JP2012148443A - Fiber-reinforced resin material of structure with rib, and method for manufacturing the same - Google Patents

Fiber-reinforced resin material of structure with rib, and method for manufacturing the same Download PDF

Info

Publication number
JP2012148443A
JP2012148443A JP2011007697A JP2011007697A JP2012148443A JP 2012148443 A JP2012148443 A JP 2012148443A JP 2011007697 A JP2011007697 A JP 2011007697A JP 2011007697 A JP2011007697 A JP 2011007697A JP 2012148443 A JP2012148443 A JP 2012148443A
Authority
JP
Japan
Prior art keywords
panel
fiber
rib
reinforced resin
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011007697A
Other languages
Japanese (ja)
Inventor
Yasushi Kageyama
裕史 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011007697A priority Critical patent/JP2012148443A/en
Publication of JP2012148443A publication Critical patent/JP2012148443A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced resin material of a structure with a rib where a shrinkage cavity is effectively eliminated which may be generated on a panel surface on a side opposite to a surface to which the rib is attached, in a panel with the rib formed of the fiber-reinforced resin material, and to provide a method for manufacturing the same.SOLUTION: The fiber-reinforced resin material 10 of the structure with the rib has the rib 2 on the surface of the panel 1. Both the panel 1 and the rib 2 are formed of materials in which fiber materials 5 and 3 whose weight average fiber lengths are 10-30 mm are mixed in a thermoplastic resin. The proportion of the weight average fiber length of the material forming the rib 2 is lower than that of forming the panel 1.

Description

本発明は、繊維強化樹脂からなるパネルに繊維強化樹脂からなるリブが設けられて強度が高められたリブ付き構造の繊維強化樹脂材とその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a fiber reinforced resin material having a ribbed structure in which a rib made of fiber reinforced resin is provided on a panel made of fiber reinforced resin and the strength thereof is increased, and a manufacturing method thereof.

樹脂に強化用繊維材が混入されてなる繊維強化樹脂材(繊維強化プラスチック(FRP))は、軽量かつ高強度であることから、自動車産業、建設産業、航空産業等、広い産業分野で使用されている。   Fiber reinforced resin material (fiber reinforced plastic (FRP)), which is made by mixing reinforcing fiber material with resin, is used in a wide range of industrial fields such as the automobile industry, construction industry, and aviation industry because of its light weight and high strength. ing.

たとえば自動車産業においては、環境負荷影響等に優しい車両としてハイブリッド自動車や電気自動車が注目されており、その一層の小型化、軽量化、高性能化を目指した開発が自動車メーカー各社、自動車関連メーカー各社で日々進められている。これらの所謂エコカーのみならずその他一般のガソリン車両やディーゼル車両を含む車両の全般に対して、車両の軽量化と高剛性化の双方を満足する部材として繊維強化樹脂材を車両ボディー用パネルの一部または全部に適用しようとするニーズが高まっているのが現状である。   For example, in the automobile industry, hybrid cars and electric cars are attracting attention as vehicles that are friendly to environmental impacts, etc. Development aimed at further miniaturization, lighter weight, and higher performance has been made by car manufacturers and car-related manufacturers. It is advanced every day. In addition to these so-called eco-cars, a fiber reinforced resin material is used as a member for a vehicle body panel as a member that satisfies both weight reduction and high rigidity of vehicles including general gasoline vehicles and diesel vehicles. At present, there is an increasing need to apply to parts or all.

このように車両のボディー部材として繊維強化部材が適用される際には、フラットな2次元形状や湾曲した3次元形状、フラットな領域と湾曲した領域からなる3次元形状といった様々な形状を呈するパネルの剛性を高めたり、パネルの曲げ強度やせん断強度といった強度を高めるために、パネルの表面にリブを設けたリブ付き構造の繊維強化樹脂材が適用されることが多い。   Thus, when a fiber reinforced member is applied as a vehicle body member, the panel exhibits various shapes such as a flat two-dimensional shape, a curved three-dimensional shape, and a three-dimensional shape composed of a flat region and a curved region. In many cases, a fiber reinforced resin material having a ribbed structure in which ribs are provided on the surface of the panel is applied in order to increase the rigidity of the panel and the strength of the panel such as bending strength and shear strength.

このようにパネルをリブで補強したリブ付き構造の繊維強化樹脂材に関する従来技術として特許文献1に開示の繊維強化樹脂成形品を挙げることができる。この繊維強化樹脂成形品は、リブを含むパネルのすべてにおいて、繊維長が0.5mm以下の繊維が30重量%以下、1.5mm以上の繊維が20重量%以上であり、かつ成形品中の繊維の重量平均繊維長をL(mm)、繊維含有量をV(重量%)とした際に、20≦L×V≦500の関係を満足する繊維強化樹脂成形品である。そして、このような構成を適用することにより、薄肉成形品のリブやボスなどの厚肉部の反対側の成形品表面に、ヒケの発生のない成形品が得られるとしている。   As a conventional technique related to a fiber reinforced resin material having a ribbed structure in which a panel is reinforced with ribs, a fiber reinforced resin molded product disclosed in Patent Document 1 can be cited. This fiber-reinforced resin molded product has a fiber length of 30 mm or less, a fiber length of 1.5 mm or more, and 20 wt% or more of fibers having a fiber length of 0.5 mm or less in all panels including ribs. The fiber reinforced resin molded product satisfies the relationship of 20 ≦ L × V ≦ 500 when the weight average fiber length is L (mm) and the fiber content is V (% by weight). By applying such a configuration, it is said that a molded product free from sink marks is obtained on the surface of the molded product on the opposite side of the thick part such as ribs and bosses of the thin molded product.

上記特許文献1で開示される繊維強化樹脂成形品は、パネルとリブに対して一律に同様の関係式が適用されて繊維長や繊維含有量を規定するものであり、双方の繊維長分布も同一であると考えられるが、本発明者等によれば、パネルとリブで繊維長分布の割合が同程度の場合にはパネル表面にヒケが生じ易いことが特定されている。より具体的には、パネルの表面にリブが取り付けられた構成における該パネルの反対側の表面においてヒケが生じ易いというものである。このことから、特許文献1で記載する構成の成形品を製造した際に、ここで記載するようにヒケの存在しない成形品が得られるという効果が実際に奏されるか否かは極めて不確かである。   The fiber reinforced resin molded article disclosed in Patent Document 1 is such that the same relational expression is uniformly applied to the panel and the rib to define the fiber length and the fiber content. Although considered to be the same, according to the present inventors, it has been specified that if the ratio of the fiber length distribution is the same between the panel and the rib, the panel surface is prone to sink. More specifically, sinks are likely to occur on the surface on the opposite side of the panel in a configuration in which ribs are attached to the surface of the panel. From this, it is extremely uncertain whether or not the effect of obtaining a molded product free from sink marks as described herein is actually produced when a molded product having the configuration described in Patent Document 1 is manufactured. is there.

したがって、繊維強化樹脂からなるパネルに繊維強化樹脂からなるリブが設けられたリブ付き構造の繊維強化樹脂材において、パネルの表面に生じ得るヒケが解消された繊維強化樹脂材とその製造方法の発案が当該技術分野で切望されている。   Therefore, in a fiber reinforced resin material having a ribbed structure in which a fiber reinforced resin panel is provided on a fiber reinforced resin panel, a fiber reinforced resin material in which sink marks that may occur on the surface of the panel are eliminated, and a method of manufacturing the same Are eagerly desired in the art.

特開平11−226984号公報JP-A-11-226984

本発明は上記する問題に鑑みてなされたものであり、繊維強化樹脂からなるリブ付きパネルにおいて、リブが取り付けられた表面と反対側のパネル表面に生じ得るヒケが効果的に解消されたリブ付き構造の繊維強化樹脂材とその製造方法を提供することを目的とする。   The present invention has been made in view of the problems described above, and in a panel with ribs made of fiber reinforced resin, ribs that effectively eliminate sink marks that may occur on the surface of the panel opposite to the surface on which the ribs are attached. An object is to provide a fiber-reinforced resin material having a structure and a method for producing the same.

前記目的を達成すべく、本発明によるリブ付き構造の繊維強化樹脂材は、パネルの表面にリブを有するリブ付き構造の繊維強化樹脂材であって、パネルとリブはともに熱可塑性樹脂の内部に重量平均繊維長が10〜30mmの繊維材が混合された素材から形成されており、リブを形成する素材の重量平均繊維長の割合がパネルを形成する素材の重量平均繊維長の割合に比して低いものである。   In order to achieve the above object, a fiber reinforced resin material having a ribbed structure according to the present invention is a fiber reinforced resin material having a rib structure having ribs on the surface of the panel, and both the panel and the rib are placed inside the thermoplastic resin. The weight average fiber length is formed from a material mixed with a fiber material of 10 to 30 mm, and the ratio of the weight average fiber length of the material forming the rib is compared with the ratio of the weight average fiber length of the material forming the panel. Low.

既述するように、パネルはフラットな2次元形状や様々な3次元形状を呈し、この表面に任意長さでかつ任意形状のリブが任意の基数設けられてパネルの強度が強化されている。また、リブの立設形態は、パネルに対して垂直方向に立設した形態のほか、所定角度傾斜した方向に立設した形態も含まれる。   As described above, the panel has a flat two-dimensional shape and various three-dimensional shapes, and an arbitrary length and an arbitrary number of ribs are provided on the surface to increase the strength of the panel. In addition to the configuration in which the ribs are erected in the direction perpendicular to the panel, the configuration in which the ribs are erected in a direction inclined by a predetermined angle is also included.

パネルとリブを形成する熱可塑性樹脂は同一種の樹脂を使用してもよいし、異なる樹脂を使用してもよく、適用される熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリスチレン、AS樹脂、ABS樹脂、ポリ塩化ビニル、メタクリル樹脂、ポリアミド、ポリエステル、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、ポリエーテルイミド、ポリエーテルサルフォン、ポリアミドイミド、熱可塑性エポキシ樹脂などのいずれか一種もしくは2種以上の混合材を挙げることができる。   The same type of resin may be used as the thermoplastic resin forming the panel and the rib, or different resins may be used. The applied thermoplastic resin is polypropylene, polyethylene, polystyrene, AS resin, ABS. Resin, polyvinyl chloride, methacrylic resin, polyamide, polyester, polyacetal, polycarbonate, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, polyether imide, polyether sulfone, polyamide imide, thermoplastic epoxy resin, etc. Two or more kinds of mixed materials can be mentioned.

また、熱可塑性樹脂内に含有される繊維材としては、ボロンやアルミナ、炭化ケイ素、窒化ケイ素、ジルコニアなどのセラミック繊維や、ガラス繊維や炭素繊維といった無機繊維、銅や鋼、アルミニウム、ステンレス等の金属繊維、ポリアミドやポリエステルなどの有機繊維のいずれか一種もしくは2種以上の混合材を挙げることができる。   In addition, as the fiber material contained in the thermoplastic resin, ceramic fibers such as boron, alumina, silicon carbide, silicon nitride, zirconia, inorganic fibers such as glass fibers and carbon fibers, copper, steel, aluminum, stainless steel, etc. Any one kind or a mixture of two or more kinds of organic fibers such as metal fibers, polyamides and polyesters can be mentioned.

パネルとリブを形成する熱可塑性樹脂の内部に含有される繊維材は、その臨界アスペクト比(繊維材の直径に対する長さの比であって、ここでの「臨界」とは曲げ強度や衝撃強度のピーク値のこと)を与える10〜30mmの重量平均繊維長のものが適用され、さらに、リブを形成する素材の重量平均繊維長の割合はパネルを形成する素材の重量平均繊維長の割合に比して低くなっている。   The fiber material contained in the thermoplastic resin that forms the panel and rib is the critical aspect ratio (ratio of the length to the diameter of the fiber material, where “critical” refers to bending strength and impact strength. The weight average fiber length of 10 to 30 mm is applied, and the ratio of the weight average fiber length of the material forming the rib is the ratio of the weight average fiber length of the material forming the panel. It is lower than that.

ここで、「重量平均繊維長」とは、様々な長さの繊維がそれぞれ、全体重量に対してどれくらいの重量割合で含まれているかの観点から算出された繊維長の平均値のことである。また、「重量平均繊維長の割合」とは、重量平均繊維長の長さの繊維がどれくらいの割合で含まれているかを示す値である。たとえば重量平均繊維長が20mmとした際に、繊維を含む熱可塑性樹脂から樹脂成分を除去して繊維のみを抽出し、分級して繊維長と配合率の分布図を作成し、20mmの長さの繊維がどれくらいの割合で含まれているかを算出する。分級精度によって重量平均繊維長の値にある程度の誤差(たとえば±5mm程度)が存在するが、この誤差範囲に含まれるものを重量平均繊維長としてプロットし、その分布図を作成し、この分布図から重量平均繊維長の割合を読み取ることができる。   Here, the “weight average fiber length” is an average value of fiber lengths calculated from the viewpoint of how much weight each of various lengths of fibers is included in the total weight. . Further, the “ratio of weight average fiber length” is a value indicating how much a fiber having a length of weight average fiber length is contained. For example, when the weight average fiber length is 20 mm, the resin component is removed from the thermoplastic resin containing the fibers, and only the fibers are extracted and classified to create a distribution diagram of the fiber length and the mixing ratio, and the length of 20 mm. It is calculated how much fiber is contained. A certain amount of error (for example, about ± 5mm) exists in the value of the weight average fiber length depending on the classification accuracy. The distribution range is created by plotting the weight average fiber length included in this error range as a distribution map. From the above, the ratio of the weight average fiber length can be read.

すなわち、リブを形成する素材の繊維長と配合率を座標軸とする重量平均繊維長に関するグラフを作成した際に、このグラフは配合率のピークとなる繊維長を挟んで比較的ブロードな(繊維長分布の広い)グラフとなり、一方でパネルを形成する素材の重量平均繊維長に関するグラフは配合率のピークとなる繊維長を挟んで比較的シャープな(繊維長分布の狭い)グラフとなる。   That is, when creating a graph regarding the weight average fiber length with the fiber length and blending ratio of the material forming the ribs as the coordinate axis, this graph is relatively broad across the fiber length at which the blending ratio peak (fiber length On the other hand, a graph relating to the weight average fiber length of the material forming the panel is a relatively sharp graph (narrow fiber length distribution) across the fiber length at which the blending ratio peaks.

このように、リブを形成する素材の重量平均繊維長の割合がパネルを形成する素材の重量平均繊維長の割合に比して低くなっていることで、パネルには相対的に長繊維の繊維材が適用されてパネルの曲げ強度等を向上させることができ、リブには比較的多くの短繊維が適用されることで成形型内の成形性を向上させ、形成され得る樹脂リッチな領域を解消して高強度なリブを形成することができ、かつパネルに生じ得るヒケを効果的に抑制することができる。   Thus, the ratio of the weight average fiber length of the material forming the rib is lower than the ratio of the weight average fiber length of the material forming the panel, so that the panel has relatively long fiber fibers. The material can be applied to improve the bending strength of the panel, etc., and a relatively large number of short fibers are applied to the ribs to improve the moldability in the mold and to form a resin-rich region that can be formed. It can be eliminated and a high-strength rib can be formed, and sink marks that can occur in the panel can be effectively suppressed.

また、上記するパネルの強度向上を図りながら樹脂リッチ領域を解消して高強度なリブを形成するべく、パネルを形成する素材の重量平均繊維長を規定値で最大の30mmとし、リブを形成する素材の重量平均繊維長は30mmよりも短い、たとえば20mmや10mm程度とするリブ付き構造の繊維強化樹脂材とするのが好ましい。   Further, in order to eliminate the resin-rich region and form a high-strength rib while improving the strength of the panel described above, the weight average fiber length of the material forming the panel is set to a maximum value of 30 mm, and the rib is formed. The weight average fiber length of the material is preferably a fiber reinforced resin material having a ribbed structure shorter than 30 mm, for example, about 20 mm or 10 mm.

また、前記リブがパネルと平行なパネル側面部と該パネル側面部から立設するリブ部とから構成され、このリブを構成する前記パネル側面部と前記パネルが一体化されているのが好ましい。   Moreover, it is preferable that the said rib is comprised from the panel side part parallel to a panel, and the rib part standing from this panel side part, and the said panel side part and the said panel which comprise this rib are integrated.

パネルに対して立設するリブが直接繋がれた構成では、リブからパネルに亘って繊維材が連続する構造を形成するのが難しい。そして、このように繊維材がリブからパネルに亘って連続していない場合は、連続している構造に比してリブの根元部のせん断強度等の強度特性が劣るものとなる。そこで、リブの根元の強度を高めるための方策として、リブをパネルと平行なパネル側面部と該パネル側面部から立設するリブ部とから構成し、このパネル側面部とパネルを一体化させた構成とすることで、リブを構成するリブ部からパネル側面部に亘って連続するように繊維材を配設することができ、リブの根元の強度を高めることができる。   In the configuration in which the ribs standing upright with respect to the panel are directly connected, it is difficult to form a structure in which the fiber material continues from the rib to the panel. When the fiber material is not continuous from the rib to the panel in this way, the strength characteristics such as the shear strength at the root of the rib are inferior to the continuous structure. Therefore, as a measure to increase the strength of the base of the rib, the rib is composed of a panel side surface parallel to the panel and a rib portion erected from the panel side surface, and the panel side surface and the panel are integrated. By setting it as a structure, a fiber material can be arrange | positioned so that it may continue over a panel side part from the rib part which comprises a rib, and the intensity | strength of the base of a rib can be raised.

さらに、本発明はリブ付き構造の繊維強化樹脂材の製造方法にも及ぶものであり、この製造方法は、2軸押し出し装置に連続繊維材と熱可塑性樹脂材を導入し、連続繊維材を2軸押し出し装置内で裁断しながら熱可塑性樹脂材と混練して混練材料を生成し、混練材料を成形型内に充填してプレス加工することでリブを製造すること、および、予め繊維材と熱可塑性樹脂から形成された樹脂材を別途の成形型内で溶融させてプレス加工することでパネルを製造すること、からなる第1のステップ、製造されたリブをその熱可塑性樹脂の融点以上に加熱処理しておき、前記別途の成形型を型開きして製造されたパネルの上に加熱処理されたリブを載置し、型閉めしてプレス加工することで繊維強化樹脂材を製造する第2のステップからなり、該繊維強化樹脂材は、リブを形成する素材の重量平均繊維長の割合がパネルを形成する素材の重量平均繊維長の割合に比して低いものである。   Furthermore, the present invention extends to a method for manufacturing a fiber-reinforced resin material having a ribbed structure. This manufacturing method introduces a continuous fiber material and a thermoplastic resin material into a biaxial extrusion device, and converts the continuous fiber material into two. Kneading with a thermoplastic resin material while cutting in a shaft extrusion device to produce a kneaded material, filling the kneaded material into a mold and pressing to produce ribs, and pre-fibre and heat The first step of manufacturing a panel by melting and pressing a resin material formed from a plastic resin in a separate mold and heating the manufactured rib to a temperature higher than the melting point of the thermoplastic resin 2nd which manufactures a fiber reinforced resin material by mounting the heat-processed rib on the panel manufactured by opening the said separate shaping | molding die previously, and closing and press-working the mold. Consisting of the steps Reinforced resin materials are those lower than the weight average fiber length ratio of the material ratio of the weight average fiber length of the material forming the ribs to form a panel.

上記するリブの成形法は、長繊維複合成形法の一つであるLFT−D法(Long Fiber Thermoplastics Direct)を適用したものであり、上記するパネルの成形法は、やはり長繊維複合成形法の一つであるGMT法(Glass Mat Thermoplasticsであり、ガラス繊維以外の繊維材を適用した場合も含むもの)を適用したものである。   The rib molding method described above is an application of the LFT-D method (Long Fiber Thermoplastics Direct), which is one of the long fiber composite molding methods. The panel molding method described above is also a long fiber composite molding method. One is the GMT method (Glass Mat Thermoplastics, including cases where fiber materials other than glass fibers are applied).

第1のステップで双方を別体に成形するに際し、2軸押し出し装置に連続繊維材と熱可塑性樹脂材を導入し、連続繊維材を2軸押し出し装置内で裁断しながら熱可塑性樹脂材と混練して混練材料を生成し、混練材料を成形型内に充填してプレス加工することにより、リブを形成する素材の重量平均繊維長の割合をパネルを形成する素材の重量平均繊維長の割合に比して低くなるように調整することが容易となる。そして、たとえばパネルを成形している成形型内に成形済みのリブをプレヒートして溶融したものを収容し、この成形型内でパネルとリブをプレス加工することで、特にパネルにおいてリブが取り付けられた箇所の背面にヒケを生じさせることなく、リブとパネルが強固に一体化されたリブ付き構造の繊維強化樹脂材を得ることができる。   When forming both of them separately in the first step, the continuous fiber material and the thermoplastic resin material are introduced into the biaxial extruder, and the continuous fiber material is kneaded with the thermoplastic resin material while being cut in the biaxial extruder. To produce a kneaded material, filling the kneaded material into a mold and pressing it, so that the ratio of the weight average fiber length of the material forming the rib is changed to the ratio of the weight average fiber length of the material forming the panel It becomes easy to adjust so that it may become low. Then, for example, a pre-molded rib that has been preheated and melted is contained in a mold for molding the panel, and the panel and the rib are pressed in this mold, so that the rib can be attached particularly to the panel. A fiber-reinforced resin material having a ribbed structure in which the rib and the panel are firmly integrated can be obtained without causing a sink on the back surface of the portion.

以上の説明から理解できるように、本発明のリブ付き構造の繊維強化樹脂材とその製造方法によれば、パネルの表面にリブを有するリブ付き構造の繊維強化樹脂材に関し、リブを形成する繊維強化樹脂中の重量平均繊維長の割合がパネルを形成する繊維強化樹脂中の重量平均繊維長の割合に比して低く調整されていることで、リブが取り付けられた表面と反対側のパネル表面に生じ得るヒケが効果的に解消されたリブ付き構造の繊維強化樹脂材を得ることができる。   As can be understood from the above description, according to the fiber-reinforced resin material having a ribbed structure of the present invention and the method for manufacturing the same, the fiber-forming resin material having the rib structure on the surface of the panel, the fibers forming the ribs The panel surface on the opposite side of the surface where the ribs are attached by adjusting the ratio of the weight average fiber length in the reinforced resin to be lower than the ratio of the weight average fiber length in the fiber reinforced resin forming the panel It is possible to obtain a fiber-reinforced resin material having a ribbed structure in which sink marks that may occur are effectively eliminated.

本発明のリブ付き構造の繊維強化樹脂材の一実施の形態の斜視図である。It is a perspective view of one embodiment of a fiber reinforced resin material having a ribbed structure of the present invention. 図1のII部を拡大した図である。It is the figure which expanded the II section of FIG. ヒケの有無の確認試験と曲げ強度試験で用いた実施例および比較例の試験体の形状および寸法を説明した図である。It is a figure explaining the shape and dimension of the test body of the Example used by the confirmation test of the presence or absence of sink marks, and the bending strength test, and a comparative example. (a)は実施例の試験体の断面構造を示す写真図であり、(b)は(a)中のb部を拡大した図であり、(c)は(a)中のc部を拡大した図である。(A) is the photograph figure which shows the cross-sectional structure of the test body of an Example, (b) is the figure which expanded b part in (a), (c) is expanded c part in (a). FIG. (a)は比較例の試験体の断面構造を示す写真図であり、(b)は(a)中のb部を拡大した図であり、(c)は(a)中のc部を拡大した図である。(A) is the photograph figure which shows the cross-section of the test body of a comparative example, (b) is the figure which expanded b part in (a), (c) is expanded c part in (a). FIG.

以下、図面を参照して本発明の実施の形態を説明する。なお、図示例は2次元平面状のパネルに縦横に延びるリブが取り付けられた形態の繊維強化樹脂材であるが、本発明のリブ付き構造の繊維強化樹脂材はこのほかにも、湾曲状、湾曲面と平面の組み合わせ、相互に傾斜する2以上の平面の組み合わせなどからなる任意の3次元形状のパネルと、このパネルに対して直交方向のみならず、傾斜方向に延びるリブや高さの相違する複数種のリブが取り付けられた繊維強化樹脂材など、多様な形状形態のリブ付き構造の繊維強化樹脂材を対象とするものである。   Embodiments of the present invention will be described below with reference to the drawings. The illustrated example is a fiber reinforced resin material in which ribs extending vertically and horizontally are attached to a two-dimensional flat panel, but the fiber reinforced resin material of the ribbed structure of the present invention is also curved, Arbitrary three-dimensional panel composed of a combination of a curved surface and a plane, a combination of two or more planes inclined to each other, and a difference in ribs and height extending not only in an orthogonal direction but also in an inclined direction with respect to this panel It is intended for a fiber reinforced resin material having a ribbed structure having various shapes such as a fiber reinforced resin material to which a plurality of types of ribs are attached.

図1は本発明のリブ付き構造の繊維強化樹脂材の一実施の形態の斜視図であり、図2は図1のII部を拡大した図である。図1で示す繊維強化樹脂材10は、平面状のパネル1の表面に、縦方向に4条、横方向に1条のリブ2が相互に交差して鉛直方向に立設して一体に構成されたものである。   FIG. 1 is a perspective view of an embodiment of a fiber-reinforced resin material having a ribbed structure according to the present invention, and FIG. 2 is an enlarged view of a portion II in FIG. The fiber reinforced resin material 10 shown in FIG. 1 is integrally formed on the surface of a flat panel 1 by vertically extending four ribs in the vertical direction and one rib 2 in the horizontal direction. It has been done.

パネル1とリブ2はともにマトリックス樹脂を熱可塑性樹脂としてその内部に繊維材が含有されてなる繊維強化樹脂から成形されている。   Both the panel 1 and the rib 2 are formed from a fiber reinforced resin in which a matrix resin is used as a thermoplastic resin and a fiber material is contained therein.

より具体的には、図2で示すように、リブ2はパネル1と平行なパネル側面部2bとこのパネル側面部2bから立設するリブ部2aから構成されており、パネル側面部2bとパネル1が一体化されてリブ付き構造の繊維強化樹脂材10が形成されている。   More specifically, as shown in FIG. 2, the rib 2 is composed of a panel side surface portion 2b parallel to the panel 1 and a rib portion 2a erected from the panel side surface portion 2b. 1 is integrated to form a fiber-reinforced resin material 10 having a ribbed structure.

パネル1は、熱可塑性樹脂からなるマトリックス樹脂6内に繊維材5が含有された繊維強化樹脂から成形されており、繊維材5の重量平均繊維長は10〜30mmの範囲に調整されている。   The panel 1 is formed from a fiber reinforced resin in which a fiber material 5 is contained in a matrix resin 6 made of a thermoplastic resin, and the weight average fiber length of the fiber material 5 is adjusted to a range of 10 to 30 mm.

一方、リブ2も同様に熱可塑性樹脂からなるマトリックス樹脂4内に繊維材3が含有された繊維強化樹脂から成形されており、繊維材3の重量平均繊維長も同様に10〜30mmの範囲に調整されているが、リブ2を形成する繊維材3の重量平均繊維長の割合はパネル1を形成する繊維材5の重量平均繊維長の割合に比して低くなるように調整されている。   On the other hand, the rib 2 is also molded from a fiber reinforced resin in which a fiber material 3 is contained in a matrix resin 4 made of a thermoplastic resin, and the weight average fiber length of the fiber material 3 is similarly in the range of 10 to 30 mm. Although adjusted, the ratio of the weight average fiber length of the fiber material 3 forming the rib 2 is adjusted to be lower than the ratio of the weight average fiber length of the fiber material 5 forming the panel 1.

この重量平均繊維長:10〜30mmの範囲は、その臨界アスペクト比を与える繊維長範囲であり、この繊維長範囲で繊維の強度(引張強度など)がピーク値を示すことが本発明者等によって特定されており、この特定結果に基づいてこの重量平均繊維長範囲が規定されている。   The weight average fiber length: the range of 10 to 30 mm is a fiber length range that gives the critical aspect ratio, and the present inventors show that the fiber strength (such as tensile strength) shows a peak value within this fiber length range. The weight average fiber length range is defined based on the identification result.

また、「リブ2を形成する繊維材3の重量平均繊維長の割合がパネル1を形成する繊維材5の重量平均繊維長の割合に比して低い」とは、リブ2を形成する繊維材3の繊維長と配合率を座標軸とする重量平均繊維長に関するグラフを作成した際に、このグラフは配合率のピークとなる繊維長を挟んで比較的ブロードな(繊維長分布の広い)グラフとなること、および、その一方でパネル1を形成する繊維材5の重量平均繊維長に関するグラフは配合率のピークとなる繊維長を挟んで比較的シャープな(繊維長分布の狭い)グラフとなることを意味している。   “The ratio of the weight average fiber length of the fiber material 3 forming the rib 2 is lower than the ratio of the weight average fiber length of the fiber material 5 forming the panel 1” means that the fiber material forming the rib 2 When the graph regarding the weight average fiber length having the fiber length of 3 and the blending rate as the coordinate axis was created, this graph is a relatively broad graph (with a wide fiber length distribution) across the fiber length at which the blending rate peaked. On the other hand, the graph relating to the weight average fiber length of the fiber material 5 forming the panel 1 is a relatively sharp graph (with a narrow fiber length distribution) across the fiber length at which the blending ratio peak. Means.

このように、リブ2を形成する繊維材3の重量平均繊維長の割合がパネル1を形成する繊維材5の重量平均繊維長の割合に比して低くなっていることで、パネル1には相対的に長繊維の繊維材5が適用されてパネル1の曲げ強度等を向上させることができ、リブ2には比較的多くの短繊維の繊維材3が適用されることで不図示の成形型内における成形性を向上させることができ、繊維材が存在せずに樹脂リッチとなっている領域が存在しない、もしくは極めて少ない高強度なリブ2を形成することができる。   Thus, the ratio of the weight average fiber length of the fiber material 3 forming the rib 2 is lower than the ratio of the weight average fiber length of the fiber material 5 forming the panel 1. A relatively long fiber material 5 is applied to improve the bending strength and the like of the panel 1, and a relatively large number of short fiber materials 3 are applied to the ribs 2 so as not to be formed. The moldability in the mold can be improved, and the high-strength ribs 2 can be formed in which no fiber material is present and there is no resin-rich region or very little.

さらに、リブ2の繊維材3の重量平均繊維長の割合をパネル1の繊維材5の重量平均繊維長の割合よりも低くしたことで、パネル1のうち、リブ2が取り付けられた側と反対側の表面箇所Aなどで生じ易いヒケの発生を効果的に解消できることが本発明者等によって見出されている。   Furthermore, by making the ratio of the weight average fiber length of the fiber material 3 of the rib 2 lower than the ratio of the weight average fiber length of the fiber material 5 of the panel 1, it is opposite to the side of the panel 1 where the rib 2 is attached. It has been found by the present inventors that the occurrence of sink marks that are likely to occur at the surface portion A on the side can be effectively eliminated.

このようにパネル1の強度向上を図りながら樹脂リッチな領域のない高強度なリブ2を形成するべく、パネル1を形成する繊維材5の重量平均繊維長を上記規定範囲内で最大の30mmとし、リブ2を形成する繊維材3の重量平均繊維長はそれよりも短い、たとえば20mmや10mm程度とするのがよい。   Thus, in order to form a high-strength rib 2 without a resin-rich region while improving the strength of the panel 1, the weight average fiber length of the fiber material 5 forming the panel 1 is set to a maximum of 30 mm within the specified range. The weight average fiber length of the fiber material 3 forming the rib 2 is preferably shorter, for example, about 20 mm or 10 mm.

また、リブ2をパネル1と平行なパネル側面部2bとこのパネル側面部2bから立設するリブ部2aから構成したことにより、図2で示すように、リブ2を構成するリブ部2aからパネル側面部2bに亘って連続するように繊維材3を配設することができ(図中の繊維材3’)、リブ部2aとパネル側面部2bの取り合い部であるリブ2の根元のせん断強度や曲げ強度を高めることができる。   Further, since the rib 2 is composed of a panel side surface portion 2b parallel to the panel 1 and a rib portion 2a erected from the panel side surface portion 2b, the rib portion 2a constituting the rib 2 as shown in FIG. The fiber material 3 can be disposed so as to be continuous over the side surface portion 2b (fiber material 3 'in the figure), and the shear strength at the base of the rib 2 which is the joint portion between the rib portion 2a and the panel side surface portion 2b And bending strength can be increased.

ここで、パネル1とリブ2を形成するマトリックス樹脂4,6である熱可塑性樹脂は同一種の樹脂を使用してもよいし、異なる樹脂を使用してもよく、適用される熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリスチレン、AS樹脂、ABS樹脂、ポリ塩化ビニル、メタクリル樹脂、ポリアミド、ポリエステル、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、ポリエーテルイミド、ポリエーテルサルフォン、ポリアミドイミド、熱可塑性エポキシ樹脂などのいずれか一種もしくは2種以上の混合材を挙げることができる。   Here, the thermoplastic resin which is the matrix resins 4 and 6 forming the panel 1 and the rib 2 may be the same type of resin or different resins. Are polypropylene, polyethylene, polystyrene, AS resin, ABS resin, polyvinyl chloride, methacrylic resin, polyamide, polyester, polyacetal, polycarbonate, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, polyether imide, polyether sulfone, polyamide Any one kind or two or more kinds of mixed materials such as imide and thermoplastic epoxy resin can be mentioned.

また、熱可塑性樹脂内に含有される繊維材3,5としては、ボロンやアルミナ、炭化ケイ素、窒化ケイ素、ジルコニアなどのセラミック繊維や、ガラス繊維や炭素繊維といった無機繊維、銅や鋼、アルミニウム、ステンレス等の金属繊維、ポリアミドやポリエステルなどの有機繊維のいずれか一種もしくは2種以上の混合材を挙げることができる。   The fiber materials 3 and 5 contained in the thermoplastic resin include ceramic fibers such as boron, alumina, silicon carbide, silicon nitride, and zirconia, inorganic fibers such as glass fibers and carbon fibers, copper, steel, aluminum, One kind or a mixture of two or more kinds of metal fibers such as stainless steel and organic fibers such as polyamide and polyester can be used.

図示するリブ付き構造の繊維強化樹脂材10は、軽量であることは勿論のこと、パネル1の表面にヒケが生じておらず、外観意匠性に優れた製品となる。さらに、リブ2とパネル1双方の内部に構造弱部となる樹脂リッチな領域が生じ難いことから、曲げ強度や引張強度、せん断強度などの強度の高い製品となっている。   The fiber-reinforced resin material 10 having a ribbed structure shown in the figure is not only light in weight but also has no sink on the surface of the panel 1 and is a product excellent in appearance design. Furthermore, since a resin-rich region that becomes a structural weak portion is hardly generated inside both the rib 2 and the panel 1, the product has high strength such as bending strength, tensile strength, and shear strength.

次に、図示するリブ付き構造の繊維強化樹脂材10の製造方法を概説する。   Next, an outline of a method for producing the illustrated fiber-reinforced resin material 10 having a ribbed structure will be described.

まず、第1のステップとして、リブ2とパネル1をそれぞれ別体で成形する。具体的には、リブ2の成形法として、不図示の2軸押し出し装置に連続繊維材とマトリックス樹脂となる熱可塑性樹脂材を導入し、連続繊維材を2軸押し出し装置内で裁断しながら熱可塑性樹脂材と混練して混練材料を生成し、混練材料を不図示の成形型内に充填してプレス加工することによって図示形状のリブ2を製造する。   First, as a first step, the rib 2 and the panel 1 are separately formed. Specifically, as a method for forming the rib 2, a continuous fiber material and a thermoplastic resin material serving as a matrix resin are introduced into a biaxial extrusion device (not shown), and the continuous fiber material is heated while being cut in the biaxial extrusion device. The rib 2 having the shape shown in the figure is manufactured by kneading with a plastic resin material to produce a kneaded material, filling the kneaded material into a mold (not shown), and pressing the material.

また、パネル1の成形法は、繊維材とマトリックス樹脂となる熱可塑性樹脂から形成された樹脂材を不図示で別途の成形型内で溶融させてプレス加工することによって図示形状のパネル1を製造する。   Further, the panel 1 is manufactured by manufacturing a panel 1 having a shape shown in the figure by melting and pressing a resin material formed from a thermoplastic resin as a fiber material and a matrix resin in a separate mold (not shown). To do.

このリブ2とパネル1の成形の際には、既述するように、リブ2を形成する繊維材3の重量平均繊維長の割合がパネル1を形成する繊維材5の重量平均繊維長の割合に比して低くなるように調整が図られている。   When the rib 2 and the panel 1 are formed, as described above, the ratio of the weight average fiber length of the fiber material 3 forming the rib 2 is the ratio of the weight average fiber length of the fiber material 5 forming the panel 1. The adjustment is made to be lower than that.

次いで第2のステップとして、第1のステップで製造されたリブ2をその熱可塑性樹脂の融点以上にプレヒートし、パネル1が成形された別途の成形型を型開きして製造されたパネル1の上にプレヒートされたリブ2を載置し、型閉めしてプレス加工することにより、パネル1とリブ2が一体化されたリブ付き構造の繊維強化樹脂材10が製造される。   Next, as a second step, the rib 2 manufactured in the first step is preheated to a temperature equal to or higher than the melting point of the thermoplastic resin, and a separate mold in which the panel 1 is formed is opened to open the panel 1 manufactured. By placing the preheated rib 2 on the top, closing the mold and pressing, the fiber reinforced resin material 10 having a ribbed structure in which the panel 1 and the rib 2 are integrated is manufactured.

[ヒケの有無の確認試験および曲げ強度試験とそれらの結果]
本発明者等は、図3で示すような形状および寸法を有する実施例および比較例の試験体を製作し、ヒケの有無を確認するとともに曲げ試験をおこなってそれらの曲げ強度を測定した。実施例1〜3と比較例それぞれのパネルとリブの重量平均繊維長の割合、ヒケの有無、曲げ強度測定結果を以下の表1に示す。また、実施例1の試験体の断面写真を図4に、比較例の試験体の断面写真を図5にそれぞれ示している。
[Skin check / bending strength test and results]
The inventors of the present invention manufactured test bodies of Examples and Comparative Examples having shapes and dimensions as shown in FIG. 3 and confirmed the presence or absence of sink marks and conducted bending tests to measure their bending strength. Table 1 below shows the ratio of the weight average fiber length of the panels and ribs of each of Examples 1 to 3 and the comparative example, the presence or absence of sink marks, and the bending strength measurement results. Moreover, the cross-sectional photograph of the test body of Example 1 is shown in FIG. 4, and the cross-sectional photograph of the test body of the comparative example is shown in FIG.

Figure 2012148443
Figure 2012148443

比較例はパネル、リブの重量平均繊維長割合が同じでともに長繊維の割合の高い試験体である。一方、実施例1,2,3はともに、パネルに比してリブの重量平均繊維長割合が低く、パネルは長繊維の割合が高く、リブは長繊維〜短繊維の割合分布の広い繊維材(比較的短繊維が多い)でできている。   The comparative example is a test body in which the panel and rib have the same weight average fiber length ratio and both have a high ratio of long fibers. On the other hand, in Examples 1, 2 and 3, the weight average fiber length ratio of the ribs is lower than that of the panel, the panel has a high ratio of long fibers, and the rib is a fiber material having a wide ratio distribution of long fibers to short fibers. Made of (relatively many short fibers).

パネル表面におけるヒケの有無に関しては、実施例1,2,3はいずれもヒケの発生がないことが実証されている。その一方で、比較例のパネルには多数のヒケが確認されている。   Regarding the presence or absence of sink marks on the panel surface, it has been demonstrated that Examples 1, 2 and 3 have no sink marks. On the other hand, many sink marks are confirmed on the panel of the comparative example.

このことを図4,5の写真図を参照して説明すると、図4で示す実施例1の断面写真(図4aは全体写真、図4b、cはそれぞれ図4a中のb部、c部の拡大写真である)からも明らかなように、パネルの表面にはヒケは一切観察されない。   This will be described with reference to the photographic diagrams of FIGS. 4 and 5. The cross-sectional photograph of Example 1 shown in FIG. 4 (FIG. 4a is an overall photograph, FIGS. 4b and c are parts b and c in FIG. 4a, respectively). As is clear from the enlarged photograph, no sink marks are observed on the surface of the panel.

そして、実施例1を構成するパネル、リブともに、繊維材が存在せずに樹脂リッチな領域はごく僅かしかなく、特にリブにおいて樹脂リッチ領域は確認できない。   The panel and ribs constituting Example 1 have very few resin-rich regions without any fiber material, and in particular, the resin-rich regions cannot be confirmed in the ribs.

一方、図5で示す比較例の断面写真(図5aは全体写真、図5b、cはそれぞれ図5a中のb部、c部の拡大写真である)より、比較例の試験体のパネル表面には多数のヒケが観察される。また、パネル、リブ双方の内部には比較的広範囲に亘る樹脂リッチな領域が観察され、これは試験体の強度低下の原因となるものである。   On the other hand, from the cross-sectional photograph of the comparative example shown in FIG. 5 (FIG. 5a is an overall photograph, and FIGS. 5b and c are enlarged photographs of part b and part c in FIG. 5a, respectively), Many sink marks are observed. In addition, a resin-rich region over a relatively wide range is observed inside both the panel and the rib, which causes a decrease in strength of the specimen.

また、表1で示す各試験体の曲げ強度結果より、実施例1,2,3ともに、100MPa程度かそれ以上の高い強度を有することが実証されており、製品の曲げ強度に関しては特に多数の長繊維で補強されたパネルの有する強度の寄与が高いことより、パネルの重量平均繊維長の割合を75%以上に設定するのがよいと結論付けることができる。   In addition, from the bending strength results of the test specimens shown in Table 1, it has been demonstrated that Examples 1, 2, and 3 both have a high strength of about 100 MPa or more. Since the contribution of the strength of the panel reinforced with long fibers is high, it can be concluded that the ratio of the weight average fiber length of the panel should be set to 75% or more.

また、本実験においては当初の想定以上に比較例の試験体の曲げ強度が高く測定されているものの、特に実施例1はこの比較例の結果に対して30%程度も曲げ強度が向上することが実証されている。これは、図4,5を比較した既述の内容の通り、比較例に比して実施例1は樹脂リッチな領域が格段に少なく、しかもその領域が小さいために全体強度が高くなっていることによるものである。   Moreover, in this experiment, although the bending strength of the test specimen of the comparative example was measured higher than initially assumed, the bending strength of Example 1 was improved by about 30% compared to the result of this comparative example. Has been demonstrated. As described above in comparison with FIGS. 4 and 5, compared to the comparative example, Example 1 has much less resin-rich regions and the overall strength is high because the regions are small. It is because.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…パネル、2…リブ、2a…リブ部、2b…パネル側面部、3…繊維材、4…マトリックス樹脂(熱可塑性樹脂)、5…繊維材、6…マトリックス樹脂(熱可塑性樹脂)、10…リブ付き構造の繊維強化樹脂材、A…パネルのリブが取り付けられた側と反対側の表面箇所   DESCRIPTION OF SYMBOLS 1 ... Panel, 2 ... Rib, 2a ... Rib part, 2b ... Panel side part, 3 ... Fiber material, 4 ... Matrix resin (thermoplastic resin), 5 ... Fiber material, 6 ... Matrix resin (thermoplastic resin), 10 ... Fiber-reinforced resin material with a ribbed structure, A ... Surface location on the opposite side of the panel where the rib is attached

Claims (4)

パネルの表面にリブを有するリブ付き構造の繊維強化樹脂材であって、
パネルとリブはともに熱可塑性樹脂の内部に重量平均繊維長が10〜30mmの繊維材が混合された素材から形成されており、
リブを形成する素材の重量平均繊維長の割合がパネルを形成する素材の重量平均繊維長の割合に比して低いリブ付き構造の繊維強化樹脂材。
A fiber-reinforced resin material with a ribbed structure having ribs on the surface of the panel,
Both the panel and the rib are formed from a material in which a fiber material having a weight average fiber length of 10 to 30 mm is mixed in a thermoplastic resin.
A fiber-reinforced resin material with a ribbed structure in which the ratio of the weight average fiber length of the material forming the ribs is lower than the ratio of the weight average fiber length of the material forming the panel.
パネルを形成する素材の重量平均繊維長が30mmであり、リブを形成する素材の重量平均繊維長は30mmよりも短い請求項1に記載のリブ付き構造の繊維強化樹脂材。   The fiber-reinforced resin material having a ribbed structure according to claim 1, wherein the weight average fiber length of a material forming the panel is 30 mm, and the weight average fiber length of the material forming the rib is shorter than 30 mm. 前記リブは、パネルと平行なパネル側面部と該パネル側面部から立設するリブ部とから構成されており、
リブを構成する前記パネル側面部と前記パネルが一体化されている請求項1または2に記載のリブ付き構造の繊維強化樹脂材。
The rib is composed of a panel side surface parallel to the panel and a rib portion standing from the panel side surface.
The fiber reinforced resin material having a ribbed structure according to claim 1 or 2, wherein the panel side surface portion and the panel constituting the rib are integrated.
パネルの表面にリブを有するリブ付き構造の繊維強化樹脂材の製造方法であって、
2軸押し出し装置に連続繊維材と熱可塑性樹脂材を導入し、連続繊維材を2軸押し出し装置内で裁断しながら熱可塑性樹脂材と混練して混練材料を生成し、混練材料を成形型内に充填してプレス加工することでリブを製造すること、および、
予め繊維材と熱可塑性樹脂から形成された樹脂材を別途の成形型内で溶融させてプレス加工することでパネルを製造すること、からなる第1のステップ、
製造されたリブをその熱可塑性樹脂の融点以上に加熱処理しておき、前記別途の成形型を型開きして製造されたパネルの上に加熱処理されたリブを載置し、型閉めしてプレス加工することでリブ付き構造の繊維強化樹脂材を製造する第2のステップからなり、該繊維強化樹脂材は、リブを形成する素材の重量平均繊維長の割合がパネルを形成する素材の重量平均繊維長の割合に比して低いものであるリブ付き構造の繊維強化樹脂材の製造方法。
A method for producing a fiber-reinforced resin material having a ribbed structure having ribs on the surface of a panel,
A continuous fiber material and a thermoplastic resin material are introduced into a biaxial extruder, and the continuous fiber material is kneaded with the thermoplastic resin material while being cut in the biaxial extruder to produce a kneaded material. To produce ribs by filling and pressing, and
A first step comprising manufacturing a panel by melting and pressing a resin material previously formed from a fiber material and a thermoplastic resin in a separate mold;
The manufactured rib is heat-treated above the melting point of the thermoplastic resin, the heat-treated rib is placed on the panel produced by opening the separate mold, and the mold is closed. It comprises a second step of manufacturing a fiber-reinforced resin material having a ribbed structure by pressing, and the fiber-reinforced resin material has a weight-average fiber length ratio of the material forming the rib, the weight of the material forming the panel The manufacturing method of the fiber reinforced resin material of the structure with a rib which is low compared with the ratio of average fiber length.
JP2011007697A 2011-01-18 2011-01-18 Fiber-reinforced resin material of structure with rib, and method for manufacturing the same Pending JP2012148443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007697A JP2012148443A (en) 2011-01-18 2011-01-18 Fiber-reinforced resin material of structure with rib, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007697A JP2012148443A (en) 2011-01-18 2011-01-18 Fiber-reinforced resin material of structure with rib, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012148443A true JP2012148443A (en) 2012-08-09

Family

ID=46791206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007697A Pending JP2012148443A (en) 2011-01-18 2011-01-18 Fiber-reinforced resin material of structure with rib, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012148443A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145473A (en) * 2015-02-06 2016-08-12 住友建機株式会社 Shovel cover
JP2017013430A (en) * 2015-07-03 2017-01-19 本田技研工業株式会社 Resin product and method for producing the same
WO2017115640A1 (en) * 2015-12-28 2017-07-06 東レ株式会社 Sandwich structure, molded object, and production processes therefor
WO2018158882A1 (en) * 2017-03-01 2018-09-07 日産自動車株式会社 Carbon fiber-reinforced resin molded body and method for manufacturing said carbon fiber-reinforced resin molded body
WO2019086957A1 (en) 2017-11-06 2019-05-09 日産自動車株式会社 Method for manufacturing carbon fiber-reinforced plastic molding, and apparatus for manufacturing carbon fiber-reinforced plastic molding
KR20190053728A (en) * 2017-11-10 2019-05-20 주식회사 서연이화 Manufacturing method for car interior part
WO2019131045A1 (en) 2017-12-26 2019-07-04 帝人株式会社 Method for producing press molded body
JP2019147374A (en) * 2018-02-27 2019-09-05 国立大学法人名古屋大学 Molded product of fiber reinforced thermoplastic resin and method for producing the same
WO2019168010A1 (en) * 2018-02-27 2019-09-06 国立大学法人名古屋大学 Fiber-reinforced thermoplastic resin molded article and production method therefor
JP2021041557A (en) * 2019-09-06 2021-03-18 積水化学工業株式会社 Carbon fiber reinforced thermoplastic resin composite material and manufacturing method therefor
CN113571816A (en) * 2020-04-29 2021-10-29 马勒国际有限公司 Battery housing and method for producing a battery housing

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018319A (en) * 1983-07-11 1985-01-30 Ube Nitto Kasei Kk Processing and molding method of thermoplastic stampable sheet
JPH04259515A (en) * 1991-02-13 1992-09-16 Mitsui Toatsu Chem Inc Structure
JPH059301A (en) * 1990-12-17 1993-01-19 Nippon Steel Corp Stamping-molding material and stamped-molding
JPH0623856A (en) * 1992-07-08 1994-02-01 Kobe Steel Ltd Fiber reinforced plastic integrated molded object
JPH06198753A (en) * 1992-12-28 1994-07-19 Polyplastics Co Fiber reinforced thermoplastic resin molded object
JPH0780834A (en) * 1993-07-21 1995-03-28 Toray Ind Inc Fiber reinforced thermoplastic resin structure and method and extruder for producing the same
JPH0859889A (en) * 1994-06-15 1996-03-05 Toray Ind Inc Fiber-reinforced thermoplastic resin sheet and its production
JPH08144511A (en) * 1994-11-18 1996-06-04 Takashima:Kk Concrete form and manufacture of its concrete form
JPH10264221A (en) * 1997-03-26 1998-10-06 Idemitsu Petrochem Co Ltd Method for plasticizing fiber reinforced pellet and apparatus therefor
JP2000037723A (en) * 1998-07-24 2000-02-08 Kobe Steel Ltd Fiber-reinforced tbermoplastic resin molded article with excellent appearance
JP2005324733A (en) * 2004-05-17 2005-11-24 Mitsubishi Engineering Plastics Corp Vehicle body front structure made of long fiber reinforced polyamide resin
JP2006082275A (en) * 2004-09-14 2006-03-30 Mitsubishi Engineering Plastics Corp Exterior molded product made of long fiber reinforced thermoplastic resin
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin
JP2010253938A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Method for manufacturing integrated molding

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018319A (en) * 1983-07-11 1985-01-30 Ube Nitto Kasei Kk Processing and molding method of thermoplastic stampable sheet
JPH059301A (en) * 1990-12-17 1993-01-19 Nippon Steel Corp Stamping-molding material and stamped-molding
JPH04259515A (en) * 1991-02-13 1992-09-16 Mitsui Toatsu Chem Inc Structure
JPH0623856A (en) * 1992-07-08 1994-02-01 Kobe Steel Ltd Fiber reinforced plastic integrated molded object
JPH06198753A (en) * 1992-12-28 1994-07-19 Polyplastics Co Fiber reinforced thermoplastic resin molded object
JPH0780834A (en) * 1993-07-21 1995-03-28 Toray Ind Inc Fiber reinforced thermoplastic resin structure and method and extruder for producing the same
JPH0859889A (en) * 1994-06-15 1996-03-05 Toray Ind Inc Fiber-reinforced thermoplastic resin sheet and its production
JPH08144511A (en) * 1994-11-18 1996-06-04 Takashima:Kk Concrete form and manufacture of its concrete form
JPH10264221A (en) * 1997-03-26 1998-10-06 Idemitsu Petrochem Co Ltd Method for plasticizing fiber reinforced pellet and apparatus therefor
JP2000037723A (en) * 1998-07-24 2000-02-08 Kobe Steel Ltd Fiber-reinforced tbermoplastic resin molded article with excellent appearance
JP2005324733A (en) * 2004-05-17 2005-11-24 Mitsubishi Engineering Plastics Corp Vehicle body front structure made of long fiber reinforced polyamide resin
JP2006082275A (en) * 2004-09-14 2006-03-30 Mitsubishi Engineering Plastics Corp Exterior molded product made of long fiber reinforced thermoplastic resin
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin
JP2010253938A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Method for manufacturing integrated molding

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145473A (en) * 2015-02-06 2016-08-12 住友建機株式会社 Shovel cover
JP2017013430A (en) * 2015-07-03 2017-01-19 本田技研工業株式会社 Resin product and method for producing the same
US10532537B2 (en) 2015-12-28 2020-01-14 Toray Industries, Inc. Sandwich structure, shaped product, and production processes therefor
WO2017115640A1 (en) * 2015-12-28 2017-07-06 東レ株式会社 Sandwich structure, molded object, and production processes therefor
KR20180098226A (en) 2015-12-28 2018-09-03 도레이 카부시키가이샤 Sandwich structures and shaped bodies, and methods of making them
WO2018158882A1 (en) * 2017-03-01 2018-09-07 日産自動車株式会社 Carbon fiber-reinforced resin molded body and method for manufacturing said carbon fiber-reinforced resin molded body
US11230067B2 (en) 2017-03-01 2022-01-25 Nissan Motor Co., Ltd. Carbon fiber-reinforced resin molded body and manufacturing method thereof
EP3590674A4 (en) * 2017-03-01 2020-01-08 Nissan Motor Co., Ltd Carbon fiber-reinforced resin molded body and method for manufacturing said carbon fiber-reinforced resin molded body
WO2019086957A1 (en) 2017-11-06 2019-05-09 日産自動車株式会社 Method for manufacturing carbon fiber-reinforced plastic molding, and apparatus for manufacturing carbon fiber-reinforced plastic molding
US11597126B2 (en) 2017-11-06 2023-03-07 Nissan Motor Co., Ltd. Method for producing carbon fiber reinforced resin molded article, and apparatus for producing carbon fiber reinforced resin molded article
KR20190053728A (en) * 2017-11-10 2019-05-20 주식회사 서연이화 Manufacturing method for car interior part
KR101989787B1 (en) 2017-11-10 2019-06-17 주식회사 서연이화 Manufacturing method for car interior part
EP3885097A1 (en) 2017-12-26 2021-09-29 Teijin Limited Method for producing press molded body
WO2019131045A1 (en) 2017-12-26 2019-07-04 帝人株式会社 Method for producing press molded body
US11883989B2 (en) 2017-12-26 2024-01-30 Teijin Limited Method for producing press molded body
CN112243406A (en) * 2018-02-27 2021-01-19 国立大学法人东海国立大学机构 Fiber-reinforced thermoplastic resin molded article and method for producing same
WO2019168010A1 (en) * 2018-02-27 2019-09-06 国立大学法人名古屋大学 Fiber-reinforced thermoplastic resin molded article and production method therefor
JP2019147374A (en) * 2018-02-27 2019-09-05 国立大学法人名古屋大学 Molded product of fiber reinforced thermoplastic resin and method for producing the same
JP7198454B2 (en) 2018-02-27 2023-01-04 国立大学法人東海国立大学機構 Method for producing molding of fiber-reinforced thermoplastic resin
JP2021041557A (en) * 2019-09-06 2021-03-18 積水化学工業株式会社 Carbon fiber reinforced thermoplastic resin composite material and manufacturing method therefor
CN113571816A (en) * 2020-04-29 2021-10-29 马勒国际有限公司 Battery housing and method for producing a battery housing

Similar Documents

Publication Publication Date Title
JP2012148443A (en) Fiber-reinforced resin material of structure with rib, and method for manufacturing the same
Akhoundi et al. Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products
Wu et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing
JP5578290B1 (en) Molded body having hollow structure and method for producing the same
Dolzyk et al. Tensile and fatigue analysis of 3D-printed polyethylene terephthalate glycol
Tekinalp et al. Highly oriented carbon fiber–polymer composites via additive manufacturing
JP5644496B2 (en) Fiber reinforced thermoplastic resin molding
CN106182798A (en) Compression mod preparation method and the thermoplastic component of enhancing thus moulded
CN108248023B (en) Method for manufacturing a three-dimensional product and related three-dimensional product
JP2013173330A (en) Method of manufacturing fiber-reinforced resin material
WO2015033980A1 (en) Production method for fiber reinforcing member
EP3159132A1 (en) Method for manufacturing molded article having opening, and molded article
CN103509248B (en) Glass fiber reinforced polypropylene resin and preparation method thereof
Shi et al. Experimental investigation into the selective laser sintering of high‐impact polystyrene
CN106832885A (en) Polymer composites and its application containing poly-dopamine particle
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
CN106433130B (en) A kind of preparation method of laser sintering and moulding 3D printing polyether sulfone/nano carbon powder supplies
EP3578331B1 (en) Method for producing fiber-reinforced plastic
JP6645801B2 (en) Fiber-reinforced resin molded product and method for producing the same
CN110177669A (en) The manufacturing method of fibre reinforced plastics
JP6899004B2 (en) Manufacturing method of press molded product
CN113613869B (en) Method for producing press-molded body
BR112018013208B1 (en) BLADE OF EXTRUDED COMPOSITE MATERIAL, COMPOSITE PANEL AND THE MANUFACTURING PROCESS OF THE SAME
JP2016087907A (en) Method for producing fiber-reinforced plastic
Nagaraj INVESTIGATION ON MECHANICAL PROPERTIES OF FDM PROCESSED ABS AND THERMOPLASTICS MATERIALS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006