JP2012150964A - Separator and manufacturing method of the same - Google Patents

Separator and manufacturing method of the same Download PDF

Info

Publication number
JP2012150964A
JP2012150964A JP2011008237A JP2011008237A JP2012150964A JP 2012150964 A JP2012150964 A JP 2012150964A JP 2011008237 A JP2011008237 A JP 2011008237A JP 2011008237 A JP2011008237 A JP 2011008237A JP 2012150964 A JP2012150964 A JP 2012150964A
Authority
JP
Japan
Prior art keywords
separator
region
hydrophobic
treatment
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008237A
Other languages
Japanese (ja)
Other versions
JP5545669B2 (en
Inventor
Kiyofumi Tanaka
清文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2011008237A priority Critical patent/JP5545669B2/en
Publication of JP2012150964A publication Critical patent/JP2012150964A/en
Application granted granted Critical
Publication of JP5545669B2 publication Critical patent/JP5545669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a solid polymer membrane-type fuel cell equipped with a hydrophilic portion and a hydrophobic portion in a sheet of separator, and to provide a simple manufacturing method of the same.SOLUTION: The manufacturing method of the separator comprises: placing a separator plate 24, on which a range of a preset region is masked, on a conveyor 23 which passes a head part A of a flame 22 of a propane gas burner 21 in a flame treatment apparatus 2 which is used as a surface modification treatment apparatus; performing flame treatments against the separator plate 24 a plurality of times; and changing surface modification treatment conditions against each region depending on a masking range for each flame treatment.

Description

本発明は、高分子膜型燃料電池に用いるセパレータに関する。より具体的には、1枚のセパレータ内に親水性部分と疎水性部分の両方を備えた、高分子膜型燃料電池に用いるセパレータに関する。   The present invention relates to a separator used for a polymer membrane fuel cell. More specifically, the present invention relates to a separator used for a polymer membrane fuel cell, in which both a hydrophilic portion and a hydrophobic portion are provided in one separator.

燃料電池は、燃料と酸化剤を電気的に接続された2つの電極に供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。燃料電池は、通常、電解質膜を一対の電極で挟持した膜・電極接合体を基本構造とする単セルを複数積層して構成されている。中でも、電解質膜として固体高分子電解質膜を用いた固体高分子電解質型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点がある。   A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. A fuel cell is usually formed by laminating a plurality of single cells having a basic structure of a membrane / electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes. Among them, a solid polymer electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane has advantages such as easy miniaturization and operation at a low temperature.

固体高分子電解質型燃料電池では、水素を燃料とした場合、アノード(燃料極)では(1)式の反応が進行する。
→ 2H + 2e [1]
[1]式で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、カソード(酸化剤極)に到達する。そして、[1]式で生じたプロトンは、水和した状態で、固体高分子電解質膜内をアノード側からカソード側に、電気浸透により移動する。
In the solid polymer electrolyte fuel cell, when hydrogen is used as the fuel, the reaction of the formula (1) proceeds at the anode (fuel electrode).
H 2 → 2H + + 2e [1]
The electrons generated in the formula [1] reach the cathode (oxidant electrode) after working with an external load via an external circuit. Then, the proton generated by the formula [1] moves in the solid polymer electrolyte membrane from the anode side to the cathode side by electroosmosis in a hydrated state.

固体高分子電解質膜内でのプロトン通過性を良好にするため、セパレータのガス流路を通して加湿された水素ガスが供給されるが、運転時間の経過とともに、排出側に水分がたまり、ついには凝集し、流路を塞ぐ。これを改善するには、ガス流路の排出側に近い領域を撥水性にすると良い。   In order to improve the proton permeability in the solid polymer electrolyte membrane, humidified hydrogen gas is supplied through the gas flow path of the separator, but as the operation time elapses, moisture accumulates on the discharge side and eventually agglomerates. And block the flow path. In order to improve this, it is preferable to make the region near the discharge side of the gas flow path water repellent.

また、酸素を酸化剤とした場合、カソードでは[2]式の反応が進行する。
2H + (1/2)O + 2e → H
[2]
カソードで生成した水は、セパレータの酸素ガス流路を通り、酸素の流れに乗って排出される。酸素ガス流路の排出側は、運転時間の経過とともに過湿度状態になり、ついには水が流路内で凝集し、酸素ガスの通りを阻害する。これを防ぐにはセパレータの酸素ガス流路そのものを撥水性にすることで改善できる。
When oxygen is used as the oxidizing agent, the reaction of the formula [2] proceeds at the cathode.
2H + + (1/2) O 2 + 2e → H 2 O
[2]
The water produced at the cathode passes through the oxygen gas flow path of the separator and is discharged along with the flow of oxygen. The discharge side of the oxygen gas flow path becomes an overhumidity state as the operation time elapses, and finally water aggregates in the flow path and obstructs the passage of oxygen gas. In order to prevent this, it can be improved by making the oxygen gas flow path itself of the separator water repellent.

このように、セパレータの水素及び酸素ガス流路において、ガス供給側に近い領域は親水性に、排出側に近い領域は疎水性にすることは燃料電池から取り出せる電流の安定化を図るのに有効である。   In this way, in the hydrogen and oxygen gas flow paths of the separator, making the region close to the gas supply side hydrophilic and making the region close to the discharge side hydrophobic is effective in stabilizing the current that can be taken out from the fuel cell. It is.

このために、燃料電池用セパレータの基板の凹部表面に水管理層を形成し、この水管理層に、エネルギーを照射して、水管理層の水に対する濡れ性を撥水性から親水性に変化させる方法が知られている(例えば、特許文献1参照)。また、固体高分子型燃料電池のセパレータを構成する材料として導電性材料を採用した上で、親水性若しくは疎水性を制御する面に対して粗面化を行い、粗面化により生成した凹凸部の凹部内に親水性若しくは疎水性を調整する水濡れ性調整部材を選択的に充填することで、所望の親水性若しくは疎水性と導電性とが両立可能になることが知られている(例えば、特許文献2参照)。また、燃料電池セパレータ用の樹脂成形板の表面のうち、改質が必要な部分に三酸化硫黄ガスを接触させ、その部分を親水性に表面改質する方法が開示されている(例えば、特許文献3参照)。   For this purpose, a water management layer is formed on the concave surface of the substrate of the fuel cell separator, and the water management layer is irradiated with energy to change the water wettability of the water management layer from water-repellent to hydrophilic. A method is known (see, for example, Patent Document 1). In addition, a conductive material is used as a material constituting the separator of the polymer electrolyte fuel cell, and then the surface that controls hydrophilicity or hydrophobicity is roughened, and the uneven portions generated by the roughening are produced. It is known that by selectively filling a water wettability adjusting member that adjusts hydrophilicity or hydrophobicity into the recesses of the recesses, desired hydrophilicity or hydrophobicity and conductivity can be compatible (for example, , See Patent Document 2). Further, a method is disclosed in which sulfur trioxide gas is brought into contact with a portion of the surface of a resin molded plate for a fuel cell separator that needs to be modified, and the portion is subjected to hydrophilic surface modification (for example, a patent). Reference 3).

特開2007−207728号公報JP 2007-207728 A 特開2006−294294号公報JP 2006-294294 A 特開2008−179712号公報JP 2008-179712 A

しかしながら、特許文献1、2及び3に開示されている燃料電池用セパレータの表面改質法は、いずれも、特別な材料を使用したり、多くの工程を要するものであるため、実質的なコストアップの要因を抱えており、燃料電池の普及に向けてコストや生産性の改善が急務となっているセパレータに適用するには問題がある。   However, the surface reforming methods for fuel cell separators disclosed in Patent Documents 1, 2, and 3 all use special materials or require many steps, and therefore require substantial costs. There is a problem in applying the separator to a separator that has an upside factor and is urgently required to improve cost and productivity for the spread of fuel cells.

そこで、本発明は上記問題点に鑑みなされたものであって、1枚のセパレータ内に親水性部分と疎水性部分とを備えた、固体高分子膜型燃料電池用のセパレータとその簡便な製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and includes a separator for a solid polymer membrane fuel cell having a hydrophilic portion and a hydrophobic portion in one separator, and its simple production. It aims to provide a method.

このような目的は、下記(1)〜(11)の本発明により達成される。   Such an object is achieved by the present inventions (1) to (11) below.

(1)片側表面に水素又は酸素ガスのガス流路を設けた固体高分子膜型燃料電池のセパレータにおいて、ガス流路の表面の、水素又は酸素ガスの供給側に近い領域が親水性であり、水素又は酸素ガスの排出側に近い領域が疎水性であることを特徴とするセパレータ。   (1) In a separator of a solid polymer membrane fuel cell provided with a hydrogen or oxygen gas gas channel on one side surface, the region near the hydrogen or oxygen gas supply side on the surface of the gas channel is hydrophilic A separator near the discharge side of hydrogen or oxygen gas is hydrophobic.

(2)セパレータは、導電性カーボンと、疎水性のバインダ樹脂とを混合したコンパウンドからなり、そのコンパウンドにおける(導電性カーボン/バインダ樹脂)の質量部混合比は2/1〜10/1であることを特徴とする(1)に記載のセパレータ。   (2) The separator is made of a compound obtained by mixing conductive carbon and a hydrophobic binder resin, and the mass ratio of (conductive carbon / binder resin) in the compound is 2/1 to 10/1. The separator according to (1), wherein

(3)疎水性のバインダ樹脂は、ポリプロピレン又はポリフェニレンサルファイドであることを特徴とする(2)に記載のセパレータ。   (3) The separator according to (2), wherein the hydrophobic binder resin is polypropylene or polyphenylene sulfide.

(4)導電性カーボンと、疎水性のバインダ樹脂とを混合して粉末状又は粒状のコンパウンドとする工程と、そのコンパウンドを、片側表面に水素又は酸素ガスのガス流路を設けた固体高分子膜型燃料電池のセパレータの金型に供給する工程と、その金型を加熱加圧プレス成型してバインダ樹脂を溶融させ、コンパウンドを金型に充填する工程と、その金型を冷却して金型に充填されたコンパウンドを固化してセパレータとする工程と、セパレータを金型から取り出す工程と、金型から取り出したセパレータに、ガス流路の表面の、水素又は酸素ガスの供給側に近い領域が親水性となり、水素又は酸素ガスの排出側に近い領域が疎水性となるような表面改質処理を施す工程と、を順に含むことを特徴とするセパレータの製造方法。   (4) Solid polymer in which conductive carbon and hydrophobic binder resin are mixed to form a powdery or granular compound, and the compound is provided with a hydrogen or oxygen gas gas channel on one surface A step of supplying the separator to the membrane fuel cell separator, a step of heating and pressing the die to melt the binder resin, filling the compound with the compound, and cooling the die A step of solidifying the compound filled in the mold to form a separator, a step of removing the separator from the mold, and a region near the hydrogen or oxygen gas supply side of the surface of the gas flow path to the separator removed from the mold And a step of performing a surface modification treatment such that the region close to the discharge side of hydrogen or oxygen gas becomes hydrophobic, in order.

(5)コンパウンドにおける(導電性カーボン/バインダ樹脂)の質量部混合比は2/1〜10/1であることを特徴とする(4)に記載のセパレータの製造方法。   (5) The method for producing a separator according to (4), wherein the mixing ratio of (conductive carbon / binder resin) in the compound is 2/1 to 10/1.

(6)疎水性のバインダ樹脂は、ポリプロピレン又はポリフェニレンサルファイドであることを特徴とする(5)又は(6)に記載のセパレータの製造方法。   (6) The method for producing a separator according to (5) or (6), wherein the hydrophobic binder resin is polypropylene or polyphenylene sulfide.

(7)表面改質処理は、火炎処理、プラズマ処理、紫外線+オゾン処理、及びコロナ放電処理のうちのいずれか1つまたは複数の組合せによって行うことを特徴とする(4)〜(6)のいずれかに記載のセパレータの製造方法。   (7) The surface modification treatment is performed by any one or a combination of flame treatment, plasma treatment, ultraviolet ray + ozone treatment, and corona discharge treatment. (4) to (6) The manufacturing method of the separator in any one.

(8)ガス流路の表面に複数回行う表面改質処理において、ガス流路の表面に水素又は酸素ガスの供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設け、その複数の領域のそれぞれに対する表面改質処理回数を、表面改質処理毎の、疎水領域から中間領域へわたる領域へのマスキング範囲によって設定することを特徴とする(7)に記載のセパレータの製造方法。   (8) In the surface modification treatment performed multiple times on the surface of the gas flow path, a plurality of areas on the surface of the gas flow path from the hydrophilic region to the hydrophobic region from the hydrogen or oxygen gas supply side to the discharge side The number of times of surface modification treatment for each of the plurality of regions is set by a masking range from the hydrophobic region to the intermediate region for each surface modification treatment. Separator manufacturing method.

(9)ガス流路の表面に水素又は酸素ガスの供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設け、親水領域に対しては開口割合が大きく、疎水領域に対しては開口割合が小さくなるようなマスキングを施して表面改質処理を行うことを特徴とする(7)に記載のセパレータの製造方法。   (9) A plurality of regions from the hydrophilic region through the intermediate region to the hydrophobic region are provided on the surface of the gas flow channel from the hydrogen or oxygen gas supply side to the discharge side. (7) The separator manufacturing method according to (7), wherein the region is subjected to masking so as to reduce the opening ratio and the surface modification treatment is performed.

(10)ガス流路の表面に水素又は酸素の供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設けたセパレータを、ガス流路側を上にして水平のコンベアに水平に載せ、セパレータが表面改質処理の処理部を通過するように配置して、親水領域が表面改質処理の処理部を通過する時はコンベアの移動速度を遅く、疎水領域が表面改質処理の処理部を通過する時はコンベアの移動速度を速くしてコンベアを移動させることを特徴とする(7)に記載のセパレータの製造方法。   (10) A separator having a plurality of regions from the hydrophilic region through the intermediate region to the hydrophobic region from the hydrogen or oxygen supply side to the discharge side on the surface of the gas flow channel, with the gas flow channel side up, and a horizontal conveyor The separator is placed so that it passes through the surface modification treatment section, and when the hydrophilic area passes through the surface modification treatment section, the conveyor speed is slow and the hydrophobic area is surface modified. (7) The separator manufacturing method according to (7), wherein the conveyor is moved by increasing the moving speed of the conveyor when passing through the quality processing section.

(11)ガス流路の表面に水素又は酸素の供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設けたセパレータを、ガス流路側を上にして水平のコンベアに傾斜した状態で載せ、火炎処理又はコロナ放電処理のヘッド部の中心部を疎水領域が通過し、ヘッド部の先端部を親水領域が通過するようにセパレータの傾斜と火炎処理又はコロナ放電処理のヘッド部を配置してコンベアを移動させることを特徴とする(7)に記載のセパレータの製造方法。   (11) A horizontal conveyor having a separator provided with a plurality of regions from the hydrophilic region to the intermediate region to the hydrophobic region from the hydrogen or oxygen supply side to the discharge side on the surface of the gas channel, with the gas channel side facing up The separator is inclined and the flame treatment or corona discharge treatment is performed so that the hydrophobic region passes through the center of the head portion of the flame treatment or corona discharge treatment and the hydrophilic region passes through the tip of the head portion. The method for manufacturing a separator according to (7), wherein the head portion is disposed and the conveyor is moved.

本発明によれば、1枚のセパレータ内に親水性部分と疎水性部分とを備えた、固体高分子膜型燃料電池用のセパレータとその簡便な製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the separator for solid polymer membrane type fuel cells provided with the hydrophilic part and the hydrophobic part in one separator and its simple manufacturing method can be provided.

本発明の実施形態に係るセパレータを用いた固体高分子膜型燃料電池の単セルの模式的断面図である。It is a typical sectional view of a single cell of a polymer electrolyte membrane fuel cell using a separator concerning an embodiment of the present invention. 本発明の実施例1、2に係る火炎処理装置の模式的断面図である。It is typical sectional drawing of the flame treatment apparatus which concerns on Example 1, 2 of this invention. 本発明の実施例1に係るセパレート板の上面図である。It is a top view of the separate board concerning Example 1 of the present invention. 本発明の実施例2に係るセパレート板の上面図である。It is a top view of the separate board concerning Example 2 of the present invention. 本発明の実施例3に係る火炎処理装置の模式的断面図である。It is typical sectional drawing of the flame processing apparatus which concerns on Example 3 of this invention.

以下、添付図面を参照して、本発明を実施するための形態(以下、実施形態という。)について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the accompanying drawings.

図1は、本発明の第実施形態に係るセパレータを用いた固体高分子膜型燃料電池の単セルの模式的断面図を示したものである。   FIG. 1 is a schematic cross-sectional view of a single cell of a solid polymer membrane fuel cell using a separator according to a first embodiment of the present invention.

本発明のセパレータを使用する燃料電池は、図1に示したように、固体高分子電解質膜11の一面側にアノード電極14aを有し、他面側にカソード電極14bを有する膜電極接合体(MEA)15を、一対のセパレータ16a、16bで挟持した単セル1を備える構造を有する。アノード電極14aに接する第1のセパレータ16aの、アノード電極14a側の面に、セパレータ16aの1方の側面(図の下側)からMEA15へ燃料ガスの水素ガスを供給し、さらにMEA15を通過した水素ガスをセパレータ16aの対向する側面(図の上側)から排出するための水素ガス流路が17aが備えられている。   As shown in FIG. 1, the fuel cell using the separator of the present invention has a membrane electrode assembly (having an anode electrode 14a on one side of the solid polymer electrolyte membrane 11 and a cathode electrode 14b on the other side). MEA) 15 has a structure including a single cell 1 sandwiched between a pair of separators 16a and 16b. Hydrogen gas of fuel gas was supplied to the MEA 15 from one side surface (lower side of the figure) of the first separator 16a on the surface on the anode electrode 14a side of the first separator 16a in contact with the anode electrode 14a, and further passed through the MEA 15 A hydrogen gas flow path 17a is provided for discharging hydrogen gas from the opposite side surface (upper side in the figure) of the separator 16a.

カソード電極14bに接する第2のセパレータ16bの、カソード電極14b側の面に、セパレータ16bの1方の側面からからMEA15へ酸化剤ガスの酸素ガスを供給し、さらにMEA15を通過した酸素ガスをセパレータ16bの対向する側面から排出するための酸素ガス流路17bが備えられている。一般に、第1のセパレータ16aの水素ガスの供給、排出の方向と、第2のセパレータ16bの酸素ガスの供給、排出の方向とは直交するように配置される。   The oxygen gas of the oxidant gas is supplied from one side surface of the separator 16b to the MEA 15 to the surface of the second separator 16b in contact with the cathode electrode 14b from the one side surface of the separator 16b, and the oxygen gas that has passed through the MEA 15 is further separated into the separator. An oxygen gas flow path 17b for discharging from the opposite side surfaces of 16b is provided. Generally, the hydrogen gas supply / discharge direction of the first separator 16a and the oxygen gas supply / discharge direction of the second separator 16b are arranged to be orthogonal to each other.

アノード電極14aは触媒層12aとガス拡散層13aとからなり、カソード電極14bは触媒層12bとガス拡散層13bとからなる。   The anode electrode 14a is composed of a catalyst layer 12a and a gas diffusion layer 13a, and the cathode electrode 14b is composed of a catalyst layer 12b and a gas diffusion layer 13b.

ガス拡散層13a、13bは水素又は酸素の触媒層12a又は12bへの供給、触媒層12aでの化学反応により生じた電子の集電、固体高分子電解質膜11の保湿および生成水の排出、といった多くの役割を担う多機能部材である。ガス透過性や導電性のほか、耐酸性や機械的強度など多様な要求を満たす必要があり、一般にカーボンペーパーやカーボンクロスが使われる。   The gas diffusion layers 13a and 13b supply hydrogen or oxygen to the catalyst layer 12a or 12b, collect electrons generated by a chemical reaction in the catalyst layer 12a, moisturize the solid polymer electrolyte membrane 11, and discharge generated water. It is a multifunctional member that plays many roles. In addition to gas permeability and conductivity, it is necessary to satisfy various requirements such as acid resistance and mechanical strength, and carbon paper and carbon cloth are generally used.

アノード電極14aでは水素ガスの反応によりプロトンと電子が生じる。電子は、外部回路を経由し、外部の負荷で仕事をした後、カソード電極14bに到達する。プロトンは、水和した状態で、水素イオン伝導性を有する固体高分子電解質膜内をアノード電極14a側からカソード側14b側に、電気浸透により通過する。   In the anode electrode 14a, protons and electrons are generated by the reaction of hydrogen gas. The electrons reach the cathode electrode 14b after working with an external load via an external circuit. Protons pass through the solid polymer electrolyte membrane having hydrogen ion conductivity from the anode electrode 14a side to the cathode side 14b side by electroosmosis in a hydrated state.

カソード電極14bでは、プロトンと電子と酸素が反応し水が生成する。この水は、セパレータ16bの酸素ガス流路17bを通り、酸素ガスの流れに乗って排出される。   At the cathode electrode 14b, protons, electrons, and oxygen react to generate water. This water passes through the oxygen gas flow path 17b of the separator 16b and is discharged along with the flow of oxygen gas.

固体高分子電解質膜11としては、ナフィオン等のパーフルオロスルホン酸や炭化水素系の材料が使われるが、そのイオン導電性を向上させるために水素ガスを加湿するのが一般的であり、また燃料電池を利用した発電システムのカソード側には必ず水が生成する。運転開始直後は水の生成量は少ないため、ほとんど影響はないが、セパレータの流路形状によっては数十分後くらいから、ガス流路に水がたまり、結果的にガスが充分拡散できず、発生電位の低下を来たす。また、寒冷地等にあっては、溜まった水が凍結し、流路をふさいでしまい、ガスの圧力を高めても、溜まった水を除去できない状況となる。   As the solid polymer electrolyte membrane 11, perfluorosulfonic acid such as Nafion or a hydrocarbon-based material is used. In order to improve the ionic conductivity, it is common to humidify hydrogen gas, and the fuel. Water is always generated on the cathode side of a power generation system using batteries. Immediately after the start of operation, the amount of water produced is small, so there is almost no effect, but depending on the flow path shape of the separator, water accumulates in the gas flow path from about several tens of minutes later. Reduces the generated potential. In cold districts, the accumulated water freezes, blocks the flow path, and the accumulated water cannot be removed even if the gas pressure is increased.

一方、アノード極14aでは、水素ガスが白金等の触媒層12aと接触することでプロトンを生じ、このプロトンは周りにいくつかの水分子を抱えて、固体高分子電解質膜11中を通過して行くため、アノード極14a側が徐々に乾燥状態となってしまう。これを防止するため、水素ガスを加湿するのが一般的である。この場合も、加湿過剰になった場合は、アノード極14aの排出側に近い部分で水の凝集が発生し、燃料としての水素ガスが行き渡らなくなってしまう。   On the other hand, in the anode electrode 14a, hydrogen gas is brought into contact with the catalyst layer 12a such as platinum to generate protons, and these protons have some water molecules around them and pass through the solid polymer electrolyte membrane 11. Therefore, the anode 14a side gradually becomes dry. In order to prevent this, hydrogen gas is generally humidified. In this case as well, when the humidification is excessive, water agglomerates in a portion close to the discharge side of the anode 14a, and hydrogen gas as a fuel does not spread.

このように、アノード極14a側における燃料ガスの水素ガスの加湿や、カソード極14b側における生成水の増加により、セパレータ16aの水素ガスのガス流路17aや、セパレータ16bの酸素ガス(空気など)のガス流路17bにおいて、特に排出側に近い部分で水が凝集する可能性が高い。   As described above, the humidification of the hydrogen gas of the fuel gas on the anode electrode 14a side and the increase of the generated water on the cathode electrode 14b side cause the hydrogen gas gas flow path 17a of the separator 16a and the oxygen gas (air etc.) of the separator 16b. In the gas flow path 17b, there is a high possibility that water will aggregate, particularly in a portion close to the discharge side.

本発明の実施形態においては、高分子膜型燃料電池に用いるセパレータ16a、16bにおいて、ガス供給側に近い領域と排出側に近い領域とで親水性(疎水性)に差異を設ける。つまり、セパレータ16a、16bの少なくとも、ガス供給側よりガス排出側に近い領域を疎水性にする。すなわち、セパレータ16a、16bの少なくとも、ガス供給側を、ガス排出側よりも親水性にする。   In the embodiment of the present invention, in the separators 16a and 16b used in the polymer membrane fuel cell, a difference in hydrophilicity (hydrophobicity) is provided between a region close to the gas supply side and a region close to the discharge side. That is, at least the region closer to the gas discharge side than the gas supply side of the separators 16a and 16b is made hydrophobic. That is, at least the gas supply side of the separators 16a and 16b is made more hydrophilic than the gas discharge side.

本実施形態においては、水の濡れ性を表わす接触角が50°を超え80°未満である場合を親水性、80°を超え110°未満である場合を疎水性と呼ぶ。   In the present embodiment, the case where the contact angle representing the wettability of water is more than 50 ° and less than 80 ° is called hydrophilic, and the case where it is more than 80 ° and less than 110 ° is called hydrophobic.

セパレータ材料としては、一般に、黒鉛系、金属系及びコンポジット系のうちのいずれかが用いられる。   As the separator material, generally, any of graphite, metal and composite is used.

黒鉛系セパレータには、黒鉛材を数mm〜10mm程度の薄板に切り出し、切削加工で反応ガスの流路を形成する方法と、膨張黒鉛をプレス成形することで反応ガスの流路を形成する方法がある。切削法は従来用いられてきたが、黒鉛材のガス不透過性が低いため熱硬化性樹脂を含浸させる必要がある。また切削加工するため生産コストが高い。   For the graphite separator, a method of forming a reaction gas flow path by cutting graphite material into a thin plate of about several mm to 10 mm and forming a reaction gas flow path by cutting, and a method of forming a reaction gas flow path by press molding expanded graphite There is. Although the cutting method has been conventionally used, it is necessary to impregnate the thermosetting resin because the graphite material has low gas impermeability. In addition, the production cost is high due to cutting.

金属系セパレータでは、金属板を金型でプレスして反応ガスの流路を形成する。欧州で研究が盛んに行われているが、そのままでは耐食性が不十分なので表面に金などをメッキする必要があり、コーティング材の検討が必要である。   In a metal separator, a metal plate is pressed with a mold to form a reaction gas flow path. Although research is actively conducted in Europe, the corrosion resistance is not sufficient as it is, so it is necessary to plate the surface with gold or the like, and it is necessary to examine the coating material.

コンポジット系セパレータでは、導電性を持たせるため樹脂に黒鉛粉末を添加した材料を成形し、薄板状とするとともに反応ガスの流路を形成する。材料の熱流動性が低いため加熱、加圧して成形することが多い。   In the composite separator, a material obtained by adding graphite powder to a resin is molded to give conductivity, and a thin plate is formed and a reaction gas flow path is formed. Since the heat fluidity of the material is low, it is often molded by heating and pressing.

以下、本発明の実施形態における、導電性カーボンとバインダ樹脂からなるコンポジット系セパレータの製造方法について述べる。   Hereinafter, a method for producing a composite separator made of conductive carbon and a binder resin in the embodiment of the present invention will be described.

導電性カーボンとしては、人造黒鉛、天然黒鉛等の粉末を用いることができる。   As the conductive carbon, powders such as artificial graphite and natural graphite can be used.

バインダ樹脂としては、ポリプロピレン、ポリフェニレンサルファイド等それ自体が疎水性であるものが望ましい。それ自体が親水性や吸水性である素材、例えば、ナイロンやポリビニルアルコール、エチレンビニルアルコールなどは疎水性を現出させにくいことから好ましくない。   As the binder resin, polypropylene, polyphenylene sulfide or the like which is hydrophobic per se is desirable. Materials that are themselves hydrophilic or water-absorbing, such as nylon, polyvinyl alcohol, ethylene vinyl alcohol, etc. are not preferred because they are difficult to reveal hydrophobicity.

セパレータとしての導電性や機械的性質の観点から、(導電性カーボン/バインダ樹脂)の質量部混合比は2/1〜10/1の範囲であることが好ましい。混合
材料は必要に応じて混練や粉砕を行い、粉末状又は粒状のコンパウンドが得られる。
From the viewpoint of electrical conductivity and mechanical properties as a separator, the mass part mixing ratio of (conductive carbon / binder resin) is preferably in the range of 2/1 to 10/1. The mixed material is kneaded or pulverized as necessary to obtain a powdery or granular compound.

このコンパウンドを所定量セパレータ金型に供給し、金型を加熱加圧プレス成型することにより、コンパウンド中のバインダ樹脂を溶融し、金型のセパレータ形状に充填する。   A predetermined amount of this compound is supplied to a separator mold, and the mold is heated and pressed to melt the binder resin in the compound and fill the mold with a separator shape.

バインダ樹脂にポリプロピレン、ポリフェニレンサルファイド等の熱可塑性樹脂を用いた場合は、金型をその樹脂のガラス転移温度より低い温度まで冷却して樹脂を固化させ、セパレータを金型より取り出す。   When a thermoplastic resin such as polypropylene or polyphenylene sulfide is used as the binder resin, the mold is cooled to a temperature lower than the glass transition temperature of the resin to solidify the resin, and the separator is taken out from the mold.

金型から取り出したセパレータに以下に述べる表面改質処理を行い、セパレータ表面に所定の濡れ性、すなわち親水性及び疎水性を付与する。   The separator taken out from the mold is subjected to the surface modification treatment described below to give the separator surface predetermined wettability, that is, hydrophilicity and hydrophobicity.

表面改質処理としては、火炎処理、プラズマ処理、紫外線+オゾン処理、及びコロナ放電処理のうちのいずれかを適用することができる。   As the surface modification treatment, any one of flame treatment, plasma treatment, ultraviolet ray + ozone treatment, and corona discharge treatment can be applied.

(火炎処理)
火炎処理すなわちフレーム処理は、プロパンガスなどの可燃性ガスに酸素を吹き込みながらたとえばフィルム等の被処理表面上で燃焼させ、酸化反応を起こして極性を持つ塩基を生成させる表面処理である。火炎先端部は、火炎中心部より温度が高いので、セパレータ表面の所定の改質の領域に応じて、火炎形状をあらかじめ設定する。
(Flame treatment)
Flame treatment, that is, flame treatment, is a surface treatment in which oxygen is blown into a combustible gas such as propane gas and burned on a surface to be treated such as a film to generate an oxidation reaction to generate a polar base. Since the temperature at the front end of the flame is higher than that at the center of the flame, the flame shape is set in advance according to the predetermined reforming region on the separator surface.

(プラズマ処理)
プラズマ処理は、たとえばフィルム等の被処理表面でガスを電離させて生じた粒子の電荷を利用して、極性を持つ塩基を生成させる表面処理である。
(Plasma treatment)
The plasma treatment is a surface treatment for generating a base having a polarity by utilizing the charge of particles generated by ionizing a gas on a surface to be treated such as a film.

(紫外線+オゾン処理)
紫外線+オゾン処理、すなわちUVオゾン表面処理には、改質と洗浄の効果がある。どちらの反応が起こるかは素材に依存し、ガラスやセラミックには洗浄作用だけが働き、プラスチックや金属には改質と洗浄の両方が働く。照射するUV光のエネルギーが有機化合物の分子結合エネルギーより高い時、分子結合が切れる確率が高くなる。240nm以下の波長のUVは酸素を分解するので、172nmと185nmのUV線は酸素からオゾンを生成する。254nmのUV線はミリ秒の速さでオゾンを分解して、高いエネルギーの活性酸素を生成する。C−H結合が切れるとH原子は軽いので直ぐに引抜かれる。活性酸素はその有機化合物と反応して、COやCO(OH)等の酸素に富んだ官能基を表面に形成する。照射によりC−H結合に基づくピークが減少して、カルボニル基に起因するピークが新たに発現し、カルボキシル基に基づくピークが増大する。富酸素ラジカルには極性があり、表面エネルギーを増加させ親水性を高め、親水性に依存する接着力を強くする。
(UV + ozone treatment)
The ultraviolet ray + ozone treatment, that is, the UV ozone surface treatment has an effect of modification and cleaning. Which reaction occurs depends on the material, glass and ceramics only have a cleaning action, and plastics and metals have both reforming and cleaning. When the energy of the irradiated UV light is higher than the molecular bond energy of the organic compound, the probability that the molecular bond is broken increases. Since UV with a wavelength of 240 nm or less decomposes oxygen, 172 nm and 185 nm UV rays generate ozone from oxygen. 254 nm UV radiation decomposes ozone at the rate of milliseconds, producing high energy active oxygen. When the C—H bond is broken, the H atom is light and is immediately extracted. Active oxygen reacts with the organic compound to form oxygen-rich functional groups such as CO and CO (OH) on the surface. Irradiation reduces the peak due to the C—H bond, a new peak due to the carbonyl group appears, and the peak due to the carboxyl group increases. Oxygen-rich radicals have polarity, increase surface energy, increase hydrophilicity, and strengthen the adhesive force depending on hydrophilicity.

(コロナ放電処理)
コロナ放電処理は、たとえばフィルム等の被処理表面に放電処理を行い、極性を持つカルボキシル基や水酸基を生成させ、かつ粗面化する。
(Corona discharge treatment)
In the corona discharge treatment, for example, a surface to be treated such as a film is subjected to a discharge treatment to generate polar carboxyl groups and hydroxyl groups and to make the surface rough.

このような4種類の表面改質処理法のうちのいずれか又は複数の組合せを用いて、次の方法により、1枚のセパレータに於いて、親水性領域と疎水性領域を併せ持たせることができる。   Using one or a combination of these four types of surface modification treatment methods, a single separator can have both a hydrophilic region and a hydrophobic region by the following method. it can.

(A)セパレータガス流路をマスキングして必要な領域のみ表面改質を行なう。例えば、親水性にしたい領域、中間的な領域、疎水性領域に対して、親水性にしたい領域は2回処理、中間的な部位は1回処理、疎水性領域は処理なし、となるようにマスキングの範囲を変えて親水性から疎水性までを1枚のセパレータに現出させることができる。   (A) Masking the separator gas flow path and surface-modifying only necessary areas. For example, with respect to the region to be made hydrophilic, the intermediate region, and the hydrophobic region, the region to be made hydrophilic is treated twice, the intermediate portion is treated once, and the hydrophobic region is not treated. By changing the masking range, hydrophilicity to hydrophobicity can appear on one separator.

(B)セパレータのガス流路上に、開口割合の異なる領域を有するマスキングを施し、表面改質を行なうことで、親水性から疎水性までを1枚のセパレータ上に現出させることができる。マスキング材料としては、用いる表面改質法にも依るが耐熱性や耐オゾン性、耐紫外線性などに優れた金属やプラスチックスを適宜選択して用いることができる。   (B) By performing masking having regions having different opening ratios on the gas flow path of the separator and performing surface modification, it is possible to make hydrophilic to hydrophobic appear on one separator. As the masking material, although it depends on the surface modification method to be used, metals and plastics having excellent heat resistance, ozone resistance, ultraviolet resistance, etc. can be appropriately selected and used.

(C)コンベア上にセパレータのガス流路面を上にして載せ、それを火炎処理やコロナ処理などのヘッド部に通過させて処理を行なう方法の場合は、親水性が必要な領域ではゆっくりと製品を通過させ、また、逆に必要ない領域では、コンベアスピードを速くして、処理効果が及ばないようにすることで、1枚のセパレータ上に、親水性領域と疎水性領域とを併せ持たせることができる。   (C) In the case of a method in which the gas flow path surface of the separator is placed on a conveyor and the separator is passed through a head portion such as flame treatment or corona treatment, the product is slowly produced in an area where hydrophilicity is required. In an area that is not necessary, the conveyor speed is increased so that the processing effect is not exerted, so that the hydrophilic area and the hydrophobic area are combined on one separator. be able to.

(D)上記(C)と同様のコンベア上にセパレータのガス流路面を上にして載せ、それを火炎処理やコロナ処理などのヘッド部に通過させて処理を行なう方法に於いて、コンベア上にセパレータを、疎水性が必要な領域をヘッド部の中心部に近く(上に、高い位置に)、反対に、親水性が必要な領域はヘッド部の先端部に近く(下に、低い位置に)斜めに設置し、ヘッドを通過させることで、1枚のセパレータに於いて、例えば、ガス供給側に近い領域を親水性に、また、排出側に近い領域を疎水性に、徐々に変化させることができる。   (D) In a method in which the gas flow path surface of the separator is placed on the same conveyor as in (C) above and passed through the head part such as flame treatment or corona treatment, the treatment is performed on the conveyor. The separator should have a hydrophobic area close to the center of the head (upward and high), and a hydrophilic area close to the tip of the head (down and low). ) By installing it diagonally and passing the head, in one separator, for example, gradually change the area close to the gas supply side to hydrophilic and the area close to the discharge side to hydrophobic. be able to.

以下に、ポリプロピレン製、及び、ポリフェニレンサルファイド製のセパレータ板について、プロパンガスを燃焼して得られる火炎を用いた火炎処理において、処理条件や、マスキング条件等を変えて行った実施例1〜4を示す。   Below, in the flame treatment using the flame obtained by burning propane gas for the separator plate made of polypropylene and polyphenylene sulfide, Examples 1 to 4 were performed by changing the treatment conditions, masking conditions, and the like. Show.

(実施例1)
平均粒径約60μmの黒鉛と熱可塑性樹脂であるポリプロピレンとを質量比で5:1で混合、混練し、大きさ約1mmの粒子状コンパウンドを作製した。次いで、これを、所定量、金型に入れ、280℃5分間加熱・加圧後、室温まで冷却して、燃料電池用セパレータ板を作製した。このセパレータ板に、図2に示した模式的断面図の火炎処理装置2にて火炎処理を施し、セパレータ板の表面改質処理を行った。セパレータ板24を、5m/secの速度で移動する水平のコンベア23上に水平に載せ、図2のプロパンガスのバーナー21による火炎22のヘッド部Aを矢印の方向に計3回通過させて火炎処理を施した。その際、部分的に火炎22が当たらないようにセパレータ板24にマスキングを行った。図3は、実施例1に係るセパレート板24の上面図を示したものである。図3に示したように、セパレータ板24の上側表面を先端から後端にコンベア23の進行方向に第1領域から第4領域の4つの領域に分け、1回目の火炎処理では第1〜3領域の範囲をマスキングし、2回目の火炎処理では第1〜2領域の範囲をマスキングし、3回目の火炎処理では、第1領域の範囲をマスキングして表面改質処理を行った。この結果、各領域が受けた表面改質処理は、第1領域はなし、第2領域は1回、第3領域は2回、第4領域は3回となった。処理後の各領域のセパレータ板24の水の接触角を表1に示した。
Example 1
Graphite compound having an average particle size of about 60 μm and polypropylene, which is a thermoplastic resin, were mixed and kneaded at a mass ratio of 5: 1 to prepare a particulate compound having a size of about 1 mm. Next, a predetermined amount of this was put in a mold, heated and pressurized at 280 ° C. for 5 minutes, and then cooled to room temperature to produce a fuel cell separator plate. The separator plate was subjected to a flame treatment by the flame treatment apparatus 2 having a schematic cross-sectional view shown in FIG. 2 to perform a surface modification treatment of the separator plate. The separator plate 24 is placed horizontally on a horizontal conveyor 23 that moves at a speed of 5 m / sec, and the head portion A of the flame 22 by the propane gas burner 21 in FIG. Treated. At that time, the separator plate 24 was masked so that the flame 22 did not partially hit. FIG. 3 is a top view of the separation plate 24 according to the first embodiment. As shown in FIG. 3, the upper surface of the separator plate 24 is divided into four regions from the first region to the fourth region in the traveling direction of the conveyor 23 from the front end to the rear end. The range of the region was masked, the range of the first and second regions was masked in the second flame treatment, and the surface of the first region was masked in the third flame treatment. As a result, the surface modification treatment received by each region was performed for the first region, once for the second region, twice for the third region, and three times for the fourth region. Table 1 shows the water contact angle of the separator plate 24 in each region after the treatment.

(実施例2)
実施例1で用いたものと同様の黒鉛と、粉状の熱可塑性樹脂であるポリフェニレンサルファイドとを3:1の質量比で混合、混練し、大きさ約1mmの粒子状コンパウンドを作製した。次いでこれを、所定量金型に入れ、320℃10分間加熱・加圧後、室温まで冷却して、燃料電池用セパレータ板を作製した。この板を実施例1で用いたものと同様の、図2に示した模式的断面図の火炎処理装置2にて火炎処理を施し、セパレータ板の表面改質処理を行った。セパレータ板24を、水平のコンベア23上に水平に載せ、図2のプロパンガスのバーナー21による火炎22のヘッド部Aを矢印の方向に計3回通過させて火炎処理を施した。図4は、実施例2に係るセパレート板24の上面図を示したものである。図4に示したように、セパレータ板24の上側表面を先端から後端にコンベア23の進行方向に第1領域から第4領域の4つの領域に分け、1回目の火炎処理では第1、3、4領域の範囲をマスキングし、2回目の火炎処理では第1、2、4領域の範囲をマスキングし、3回目の火炎処理では、第1、2、3領域の範囲をマスキングして表面改質処理を行った。火炎22のヘッド部Aをコンベア23が通過する速度を、1回目の火炎処理では10m/sec、2回目の火炎処理では5m/sec、3回目の火炎処理では2m/secとした。この結果、第1領域は未処理であり、第2領域は10m/sec、第3領域は5m/sec、第4領域は2m/secで処理を受けた。処理後のセパレータ板24の水の接触角を表1に示した。
(Example 2)
The same graphite as that used in Example 1 and polyphenylene sulfide, which is a powdered thermoplastic resin, were mixed and kneaded at a mass ratio of 3: 1 to prepare a particulate compound having a size of about 1 mm. Next, this was put in a predetermined amount of mold, heated and pressurized at 320 ° C. for 10 minutes, and then cooled to room temperature to produce a fuel cell separator plate. The plate was subjected to a flame treatment by the flame treatment apparatus 2 having the schematic cross-sectional view shown in FIG. 2 similar to that used in Example 1, and a surface modification treatment of the separator plate was performed. The separator plate 24 was placed horizontally on a horizontal conveyor 23, and the flame treatment was performed by passing the head part A of the flame 22 by the propane gas burner 21 of FIG. 2 three times in the direction of the arrow. FIG. 4 is a top view of the separation plate 24 according to the second embodiment. As shown in FIG. 4, the upper surface of the separator plate 24 is divided into four regions from the first region to the fourth region in the traveling direction of the conveyor 23 from the front end to the rear end. Mask the area of the 4th area, mask the area of the 1st, 2nd, 4th area in the second flame treatment, and mask the area of the 1st, 2nd, 3rd area in the 3rd flame treatment. Quality treatment was performed. The speed at which the conveyor 23 passes through the head part A of the flame 22 is 10 m / sec in the first flame treatment, 5 m / sec in the second flame treatment, and 2 m / sec in the third flame treatment. As a result, the first area was not processed, the second area was processed at 10 m / sec, the third area was processed at 5 m / sec, and the fourth area was processed at 2 m / sec. Table 1 shows the water contact angle of the separator plate 24 after the treatment.

(実施例3)
実施例1で用いたポリプロピレン製燃料電池用セパレータ板、及び実施例2で用いたポリフェニレンサルファイド製燃料電池用セパレータ板を用いて、実施例1、2で用いたのと同様の図3に示した模式的断面図の火炎処理装置3にて火炎処理を施し、セパレータ板24の表面改質処理を行った。ポリプロピレン製セパレータ板はコンベア23を5m/sec、ポフェニレンサルファイド製セパレータ板はコンベア23を10m/secで矢印の方向に移動させて火炎22のヘッド部Aを通過させ、表面改質処理を行なった。その際、火炎22のヘッド部Aの先端部22bから中心部22aまでセパレータ板24を傾けて(高さを変えるように)、処理を行なった。処理後のセパレータ板24の水の接触角を表1に示した。
(Example 3)
Using the polypropylene fuel cell separator plate used in Example 1 and the polyphenylene sulfide fuel cell separator plate used in Example 2, the same results as shown in FIG. Flame treatment was performed by the flame treatment apparatus 3 of the schematic cross-sectional view, and the surface modification treatment of the separator plate 24 was performed. The separator plate made of polypropylene moved the conveyor 23 in the direction of the arrow at 5 m / sec and the separator plate made of pophenylene sulfide at 10 m / sec and passed the head part A of the flame 22 to perform surface modification treatment. . At that time, the separator plate 24 was inclined from the front end portion 22b of the head portion A of the flame 22 to the central portion 22a (to change the height), and the processing was performed. Table 1 shows the water contact angle of the separator plate 24 after the treatment.

表1に示した結果から、図2、3に示したような処理装置を用いてセパレータ板の表面改質を行うことにより、1枚のセパレータ上に水の接触角、すなわち濡れ性の異なる領域を任意に現出させることができることが明らかとなった。   From the results shown in Table 1, by performing surface modification of the separator plate using a processing apparatus as shown in FIGS. 2 and 3, water contact angles on one separator, that is, regions having different wettability It became clear that can be made to appear arbitrarily.

以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, it cannot be overemphasized that the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiments. Further, it is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

1 単セル
2 火炎処理装置
3 火炎処理装置
11 固体高分子電解質膜
12a、12b 触媒層
13a、13b ガス拡散層
14a アノード電極
14b カソード電極
15 膜電極接合体
16a、16b セパレータ
17a、17b ガス流路
21 バーナー
22 火炎
22a 火炎中心部
22b 火炎先端部
23 コンベア
24 セパレータ板
DESCRIPTION OF SYMBOLS 1 Single cell 2 Flame treatment apparatus 3 Flame treatment apparatus 11 Solid polymer electrolyte membrane 12a, 12b Catalyst layer 13a, 13b Gas diffusion layer 14a Anode electrode 14b Cathode electrode 15 Membrane electrode assembly 16a, 16b Separator 17a, 17b Gas flow path 21 Burner 22 Flame 22a Flame center 22b Flame tip 23 Conveyor 24 Separator plate

Claims (11)

片側表面に水素又は酸素ガスのガス流路を設けた固体高分子膜型燃料電池のセパレータにおいて、
前記ガス流路の表面の、前記水素又は酸素ガスの供給側に近い領域が親水性であり、前記水素又は酸素ガスの排出側に近い領域が疎水性であることを特徴とするセパレータ。
In a separator of a solid polymer membrane fuel cell provided with a gas flow path of hydrogen or oxygen gas on one surface,
The separator is characterized in that a region close to the hydrogen or oxygen gas supply side on the surface of the gas flow path is hydrophilic, and a region close to the hydrogen or oxygen gas discharge side is hydrophobic.
前記セパレータは、導電性カーボンと、疎水性のバインダ樹脂とを混合したコンパウンドからなり、
当該コンパウンドにおける(前記導電性カーボン/前記バインダ樹脂)の質量部混合比は2/1〜10/1であることを特徴とする請求項1に記載のセパレータ。
The separator is made of a compound obtained by mixing conductive carbon and a hydrophobic binder resin.
2. The separator according to claim 1, wherein a mass part mixing ratio of (the conductive carbon / the binder resin) in the compound is 2/1 to 10/1.
前記疎水性のバインダ樹脂は、ポリプロピレン又はポリフェニレンサルファイドであることを特徴とする請求項2に記載のセパレータ。   The separator according to claim 2, wherein the hydrophobic binder resin is polypropylene or polyphenylene sulfide. 導電性カーボンと、疎水性のバインダ樹脂とを混合して粉末状又は粒状のコンパウンドとする工程と、
当該コンパウンドを、片側表面に水素又は酸素ガスのガス流路を設けた固体高分子膜型燃料電池のセパレータの金型に供給する工程と、
当該金型を加熱加圧プレス成型して前記バインダ樹脂を溶融させ、前記コンパウンドを前記金型に充填する工程と、
前記金型を冷却して前記金型に充填された前記コンパウンドを固化してセパレータとする工程と、
前記セパレータを前記金型から取り出す工程と、
前記金型から取り出した前記セパレータに、前記ガス流路の表面の、水素又は酸素ガスの供給側に近い領域が親水性となり、前記水素又は酸素ガスの排出側に近い領域が疎水性となるような表面改質処理を施す工程と、
を順に含むことを特徴とするセパレータの製造方法。
A step of mixing conductive carbon and a hydrophobic binder resin to form a powdery or granular compound;
Supplying the compound to a mold of a separator of a polymer electrolyte fuel cell in which a gas flow path of hydrogen or oxygen gas is provided on one surface;
Heating and pressing the mold to melt the binder resin, and filling the mold with the compound;
Cooling the mold and solidifying the compound filled in the mold into a separator;
Removing the separator from the mold;
In the separator taken out from the mold, a region near the hydrogen or oxygen gas supply side on the surface of the gas flow path becomes hydrophilic, and a region near the hydrogen or oxygen gas discharge side becomes hydrophobic. A step of performing a surface modification treatment,
In order, the manufacturing method of the separator characterized by the above-mentioned.
前記コンパウンドにおける(前記導電性カーボン/前記バインダ樹脂)の質量部混合比は2/1〜10/1であることを特徴とする請求項4に記載のセパレータの製造方法。   The separator manufacturing method according to claim 4, wherein a mass part mixing ratio of (the conductive carbon / the binder resin) in the compound is 2/1 to 10/1. 前記疎水性のバインダ樹脂は、ポリプロピレン又はポリフェニレンサルファイドであることを特徴とする請求項5又は6に記載のセパレータの製造方法。     The method for producing a separator according to claim 5 or 6, wherein the hydrophobic binder resin is polypropylene or polyphenylene sulfide. 前記表面改質処理は、火炎処理、プラズマ処理、紫外線+オゾン処理、及びコロナ放電処理のうちのいずれか1つまたは複数の組合せによって行うことを特徴とする請求項4〜6のいずれか1項に記載のセパレータの製造方法。   The surface modification treatment is performed by any one or a combination of flame treatment, plasma treatment, ultraviolet ray + ozone treatment, and corona discharge treatment. A method for producing the separator according to 1. 前記ガス流路の表面に複数回行う前記表面改質処理において、前記ガス流路の表面に前記水素又は酸素ガスの供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設け、前記複数の領域のそれぞれに対する前記表面改質処理回数を、前記表面改質処理毎の、前記疎水領域から前記中間領域へわたる領域へのマスキング範囲によって設定することを特徴とする請求項7に記載のセパレータの製造方法。   In the surface modification treatment performed a plurality of times on the surface of the gas flow path, a plurality of the surface of the gas flow path from the hydrophilic region through the intermediate region to the hydrophobic region from the hydrogen or oxygen gas supply side to the discharge side A region is provided, and the number of times of the surface modification treatment for each of the plurality of regions is set by a masking range from the hydrophobic region to the intermediate region for each surface modification treatment. Item 8. A method for producing a separator according to Item 7. 前記ガス流路の表面に前記水素又は酸素ガスの供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設け、前記親水領域に対しては開口割合が大きく、前記疎水領域に対しては開口割合が小さくなるようなマスキングを施して前記表面改質処理を行うことを特徴とする請求項7に記載のセパレータの製造方法。   A plurality of regions from the hydrophilic region through the intermediate region to the hydrophobic region are provided on the surface of the gas flow channel from the supply side to the discharge side of the hydrogen or oxygen gas, and the opening ratio is large with respect to the hydrophilic region, The method for manufacturing a separator according to claim 7, wherein the surface modification treatment is performed by masking the hydrophobic region so that an opening ratio becomes small. 前記ガス流路の表面に前記水素又は酸素の供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設けた前記セパレータを、前記ガス流路側を上にして水平のコンベアに水平に載せ、前記セパレータが前記表面改質処理の処理部を通過するように配置して、前記親水領域が前記表面改質処理の処理部を通過する時は前記コンベアの移動速度を遅く、前記疎水領域が前記表面改質処理の処理部を通過する時は前記コンベアの移動速度を速くして前記コンベアを移動させることを特徴とする請求項7に記載のセパレータの製造方法。   The separator provided with a plurality of regions from the hydrophilic region to the intermediate region to the hydrophobic region from the hydrogen or oxygen supply side to the discharge side on the surface of the gas channel, Place the separator horizontally on the conveyor so that the separator passes through the surface modification treatment section. When the hydrophilic region passes through the surface modification treatment section, slow down the moving speed of the conveyor. The separator manufacturing method according to claim 7, wherein when the hydrophobic region passes through the surface modification treatment section, the conveyor is moved at a higher speed. 前記ガス流路の表面に前記水素又は酸素の供給側から排出側にわたって親水領域から中間領域を経て疎水領域に到る複数の領域を設けた前記セパレータを、前記ガス流路側を上にして水平のコンベアに傾斜した状態で載せ、前記火炎処理又は前記コロナ放電処理のヘッド部の中心部を前記疎水領域が通過し、前記ヘッド部の先端部を前記親水領域が通過するように前記セパレータの傾斜と前記火炎処理又は前記コロナ放電処理の前記ヘッド部を配置して前記コンベアを移動させることを特徴とする請求項7に記載のセパレータの製造方法。











The separator provided with a plurality of regions from the hydrophilic region to the intermediate region to the hydrophobic region from the hydrogen or oxygen supply side to the discharge side on the surface of the gas channel, The separator is inclined so that the hydrophobic region passes through the center of the flame treatment or the corona discharge treatment head, and the hydrophilic region passes through the tip of the head. The separator manufacturing method according to claim 7, wherein the head portion for the flame treatment or the corona discharge treatment is arranged to move the conveyor.











JP2011008237A 2011-01-18 2011-01-18 Separator manufacturing method Active JP5545669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008237A JP5545669B2 (en) 2011-01-18 2011-01-18 Separator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008237A JP5545669B2 (en) 2011-01-18 2011-01-18 Separator manufacturing method

Publications (2)

Publication Number Publication Date
JP2012150964A true JP2012150964A (en) 2012-08-09
JP5545669B2 JP5545669B2 (en) 2014-07-09

Family

ID=46793059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008237A Active JP5545669B2 (en) 2011-01-18 2011-01-18 Separator manufacturing method

Country Status (1)

Country Link
JP (1) JP5545669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164266B2 (en) 2013-10-02 2018-12-25 Toyota Jidosha Kabushiki Kaisha Separator including tilted gas flow path grooves that retain water by capillary force and fuel cell using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197041A (en) * 1997-09-22 1999-04-09 Sanyo Electric Co Ltd Solid high polymer-type fuel cell
JP2001351644A (en) * 2000-06-07 2001-12-21 Kawasaki Steel Corp Separator for fuel cell and fuel cell
JP2002042844A (en) * 2000-07-26 2002-02-08 Toyota Motor Corp Fuel cell
JP2002313356A (en) * 2001-04-12 2002-10-25 Nippon Steel Chem Co Ltd Fuel cell separator and its manufacturing method
JP2003211073A (en) * 2002-01-23 2003-07-29 Ishizuka Glass Co Ltd Treatment method for hydrophilicity impartation to resin coated glass bottle
JP2004265854A (en) * 2003-01-09 2004-09-24 Honda Motor Co Ltd Separator for fuel cell
JP2005100703A (en) * 2003-09-22 2005-04-14 Asahi Organic Chem Ind Co Ltd Conductive molding material, separator using it for fuel cell, and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197041A (en) * 1997-09-22 1999-04-09 Sanyo Electric Co Ltd Solid high polymer-type fuel cell
JP2001351644A (en) * 2000-06-07 2001-12-21 Kawasaki Steel Corp Separator for fuel cell and fuel cell
JP2002042844A (en) * 2000-07-26 2002-02-08 Toyota Motor Corp Fuel cell
JP2002313356A (en) * 2001-04-12 2002-10-25 Nippon Steel Chem Co Ltd Fuel cell separator and its manufacturing method
JP2003211073A (en) * 2002-01-23 2003-07-29 Ishizuka Glass Co Ltd Treatment method for hydrophilicity impartation to resin coated glass bottle
JP2004265854A (en) * 2003-01-09 2004-09-24 Honda Motor Co Ltd Separator for fuel cell
JP2005100703A (en) * 2003-09-22 2005-04-14 Asahi Organic Chem Ind Co Ltd Conductive molding material, separator using it for fuel cell, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164266B2 (en) 2013-10-02 2018-12-25 Toyota Jidosha Kabushiki Kaisha Separator including tilted gas flow path grooves that retain water by capillary force and fuel cell using the same

Also Published As

Publication number Publication date
JP5545669B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US8790846B2 (en) Gas diffusion layer and process for production thereof, and fuel cell
KR100823487B1 (en) Method of preparing metal nano particle
WO2016051633A1 (en) Gas diffusion layer for fuel cell, fuel cell, and formation method for gas diffusion layer for fuel cell
KR100548118B1 (en) Electrode for fuel cell and fuel cell
JP2010176948A (en) Method for manufacturing gas diffusion layer for electrochemical device and mixture used for the same
JP2006120506A (en) Solid polymer fuel cell
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
KR20190000805A (en) Electrode with organic metal-oxide, method for manufacturing the same, membrane-electrode assembly comprising the same, and fuel cell comprising the membrane-electrode assembly
KR20210076754A (en) Gas diffusion layer for fuel cell applications and unit cell of fuel cell having the same and fuel cell stack having the same
CN1697222A (en) Fuel cell
KR20130114921A (en) Electrode for fuel cell, method of fabricating the same, and membrane-electrode assembly for fuel cell and fuel cell system including the same
JP5410787B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP5545669B2 (en) Separator manufacturing method
JP2012160406A (en) Hydrophilic separator, and method of manufacturing the same
JP2007179870A (en) Gas diffusion electrode, membrane-electrolyte assembly, polymer electrolyte fuel cell and methods for producing them
JP2008198567A (en) Fuel cell
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
JP2006066139A (en) Fuel cell separator and fuel cell using it
EP1386367A2 (en) Flow field plates and a method for forming a seal between them
KR20070024124A (en) Separator for fuel cell, method of preparing same and fuel cell system comprising same
JP2005317287A (en) Film-electrode junction, and solid polymer fuel cell
JP2006331717A (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane electrode assembly for polymer electrolyte fuel cell and its manufacturing method, and polymer electrolyte fuel cell
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP2006019174A (en) Gas diffusion electrode, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP5526066B2 (en) Gas diffusion layer and fuel cell, and method for manufacturing gas diffusion layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5545669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250