JP2012133895A - Nonaqueous electrolyte secondary battery and battery module - Google Patents

Nonaqueous electrolyte secondary battery and battery module Download PDF

Info

Publication number
JP2012133895A
JP2012133895A JP2010282434A JP2010282434A JP2012133895A JP 2012133895 A JP2012133895 A JP 2012133895A JP 2010282434 A JP2010282434 A JP 2010282434A JP 2010282434 A JP2010282434 A JP 2010282434A JP 2012133895 A JP2012133895 A JP 2012133895A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010282434A
Other languages
Japanese (ja)
Inventor
Tomitaro Hara
富太郎 原
Takao Fukunaga
福永  孝夫
Takayasu Iguchi
隆康 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eliiy Power Co Ltd
Original Assignee
Eliiy Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eliiy Power Co Ltd filed Critical Eliiy Power Co Ltd
Priority to JP2010282434A priority Critical patent/JP2012133895A/en
Priority to JP2011030991A priority patent/JP5679187B2/en
Priority to US13/993,901 priority patent/US9960416B2/en
Priority to KR1020137015146A priority patent/KR101929792B1/en
Priority to EP11848054.0A priority patent/EP2654108B1/en
Priority to CN2011800594381A priority patent/CN103250280A/en
Priority to PCT/JP2011/078915 priority patent/WO2012081621A1/en
Publication of JP2012133895A publication Critical patent/JP2012133895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which can be charged at a low voltage by decreasing the resistance of a positive electrode using an olivine type lithium composite compound.SOLUTION: In the nonaqueous electrolyte secondary battery using a positive electrode containing a carbon-coated olivine type lithium composite compound as a cathode active material, the positive electrode has a cathode active material layer containing 4-6 pts.mass of a conductive material, and 4-8 pts.mass of a binder for 100 pts.mass of the cathode active material.

Description

本発明は、非水電解液二次電池及び電池モジュールに関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery and a battery module.

従来から、高出力、高エネルギー密度の二次電池として、非水電解液を用い、リチウムイオンの移動により充放電を行う二次電池が知られている。近年では、高温での安定性を向上させるために、リン酸鉄リチウム等のオリビン型リチウム含有リン酸塩を用いることが検討されている(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, a secondary battery that uses a non-aqueous electrolyte and charges and discharges by movement of lithium ions is known as a secondary battery with high output and high energy density. In recent years, in order to improve stability at high temperatures, use of olivine-type lithium-containing phosphates such as lithium iron phosphate has been studied (see, for example, Patent Document 1).

特開2007−265923号公報JP 2007-265923 A

従来のオリビン型リチウム複合化合物を正極活物質として用いた二次電池は、正極の抵抗が高いために、理論値である3.35V付近で充電しても100%SOCは得られなかった。そのため、4.0V以上の高い電圧を加えなければならなかった。しかし、4.0V以上で充電を行うと、電極上で電解液の分解等の電池反応には寄与しない反応が起こることとなり、電池の耐久性や安定性に影響を及ぼす可能性があった。   A secondary battery using a conventional olivine-type lithium composite compound as a positive electrode active material has a high positive electrode resistance, and therefore 100% SOC cannot be obtained even when charged at around 3.35 V, which is the theoretical value. Therefore, a high voltage of 4.0 V or more had to be applied. However, when charging is performed at 4.0 V or more, a reaction that does not contribute to the battery reaction such as decomposition of the electrolytic solution occurs on the electrode, which may affect the durability and stability of the battery.

本発明は、上記従来技術の問題点に鑑み成されたものであって、オリビン型リチウム複合化合物を用いた正極の抵抗を下げ、低電圧での充電を可能とした非水電解液二次電池を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems of the prior art, and reduces the resistance of a positive electrode using an olivine-type lithium composite compound and enables non-aqueous electrolyte secondary battery to be charged at a low voltage. The purpose is to provide.

本発明は、上記課題を解決するために、以下の構成を採用した。
カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、前記正極が、前記正極活物質100質量部に対して4質量部以上6質量部以下の導電材と、4質量部以上8質量部以下のバインダーとを含む正極活物質層を有し、カーボンコートされたオリビン型リチウム複合化合物粒子のカーボン被覆面積率が95%以上である、非水電解液二次電池。
The present invention employs the following configuration in order to solve the above problems.
In a non-aqueous electrolyte secondary battery using a positive electrode including a carbon-coated olivine type lithium composite compound as a positive electrode active material, the positive electrode is 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. A non-aqueous material having a positive electrode active material layer containing 4 parts by mass or more and 8 parts by mass or less of a binder, and having a carbon-coated area ratio of the carbon-coated olivine type lithium composite compound particles of 95% or more. Electrolyte secondary battery.

カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、0.5C以下、3.8Vで充電した際の正極の充電率が98%以上である、非水電解液二次電池。   In a non-aqueous electrolyte secondary battery using a positive electrode containing a carbon-coated olivine type lithium composite compound as a positive electrode active material, the charge rate of the positive electrode when charged at 0.5 C or lower and 3.8 V is 98% or higher A non-aqueous electrolyte secondary battery.

カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、0.5C以下、3.6Vで充電した際の正極の充電率が95%以上である、非水電解液二次電池。   In a non-aqueous electrolyte secondary battery using a positive electrode containing a carbon-coated olivine-type lithium composite compound as a positive electrode active material, the charge rate of the positive electrode when charged at 0.5 C or less and 3.6 V is 95% or more A non-aqueous electrolyte secondary battery.

カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、0.5C以下の充電条件で3.6V充電した際の正極の充電率と0.5C以下の充電条件で3.8V充電した際の正極の充電率の差が2〜4%である、非水電解液二次電池。   In a non-aqueous electrolyte secondary battery using a positive electrode containing a carbon-coated olivine-type lithium composite compound as a positive electrode active material, the charge rate of the positive electrode when charged at 3.6 V under a charging condition of 0.5 C or less and 0. A non-aqueous electrolyte secondary battery in which the difference in charging rate of the positive electrode when charged at 3.8 V under a charging condition of 5 C or less is 2 to 4%.

本発明によれば、正極の抵抗が低く、低電圧の充電が可能な非水電解液二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resistance of a positive electrode is low and the nonaqueous electrolyte secondary battery which can be charged by a low voltage can be provided.

本発明の一実施の形態である二次電池を示す図。The figure which shows the secondary battery which is one embodiment of this invention. 実施形態の二次電池に含まれる発電要素を示す図。The figure which shows the electric power generation element contained in the secondary battery of embodiment. 実施例1と比較例1の充電曲線を示したグラフ。The graph which showed the charge curve of Example 1 and Comparative Example 1. FIG. 各サンプルの充電時間と容量との関係を示すグラフ。The graph which shows the relationship between the charge time and capacity | capacitance of each sample.

以下、本発明の実施の形態について図面を参照しつつ説明する。図面や以下の記述中で示す構成は例示であり、本発明の範囲は図面や以下の記述に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The configurations shown in the drawings and the following description are examples, and the scope of the present invention is not limited to the drawings and the following description.

図1は、本発明の一実施の形態である二次電池を示す図であり、図1(a)は概略断面図、図1(b)は概略上面図、図1(c)はケースを除いた構成要素の概略断面図、図1(d)はケースの断面図である。
図2は、本実施形態の二次電池に含まれる発電要素を示す図であり、図2(a)は正極シートの概略平面図、図2(b)は負極シートの概略平面図、図2(c)は発電要素の内部構造を示す概略図である。
1A and 1B are diagrams showing a secondary battery according to an embodiment of the present invention. FIG. 1A is a schematic cross-sectional view, FIG. 1B is a schematic top view, and FIG. FIG. 1 (d) is a cross-sectional view of the case.
2A and 2B are diagrams showing a power generation element included in the secondary battery of the present embodiment, in which FIG. 2A is a schematic plan view of a positive electrode sheet, FIG. 2B is a schematic plan view of a negative electrode sheet, FIG. (C) is the schematic which shows the internal structure of an electric power generation element.

本実施形態の二次電池20は、開口18を有するケース3内にスタック構造の発電要素1を収容し、蓋部材4により開口18を封止した構成を備えている。ケース3内には、発電要素1とともに、正極接続端子6、負極接続端子7、正極支持部材10、負極支持部材11、及び電解液が封入されている。   The secondary battery 20 of the present embodiment has a configuration in which the power generation element 1 having a stack structure is accommodated in the case 3 having the opening 18 and the opening 18 is sealed by the lid member 4. In the case 3, a positive electrode connection terminal 6, a negative electrode connection terminal 7, a positive electrode support member 10, a negative electrode support member 11, and an electrolytic solution are enclosed together with the power generation element 1.

ケース3内において、発電要素1の長さ方向の一方の端部に正極接続端子6が接続され、他方の端部に負極接続端子7が接続されている。正極接続端子6と負極接続端子7はそれぞれ蓋部材4に固定されている。正極支持部材10は正極接続端子6のケース3底壁側の端部に固定され、負極支持部材11は負極接続端子7のケース3底壁側の端部に固定されている。正極支持部材10及び負極支持部材11は、ケース3底壁の内側面に直接又は他の部材を介して接触している。   In the case 3, the positive electrode connection terminal 6 is connected to one end of the power generation element 1 in the length direction, and the negative electrode connection terminal 7 is connected to the other end. The positive electrode connection terminal 6 and the negative electrode connection terminal 7 are each fixed to the lid member 4. The positive electrode support member 10 is fixed to the end of the positive electrode connection terminal 6 on the bottom wall side of the case 3, and the negative electrode support member 11 is fixed to the end of the negative electrode connection terminal 7 on the bottom wall side of the case 3. The positive electrode support member 10 and the negative electrode support member 11 are in contact with the inner surface of the bottom wall of the case 3 directly or via another member.

蓋部材4は、ケース3の開口18の大きさと実質的に同じ大きさを有する。本実施形態の場合、ケース3の深さDと、発電要素1を蓋部材4に取り付けたときの長さLがほぼ同一である。これにより、発電要素1等をケース3内に収容したときに正極支持部材10及び負極支持部材11がケース3の底面19に突き当てられた状態で、蓋部材4の縁と開口18の端縁とが側面視でほぼ一致するように配置される。   The lid member 4 has substantially the same size as the opening 18 of the case 3. In the case of the present embodiment, the depth D of the case 3 and the length L when the power generation element 1 is attached to the lid member 4 are substantially the same. Thus, the edge of the lid member 4 and the edge of the opening 18 in a state where the positive electrode support member 10 and the negative electrode support member 11 are abutted against the bottom surface 19 of the case 3 when the power generation element 1 or the like is accommodated in the case 3. And are arranged so that they substantially coincide with each other in a side view.

蓋部材4のケース3内側には正極接続端子6と負極接続端子7とが固定されている。蓋部材4の外面側には、正極外部接続端子14と負極外部接続端子15とが固定されている。正極外部接続端子14は正極接続端子6と電気的に接続されている。負極外部接続端子15は負極接続端子7と電気的に接続されている。   A positive electrode connection terminal 6 and a negative electrode connection terminal 7 are fixed inside the case 3 of the lid member 4. A positive external connection terminal 14 and a negative external connection terminal 15 are fixed to the outer surface side of the lid member 4. The positive external connection terminal 14 is electrically connected to the positive connection terminal 6. The negative external connection terminal 15 is electrically connected to the negative connection terminal 7.

蓋部材4の縁とケース3の開口18の端縁は、気密に接合された接合部17とされている。これにより、二次電池20の電解液をケース3内に封入している。接合部17の形成方法は、特に限定されないが、例えばレーザー溶接、抵抗溶接、超音波溶接、接着剤を用いた接着などを用いることができる。   An edge of the lid member 4 and an edge of the opening 18 of the case 3 are joined portions 17 joined in an airtight manner. Thereby, the electrolytic solution of the secondary battery 20 is sealed in the case 3. Although the formation method of the junction part 17 is not specifically limited, For example, laser welding, resistance welding, ultrasonic welding, adhesion | attachment using an adhesive agent, etc. can be used.

発電要素1は、図2に示すように、セパレータ33を介して交互に積層された正極シート30及び負極シート31を有する。正極シート30は、正極接続端子6に接続される正極集電体22と、正極集電体22上に形成された正極活物質層25とを有する。負極シート31は、負極接続端子7に接続される負極集電体23と、負極集電体23上に形成された負極活物質層26とを有する。   As shown in FIG. 2, the power generation element 1 includes positive electrode sheets 30 and negative electrode sheets 31 that are alternately stacked via separators 33. The positive electrode sheet 30 includes a positive electrode current collector 22 connected to the positive electrode connection terminal 6 and a positive electrode active material layer 25 formed on the positive electrode current collector 22. The negative electrode sheet 31 includes a negative electrode current collector 23 connected to the negative electrode connection terminal 7 and a negative electrode active material layer 26 formed on the negative electrode current collector 23.

発電要素1を構成する正極シート30及び負極シート31はそれぞれ複数であってもよい。すなわち、複数の正極シート30と複数の負極シート31がセパレータ33を介して交互に積層されていてもよい。この場合に、複数の正極シート30は、正極集電体22の正極活物質層25が形成されていない端部において束ねられ、正極接続端子6に接続される。同様に、複数の負極シート31は、負極集電体23の負極活物質層26が形成されていない端部において束ねられ、負極接続端子7に接続される。このように集電体の端部を束ねる場合に、正極集電体22と負極集電体23との間のリーク電流を防止するために、セパレータ33を正極集電体22と負極集電体23のそれぞれを束ねる部分の近傍にまで延設してもよい。   There may be a plurality of positive electrode sheets 30 and negative electrode sheets 31 constituting the power generation element 1. That is, a plurality of positive electrode sheets 30 and a plurality of negative electrode sheets 31 may be alternately stacked via the separators 33. In this case, the plurality of positive electrode sheets 30 are bundled at the end of the positive electrode current collector 22 where the positive electrode active material layer 25 is not formed, and connected to the positive electrode connection terminal 6. Similarly, the plurality of negative electrode sheets 31 are bundled at the end of the negative electrode current collector 23 where the negative electrode active material layer 26 is not formed, and connected to the negative electrode connection terminal 7. When the ends of the current collector are bundled in this way, the separator 33 is connected to the positive electrode current collector 22 and the negative electrode current collector in order to prevent leakage current between the positive electrode current collector 22 and the negative electrode current collector 23. You may extend to the vicinity of the part which bundles each of 23.

また、ケース3内に複数の発電要素1を配設してもよい。この場合に、1つの正極接続端子6、負極接続端子7に複数の発電要素1を接続することができる。   A plurality of power generation elements 1 may be disposed in the case 3. In this case, a plurality of power generation elements 1 can be connected to one positive electrode connection terminal 6 and one negative electrode connection terminal 7.

正極シート30は、正極集電体22と正極活物質層25とを有する。
正極集電体22は、電気伝導性を有し、一面又は両面に正極活物質層25を保持することができれば、その材質や形状、大きさは特に限定されない。正極集電体は22は、例えば金属箔により構成することができ、好ましくはアルミニウム箔である。
The positive electrode sheet 30 includes a positive electrode current collector 22 and a positive electrode active material layer 25.
The material, shape, and size of the positive electrode current collector 22 are not particularly limited as long as the positive electrode current collector 22 has electrical conductivity and can hold the positive electrode active material layer 25 on one surface or both surfaces. The positive electrode current collector 22 can be made of, for example, a metal foil, and is preferably an aluminum foil.

正極活物質層25は、正極活物質粒子と、導電材と、バインダーとを含む。
本実施形態では、正極活物質として、表面にカーボンが被覆されたオリビン型リン酸鉄リチウムの粒子、又はその凝集体が用いられている。オリビン型リン酸鉄リチウムは、一般式LiFePO(ただし、0<x≦2)で表される。オリビン型リン酸鉄リチウム粒子を被覆するカーボンコートとしては、ピッチ等のカーボン前駆体を、1000℃以下、不活性雰囲気下の条件で焼成した非晶質カーボンを使用することができる。本実施形態において、正極活物質層25を構成するオリビン型リン酸鉄リチウム粒子は、その表面のカーボンコートの被覆面積率が95%以上であることが好ましく、100%に近いほど望ましい。
The positive electrode active material layer 25 includes positive electrode active material particles, a conductive material, and a binder.
In the present embodiment, particles of olivine type lithium iron phosphate whose surface is coated with carbon or an aggregate thereof is used as the positive electrode active material. The olivine type lithium iron phosphate is represented by a general formula Li x FePO 4 (where 0 <x ≦ 2). As the carbon coat for coating the olivine-type lithium iron phosphate particles, amorphous carbon obtained by firing a carbon precursor such as pitch under a condition of 1000 ° C. or less under an inert atmosphere can be used. In the present embodiment, the olivine-type lithium iron phosphate particles constituting the positive electrode active material layer 25 preferably have a carbon coat coverage area of 95% or more on the surface, and the closer to 100%, the more desirable.

なお、正極活物質としては、オリビン型リン酸鉄リチウムに限られず、一般式LiMPO(MはCo、Ni、Mn、Feから選択される少なくとも1種以上の元素、0<x≦2)で表されるオリビン型リチウム複合化合物を用いることができる。すなわち、表面にカーボンが被覆されたオリビン型リチウム複合化合物の粒子又はその凝集体を用いることができる。 The positive electrode active material is not limited to olivine-type lithium iron phosphate, but is represented by the general formula Li x MPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe, 0 <x ≦ 2 The olivine type lithium composite compound represented by this can be used. That is, particles of an olivine-type lithium composite compound whose surface is coated with carbon or an aggregate thereof can be used.

バインダーは、正極集電体22と正極活物質粒子と導電材とを結着させるために用いられる。バインダーとしては、有機溶剤に溶かして用いるポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等の有機溶剤系バインダーのほか、水に分散可能であるスチレン・ブタジェンゴム(SBR)や、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステルや、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸や、カルボキシメチルセルロース(CMC)等の水系ポリマーを例示することができ、これらを二種以上混合して用いることもできる。バインダーを溶かす溶剤はバインダーの種類に応じて適宜選択すればよい。例えば、ジメチルホルムアミド、N−メチルピロリドン、イソプロパノール、トルエン、水などから選ばれる1種又は2種以上を用いればよい。   The binder is used to bind the positive electrode current collector 22, the positive electrode active material particles, and the conductive material. As the binder, in addition to organic solvent binders such as polyvinylidene fluoride (PVdF) and polytetrafluoroethylene (PTFE) used by dissolving in an organic solvent, styrene / butadiene rubber (SBR) dispersible in water, methyl (meta) ) Acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate and other ethylenically unsaturated carboxylic acid esters, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic Examples thereof include ethylenically unsaturated carboxylic acids such as acids, and water-based polymers such as carboxymethylcellulose (CMC), and these can also be used as a mixture of two or more. What is necessary is just to select the solvent which melt | dissolves a binder suitably according to the kind of binder. For example, one or more selected from dimethylformamide, N-methylpyrrolidone, isopropanol, toluene, water and the like may be used.

正極活物質層25に用いる導電材としては、アセチレンブラック、ファーネスブラック、カーボンブラックから選ばれる1種又は2種以上のカーボンを用いることができる。   As the conductive material used for the positive electrode active material layer 25, one or more carbons selected from acetylene black, furnace black, and carbon black can be used.

本実施形態の正極活物質層25における正極活物質、導電材、バインダーの材料比は、正極活物質100質量部に対して、導電材は4〜6質量部、バインダーは4〜8質量部の範囲とされる。
導電材の量が4質量部未満であると、正極内のカーボンによる導電ネットワークがきれいに形成されなくなって抵抗が上昇する。一方、導電材の量が6質量部を超えると、それ以上添加量を増やしても導電率が変わらなくなる。導電材は電池反応には寄与しないので、多すぎる導電材は、正極の重量当たりの容量を低下させる原因となる。
また、バインダーの量が8質量部を超えると、正極活物質層25の結着性が上がる一方で、導電性が下がってしまう。また、バインダーの量が4質量部未満である場合には、正極活物質層25の結着力が弱すぎるために、正極集電体22上に正極活物質層25を形成することが困難になる。
The material ratio of the positive electrode active material, the conductive material, and the binder in the positive electrode active material layer 25 of the present embodiment is 4 to 6 parts by mass of the conductive material and 4 to 8 parts by mass of the binder with respect to 100 parts by mass of the positive electrode active material. Scope.
When the amount of the conductive material is less than 4 parts by mass, the conductive network due to carbon in the positive electrode is not formed cleanly, and the resistance increases. On the other hand, when the amount of the conductive material exceeds 6 parts by mass, the conductivity does not change even if the addition amount is further increased. Since the conductive material does not contribute to the battery reaction, too much conductive material causes a decrease in the capacity per weight of the positive electrode.
On the other hand, when the amount of the binder exceeds 8 parts by mass, the binding property of the positive electrode active material layer 25 increases, but the conductivity decreases. Further, when the amount of the binder is less than 4 parts by mass, the binding force of the positive electrode active material layer 25 is too weak, so that it becomes difficult to form the positive electrode active material layer 25 on the positive electrode current collector 22. .

また本実施形態において、正極活物質層25は、充填密度が0.90g/cm以上であることが好ましい。下記表1の充填密度と電極抵抗の関係に示すように、充填密度が0.90g/cm以上の場合には、正極シート30の抵抗は十分に小さい値になるが、充填密度が0.90g/cm未満になると正極シート30の抵抗が急激に上昇する。なお、「電極抵抗」はAC抵抗値である。 In the present embodiment, the positive electrode active material layer 25 preferably has a filling density of 0.90 g / cm 3 or more. As shown in the relationship between the packing density and the electrode resistance in Table 1 below, when the packing density is 0.90 g / cm 3 or more, the resistance of the positive electrode sheet 30 becomes a sufficiently small value, but the packing density is 0.00. When it becomes less than 90 g / cm 3 , the resistance of the positive electrode sheet 30 increases rapidly. The “electrode resistance” is an AC resistance value.

負極シート31は、負極集電体23と負極活物質層26とを有する。
負極集電体23は、電気伝導性を有し、一面又は両面に負極活物質層26を保持することができれば、その材質や形状、大きさは特に限定されない。負極集電体23は、例えば金属箔により構成することができ、好ましくは銅箔である。
The negative electrode sheet 31 includes a negative electrode current collector 23 and a negative electrode active material layer 26.
The material, shape, and size of the negative electrode current collector 23 are not particularly limited as long as they have electrical conductivity and can hold the negative electrode active material layer 26 on one or both surfaces. The negative electrode current collector 23 can be composed of, for example, a metal foil, and is preferably a copper foil.

負極活物質層26は、少なくとも負極活物質を含む。負極活物質としては、例えば、黒鉛、リチウム金属、錫、チタン酸リチウムなどを用いることができる。これらのうちでも黒鉛を用いることが好ましく、ニードルコークスを粉砕し2200℃〜2800℃(好ましくは2300℃〜2600℃)で黒鉛化を行った鱗片状のコークス系黒鉛がより好適である。黒鉛中の鱗片状コークス系黒鉛の割合は30質量%以上であることが好ましい。
負極活物質層26に、必要に応じてバインダーを添加してもよい。バインダーとしてはPVdF、SBR、アクリル系ポリマー等を用いることができる。
The negative electrode active material layer 26 includes at least a negative electrode active material. As the negative electrode active material, for example, graphite, lithium metal, tin, lithium titanate, or the like can be used. Among these, graphite is preferably used, and scaly coke graphite obtained by pulverizing needle coke and graphitizing at 2200 ° C. to 2800 ° C. (preferably 2300 ° C. to 2600 ° C.) is more preferable. The proportion of scaly coke graphite in the graphite is preferably 30% by mass or more.
A binder may be added to the negative electrode active material layer 26 as necessary. As the binder, PVdF, SBR, acrylic polymer, or the like can be used.

セパレータ33は、正極シート30と負極シート31との間に配置され、正極シート30と負極シート31との間にリーク電流が流れるのを防止する。セパレータ33は電解液を保持可能に構成してもよい。セパレータ33は、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン等のポリオレフィン製の微多孔性フィルムにより構成することができる。   The separator 33 is disposed between the positive electrode sheet 30 and the negative electrode sheet 31, and prevents leakage current from flowing between the positive electrode sheet 30 and the negative electrode sheet 31. The separator 33 may be configured to hold the electrolytic solution. The separator 33 can be constituted by a microporous film made of polyolefin such as polyethylene, polypropylene, polytetrafluoroethylene, or the like.

電解液としては、特に限定されず、通常使用されるものを用いることができる。例えば、非水系溶媒に電解質を溶解させた非水電解液や、この非水電解液をポリエチレンオキシド、ポリアクリロニトリル等のポリマーに含浸させたゲル状ポリマー電解質を用いることができる。   The electrolytic solution is not particularly limited, and a commonly used electrolytic solution can be used. For example, a nonaqueous electrolytic solution obtained by dissolving an electrolyte in a nonaqueous solvent or a gel polymer electrolyte obtained by impregnating the nonaqueous electrolytic solution with a polymer such as polyethylene oxide or polyacrylonitrile can be used.

非水電解液の非水系溶媒としては、例えば、エーテル類、ケトン類、ラクトン類、スルホラン系化合物、エステル類、カーボネート類などが挙げられる。これらの代表例としては、テトラヒドロフラン、2−メチル−テトラヒドロフラン、γ−ブチルラクトン、アセトニトリル、ジメトキシエタン、ジエチルカーボネイト、プロピレンカーボネイト、エチレンカーボネイト、ジメチルスルホキシド、スルホラン、3−メチル−スルホラン、酢酸エチル、プロピオン酸メチルなど、あるいはこれらの混合溶媒を挙げることができる。   Examples of the non-aqueous solvent for the non-aqueous electrolyte include ethers, ketones, lactones, sulfolane compounds, esters, and carbonates. Typical examples of these include tetrahydrofuran, 2-methyl-tetrahydrofuran, γ-butyllactone, acetonitrile, dimethoxyethane, diethyl carbonate, propylene carbonate, ethylene carbonate, dimethyl sulfoxide, sulfolane, 3-methyl-sulfolane, ethyl acetate, propionic acid. Examples thereof include methyl and the like, and mixed solvents thereof.

非水電解液を構成する電解質は特に限定されるものではないが、LiBF、LiAsF、LiPF、LiClO、CFSOLi、LiBOB(リチウム−ビス(オキサラト)ボレート)等を用いることができ、これらの中でも電池特性、取り扱い上の安全性などの観点からLiBF、LiClO、LiPF、LiBOB等が好ましい。 The electrolyte constituting the nonaqueous electrolytic solution is not particularly limited, but LiBF 4 , LiAsF 6 , LiPF 6 , LiClO 4 , CF 3 SO 3 Li, LiBOB (lithium-bis (oxalato) borate), or the like is used. Among these, LiBF 4 , LiClO 4 , LiPF 6 , LiBOB and the like are preferable from the viewpoints of battery characteristics and safety in handling.

また、非水電解液には必要に応じて添加剤も加えることができる。添加剤は充放電特性向上の観点から、不飽和結合またはハロゲン原子を有する環状カーボネート及びS=O結合含有化合物から選ばれる一種以上を併用することが好ましい。   Moreover, an additive can also be added to the non-aqueous electrolyte as required. From the viewpoint of improving charge / discharge characteristics, the additive is preferably used in combination of one or more selected from cyclic carbonates having an unsaturated bond or a halogen atom and S═O bond-containing compounds.

不飽和結合またはハロゲン原子を有する環状カーボネートとしては、ビニレンカーボネート、フルオロエチレンカーボネート、及びビニルエチレンカ−ボネートが挙げられる。
また、前記S=O結合化合物としては、1,3−プロパンスルトン(PS)、1,3−プロペンスルトン(PRS)、1,4−ブタンジオールジメタンスルホネート、ジビニルスルホン、2−プロピニルメタンスルホネート、ペンタフルオロメタンスルホネート、エチレンサルファイト、ビニルエチレンサルファイト、ビニレンサルファイト、メチル2−プロピニルサルファイト、エチル2−プロピニルサルファイト、ジプロピニルサルファイト、シクロヘキシルサルファイト、エチレンサルフェート等が挙げられ、特に、1,3−プロパンスルトン、ジビニルスルホン、1,4−ブタンジオールメタンスルホネート、およびエチレンサルファイトが好ましい。
これらの化合物は、1種類で使用してもよく、また2種類以上を組み合わせて使用してもよい。
Examples of the cyclic carbonate having an unsaturated bond or a halogen atom include vinylene carbonate, fluoroethylene carbonate, and vinylethylene carbonate.
Examples of the S═O bond compound include 1,3-propane sultone (PS), 1,3-propene sultone (PRS), 1,4-butanediol dimethane sulfonate, divinyl sulfone, 2-propynyl methane sulfonate, Pentafluoromethanesulfonate, ethylene sulfite, vinyl ethylene sulfite, vinylene sulfite, methyl 2-propynyl sulfite, ethyl 2-propynyl sulfite, dipropynyl sulfite, cyclohexyl sulfite, ethylene sulfate, and the like. 1,3-propane sultone, divinyl sulfone, 1,4-butanediol methane sulfonate, and ethylene sulfite are preferred.
These compounds may be used alone or in combination of two or more.

以上の構成を備えた本実施形態の二次電池20では、正極シート30を構成する正極活物質層25が、正極活物質100質量部に対して4質量部以上6質量部以下の導電材と、4質量部以上8質量部以下のバインダーとを含むものとされている。これにより、正極活物質層25における正極活物質、導電材、及びバインダーの状態が最適化され、導電材料のネットワークが良好に形成された低抵抗の正極活物質層25を得ることができる。また、このような低抵抗の正極シート30を備えた非水電解液二次電池では、低電圧で高い充電率を得ることができる。   In the secondary battery 20 of the present embodiment having the above-described configuration, the positive electrode active material layer 25 constituting the positive electrode sheet 30 has a conductive material of 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. 4 parts by mass or more and 8 parts by mass or less of a binder. Thereby, the state of the positive electrode active material, the conductive material, and the binder in the positive electrode active material layer 25 is optimized, and the low resistance positive electrode active material layer 25 in which the network of the conductive material is well formed can be obtained. Moreover, in the non-aqueous electrolyte secondary battery provided with such a low-resistance positive electrode sheet 30, a high charging rate can be obtained at a low voltage.

なお、本実施形態の二次電池20は、連結端子等を用いて複数個を直列又は並列に接続することで電池モジュールを構成することもできる。これにより、電力貯蔵、ハイブリッド電気自動車、電車等、比較的大型大出力が要求される産業分野で好適に使用できる形態とすることができる。   In addition, the secondary battery 20 of this embodiment can also comprise a battery module by connecting two or more in series or in parallel using a connection terminal etc. Thereby, it can be set as the form which can be used conveniently in the industrial field | area where a comparatively large-sized large output is requested | required, such as electric power storage, a hybrid electric vehicle, a train.

(正極シートの製造方法)
正極シートは、正極活物質(カーボンコートされたオリビン型リン酸鉄リチウムの粒子又はその凝集体)と、導電材(例えばアセチレンブラック)と、バインダー(例えばPVdF)と、溶媒(例えばN−メチルピロリドン)とを攪拌、混練し、正極活物質層形成用スラリーを調製する工程と、正極活物質層形成用スラリーを正極集電体22(例えばアルミニウム箔)上に塗布した後、乾燥固化させることにより正極集電体22の一面又は両面に正極活物質層25を形成する工程と、正極活物質層25が形成された正極集電体22をロールプレス機等によりプレス加工することで正極活物質層25の厚さを調整する工程と、を有する製造方法により製造することができる。
(Method for producing positive electrode sheet)
The positive electrode sheet comprises a positive electrode active material (carbon-coated olivine-type lithium iron phosphate particles or aggregates thereof), a conductive material (for example, acetylene black), a binder (for example, PVdF), and a solvent (for example, N-methylpyrrolidone). ) Are stirred and kneaded to prepare a positive electrode active material layer forming slurry, and the positive electrode active material layer forming slurry is applied onto the positive electrode current collector 22 (for example, an aluminum foil) and then dried and solidified. The step of forming the positive electrode active material layer 25 on one surface or both surfaces of the positive electrode current collector 22, and the positive electrode current collector 22 on which the positive electrode active material layer 25 is formed are pressed by a roll press machine or the like. And a step of adjusting the thickness of 25.

本実施形態の製造方法では、正極活物質層形成用スラリーを調製する工程において、正極活物質投入後の混練期間に、正極活物質に対して過度な機械衝撃などのエネルギーが作用しないようにすることが好ましい。具体的には、均一な混練物が得られる範囲で、混練時間の長さを短くすることが好ましい。これにより、正極活物質への負荷を低減し、リン酸鉄リチウム粒子表面のカーボンコートが部分的に脱落してしまうのを防止することができる。その結果、高い被覆面積率でカーボンコートが形成されたオリビン型リン酸鉄リチウム粒子からなる正極活物質を含む正極活物質層を形成することができる。   In the manufacturing method of the present embodiment, in the step of preparing the positive electrode active material layer forming slurry, energy such as excessive mechanical impact is not applied to the positive electrode active material during the kneading period after the positive electrode active material is charged. It is preferable. Specifically, it is preferable to shorten the length of the kneading time as long as a uniform kneaded product is obtained. Thereby, the load to the positive electrode active material can be reduced, and the carbon coat on the surface of the lithium iron phosphate particles can be prevented from partially falling off. As a result, a positive electrode active material layer including a positive electrode active material made of olivine-type lithium iron phosphate particles on which a carbon coat is formed with a high coating area ratio can be formed.

上記製造方法により得られる正極シートでは、正極活物質のカーボンコートの負荷を低減することができるため、オリビン型リン酸鉄リチウム粒子表面のカーボンコートの被覆面積率を高く保持しつつ正極活物質層25を形成することができ、低抵抗の正極シート30を製造することができる。
オリビン型リン酸鉄リチウムはそれ自体は導電性を有していないため、導電性を付与するために粒子の表面にカーボンコートを形成している。このような正極活物質において、粒子表面のカーボンコートに多くの脱落部分(オリビン型リン酸鉄リチウムが露出した部分)が多く存在すると、オリビン型リン酸鉄リチウムのLiイオンの反応サイトに隣接するオリビン骨格における電子授受サイトがカーボンで被覆されていない部分ができてしまい、その部分におけるLiイオンの取り入れ・放出が起こりにくくなると考えられる。したがって、オリビン型リン酸鉄リチウム粒子のカーボン被覆面積率が低くなると、Liイオンの取り入れ・放出速度が低下し、正極での過電圧が上昇してしまうと考えられる。
In the positive electrode sheet obtained by the above production method, the load of the carbon coat of the positive electrode active material can be reduced, and therefore the positive electrode active material layer while maintaining a high coverage area of the carbon coat on the surface of the olivine-type lithium iron phosphate particles 25, and the low resistance positive electrode sheet 30 can be manufactured.
Since the olivine-type lithium iron phosphate itself does not have conductivity, a carbon coat is formed on the surface of the particles in order to impart conductivity. In such a positive electrode active material, when a large number of drop-off portions (portions where the olivine type lithium iron phosphate is exposed) exist in the carbon coat on the particle surface, it is adjacent to a reaction site of Li ions of the olivine type lithium iron phosphate. It is considered that a portion where the electron transfer site in the olivine skeleton is not covered with carbon is formed, and it is difficult for Li ions to be taken in and released from the portion. Therefore, when the carbon coating area ratio of the olivine type lithium iron phosphate particles is lowered, it is considered that the rate of taking up and releasing Li ions is lowered and the overvoltage at the positive electrode is increased.

これに対して、本実施形態の製造方法によれば、オリビン型リン酸鉄リチウム粒子のカーボンコートの負荷を低減することができ、正極活物質層25中の正極活物質におけるカーボンコートの被覆面積率を95%以上とすることができる。そうすると、上記したようなLiイオンの取り入れ・放出が阻害される部分が減り、取り入れ・放出速度が向上することから、正極での過電圧を低く抑えることができる。   On the other hand, according to the manufacturing method of the present embodiment, the carbon coat load of the olivine-type lithium iron phosphate particles can be reduced, and the coverage area of the carbon coat in the positive electrode active material in the positive electrode active material layer 25 is reduced. The rate can be 95% or more. As a result, the portion where the incorporation / release of Li ions as described above is hindered is reduced, and the uptake / release rate is improved, so that the overvoltage at the positive electrode can be kept low.

さらに本実施形態の製造方法において、正極活物質層形成用スラリーの調製に用いる正極活物質(原料)として、カーボンコートの被覆面積率がほぼ100%である正極活物質を用いると、正極活物質層25を形成した状態におけるオリビン型リン酸鉄リチウム粒子のカーボン被覆面積率をほぼ100%にまで高めることができ、特に良好な結果が得られた。これは、オリビン型リン酸鉄リチウムのLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトのほとんどがカーボンでコーティングされていることから、Liイオンの反応サイトにおけるLiイオンの取り入れ・放出が阻害されることがなくなるためであると考えられる。   Furthermore, in the manufacturing method of the present embodiment, when a positive electrode active material having a carbon coat covering area ratio of approximately 100% is used as the positive electrode active material (raw material) used for preparing the slurry for forming the positive electrode active material layer, the positive electrode active material The carbon covered area ratio of the olivine-type lithium iron phosphate particles in the state in which the layer 25 was formed could be increased to almost 100%, and particularly good results were obtained. This is because most of the electron transfer sites in the olivine skeleton adjacent to the Li ion reaction site of olivine-type lithium iron phosphate are coated with carbon. This is thought to be because it is no longer obstructed.

なお、正極活物質のカーボンコートの被覆面積率は、SEM(走査型電子顕微鏡)とEDX(エネルギー分散型X線分光法)を用いて正極活物質の粒子を観察することで測定することができる。正極シート30からの観察試料の作製は、正極活物質層25の一部を溶剤に浸漬してバインダーを溶かすことにより正極活物質の粒子を脱離させる方法、あるいは正極活物質層25の一部を崩落させて正極活物質の粒子を取り出す方法により実施することができる。   The coverage area ratio of the carbon coat of the positive electrode active material can be measured by observing the particles of the positive electrode active material using SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). . The observation sample is produced from the positive electrode sheet 30 by immersing a part of the positive electrode active material layer 25 in a solvent to dissolve the binder, or by removing the particles of the positive electrode active material, or a part of the positive electrode active material layer 25. The method can be carried out by collapsing and taking out the particles of the positive electrode active material.

SEMにより正極活物質粒子の断面を観察することで、カーボンの被覆状態(カーボン膜厚及び膜厚分布)を確認することができる。また、EDXにより正極活物質粒子の表面をマッピングすることで、オリビン型リン酸鉄リチウム粒子の表面におけるカーボンの分布状態を得ることができ、被覆面積率を算出することができる。   By observing the cross section of the positive electrode active material particles by SEM, the covering state of carbon (carbon film thickness and film thickness distribution) can be confirmed. Further, by mapping the surface of the positive electrode active material particles by EDX, the carbon distribution state on the surface of the olivine type lithium iron phosphate particles can be obtained, and the covering area ratio can be calculated.

以下、実施例により本発明をさらに詳細に説明するが、本発明の技術範囲を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, it does not limit the technical scope of this invention.

<第1実施例>
第1実施例では、複数の正極シートのサンプルを作製し、それぞれを用いた電池の充電試験を行うことで、電池特性を検証した。
<First embodiment>
In the first example, a plurality of positive electrode sheet samples were prepared, and the battery characteristics were verified by performing a battery charge test using each sample.

(実施例1)
以下の原料を用いて正極シートを作製した。
正極活物質:LCP420 TU−4(商品名:住友大阪セメント社製)
正極活物質層の材料比(質量部)
正極活物質:アセチレンブラック:PVdF=100:5:7
Example 1
A positive electrode sheet was prepared using the following raw materials.
Positive electrode active material: LCP420 TU-4 (trade name: manufactured by Sumitomo Osaka Cement)
Material ratio of positive electrode active material layer (parts by mass)
Positive electrode active material: Acetylene black: PVdF = 100: 5: 7

上記の正極活物質は、オリビン型リン酸鉄リチウムの一次粒子の表面がほぼ100%の被覆面積率でカーボンコートされ、このカーボンコートを介して一次粒子同士が結合して二次粒子を形成しているオリビン型リン酸鉄リチウム粒子の凝集体である。スラリーを塗布乾燥してできた正極活物質層をプレスして厚さを調節する際に、プレスにより二次粒子が潰れてバラバラになり、正極活物質層内においてほぼ一次粒子状のオリビン型リン酸鉄リチウムとなるものである。   In the above positive electrode active material, the surface of primary particles of olivine-type lithium iron phosphate is carbon-coated with a covering area ratio of almost 100%, and primary particles are bonded to each other through the carbon coat to form secondary particles. It is an aggregate of olivine-type lithium iron phosphate particles. When the thickness of the positive electrode active material layer formed by applying and drying the slurry is adjusted by pressing, the secondary particles are crushed and broken by the press, and the primary active material layer has almost primary olivine phosphorus. It becomes lithium iron oxide.

アセチレンブラックとPVdFをN−メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。正極集電体としてのアルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。 Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, and then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm of a kneader for 90 minutes to prepare a slurry. The slurry is applied and dried on an aluminum foil as a positive electrode current collector using a coater, and the positive electrode active material layer thus formed is pressed to form a positive electrode active material layer having a thickness of 100 μm on one side and a packing density of 0.95 g / cm 3. A positive electrode sheet on which was formed was produced.

(実施例2)
実施例1に対して、スラリーを調製する際の混練の時間のみを変更し、その他は同一条件として正極シートを作製した。
アセチレンブラックとPVdFをN−メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで150分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
(Example 2)
A positive electrode sheet was produced under the same conditions as in Example 1, except that only the kneading time for preparing the slurry was changed.
Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, and then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm of a kneader for 150 minutes to prepare a slurry. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 μm on one side and a packing density of 0.95 g / cm 3. Was made.

(実施例3)
実施例1に対して、スラリーを調製する際のバインダーの種類のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:変性ポリメチル(メタ)アクリレート(変性PMMA):カルボキシメチルセルロース(CMC)=100:5:4:2である。
アセチレンブラックと、変性PMMAと、CMCをN−メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
Example 3
A positive electrode sheet was produced under the same conditions as in Example 1, except that only the type of binder used when preparing the slurry was changed. The material ratio (parts by mass) of the positive electrode active material layer is positive electrode active material: acetylene black: modified polymethyl (meth) acrylate (modified PMMA): carboxymethyl cellulose (CMC) = 100: 5: 4: 2.
Acetylene black, modified PMMA, and CMC are put into N-methylpyrrolidone, and after stirring and kneading, the positive electrode active material is put into the mixture, and kneading is performed for 90 minutes at a rotational speed of 100 krpm of the kneader. A slurry was prepared. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 μm on one side and a packing density of 0.95 g / cm 3. Was made.

(比較例1)
実施例1に対して、スラリーを調製する際の混練の時間のみを変更し、その他は同一条件として正極シートを作製した。
アセチレンブラックとPVdFをN−メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで200分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
(Comparative Example 1)
A positive electrode sheet was produced under the same conditions as in Example 1, except that only the kneading time for preparing the slurry was changed.
Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, and then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm for 200 minutes to prepare a slurry. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 μm on one side and a packing density of 0.95 g / cm 3. Was made.

(比較例2)
実施例1に対して、スラリーを調製する際の導電材の含有量のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:PVdF=100:3:7である。
アセチレンブラックとPVdFをN−メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
(Comparative Example 2)
Only the content of the conductive material in preparing the slurry was changed with respect to Example 1, and the other conditions were the same, and a positive electrode sheet was produced. The material ratio (parts by mass) of the positive electrode active material layer is positive electrode active material: acetylene black: PVdF = 100: 3: 7.
Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, and then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm of a kneader for 90 minutes to prepare a slurry. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 μm on one side and a packing density of 0.95 g / cm 3. Was made.

(比較例3)
実施例1に対して、スラリーを調製する際のバインダーの含有量のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:PVdF=100:5:9である。
アセチレンブラックとPVdFをN−メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
(Comparative Example 3)
A positive electrode sheet was produced under the same conditions as in Example 1 except that only the binder content in preparing the slurry was changed. The material ratio (parts by mass) of the positive electrode active material layer is positive electrode active material: acetylene black: PVdF = 100: 5: 9.
Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, and then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm of a kneader for 90 minutes to prepare a slurry. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 μm on one side and a packing density of 0.95 g / cm 3. Was made.

(比較例4)
実施例1に対して、スラリーを調製する際のバインダーの含有量のみを変更し、その他は同一条件として正極シートを作製した。正極活物質層の材料比(質量部)は、正極活物質:アセチレンブラック:PVdF=100:5:3である。
アセチレンブラックとPVdFをN−メチルピロリドン中に入れ、撹拌・混練を行った後で、正極活物質を該混合物中に投入し、混練機の回転速度100rpmで90分間混練を行いスラリーを調製した。アルミニウム箔上にコーターを用いて上記スラリーを塗布乾燥し、できた正極活物質層をプレスして、片面の厚み100μm、充填密度0.95g/cmの正極活物質層が形成された正極シートを作製した。
(Comparative Example 4)
A positive electrode sheet was produced under the same conditions as in Example 1 except that only the binder content in preparing the slurry was changed. The material ratio (parts by mass) of the positive electrode active material layer is positive electrode active material: acetylene black: PVdF = 100: 5: 3.
Acetylene black and PVdF were put into N-methylpyrrolidone, stirred and kneaded, and then the positive electrode active material was put into the mixture, and kneaded at a rotation speed of 100 rpm of a kneader for 90 minutes to prepare a slurry. The above slurry is applied and dried on an aluminum foil using a coater, and the resulting positive electrode active material layer is pressed to form a positive electrode active material layer having a thickness of 100 μm on one side and a packing density of 0.95 g / cm 3. Was made.

以上の実施例1〜3及び比較例1〜4の材料比率と混練時間とを下記表2に示す。   The material ratio and kneading time of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 2 below.

(充電試験)
充電の挙動は単板試験で確認した。正極活物質層を正極集電体の片面に設けて、負極にLi金属を用いて電流値0.5Cで充電を行った。
各サンプルについて、充電時の電圧(3.6V及び3.8V)とSOC(State of Charge;充電率)との関係を下記表3に示す。
(Charge test)
The behavior of charging was confirmed by a single plate test. The positive electrode active material layer was provided on one side of the positive electrode current collector, and charging was performed at a current value of 0.5 C using Li metal for the negative electrode.
Table 3 below shows the relationship between the charging voltage (3.6 V and 3.8 V) and the SOC (State of Charge) for each sample.

図3は、実施例1と比較例1の充電曲線を示したグラフであり、実線で示した曲線が実施例1、破線で示した曲線が比較例1に対応する。
図3に示すように、実施例1の正極シートを備えた電池では、比較例1の正極シートを備えた電池と比べて充電量が大きくなっても、電圧が低くても充電が進むことがわかる。また、グラフは示していないが、実施例2,3についても、実施例1と同様の結果が得られた。したがって実施例1〜3の正極シートを用いて作製した電池では、低い充電電圧で充電してもSOCが十分に上昇することが分かる。
なお、比較例4の正極シートでは充電可能な電池を作製することができなかった。
FIG. 3 is a graph showing charging curves of Example 1 and Comparative Example 1. The curve indicated by the solid line corresponds to Example 1, and the curve indicated by the broken line corresponds to Comparative Example 1.
As shown in FIG. 3, in the battery including the positive electrode sheet of Example 1, charging proceeds even when the charge amount is larger or the voltage is lower than that of the battery including the positive electrode sheet of Comparative Example 1. Recognize. Although the graph is not shown, the same results as in Example 1 were obtained for Examples 2 and 3. Therefore, in the battery produced using the positive electrode sheets of Examples 1 to 3, it can be seen that the SOC sufficiently increases even when charged with a low charging voltage.
In the positive electrode sheet of Comparative Example 4, a rechargeable battery could not be produced.

また、実施例1、2及び比較例1の正極シートから正極活物質粒子を取り出して断面SEM測定及びEDX測定を行い、正極活物質粒子表面のカーボンコートの被覆面積率を算出した。各サンプルのカーボンコート被覆面積率は以下の通りである。   Moreover, the positive electrode active material particles were taken out from the positive electrode sheets of Examples 1 and 2 and Comparative Example 1, and cross-sectional SEM measurement and EDX measurement were performed, and the coverage area ratio of the carbon coat on the surface of the positive electrode active material particles was calculated. The carbon coat coverage area ratio of each sample is as follows.

実施例1(混練時間90分) :98〜100%
実施例2(混練時間150分):95〜98%
比較例1(混練時間200分):80〜90%
Example 1 (kneading time 90 minutes): 98 to 100%
Example 2 (kneading time 150 minutes): 95-98%
Comparative Example 1 (kneading time 200 minutes): 80 to 90%

スラリー調製工程における混練時間を短くした方が正極シート中の正極活物質粒子におけるカーボンコート被覆面積率が高くなることが分かる。
この結果から、オリビン型リン酸鉄リチウム粒子の表面積に対するカーボンの被覆面積率が高いほうがよく、そして、正極シート中のカーボンの被覆面積率の高いオリビン粒子を使用している正極を用いたほうが容量が大きくなるという結果となることが分かる。
It can be seen that the shorter the kneading time in the slurry preparation step, the higher the carbon coat coating area ratio in the positive electrode active material particles in the positive electrode sheet.
From this result, it is better that the coverage area of the carbon with respect to the surface area of the olivine type lithium iron phosphate particles is higher, and the capacity using the positive electrode using the olivine particles having a higher coverage area of carbon in the positive electrode sheet is better. It can be seen that the result is a large.

正極の容量が大きくなった理由は、カーボンコートの被覆率が高い、すなわち、正極におけるLiの取り入れ・放出速度が速くなったことにより、正極の充放電反応時の過電圧が下がり、電極抵抗が低くなったことによるものと考えられる。
また、隣接する正極活物質粒子間のカーボンによるネットワークが切れることなく繋がるため、正極内の導電パスがしっかりと形成され正極活物質粒子間の接続に伴う抵抗がより低下することによるものも考えられる。
The reason why the capacity of the positive electrode is increased is that the coverage of the carbon coat is high, that is, the Li intake / release speed in the positive electrode is increased, so that the overvoltage during the charge / discharge reaction of the positive electrode is reduced and the electrode resistance is low. This is thought to be due to that.
Moreover, since the network by carbon between adjacent positive electrode active material particles is connected without being cut, it is also considered that the conductive path in the positive electrode is firmly formed and the resistance accompanying the connection between the positive electrode active material particles is further reduced. .

次に、図4は、実施例1,2及び比較例2の正極シートを用いて作製した電池の充電時間と容量との関係を示すグラフである。
図4に結果を示す測定で用いた電池は、黒鉛を負極活物質として負極シートを別途作製し、複数枚の正極シートと負極シートをセパレータを介して積層することで、50Ahの非水電解液二次電池を作製したものである。
Next, FIG. 4 is a graph showing the relationship between the charging time and the capacity of batteries produced using the positive electrode sheets of Examples 1 and 2 and Comparative Example 2.
The battery used in the measurement whose results are shown in FIG. 4 is prepared by separately preparing a negative electrode sheet using graphite as a negative electrode active material, and laminating a plurality of positive electrode sheets and negative electrode sheets with a separator interposed therebetween, whereby a 50 Ah nonaqueous electrolyte solution is obtained. A secondary battery is produced.

図4に示すように、実施例1、2の正極シートを使用した電池では、満充電(50Ah)になるのが比較例2の正極シートを使用した電池に比べて速かった。これは、先に示した実施例1、2の優れた電極特性が電池にも反映されている結果であると考えられる。   As shown in FIG. 4, in the batteries using the positive electrode sheets of Examples 1 and 2, the full charge (50 Ah) was faster than the battery using the positive electrode sheet of Comparative Example 2. This is considered to be a result that the excellent electrode characteristics of Examples 1 and 2 described above are reflected in the battery.

<第2実施例>
第2実施例では、正極活物質層の材料比率と正極シートの抵抗値との関係について検証した。
<Second embodiment>
In the second example, the relationship between the material ratio of the positive electrode active material layer and the resistance value of the positive electrode sheet was verified.

(導電材の割合)
正極活物質100質量部に対して導電材を3質量部〜7質量部の範囲で変えて複数の正極シートのサンプルを作製し、それぞれのAC抵抗を測定した。導電材の割合以外の条件は、第1実施例の実施例1のサンプルと同様にして5種類のサンプルを作製した。それぞれのサンプルについてAC抵抗を測定した結果を表4に示す。表4に示すように、導電材の割合が4質量部未満になると正極シートのAC抵抗が急激に上昇する。その一方で、導電材の割合が6質量部以上のサンプルではAC抵抗は一定であり、導電材の割合を6質量部を超える割合とする必要はないことがわかる。
(Percentage of conductive material)
Samples of a plurality of positive electrode sheets were prepared by changing the conductive material in a range of 3 parts by mass to 7 parts by mass with respect to 100 parts by mass of the positive electrode active material, and each AC resistance was measured. Under the conditions other than the ratio of the conductive material, five types of samples were produced in the same manner as the sample of Example 1 of the first example. Table 4 shows the results of measuring the AC resistance for each sample. As shown in Table 4, when the proportion of the conductive material is less than 4 parts by mass, the AC resistance of the positive electrode sheet increases rapidly. On the other hand, it can be seen that the AC resistance is constant in the sample having a conductive material ratio of 6 parts by mass or more, and the conductive material ratio does not need to exceed 6 parts by mass.

(バインダーの割合)
正極活物質100質量部に対してバインダーを3質量部〜9質量部の範囲で変えて複数の正極シートのサンプルを作製し、それぞれのAC抵抗を測定した。バインダーの割合以外の条件は、第1実施例の実施例1のサンプルと同様にして7種類のサンプルを作製した。それぞれのサンプルについてAC抵抗を測定した結果を表5に示す。表5に示すように、バインダーの割合が3質量部未満になると正極活物質層において十分な結着力が得られず、正極集電体上に正極活物質層を保持することができなかった。その一方で、バインダーの割合が8質量部を超えると、正極シートのAC抵抗が急激に上昇することがわかる。
(Binder ratio)
Samples of a plurality of positive electrode sheets were prepared by changing the binder in the range of 3 parts by mass to 9 parts by mass with respect to 100 parts by mass of the positive electrode active material, and each AC resistance was measured. Under the conditions other than the ratio of the binder, seven types of samples were prepared in the same manner as the sample of Example 1 of the first example. The results of measuring the AC resistance for each sample are shown in Table 5. As shown in Table 5, when the binder ratio was less than 3 parts by mass, sufficient binding force was not obtained in the positive electrode active material layer, and the positive electrode active material layer could not be held on the positive electrode current collector. On the other hand, when the proportion of the binder exceeds 8 parts by mass, the AC resistance of the positive electrode sheet is rapidly increased.

20…二次電池、25…正極活物質層   20 ... secondary battery, 25 ... positive electrode active material layer

Claims (6)

カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、前記正極が、前記正極活物質100質量部に対して4質量部以上6質量部以下の導電材と、4質量部以上8質量部以下のバインダーとを含む正極活物質層を有し、カーボンコートされたオリビン型リチウム複合化合物粒子のカーボン被覆面積率が95%以上である非水電解液二次電池。   In a non-aqueous electrolyte secondary battery using a positive electrode including a carbon-coated olivine type lithium composite compound as a positive electrode active material, the positive electrode is 4 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. Non-aqueous electrolysis having a positive electrode active material layer containing 4 parts by mass or more and 8 parts by mass or less of a conductive material, and having a carbon-coated olivine type lithium composite compound particle having a carbon coating area ratio of 95% or more. Liquid secondary battery. 前記正極活物質層の充填密度が、0.90g/cm以上1.09g/cm以下である、請求項1に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein a filling density of the positive electrode active material layer is 0.90 g / cm 3 or more and 1.09 g / cm 3 or less. カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、0.5C以下、3.8Vで充電した際の正極の充電率が98%以上である、非水電解液二次電池。   In a non-aqueous electrolyte secondary battery using a positive electrode containing a carbon-coated olivine type lithium composite compound as a positive electrode active material, the charge rate of the positive electrode when charged at 0.5 C or lower and 3.8 V is 98% or higher A non-aqueous electrolyte secondary battery. カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、0.5C以下、3.6Vで充電した際の正極の充電率が95%以上である、非水電解液二次電池。   In a non-aqueous electrolyte secondary battery using a positive electrode containing a carbon-coated olivine-type lithium composite compound as a positive electrode active material, the charge rate of the positive electrode when charged at 0.5 C or less and 3.6 V is 95% or more A non-aqueous electrolyte secondary battery. カーボンコートされたオリビン型リチウム複合化合物を正極活物質として含む正極を用いた非水電解液二次電池において、0.5C以下の充電条件で3.6V充電した際の正極の充電率と0.5C以下の充電条件で3.8V充電した際の正極の充電率の差が2〜4%である、非水電解液二次電池。   In a non-aqueous electrolyte secondary battery using a positive electrode containing a carbon-coated olivine-type lithium composite compound as a positive electrode active material, the charge rate of the positive electrode when charged at 3.6 V under a charging condition of 0.5 C or less and 0. A non-aqueous electrolyte secondary battery in which the difference in charging rate of the positive electrode when charged at 3.8 V under a charging condition of 5 C or less is 2 to 4%. 請求項1から5のいずれか1項に記載の非水電解液二次電池を複数個接続してなる、電池モジュール。   A battery module comprising a plurality of the nonaqueous electrolyte secondary batteries according to claim 1 connected to each other.
JP2010282434A 2010-12-17 2010-12-17 Nonaqueous electrolyte secondary battery and battery module Pending JP2012133895A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010282434A JP2012133895A (en) 2010-12-17 2010-12-17 Nonaqueous electrolyte secondary battery and battery module
JP2011030991A JP5679187B2 (en) 2010-12-17 2011-02-16 Non-aqueous electrolyte secondary battery and battery module
US13/993,901 US9960416B2 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
KR1020137015146A KR101929792B1 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
EP11848054.0A EP2654108B1 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
CN2011800594381A CN103250280A (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
PCT/JP2011/078915 WO2012081621A1 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282434A JP2012133895A (en) 2010-12-17 2010-12-17 Nonaqueous electrolyte secondary battery and battery module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011030991A Division JP5679187B2 (en) 2010-12-17 2011-02-16 Non-aqueous electrolyte secondary battery and battery module

Publications (1)

Publication Number Publication Date
JP2012133895A true JP2012133895A (en) 2012-07-12

Family

ID=46649300

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010282434A Pending JP2012133895A (en) 2010-12-17 2010-12-17 Nonaqueous electrolyte secondary battery and battery module
JP2011030991A Active JP5679187B2 (en) 2010-12-17 2011-02-16 Non-aqueous electrolyte secondary battery and battery module

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011030991A Active JP5679187B2 (en) 2010-12-17 2011-02-16 Non-aqueous electrolyte secondary battery and battery module

Country Status (1)

Country Link
JP (2) JP2012133895A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055000A (en) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp Lithium transition metal-based compound powder for lithium secondary battery positive electrode material and method for producing the same, lithium secondary battery positive electrode including the same, and lithium secondary battery
WO2017038628A1 (en) * 2015-08-28 2017-03-09 日立マクセル株式会社 Nonaqueous secondary battery and method for manufacturing same
CN110383569A (en) * 2017-02-24 2019-10-25 艾利电力能源有限公司 Non-aqueous electrolyte secondary battery and charging method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120820A (en) * 2017-01-27 2018-08-02 古河電池株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2003308845A (en) * 2002-04-17 2003-10-31 Mikuni Color Ltd Electrode for lithium secondary battery and lithium secondary battery using it
JP2007173134A (en) * 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2007265923A (en) * 2006-03-30 2007-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009048958A (en) * 2007-08-23 2009-03-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device
JP2009277661A (en) * 2007-11-30 2009-11-26 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2009295566A (en) * 2007-11-12 2009-12-17 Gs Yuasa Corporation Manufacturing device for electrode material, manufacturing method for electrode material, and manufacturing method for lithium secondary battery
JP2010218884A (en) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd Lithium phosphorous complex oxide-carbon composite and method of manufacturing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010231958A (en) * 2009-03-26 2010-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2012059532A (en) * 2010-09-08 2012-03-22 Toyota Motor Corp Method for manufacturing secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383217B2 (en) * 2008-01-28 2014-01-08 住友化学株式会社 Positive electrode active material, sodium secondary battery, and olivine-type phosphate production method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2003308845A (en) * 2002-04-17 2003-10-31 Mikuni Color Ltd Electrode for lithium secondary battery and lithium secondary battery using it
JP2007173134A (en) * 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2007265923A (en) * 2006-03-30 2007-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009048958A (en) * 2007-08-23 2009-03-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009295566A (en) * 2007-11-12 2009-12-17 Gs Yuasa Corporation Manufacturing device for electrode material, manufacturing method for electrode material, and manufacturing method for lithium secondary battery
JP2009277661A (en) * 2007-11-30 2009-11-26 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2010218884A (en) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd Lithium phosphorous complex oxide-carbon composite and method of manufacturing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010231958A (en) * 2009-03-26 2010-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device
JP2012059532A (en) * 2010-09-08 2012-03-22 Toyota Motor Corp Method for manufacturing secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055000A (en) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp Lithium transition metal-based compound powder for lithium secondary battery positive electrode material and method for producing the same, lithium secondary battery positive electrode including the same, and lithium secondary battery
WO2017038628A1 (en) * 2015-08-28 2017-03-09 日立マクセル株式会社 Nonaqueous secondary battery and method for manufacturing same
CN110383569A (en) * 2017-02-24 2019-10-25 艾利电力能源有限公司 Non-aqueous electrolyte secondary battery and charging method

Also Published As

Publication number Publication date
JP2012134114A (en) 2012-07-12
JP5679187B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP7232355B2 (en) rechargeable battery cell
WO2012081621A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
US8597835B2 (en) Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
CN102110853B (en) Lithium-ion secondary battery, anode for lithium-ion secondary battery, power tool, electric vehicle and energy storage system
US8486566B2 (en) Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
US11296315B2 (en) Battery
KR20120034060A (en) Cathode for lithium secondary battery and lithium secondary battery comprising the same
WO2014010526A1 (en) Non-aqueous electrolyte secondary battery
US20150194702A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
WO2014010476A1 (en) Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
JP6908113B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
JP2007257862A (en) Electrode for secondary battery, and secondary battery
JP2017520892A (en) Positive electrode for lithium battery
KR20130129819A (en) Lithium ion secondary battery
US20200274147A1 (en) Negative electrode active material for lithium secondary battery and method for preparing the same
KR102240708B1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
US20160344028A1 (en) Nonaqueous electrolyte secondary battery
WO2020196610A1 (en) Composite particles and negative electrode material for lithium ion secondary batteries
JP5679187B2 (en) Non-aqueous electrolyte secondary battery and battery module
TW202308210A (en) Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving long cycle life, fast charge and high thermal stability
WO2017188021A1 (en) Electrochemical element electrode and lithium ion secondary battery
JP6709991B2 (en) Lithium ion secondary battery
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP2023017367A (en) Non-aqueous electrolyte secondary battery
JP7074203B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150317