed via a transesterification reaction, a phosphorus compound such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, or normal phosphoric acid is usually added for the purpose of deactivating the transesterification catalyst before the polymerization reaction. However, the content in the polyester as the phosphorus element is preferably 20 to 100 ppm from the viewpoint of thermal stability. The polyester may be converted into chips after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.

(ポリエステルフィルム特性)
本発明における二軸配向ポリエステルフィルムの面内屈折率の平均は、好ましくは1.63〜1.78である。二軸配向ポリエステルフィルムの面内屈折率の平均が下限値に満たないと十分にポリマーが配向しておらず十分な熱寸法安定性が得られないことがある。他方、該面内屈折率の平均が上限値を越えるとフィルムの十分な靭性が得られず、取り扱いが困難となることがある。かかる面内屈折率特性は後述の延伸条件を用いて二軸方向にフィルム延伸を行うことで得ることができる。
(Polyester film characteristics)
The average in-plane refractive index of the biaxially oriented polyester film in the present invention is preferably 1.63 to 1.78. If the average in-plane refractive index of the biaxially oriented polyester film is less than the lower limit, the polymer may not be sufficiently oriented and sufficient thermal dimensional stability may not be obtained. On the other hand, if the average in-plane refractive index exceeds the upper limit, sufficient toughness of the film cannot be obtained, and handling may be difficult. Such in-plane refractive index characteristics can be obtained by stretching the film in the biaxial direction using the stretching conditions described below.

本発明における、200℃で10分処理したときの二軸配向ポリエステルフィルムの長手方向と幅方向における熱収縮率の差の絶対値は、好ましくは0.8%以下、さらに好ましくは0.5%以下、特に好ましくは0.3%以下である。熱収縮率の差の絶対値が上限値を越えると、太陽電池作成の加熱工程において寸法変化し、光電変換層等との密着性が悪化することがあり、安定な光発電性能が得られないことがある。   In the present invention, the absolute value of the difference in thermal shrinkage between the longitudinal direction and the width direction of the biaxially oriented polyester film when treated at 200 ° C. for 10 minutes is preferably 0.8% or less, more preferably 0.5%. Hereinafter, it is particularly preferably 0.3% or less. If the absolute value of the difference in thermal shrinkage exceeds the upper limit value, the dimensional change may occur in the heating process of solar cell creation, and the adhesiveness with the photoelectric conversion layer, etc. may deteriorate, and stable photovoltaic performance cannot be obtained. Sometimes.

なお、二軸配向ポリエステルフィルムを200℃で10分処理した際のフィルム長手方向の熱収縮率は、二軸配向ポリエステルフィルム上に設置した層との密着性を良好にするために小さいほうが好ましく、好ましくは0〜0.5%、さらに好ましくは0〜0.3%である。かかる熱収縮率特性は後述の延伸条件および熱処理を行い二軸配向ポリエステルフィルムを製膜することで得ることができ、熱収縮率をより小さくするために必要に応じて後述の弛緩熱処理などを施してもよい。   In addition, the heat shrinkage rate in the film longitudinal direction when the biaxially oriented polyester film is treated at 200 ° C. for 10 minutes is preferably smaller in order to improve the adhesion with the layer placed on the biaxially oriented polyester film, Preferably it is 0-0.5%, More preferably, it is 0-0.3%. Such heat shrinkage characteristics can be obtained by forming a biaxially oriented polyester film by performing the stretching conditions and heat treatment described below, and performing a relaxation heat treatment described below as necessary to further reduce the heat shrinkage rate. May be.

二軸配向ポリエステルフィルムは、波長370nmにおける光線透過率が3%以下、400nmでの光線透過率が70%以上であることが好ましい。なお、光線透過率は株式会社島津製作所製の分光光度計MPC3100を用いて測定した数値である。この光線透過率は、2,6−ナフタレンジカルボン酸のような紫外線を吸収するモノマーを構成成分とするポリエステルを用いることにより、また紫外線吸収剤をポリエステルに含有させることにより得ることができる。   The biaxially oriented polyester film preferably has a light transmittance at a wavelength of 370 nm of 3% or less and a light transmittance at 400 nm of 70% or more. The light transmittance is a numerical value measured using a spectrophotometer MPC3100 manufactured by Shimadzu Corporation. This light transmittance can be obtained by using a polyester containing a monomer that absorbs ultraviolet rays, such as 2,6-naphthalenedicarboxylic acid, and by incorporating an ultraviolet absorber in the polyester.

紫外線吸収剤を用いる場合、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(6−メチル−3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(6−クロロ−3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2,6−ナフチレン)ビス(3,1−ベンゾオキサジン−4−オン)などの環状イミノエステル化合物を用いることができる。   When an ultraviolet absorber is used, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2′-p-phenylenebis (6-methyl-3,1-benzoxazine) -4-one), 2,2'-p-phenylenebis (6-chloro-3,1-benzoxazin-4-one), 2,2 '-(4,4'-diphenylene) bis (3,1 Cyclic imino ester compounds such as -benzoxazin-4-one) and 2,2 '-(2,6-naphthylene) bis (3,1-benzoxazin-4-one) can be used.

本発明における二軸配向ポリエステルフィルムの厚みは、機械的強度と生産性を両立する観点から、好ましくは10〜500μm、さらに好ましくは20〜400μm、特に好ましくは50〜300μmである。   The thickness of the biaxially oriented polyester film in the present invention is preferably 10 to 500 μm, more preferably 20 to 400 μm, and particularly preferably 50 to 300 μm from the viewpoint of achieving both mechanical strength and productivity.

次に、ポリエステルフィルムの好ましい製造方法について説明する。なおガラス転位温度をTg、融点をTmと略記する。ポリエステルフィルムは、ポリエステルをフィルム状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg〜(Tg+60)℃で長手方向に1回もしくは2回以上、合計の倍率が3倍〜6倍になるよう延伸し、その後Tg〜(Tg+60)℃で幅方向に倍率が3〜5倍になるように延伸し、必要に応じてさらに180℃〜255℃で1〜60秒間熱処理を行うことにより得ることができる。ポリエステルフィルムの長手方向と幅方向における熱収縮率の差、および長手方向の熱収縮率を小さくするためには、例えば特開昭57−57628号公報に示されるような、熱処理工程で縦方向に収縮せしめる方法や、例えば特開平1−275031号公報に示されるような、フィルムを懸垂状態で弛緩熱処理する方法などを用いることができる。   Next, the preferable manufacturing method of a polyester film is demonstrated. The glass transition temperature is abbreviated as Tg and the melting point as Tm. The polyester film is obtained by melt-extruding polyester into a film and cooling and solidifying it with a casting drum to form an unstretched film. This unstretched film is once or twice in the longitudinal direction at Tg to (Tg + 60) ° C. The film is stretched to 3 to 6 times, and then stretched so that the magnification is 3 to 5 times in the width direction at Tg to (Tg + 60) ° C., and further, if necessary, at 180 to 255 ° C. for 1 to 60 seconds. It can be obtained by performing a heat treatment. In order to reduce the difference between the heat shrinkage rate in the longitudinal direction and the width direction of the polyester film and the heat shrinkage rate in the longitudinal direction, for example, as shown in Japanese Patent Application Laid-Open No. 57-57628, in the longitudinal direction. For example, a method of shrinking, a method of relaxing heat treatment in a suspended state as disclosed in JP-A-1-275031, or the like can be used.

[反射防止層]
本発明の反射防止機能付導電性フィルムにおいて、反射防止層は二軸配向ポリエステルフィルムと透明導電層の間に設けられ、各層はじかに積層される。本発明の反射防止層は、ポリエステル基材フィルムと透明導電層との界面反射による反射損失を低減し、太陽電池などに用いた場合に光電変換素子への入射光量を多くする目的で設けられ、同時に反射防止機能付導電性フィルムとしてのガスバリア性を高める目的で設けられる。さらに本発明の反射防止層は耐溶剤性に優れる特徴を有するものである。
[Antireflection layer]
In the conductive film with antireflection function of the present invention, the antireflection layer is provided between the biaxially oriented polyester film and the transparent conductive layer, and each layer is laminated directly. The antireflection layer of the present invention is provided for the purpose of reducing the reflection loss due to interface reflection between the polyester base film and the transparent conductive layer, and increasing the amount of incident light to the photoelectric conversion element when used in solar cells, At the same time, it is provided for the purpose of enhancing gas barrier properties as a conductive film with antireflection function. Furthermore, the antireflection layer of the present invention is characterized by excellent solvent resistance.

かかる反射防止層の屈折率は1.75以上2.00以下であり、さらに好ましくは1.85以上1.95以下である。本発明は、ポリエステルフィルムと透明導電層との間の屈折率を有する層を無機成分を主体とする組成で形成したものであり、かかる屈折率特性を有する層を設けることでそれぞれの層との界面反射による反射損失を低減させることができる。反射防止層の屈折率が下限値に満たないと反射防止層とポリエステルフィルム間の反射が十分に抑制されない。他方、反射防止層の屈折率が上限値を超えると反射防止層と透明導電層間の反射が十分に抑制されず、目的とする低反射率が達成されない。   The refractive index of the antireflection layer is 1.75 or more and 2.00 or less, more preferably 1.85 or more and 1.95 or less. In the present invention, a layer having a refractive index between a polyester film and a transparent conductive layer is formed with a composition mainly composed of an inorganic component, and by providing a layer having such a refractive index characteristic, It is possible to reduce reflection loss due to interface reflection. If the refractive index of the antireflection layer is less than the lower limit, reflection between the antireflection layer and the polyester film is not sufficiently suppressed. On the other hand, if the refractive index of the antireflection layer exceeds the upper limit, reflection between the antireflection layer and the transparent conductive layer is not sufficiently suppressed, and the intended low reflectance is not achieved.

また本発明の反射防止層の厚みは25nm以上110nm以下であり、好ましくは50nm以上105nm以下、より好ましくは60nm以上100nm以下、さらに好ましくは70nm以上90nm以下である。反射防止層の厚みをかかる範囲にすることで、目的とする太陽電池の吸収波長帯において反射防止層−透明導電層間での反射と反射防止層―ポリエステルフィルム間の反射が干渉しあって打ち消しあい、これら界面での反射を抑制することができる。反射防止層の厚みがかかる範囲をはずれる場合は太陽電池の吸収波長帯において十分に反射防止機能が発現しない。   The thickness of the antireflection layer of the present invention is from 25 nm to 110 nm, preferably from 50 nm to 105 nm, more preferably from 60 nm to 100 nm, still more preferably from 70 nm to 90 nm. By setting the thickness of the antireflection layer in such a range, the reflection between the antireflection layer and the transparent conductive layer interferes with the reflection between the antireflection layer and the polyester film in the absorption wavelength band of the target solar cell, and cancels each other. , Reflection at these interfaces can be suppressed. When the thickness of the antireflection layer is out of the range, the antireflection function is not sufficiently exhibited in the absorption wavelength band of the solar cell.

また、本発明の反射防止層は無機成分のみで構成されるか、または無機成分と有機成分とを含む場合には有機成分の含有量が反射防止層の重量を基準として35重量%以下である。反射防止層が無機成分を含むことによって反射防止層の屈折率を上述の範囲にすることができると同時に高いガスバリア性を反射防止層に付与することができる。反射防止層に含まれる有機成分の含有量は、好ましくは20重量%以下、より好ましくは10重量%以下、さらに好ましくは5重量%以下、特に好ましくは2重量%以下である。またかかる有機成分の含有量の下限値は0%である。反射防止層中に含まれる有機成分の含有量が上限値を超える場合、例えば色素増感太陽電池用に用いる場合、電池内に液体の電解質を含むため電解質に対する耐溶剤性に乏しく、電解質が反射防止層に到達した際に反射防止層が膨潤し、その上に積層されている導電膜の不安定化を招き、例えば表面抵抗値の変動が生じる。   In addition, the antireflection layer of the present invention is composed only of an inorganic component, or when it contains an inorganic component and an organic component, the content of the organic component is 35% by weight or less based on the weight of the antireflection layer. . When the antireflection layer contains an inorganic component, the refractive index of the antireflection layer can be in the above range, and at the same time, high gas barrier properties can be imparted to the antireflection layer. The content of the organic component contained in the antireflection layer is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, and particularly preferably 2% by weight or less. Moreover, the lower limit of the content of the organic component is 0%. When the content of the organic component contained in the antireflection layer exceeds the upper limit, for example, when used for a dye-sensitized solar cell, the battery contains a liquid electrolyte, so the solvent resistance to the electrolyte is poor, and the electrolyte is reflected. When the anti-reflection layer reaches the anti-reflection layer, the anti-reflection layer swells, leading to destabilization of the conductive film laminated on the anti-reflection layer.

また反射防止層に含まれる無機成分の量は反射防止層の重量を基準として65重量%以上であり、好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは98重量%以上である。またかかる無機成分の含有量の上限値は100重量%である。反射防止層中の無機成分量が下限値に満たないと耐溶剤性が十分でなく、例えば色素増感太陽電池の電解質に対する耐溶剤性に乏しく、反射防止層が膨潤してその上に積層されている透明導電膜が不安定化し、導電性に影響を与える結果、例えば表面抵抗の変動が生じる。   The amount of the inorganic component contained in the antireflection layer is 65% by weight or more based on the weight of the antireflection layer, preferably 80% by weight or more, more preferably 90% by weight or more, further preferably 95% by weight or more, Especially preferably, it is 98 weight% or more. Moreover, the upper limit of content of this inorganic component is 100 weight%. If the amount of the inorganic component in the antireflection layer is less than the lower limit, the solvent resistance is not sufficient, for example, the solvent resistance to the electrolyte of the dye-sensitized solar cell is poor, and the antireflection layer swells and is laminated thereon. As a result of destabilizing the transparent conductive film and affecting the conductivity, for example, the surface resistance fluctuates.

無機成分としては、例えば酸化亜鉛、硫化亜鉛、酸化チタン、酸化ジルコニウム、酸化タングステン、酸化鉄、酸化銅酸化カルシウム、酸化アルミニウム、酸化シリコン、チタン酸バリウム、酸化バリウム、酸化マグネシウム、フッ化マグネシウム、チタン酸ストロンチウム、酸化インジウム及びこれらの合金が上げられ、中でも金属酸化物が好ましい。これら無機成分は1種類で用いてもよく、また屈折率調整のため複数の組み合わせで用いてもよい。また有機成分の種類は特に制限されないが、コーティングの際にバインダー成分として用いられる例えばポリエステルやポリアクリレートなどのポリマー成分、界面活性剤等が挙げられる。
これら反射防止層の構成成分の中でも最も好ましくは無機成分のみの構成であり、特に優れた耐溶剤性が得られ、また耐熱性、ガスバリア性の点でも優れている。
Examples of inorganic components include zinc oxide, zinc sulfide, titanium oxide, zirconium oxide, tungsten oxide, iron oxide, copper oxide calcium oxide, aluminum oxide, silicon oxide, barium titanate, barium oxide, magnesium oxide, magnesium fluoride, and titanium. Examples include strontium acid, indium oxide, and alloys thereof, among which metal oxide is preferable. These inorganic components may be used alone or in a plurality of combinations for adjusting the refractive index. The type of the organic component is not particularly limited, and examples thereof include polymer components such as polyester and polyacrylate, surfactants, and the like that are used as a binder component during coating.
Among these constituents of the antireflection layer, the constituents of only the inorganic component are most preferable, and particularly excellent solvent resistance is obtained, and the heat resistance and gas barrier properties are also excellent.

反射防止層をポリエステルフィルム上に積層する方法としては、例えば真空蒸着法、スパッタリング法、CVD法、イオンプレーテイング法などのドライコーティング法を用いることができる。
反射防止層の形成に先立って、ポリエステルフィルム上にコロナ放電処理、プラズマ処理、スパッタエッチング処理、電子線照射処理、紫外線照射処理、プライマ処理、易接着処理などの前処理を施してもよい。
また反射防止層の層数は特に限定されないが、経済性・生産性の点から3層以下が好ましく、より好ましくは1層である。
As a method of laminating the antireflection layer on the polyester film, for example, a dry coating method such as a vacuum deposition method, a sputtering method, a CVD method, or an ion plating method can be used.
Prior to the formation of the antireflection layer, the polyester film may be subjected to pretreatment such as corona discharge treatment, plasma treatment, sputter etching treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, primer treatment, and easy adhesion treatment.
The number of antireflection layers is not particularly limited, but is preferably 3 or less, more preferably 1 from the viewpoint of economy and productivity.

本発明の反射防止層の軟化温度は100℃以上であることが好ましい。ここで軟化温度とは後述の反射防止層の100℃耐熱性評価方法を用いて判断される。
太陽電池の作成プロセスにおいて加熱工程が含まれる場合があり、例えば色素増感太陽電池においては酸化チタンの焼結が挙げられ、有機薄膜太陽電池においては有機半導体の結晶化が挙げられる。またこれら太陽電池に共通する加熱工程として集電電極の焼結や封止プロセスなどがある。これらのプロセス過程において反射防止層は安定で、上に積層している透明導電層の特性を維持することが好ましい。反射防止層の軟化温度はより好ましくは110℃以上であり、耐熱性評価方法の測定温度を110℃に変更して測定される。
上記軟化温度で表わされる反射防止層の耐熱特性は、反射防止層が無機成分のみで形成されているか、反射防止層中に有機成分を含む場合は有機成分量が35重量%以下であることによって達成される。
The softening temperature of the antireflection layer of the present invention is preferably 100 ° C. or higher. Here, the softening temperature is determined using a 100 ° C. heat resistance evaluation method for the antireflection layer described later.
A heating process may be included in the production process of the solar cell. For example, in the dye-sensitized solar cell, sintering of titanium oxide is exemplified, and in the organic thin film solar cell, crystallization of an organic semiconductor is exemplified. In addition, as a heating process common to these solar cells, there are a collecting electrode sintering process and a sealing process. In these processes, the antireflection layer is stable, and it is preferable to maintain the characteristics of the transparent conductive layer laminated thereon. The softening temperature of the antireflection layer is more preferably 110 ° C. or higher, and the measurement is performed by changing the measurement temperature of the heat resistance evaluation method to 110 ° C.
The heat resistance characteristic of the antireflection layer represented by the softening temperature is that the antireflection layer is formed of only an inorganic component, or if the antireflection layer contains an organic component, the amount of the organic component is 35% by weight or less. Achieved.

本発明の反射防止層の表面粗さは中心面平均表面粗さRaが30nm以下であることが好ましい。かかる中心面平均表面粗さRaは、より好ましくは15nm以下、さらに好ましくは10nm以下、特に好ましくは5nm以下である。特に有機薄膜太陽電池用に用いる場合、有機半導体の厚みが100nm程度と非常に薄いため、反射防止層の表面粗さが上限値を超えると有機半導体が部分的に薄くなり、場合によっては導電層の半導体層つき抜けにより短絡する可能性がある。また反射防止層の表面粗さが上限値を超える場合、透明導電層を上に積層する際に透明導電層の成分が結晶性の場合は透明導電層が反射防止層の表面に沿って異常成長し、不均一になることもある。かかる表面粗さはドライコーティング法を用いることで得ることができる。   The surface roughness of the antireflection layer of the present invention is preferably such that the center surface average surface roughness Ra is 30 nm or less. The center surface average surface roughness Ra is more preferably 15 nm or less, further preferably 10 nm or less, and particularly preferably 5 nm or less. Particularly when used for organic thin-film solar cells, the thickness of the organic semiconductor is as thin as about 100 nm, and therefore the organic semiconductor is partially thinned when the surface roughness of the antireflection layer exceeds the upper limit value. There is a possibility of short-circuiting due to the removal of the semiconductor layer. If the surface roughness of the antireflection layer exceeds the upper limit, the transparent conductive layer grows abnormally along the surface of the antireflection layer if the transparent conductive layer component is crystalline when the transparent conductive layer is laminated on top. However, it may become non-uniform. Such surface roughness can be obtained by using a dry coating method.

[透明導電層]
本発明の反射防止機能付導電性フィルムにおいて、透明導電層は反射防止層上にじかに設けられる。かかる透明導電層としては、例えば導電性の金属酸化物、金属の薄膜、炭素繊維などを用いることができる。導電性の金属酸化物として、ガリウムドープ酸化亜鉛、アルミドープ酸化亜鉛、ゲルマニウムドープ酸化亜鉛、ホウ素ドープ酸化亜鉛、チタンドープ酸化亜鉛、フッ素ドープ酸化スズ、インジウム−スズ複合酸化物(ITO)、インジウム−亜鉛複合酸化物(IZO)が挙げられる。また金属の薄膜として、例えば白金、金、銀、銅、アルミニウムなどが用いられる。
透明導電層は2種以上を積層したり、複合化させたものでもよい。これらのなかでもITOまたはIZOが、光線透過率が高く低抵抗であるため特に好ましい。
[Transparent conductive layer]
In the conductive film with antireflection function of the present invention, the transparent conductive layer is provided directly on the antireflection layer. As such a transparent conductive layer, for example, a conductive metal oxide, a metal thin film, carbon fiber, or the like can be used. Examples of conductive metal oxides include gallium-doped zinc oxide, aluminum-doped zinc oxide, germanium-doped zinc oxide, boron-doped zinc oxide, titanium-doped zinc oxide, fluorine-doped tin oxide, indium-tin composite oxide (ITO), indium- Zinc complex oxide (IZO) is mentioned. As the metal thin film, for example, platinum, gold, silver, copper, aluminum or the like is used.
Two or more transparent conductive layers may be laminated or combined. Among these, ITO or IZO is particularly preferable because of its high light transmittance and low resistance.

透明導電層の表面抵抗は、好ましくは100Ω/□以下、より好ましくは60Ω/□以下、さらに好ましくは55Ω/□以下、特に好ましくは50Ω/□以下である。透明導電層の表面抵抗が上限値を超えると太陽電池内の抵抗が大きくなりすぎて光発電効率が低下することがある。かかる透明導電層の表面抵抗は経時変化後も表面抵抗の変動がないことが好ましく、表面抵抗の変化が30%以下であることが好ましい。   The surface resistance of the transparent conductive layer is preferably 100Ω / □ or less, more preferably 60Ω / □ or less, still more preferably 55Ω / □ or less, and particularly preferably 50Ω / □ or less. If the surface resistance of the transparent conductive layer exceeds the upper limit value, the resistance in the solar cell becomes too large, and the photovoltaic power generation efficiency may decrease. The surface resistance of the transparent conductive layer is preferably not changed even after aging, and the change in surface resistance is preferably 30% or less.

透明導電層の厚みは好ましくは100〜500nmである。100nm未満であると十分に表面抵抗値を低くすることができず、500nmを超えると光線透過率が低下するとともに、透明導電層がわれやすくなる。
透明導電層を反射防止層上に積層する方法として、例えば真空蒸着法、スパッタリング法、CVD法、イオンプレーテイング法などのドライコーティング法を用いることができ、また例えばグラビア方式、リバース方式、ダイ方式などのウェットコーティング法を用いてもよい。
The thickness of the transparent conductive layer is preferably 100 to 500 nm. If it is less than 100 nm, the surface resistance value cannot be sufficiently lowered, and if it exceeds 500 nm, the light transmittance is lowered and the transparent conductive layer is easily broken.
As a method of laminating the transparent conductive layer on the antireflection layer, for example, a dry coating method such as a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used. For example, a gravure method, a reverse method, a die method A wet coating method such as the above may be used.

[反射防止機能付導電性フィルム]
本発明の反射防止機能付導電性フィルムは、上述の二軸配向ポリエステルフィルム、反射防止層および透明導電層がかかる順に直接積層された積層フィルムである。本発明の反射防止機能付導電性フィルムの水蒸気透過率は0.5g/m2/day以下であることが好ましい。色素増感太陽電池および有機薄膜太陽電池は水分により劣化することが知られており、水分をバリアすることが必要である。通常は太陽電池の最外層にガスバリアフィルムを設けるが、特に端面等から水蒸気が侵入する可能性が高いため、光電変換素子の近傍にガスバリア性を有する層を設けることが好ましく、本発明は無機成分を多量に含む反射防止層を有することにより、ガスバリア性にも優れるものである。
[Conductive film with antireflection function]
The conductive film with antireflection function of the present invention is a laminated film in which the above-mentioned biaxially oriented polyester film, antireflection layer and transparent conductive layer are directly laminated in the order in which they are applied. The water vapor permeability of the conductive film with antireflection function of the present invention is preferably 0.5 g / m 2 / day or less. Dye-sensitized solar cells and organic thin-film solar cells are known to be deteriorated by moisture, and it is necessary to barrier moisture. Usually, a gas barrier film is provided on the outermost layer of the solar cell. However, since there is a high possibility that water vapor enters from the end face or the like, it is preferable to provide a layer having gas barrier properties in the vicinity of the photoelectric conversion element. By having an antireflection layer containing a large amount of, the gas barrier properties are excellent.

[用途]
本発明の反射防止機能付導電性フィルムは太陽電池の部材として用いることが好ましく、特に色素増感太陽電池もしくは有機薄膜太陽電池の部材として用いることが好ましく、特にこれら太陽電池の電極に好適に用いられる。
[Usage]
The conductive film with antireflection function of the present invention is preferably used as a member of a solar cell, particularly preferably used as a member of a dye-sensitized solar cell or an organic thin film solar cell, and particularly suitably used for an electrode of these solar cells. It is done.

本発明の反射防止機能付導電性フィルムをこれら太陽電池の部材に用いることにより、ポリエステル基材フィルムと透明導電層間での界面反射が抑制され、光電変換素子への入射光量が高まるため太陽電池の発電効率が向上する。また本発明の反射防止機能付導電性フィルムは優れたガスバリア性を有するため、光電変換素子の近くに配置されることで光電変換素子の劣化を抑制することができる。さらに本発明の反射防止機能付導電性フィルムは優れた耐溶剤性を有するため、特に色素増感太陽電池用に用いる場合、電池内の電解質成分による反射防止層の膨潤が抑制され、その上に積層されている導電膜の性能を安定に維持することができる。また有機太陽電池及び色素増感太陽電池の光発電層積層プロセスにおいて多くの場合有機溶剤が用いられるが、これらプロセスにおいても、反射防止層が変質せず、その上に積層されている導電膜や発電層の性能を安定に維持することができる。   By using the conductive film with antireflection function of the present invention for the members of these solar cells, the interface reflection between the polyester base film and the transparent conductive layer is suppressed, and the amount of incident light on the photoelectric conversion element is increased. Power generation efficiency is improved. Moreover, since the conductive film with an antireflection function of the present invention has an excellent gas barrier property, deterioration of the photoelectric conversion element can be suppressed by being disposed near the photoelectric conversion element. Furthermore, since the conductive film with antireflection function of the present invention has excellent solvent resistance, particularly when used for a dye-sensitized solar cell, the swelling of the antireflection layer due to the electrolyte component in the battery is suppressed. The performance of the laminated conductive film can be stably maintained. In many cases, an organic solvent is used in the photovoltaic layer lamination process of the organic solar cell and the dye-sensitized solar cell. However, in these processes, the antireflection layer does not change, and the conductive film laminated thereon The performance of the power generation layer can be stably maintained.

次に、実施例により本発明をさらに詳細に説明する。なお、例中の各特性値は、下記の方法により測定した。   Next, the present invention will be described in more detail with reference to examples. In addition, each characteristic value in an example was measured with the following method.

(1)固有粘度
ポリエステルの固有粘度([η]dl/g)は、35℃のo−クロロフェノール溶液で測定した。
(1) Intrinsic viscosity The intrinsic viscosity ([η] dl / g) of the polyester was measured with an o-chlorophenol solution at 35 ° C.

(2)ポリエステルフィルム厚み
マイクロメーター(アンリツ(株)製K−402B型)を用い、ポリエステルフィルム長手方向(連続製膜方向、MD方向)および幅方向(TD方向)に各々10cm間隔で測定を行い、全部で300ヶ所のフィルム厚みを測定した。得られた300ヶ所のフィルム厚みの平均値を算出してポリエステルフィルム厚みとした。
(2) Polyester film thickness Using a micrometer (K-402B type manufactured by Anritsu Co., Ltd.), measurement is performed at 10 cm intervals in the longitudinal direction of the polyester film (continuous film forming direction, MD direction) and in the width direction (TD direction). In total, film thicknesses at 300 locations were measured. The average value of the film thicknesses of the obtained 300 locations was calculated to obtain the polyester film thickness.

(3)ポリエステルフィルムの熱収縮率
200℃に温度設定されたオーブンの中に無緊張状態で10分間フィルムを保持し、フィルム長手方向および幅方向について各々の加熱処理前後での寸法変化を熱収縮率として下式により算出し、長手方向と幅方向の熱収縮率を求めた。ただし、Lは熱処理前の標点間距離、Lは熱処理後の漂点間距離である。
熱収縮率(%)=((L−L)/L)×100
(3) Thermal shrinkage rate of polyester film The film is held in an oven set at 200 ° C. for 10 minutes in a non-tensioned state, and the dimensional change before and after each heat treatment in the film longitudinal direction and width direction is thermally contracted. The heat shrinkage rate in the longitudinal direction and the width direction was calculated as the rate by the following equation. However, L 0 is the distance between the gauge marks before heat treatment, L is漂点distance after heat treatment.
Thermal contraction rate (%) = ((L 0 −L) / L 0 ) × 100

(4)反射防止層の厚み
得られた積層フィルムの小片をエポキシ樹脂(リファインテック(株)製エポマウント)中に包埋し、Reichert−Jung社製Microtome2050を用いて包埋樹脂ごと50nm厚さにスライスし、透過型電子顕微鏡(LEM−2000)にて加速電圧100KV、倍率10万倍にて観察し、塗膜層の厚みを測定した。
(4) Thickness of antireflection layer A small piece of the obtained laminated film was embedded in an epoxy resin (Epomount manufactured by Refinetech Co., Ltd.), and the thickness of the embedded resin was 50 nm using a Microtome 2050 manufactured by Reichert-Jung. The film was observed at an acceleration voltage of 100 KV and a magnification of 100,000 times with a transmission electron microscope (LEM-2000), and the thickness of the coating layer was measured.

(5)反射防止層の無機成分比率
反射防止層を剥離もしくは削りだし、5〜10mgサンプリングした後、セイコーインスツルメント製SSC/5200 TG/DTAを用い室温から100℃まで昇温したのち、30分保持後500℃まで20℃/minで昇温し30分保持した。100℃の重量を100%とした場合の重量残留分を無機成分比率とした。
(5) Inorganic component ratio of antireflection layer The antireflection layer was peeled off or shaved, and after sampling 5 to 10 mg, the temperature was raised from room temperature to 100 ° C using SSC / 5200 TG / DTA manufactured by Seiko Instruments Inc., and then 30 After holding for 5 minutes, the temperature was raised to 500 ° C. at 20 ° C./min and held for 30 minutes. The residual weight when the weight at 100 ° C. was taken as 100% was taken as the inorganic component ratio.

(6)ポリエステルフィルムおよび反射防止層の屈折率
Metricon社製のレーザー屈折率計プリズムカプラ、モデル2010を用い、633nmの波長を用いて測定を行った。反射防止層の屈折率は反射防止層用塗液の乾固物の測定値を用いた。
(6) Refractive Index of Polyester Film and Antireflection Layer Using a laser refractometer prism coupler, Model 2010, manufactured by Metricon, measurement was performed using a wavelength of 633 nm. As the refractive index of the antireflection layer, the measured value of the dried product of the coating liquid for the antireflection layer was used.

(7)反射防止層の100℃耐熱性評価(反射防止層の軟化温度)
反射防止層の上に、サイズ7.6cm×2.6cm、厚み1mmのガラス板および所定の重りをのせて50kg/mの荷重をかけ、100℃にあらかじめ加熱したオーブン中に投入し、15分間保持した。その後オーブンから取り出し、ガラス板への張り付きが無く、反射防止層の変形も無い場合、100℃での耐熱性を合格とした。
(7) 100 ° C. heat resistance evaluation of the antireflection layer (softening temperature of the antireflection layer)
A glass plate having a size of 7.6 cm × 2.6 cm and a thickness of 1 mm and a predetermined weight are placed on the antireflection layer, a load of 50 kg / m 2 is applied, and the glass is put in an oven preheated to 100 ° C., 15 Hold for a minute. After that, it was taken out from the oven, and when there was no sticking to the glass plate and there was no deformation of the antireflection layer, the heat resistance at 100 ° C. was regarded as acceptable.

(8)表面粗さ
Zygo社製 非接触三次元表面構造解析顕微鏡(NewView5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件で測定し、該粗さ計に内蔵された表面解析ソフトにより中心面平均表面粗さRaを以下の式(1)より求めた。

Figure 2012153057
ただし、Zjkは測定方向(283μm)、それと直交する方向(213μm)をそれぞれM分割、N分割したときの各方向のj番目、k番目の位置における2次元粗さチャート上の高さである。 (8) Surface roughness Measured using a non-contact three-dimensional surface structure analysis microscope (New View 5022) manufactured by Zygo under the conditions of a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ). The center plane average surface roughness Ra was obtained from the following formula (1) using the surface analysis software incorporated in the system.
Figure 2012153057
Here, Zjk is the height on the two-dimensional roughness chart at the j-th and k-th positions in each direction when the measurement direction (283 μm) and the direction orthogonal to the measurement direction (213 μm) are divided into M and N, respectively.

(9)光線反射率
得られた積層フィルムを3×4cmに切り出し、積層面の裏面側(ポリエステルフィルム面側)を鑢で軽くこすり、透明度が無い程度まで白濁させ、さらに裏面を黒く塗りつぶすことで裏面反射を抑制したフィルム片を作成した。このサンプルを積層面側(透明導電層面側)を分光光度計(島津製作所製UV−3101PC)に積分球を取り付け、BaSO白板を100%とした時の反射率を波長400〜700nmにわたって測定した。得られたチャートより2nm間隔で反射率を読み取り、上記の範囲内で平均値を求めた。
(9) Light reflectance The obtained laminated film is cut out to 3 × 4 cm, and the back side (polyester film side) of the laminated surface is lightly rubbed with a spatula to make it cloudy until there is no transparency, and further, the back side is painted black. The film piece which suppressed back surface reflection was created. An integrating sphere was attached to a spectrophotometer (UV-3101PC manufactured by Shimadzu Corporation) on the laminated surface side (transparent conductive layer surface side) of this sample, and the reflectance when the BaSO 4 white plate was 100% was measured over a wavelength range of 400 to 700 nm. . The reflectance was read from the obtained chart at intervals of 2 nm, and the average value was determined within the above range.

(10)表面抵抗
4探針式表面抵抗率測定装置(三菱化学(株)製、ロレスタGP)を用いて透明導電層の任意の5点を測定し、その平均値を用いた。
(10) Surface resistance An arbitrary five points of the transparent conductive layer were measured using a four-probe type surface resistivity measuring device (Made by Mitsubishi Chemical Corporation, Loresta GP), and the average value was used.

(11)ガスバリア性評価
ILLINOIS INSTRUMWNTS,INC社Model 7002の蒸気透過率測定装置を用い、40℃、90%、面積50cm2での水蒸気透過率を評価した。
(11) Gas barrier property evaluation
Using a vapor transmission rate measuring device of ILLINOIS INSTRUMWNTS, INC Model 7002, the water vapor transmission rate at 40 ° C., 90%, and an area of 50 cm 2 was evaluated.

(12)耐溶剤性
積層フィルムを3−メトキシプロピオニトリル中に室温で1週間浸漬した。浸漬後の積層フィルムにおいて以下の2項目ともに満たす場合を「合格」とした。なお、試料として、5cm×5cmの大きさに切り出したフィルムを用いた。
(i) 処理前後での試料の表面抵抗の変化が30%以下
(ii) 顕微鏡観察において変化がない
(12) Solvent resistance The laminated film was immersed in 3-methoxypropionitrile at room temperature for 1 week. The case where both of the following two items were satisfied in the laminated film after immersion was defined as “pass”. In addition, the film cut out to the magnitude | size of 5 cm x 5 cm was used as a sample.
(I) Change in surface resistance of sample before and after treatment is 30% or less (ii) No change in microscopic observation

[実施例1]
<フィルム用ポリマーの作成>
ナフタレン−2,6−ジカルボン酸ジメチル100部、およびエチレングリコール60部を、エステル交換触媒として酢酸マンガン四水塩0.03部を使用し、150℃から238℃に徐々に昇温させながら120分間エステル交換反応を行なった。途中反応温度が170℃に達した時点で三酸化アンチモン0.024部を添加し、エステル交換反応終了後、リン酸トリメチル(エチレングリコール中で135℃、5時間0.11〜0.16MPaの加圧下で加熱処理した溶液:リン酸トリメチル換算量で0.023部)を添加した。その後反応生成物を重合反応器に移し、290℃まで昇温し、27Pa以下の高真空下にて重縮合反応を行って、固有粘度が0.62dl/gの、実質的に粒子を含有しない、ポリエチレン−2,6−ナフタレンジカルボキシレートを得た。
[Example 1]
<Creation of film polymer>
Using 100 parts of dimethyl naphthalene-2,6-dicarboxylate and 60 parts of ethylene glycol as a transesterification catalyst, 0.03 part of manganese acetate tetrahydrate, and gradually increasing the temperature from 150 ° C. to 238 ° C. for 120 minutes A transesterification reaction was performed. On the way, when the reaction temperature reached 170 ° C., 0.024 part of antimony trioxide was added, and after the transesterification reaction, trimethyl phosphate (135 ° C. in ethylene glycol, 0.11 to 0.16 MPa for 5 hours) was added. The solution heat-treated under pressure: 0.023 parts in terms of trimethyl phosphate was added. Thereafter, the reaction product is transferred to a polymerization reactor, heated to 290 ° C., subjected to a polycondensation reaction under a high vacuum of 27 Pa or less, and contains substantially no particles having an intrinsic viscosity of 0.62 dl / g. Polyethylene-2,6-naphthalenedicarboxylate was obtained.

<ポリエステルフィルムの作成>
ポリエチレン−2,6−ナフタレンジカルボキシレートのペレットを170℃で6時間乾燥後、押出機ホッパーに供給し、溶融温度305℃で溶融し、平均目開きが17μmのステンレス鋼細線フィルターで濾過した後、3mmのスリット状ダイを通して表面温度60℃の回転冷却ドラム上に押出し、急冷して未延伸フィルムを得た。このようにして得られた未延伸フィルムを120℃にて予熱し、さらに低速、高速のロール間で15mm上方より850℃のIRヒーターにて加熱して縦方向に3.2倍に延伸した。
続いてテンターに供給し、140℃にて横方向に3.3倍に延伸した。得られた二軸配向フィルムを244℃の温度で5秒間熱固定し、固有粘度が0.58dl/g、厚み125μmの二軸配向ポリエステルフィルムを得た。200℃、10分で処理した際のポリエステルフィルムの長手方向の熱収縮率は0.58%、幅方向の熱収縮率は0.12%、長手方向と幅方向の熱収縮率の差は0.46%であった。
こうして得られた二軸配向ポリエステルフィルム上の反射率最小値は718nmであり、550nmの光線透過率は89.6%であった。
<Creation of polyester film>
After polyethylene-2,6-naphthalenedicarboxylate pellets are dried at 170 ° C. for 6 hours, fed to an extruder hopper, melted at a melting temperature of 305 ° C., and filtered through a stainless steel fine wire filter having an average opening of 17 μm. The film was extruded through a 3 mm slit die onto a rotary cooling drum having a surface temperature of 60 ° C. and rapidly cooled to obtain an unstretched film. The unstretched film thus obtained was preheated at 120 ° C., and further heated by an IR heater at 850 ° C. from above 15 mm between low-speed and high-speed rolls and stretched 3.2 times in the longitudinal direction.
Then, it supplied to the tenter and extended | stretched 3.3 times in the horizontal direction at 140 degreeC. The obtained biaxially oriented film was heat-set at a temperature of 244 ° C. for 5 seconds to obtain a biaxially oriented polyester film having an intrinsic viscosity of 0.58 dl / g and a thickness of 125 μm. The thermal shrinkage in the longitudinal direction of the polyester film when treated at 200 ° C. for 10 minutes is 0.58%, the thermal shrinkage in the width direction is 0.12%, and the difference between the thermal shrinkage in the longitudinal direction and the width direction is 0. .46%.
The minimum reflectance on the biaxially oriented polyester film thus obtained was 718 nm, and the light transmittance at 550 nm was 89.6%.

<反射防止層の設置>
酸化アルミニウムターゲットを用いた直流マグネトロンスパッタリング法により、二軸配向ポリエステルフィルム上に反射防止層を形成した。反射防止層のスパッタリング法による形成は、プラズマの放電前にチャンバー内を6×10−4Paまで排気した後、チャンバー内にアルゴンを導入して圧力を5×10−4Paとし、ターゲットに500Wの電力を印加して行った。
こうして得られた反射防止層の屈折率は1.76であり、反射防止層の厚みは75nmであった。また表面粗さは2nm、軟化温度は100℃以上であった。
<Installation of antireflection layer>
An antireflection layer was formed on the biaxially oriented polyester film by a direct current magnetron sputtering method using an aluminum oxide target. Formation of the antireflection layer by sputtering is performed by evacuating the chamber to 6 × 10 −4 Pa before discharging the plasma, and then introducing argon into the chamber to make the pressure 5 × 10 −4 Pa and applying 500 W to the target. The power was applied.
The refractive index of the antireflection layer thus obtained was 1.76, and the thickness of the antireflection layer was 75 nm. The surface roughness was 2 nm and the softening temperature was 100 ° C. or higher.

<透明導電層の設置>
主として酸化インジウムからなり酸化スズが10重量%添加されたITOターゲットを用いた直流マグネトロンスパッタリング法により、反射防止層上に透明導電層を設置した。透明導電層のスパッタリング法による形成は、プラズマの放電前にチャンバー内を6×10−4Paまで排気した後、チャンバー内にアルゴンを導入して圧力を5×10−4Paとし、ターゲットに150Wの電力を印加して行った。
こうして得られた透明導電層付フィルムの平均光反射率は14.5%、表面抵抗45.5Ω/□、水蒸気透過率が0.03g/m2/dayであり、反射防止層を設けない比較例1に較べて反射率が小さくなり反射損失が低減された。またガスバリア性が向上し、耐溶剤試験による表面抵抗の変化が30%以下と小さく、外観変化もみられず、色素増感太陽電池や有機薄膜太陽電池の部材に求められる特性に優れていた。
<Installation of transparent conductive layer>
A transparent conductive layer was placed on the antireflection layer by a direct current magnetron sputtering method using an ITO target composed mainly of indium oxide and added with 10% by weight of tin oxide. Formation of the transparent conductive layer by sputtering is performed by evacuating the chamber to 6 × 10 −4 Pa before plasma discharge, introducing argon into the chamber to a pressure of 5 × 10 −4 Pa, and 150 W on the target. The power was applied.
The film with a transparent conductive layer thus obtained has an average light reflectance of 14.5%, a surface resistance of 45.5 Ω / □, a water vapor transmission rate of 0.03 g / m 2 / day, and a comparison without an antireflection layer. Compared with Example 1, the reflectance was reduced and the reflection loss was reduced. Further, the gas barrier property was improved, the change in surface resistance by a solvent resistance test was as small as 30% or less, the appearance was not changed, and the characteristics required for members of dye-sensitized solar cells and organic thin film solar cells were excellent.

[実施例2及び3]
反射防止層を形成する無機成分の種類(ターゲット)、および反射防止層厚みを表1の通り変更した以外は実施例1と同じ方法を用いて二軸配向ポリエステルフィルム上に反射防止層および透明導電層がこの順で積層されたフィルムを作成した。得られたフィルムの特性を表1に示す。
[Examples 2 and 3]
The antireflection layer and the transparent conductive layer were formed on the biaxially oriented polyester film using the same method as in Example 1 except that the type (target) of the inorganic component forming the antireflection layer and the thickness of the antireflection layer were changed as shown in Table 1. A film was prepared in which the layers were laminated in this order. The properties of the obtained film are shown in Table 1.

Figure 2012153057
Figure 2012153057

[比較例1]
反射防止層を用いない以外は実施例1と同じ方法を用いて作成した。
[Comparative Example 1]
It was created using the same method as in Example 1 except that the antireflection layer was not used.

[比較例2]
2,6−ナフタレンジカルボン酸ジメチル66部、イソフタル酸ジメチル47部、5−ナトリウムスルホイソフタル酸ジメチル8部、エチレングリコール54部、ジエチレングリコール62部を反応器に仕込み、これにテトラブトキシチタン0.05部を添加して窒素雰囲気下で温度を230℃にコントロールして加熱し、生成するメタノールを留去させてエステル交換反応を行った。次いで反応系の温度を徐々に255℃まで上昇させ系内を1mmHgの減圧にして重縮合反応を行い、ポリエステルを得た。このポリエステル25部をテトラヒドロフラン75部に溶解させ、得られた溶液に10000回転/分の高速攪拌下で水75部を滴下して乳白色の分散体を得、次いでこの分散体を20mmHgの減圧下で蒸留し、テトラヒドロフランを留去し、固形分が25重量%のポリエステルの水分散体を得た。このポリエステル水分散体0.5重量部と酸化チタン成分を1.7wt%含む酸化チタンゾル(PTAsol 吉川総合開発製)35.3g、及び界面活性剤(フタージエント250 株式会社ネオス製)0.014g及びエタノール4.7gからなる塗液を作成した。この塗液をポリエステルフィルム上にバーコーターにより塗布し乾燥した。こうして作成した反射防止層の厚みは80nmであり屈折率は1.87であった。本比較例の反射防止層は有機成分量が40重量%であり、反射損失は低減されたものの耐溶剤試験後の表面抵抗の変化が大きく、外観変化も認められた。
[Comparative Example 2]
66 parts of dimethyl 2,6-naphthalenedicarboxylate, 47 parts of dimethyl isophthalate, 8 parts of dimethyl 5-sodium sulfoisophthalate, 54 parts of ethylene glycol and 62 parts of diethylene glycol were charged into the reactor, and 0.05 parts of tetrabutoxy titanium Was added and heated under a nitrogen atmosphere while controlling the temperature at 230 ° C., and the produced methanol was distilled off to conduct a transesterification reaction. Subsequently, the temperature of the reaction system was gradually raised to 255 ° C., and the pressure inside the system was reduced to 1 mmHg to carry out a polycondensation reaction to obtain a polyester. 25 parts of this polyester was dissolved in 75 parts of tetrahydrofuran, and 75 parts of water was dropped into the resulting solution under high-speed stirring at 10,000 rpm to obtain a milky white dispersion. Then, this dispersion was subjected to a reduced pressure of 20 mmHg. Distillation was performed, and tetrahydrofuran was distilled off to obtain an aqueous dispersion of polyester having a solid content of 25% by weight. 35.3 g of a titanium oxide sol (PTAsol manufactured by Yoshikawa General Development Co., Ltd.) containing 0.5 parts by weight of this polyester aqueous dispersion and 1.7 wt% of a titanium oxide component, 0.014 g of a surfactant (manufactured by Phagetient 250 Neos Co., Ltd.) and ethanol A coating liquid consisting of 4.7 g was prepared. This coating solution was applied onto a polyester film with a bar coater and dried. The antireflection layer thus prepared had a thickness of 80 nm and a refractive index of 1.87. Although the antireflection layer of this comparative example had an organic component amount of 40% by weight and the reflection loss was reduced, the change in the surface resistance after the solvent resistance test was large and the appearance was also changed.

本発明の反射防止機能付導電性フィルムは優れた反射防止性、ガスバリア性および耐溶剤性を備えており、かかる反射防止機能付導電性フィルムを太陽電池の部材、特に色素増感太陽電池や有機薄膜太陽電池の電極に用いることで、太陽電池の変換効率向上・耐久性向上効果が得られる。   The conductive film with antireflection function of the present invention has excellent antireflection properties, gas barrier properties and solvent resistance, and the conductive film with antireflection function is used as a member of a solar cell, particularly a dye-sensitized solar cell or an organic film. By using it for the electrode of a thin film solar cell, the conversion efficiency improvement and durability improvement effect of a solar cell are acquired.

Claims (7)

二軸配向ポリエステルフィルム、反射防止層および透明導電層がかかる順に直接積層され、該反射防止層の屈折率が1.75以上2.00以下かつ反射防止層の厚みが25nm以上110nm以下であり、該反射防止層が無機成分のみで構成されるかまたは無機成分と有機成分とを含んでなり、該有機成分の含有量が反射防止層の重量を基準として35重量%以下であることを特徴とする反射防止機能付導電性フィルム。   A biaxially oriented polyester film, an antireflection layer and a transparent conductive layer are directly laminated in this order, the refractive index of the antireflection layer is from 1.75 to 2.00 and the thickness of the antireflection layer is from 25 nm to 110 nm, The antireflection layer comprises only an inorganic component or comprises an inorganic component and an organic component, and the content of the organic component is 35% by weight or less based on the weight of the antireflection layer. Conductive film with antireflection function. 反射防止機能付導電性フィルムの水蒸気透過率が0.5g/m2/day以下である請求項1記載の反射防止機能付導電性フィルム。 The conductive film with antireflection function according to claim 1, wherein the water vapor permeability of the conductive film with antireflection function is 0.5 g / m 2 / day or less. 該反射防止層の軟化温度が100℃以上である請求項1または2に記載の反射防止機能付導電性フィルム。   The conductive film with an antireflection function according to claim 1 or 2, wherein the softening temperature of the antireflection layer is 100 ° C or higher. 該反射防止層の中心面平均表面粗さRaが30nm以下である請求項1〜3いずれかに記載の反射防止機能付導電性フィルム。   The conductive film with an antireflection function according to any one of claims 1 to 3, wherein the antireflection layer has a center surface average surface roughness Ra of 30 nm or less. 透明導電層が導電性の金属酸化物で構成されてなる請求項1〜4のいずれかに記載の反射防止機能付導電性フィルム。   The conductive film with an antireflection function according to claim 1, wherein the transparent conductive layer is composed of a conductive metal oxide. 太陽電池の部材として用いられる請求項1〜5のいずれかに記載の反射防止機能付導電性フィルム。   The conductive film with an antireflection function according to any one of claims 1 to 5, which is used as a member of a solar cell. 色素増感太陽電池もしくは有機薄膜太陽電池の部材として用いられる請求項6に記載の反射防止機能付導電性フィルム。   The conductive film with an antireflection function according to claim 6, which is used as a member of a dye-sensitized solar cell or an organic thin-film solar cell.
JP2011015315A 2011-01-27 2011-01-27 Conductive film with antireflection function Expired - Fee Related JP5739176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015315A JP5739176B2 (en) 2011-01-27 2011-01-27 Conductive film with antireflection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015315A JP5739176B2 (en) 2011-01-27 2011-01-27 Conductive film with antireflection function

Publications (2)

Publication Number Publication Date
JP2012153057A true JP2012153057A (en) 2012-08-16
JP5739176B2 JP5739176B2 (en) 2015-06-24

Family

ID=46835299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015315A Expired - Fee Related JP5739176B2 (en) 2011-01-27 2011-01-27 Conductive film with antireflection function

Country Status (1)

Country Link
JP (1) JP5739176B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318728A (en) * 1993-05-07 1994-11-15 Canon Inc Solar battery module
JP2002311208A (en) * 2001-04-17 2002-10-23 Jsr Corp Curing composition for antireflection film and antireflection film which uses the same
JP2005108467A (en) * 2003-09-26 2005-04-21 Mitsui Chemicals Inc Transparent conductive sheet, and photosensitive solar cell
JP2005178137A (en) * 2003-12-18 2005-07-07 Dainippon Printing Co Ltd Gas barrier film, laminated material using it and image display medium
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film, and organic electroluminescent element
JP2008168488A (en) * 2007-01-10 2008-07-24 Teijin Dupont Films Japan Ltd Reflection-proof electroconductive film
JP2009073090A (en) * 2007-09-21 2009-04-09 Toppan Printing Co Ltd Functional film, manufacturing method of functional film, laminated body, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318728A (en) * 1993-05-07 1994-11-15 Canon Inc Solar battery module
JP2002311208A (en) * 2001-04-17 2002-10-23 Jsr Corp Curing composition for antireflection film and antireflection film which uses the same
JP2005108467A (en) * 2003-09-26 2005-04-21 Mitsui Chemicals Inc Transparent conductive sheet, and photosensitive solar cell
JP2005178137A (en) * 2003-12-18 2005-07-07 Dainippon Printing Co Ltd Gas barrier film, laminated material using it and image display medium
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film, and organic electroluminescent element
JP2008168488A (en) * 2007-01-10 2008-07-24 Teijin Dupont Films Japan Ltd Reflection-proof electroconductive film
JP2009073090A (en) * 2007-09-21 2009-04-09 Toppan Printing Co Ltd Functional film, manufacturing method of functional film, laminated body, and electronic device

Also Published As

Publication number Publication date
JP5739176B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
US8604335B2 (en) Laminate for dye-sensitized solar cell, electrode for dye-sensitized solar cell and method for producing it
JP5728944B2 (en) Polyester film for solar cell, solar cell backsheet using the same, and solar cell
TWI469873B (en) Laminated polyester film for protective film on the back of solar cell
JP5565020B2 (en) Polyester film and solar cell using the same
US8835755B2 (en) Dye-sensitized solar cell, and electrode and laminated film for the same
AU2005208615B2 (en) Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
JP2006282970A (en) Laminated film for dye-sensitized solar cell and electrode for the dye-sensitized solar cell using the same
JP4928274B2 (en) Anti-reflective conductive film
JP2007281071A (en) Biaxial orientation polyester film for amorphous silicon solar battery board
JP4456894B2 (en) Dye-sensitized solar cell laminated film and dye-sensitized solar cell electrode using the same
JP5739176B2 (en) Conductive film with antireflection function
JP4456883B2 (en) Dye-sensitized solar cell laminate film and dye-sensitized solar cell electrode using the same
JP2007018951A (en) Electrode for dye-sensitized solar cell
JP5031997B2 (en) Electrode for dye-sensitized solar cell and method for producing the same
JP5059289B2 (en) Dye-sensitized solar cell laminate, dye-sensitized solar cell electrode, and method for producing the same
JP4456933B2 (en) Method for producing dye-sensitized solar cell electrode
JP4922568B2 (en) Dye-sensitized solar cell electrode
JP5059295B2 (en) Electrode for dye-sensitized solar cell and method for producing the same
JP4922567B2 (en) Dye-sensitized solar cell electrode
KR20180078582A (en) Barrier flim and solar cell comprising the same
JP2012169134A (en) Film for solar cell
JP2006252801A (en) Electrode for dye-sensitized solar cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees