JP2012124450A - Thermoelectric element - Google Patents

Thermoelectric element Download PDF

Info

Publication number
JP2012124450A
JP2012124450A JP2011050244A JP2011050244A JP2012124450A JP 2012124450 A JP2012124450 A JP 2012124450A JP 2011050244 A JP2011050244 A JP 2011050244A JP 2011050244 A JP2011050244 A JP 2011050244A JP 2012124450 A JP2012124450 A JP 2012124450A
Authority
JP
Japan
Prior art keywords
thermoelectric element
merit
plane
specific direction
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011050244A
Other languages
Japanese (ja)
Other versions
JP5750945B2 (en
Inventor
Takahiro Hayashi
林  高廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2011050244A priority Critical patent/JP5750945B2/en
Publication of JP2012124450A publication Critical patent/JP2012124450A/en
Application granted granted Critical
Publication of JP5750945B2 publication Critical patent/JP5750945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric element having a higher performance index when compared with that of a thermoelectric element where a joint surface of flat plate counter electrodes is formed perpendicularly to the direction of orientation of the c-plane of a rhombohedral crystal.SOLUTION: A thermoelectric element having a composition of BiSbTeSe(0≤x≤1, 0≤y<3) where the c-plane of a rhombohedral crystal is oriented in a specific direction includes a joint surface of parallel flat plate counter electrodes. Within a range where the performance index of the thermoelectric element becomes larger than that when the joint surface is perpendicular to the specific direction, the joint surface is inclined with respect to the direction perpendicular to the specific direction.

Description

本発明は熱電素子に関する。   The present invention relates to a thermoelectric element.

従来、BiTe系の熱電素子の性能指数は材料の通電方向に依存することが知られており、BiTe系の熱電素子においては菱面体結晶のc面に平行な方向の電気抵抗率が小さいため、菱面体結晶のc面が特定の方向に揃っているBiTe系の熱電素子においては特定の方向に対して平行な方向に通電する状態で最大の性能指数になると考えられていた。なお、特許文献1においては、電極の形成面と劈開面とのなす角度を45度以上にする構成が開示されている。なお、BiTe系の熱電素子は菱面体結晶構造(空間群R3−m(−は通常、3の上方に表記される))の熱電材料によって構成される。すなわち、熱電素子は空間群R3−mの菱面体結晶を六方晶系の座標系で表記したときの結晶軸をc軸,a軸、結晶面をc面とした場合、当該c面が特定の配向方位に配向された材料によって構成される(以下、六方晶系の座標系で表記したときのc面を単にc面と呼ぶ)。   Conventionally, it is known that the figure of merit of a BiTe-based thermoelectric element depends on the energization direction of the material. In a BiTe-based thermoelectric element, the electrical resistivity in the direction parallel to the c-plane of the rhombohedral crystal is small. In a BiTe-based thermoelectric element in which c-planes of rhombohedral crystals are aligned in a specific direction, it has been considered that the maximum figure of merit is obtained in a state where current flows in a direction parallel to the specific direction. Note that Patent Document 1 discloses a configuration in which an angle formed between an electrode formation surface and a cleavage surface is 45 degrees or more. Note that a BiTe-based thermoelectric element is composed of a thermoelectric material having a rhombohedral crystal structure (space group R3-m (-is usually expressed above 3)). That is, in the thermoelectric element, when the rhombohedral crystal of the space group R3-m is expressed in the hexagonal coordinate system, the c axis is the c axis, the a axis, and the crystal plane is the c plane, the c plane is a specific one. It is composed of a material oriented in an orientation direction (hereinafter, the c-plane when expressed in a hexagonal coordinate system is simply referred to as a c-plane).

特許第3550390号公報Japanese Patent No. 3550390

熱電素子は最大の性能指数になる状態で利用されることが望ましく、熱電素子に関連する技術開発において性能指数の最大化は常に課題である。また、特許文献1には電極の形成面と劈開面とのなす角度を45度以上にする構成が開示されているものの、最も好ましい角度は略90度(特定の方向に対して平行な方向に通電する状態)とされており(特許文献1、0022段落)、この状態は菱面体結晶のc面が配向した方向に垂直に平板対向電極の接合面を形成する状態となる。そして、従来、性能指数を最大化する視点で菱面体結晶のc面が配向した方向に垂直な方向以外の方向に配向した接合面を形成する理由は存在しなかった。
本発明は、前記課題に鑑みてなされたもので、菱面体結晶のc面が配向した方向に垂直に平板対向電極の接合面を形成するよりも高い性能指数の熱電素子を提供することを目的とする。
It is desirable that the thermoelectric element is used in a state where the maximum figure of merit is obtained, and maximization of the figure of merit is always a problem in the technological development related to the thermoelectric element. Although Patent Document 1 discloses a configuration in which the angle formed between the electrode formation surface and the cleavage surface is 45 degrees or more, the most preferable angle is approximately 90 degrees (in a direction parallel to a specific direction). (Patent Document 1, paragraph 0022), and this state is a state in which the bonding surface of the flat plate counter electrode is formed perpendicular to the direction in which the c-plane of the rhombohedral crystal is oriented. Conventionally, there has been no reason to form a joint surface oriented in a direction other than the direction perpendicular to the direction in which the c-plane of the rhombohedral crystal is oriented from the viewpoint of maximizing the figure of merit.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermoelectric element having a higher figure of merit than forming a joint surface of a flat plate counter electrode perpendicular to the direction in which the c-plane of rhombohedral crystal is oriented. And

前記目的の少なくとも一つを解決するため、特定の方向に菱面体結晶のc面が配向したBiSb2−xTe3−ySeの組成の熱電素子において、平行な平板対向電極の接合面を備えるとともに、接合面が前記特定の方向に垂直である場合よりも熱電素子の性能指数が大きくなる範囲で接合面が特定の方向に垂直な方向に対して傾斜している状態とする。 To solve at least one of the object, the thermoelectric elements of the composition of rhombohedral crystals of Bi c plane is oriented x Sb 2-x Te 3- y Se y in a particular direction, the junction of the parallel flat plate counter electrode In addition, the bonding surface is inclined with respect to the direction perpendicular to the specific direction in a range where the figure of merit of the thermoelectric element is larger than when the bonding surface is perpendicular to the specific direction.

すなわち、従来、特定の方向に垂直な方向に配向した接合面に平板対向電極を接合して通電する(特定の方向に平行な方向に通電する)状態が熱電素子の性能指数を最大化すると考えられていたが、BiSb2−xTe3−ySe(0≦x≦1、0≦y<3)の組成の熱電素子においてはより高い性能指数を実現可能な接合面の方向が見出された。具体的には、菱面体結晶のc面が配向した方向を特定の方向としたとき、当該特定の方向に垂直な方向に対して接合面を傾斜させると、当該傾斜の傾斜角が所定の範囲であれば、接合面が特定の方向に垂直である場合よりも熱電素子の性能指数が大きくなることが見出された。従って、特定の方向に垂直な方向に対して接合面を傾斜させることにより、接合面が特定の方向に垂直である場合よりも熱電素子の性能指数を高くすることが可能になる。なお、得られた熱電素子を組み合わせて熱電変換モジュールとすれば、高性能の熱電変換モジュールを製造することができる。 That is, conventionally, it is considered that a state in which a flat plate counter electrode is bonded to a bonding surface oriented in a direction perpendicular to a specific direction and energized (energized in a direction parallel to the specific direction) maximizes the figure of merit of the thermoelectric element. However, in the thermoelectric element having a composition of Bi x Sb 2-x Te 3-y Se y (0 ≦ x ≦ 1, 0 ≦ y <3), the direction of the joint surface capable of realizing a higher figure of merit is It was found. Specifically, when the direction in which the c-plane of the rhombohedral crystal is oriented is a specific direction, when the joint surface is inclined with respect to a direction perpendicular to the specific direction, the inclination angle of the inclination is within a predetermined range. Then, it has been found that the figure of merit of the thermoelectric element is larger than when the joint surface is perpendicular to a specific direction. Therefore, by inclining the joint surface with respect to a direction perpendicular to the specific direction, the figure of merit of the thermoelectric element can be made higher than when the joint surface is perpendicular to the specific direction. If a thermoelectric conversion module is formed by combining the obtained thermoelectric elements, a high-performance thermoelectric conversion module can be manufactured.

接合面は平板対向電極を接合可能な接合面であるとともに平板対向電極を接合面に接合した状態で平板対向電極が平行になるように構成されていればよい。すなわち、接合面に垂直な方向が熱電素子の通電方向であるとみなした場合に、熱電素子において、菱面体結晶のc面が配向した方向である特定の方向に対して通電方向が傾斜している状態を実現できればよい。   The joining surface is a joining surface capable of joining the flat plate counter electrode and may be configured so that the flat plate counter electrode is parallel in a state where the flat plate counter electrode is joined to the joint surface. That is, when it is considered that the direction perpendicular to the bonding surface is the energization direction of the thermoelectric element, in the thermoelectric element, the energization direction is inclined with respect to a specific direction in which the c-plane of the rhombohedral crystal is oriented. It is only necessary to realize the state.

また、菱面体結晶のc面が配向している方向である特定の方向は、c面の方向が統計的に一定の方向に揃っているとみなすことができる場合の方向である。すなわち、熱電素子の多くは多結晶体であるため任意の断面に現れる菱面体結晶のc面は各種の方向に配向しているが、断面に現れる菱面体結晶のc面が所定の誤差内で共通の方向に配向しているのであれば、菱面体結晶のc面が特定の方向に揃っていると言える。そして、菱面体結晶のc面が特定の方向に配向しているか否かは、例えば、TSL社製のEBSD(Electron Back Scatter Diffraction)装置にて熱電素子の任意の断面(例えば接合面)を測定し、測定結果を解析ソフトウェアによって解析することで特定することが可能である。   In addition, the specific direction, which is the direction in which the c-plane of the rhombohedral crystal is oriented, is a direction when the c-plane direction can be regarded as statistically aligned in a certain direction. That is, since many thermoelectric elements are polycrystalline, the c-plane of the rhombohedral crystal appearing in an arbitrary cross section is oriented in various directions, but the c-plane of the rhombohedral crystal appearing in the cross section is within a predetermined error. If they are oriented in a common direction, it can be said that the c-planes of the rhombohedral crystals are aligned in a specific direction. Whether or not the c-plane of the rhombohedral crystal is oriented in a specific direction is measured, for example, by measuring an arbitrary cross section (for example, a bonding surface) of the thermoelectric element with an EBSD (Electron Back Scatter Diffraction) device manufactured by TSL. Then, it is possible to identify the measurement result by analyzing it with analysis software.

具体的には、熱電素子の任意の断面における各結晶の方向において、最も頻度の高い方向を配向方位とし、配向方位からのズレを積算度数で示した際に全体の80%の領域を網羅する配向方向からの誤差角を配向度と規定し、この誤差角が小さい程配向方位に全体の結晶が整列しているとみなすことができる。また、特定の方向をc面で規定することはc軸で規定することと等価である。また、菱面体結晶のc面が特定の方向に配向している熱電素子は、例えば、加圧軸と押出軸とが一軸上にない金型による押出処理や据込鍛造法等の塑性加工法によって製造することができる。   Specifically, in the direction of each crystal in an arbitrary cross section of the thermoelectric element, the direction with the highest frequency is taken as the orientation direction, and when the deviation from the orientation direction is indicated by the integrated frequency, the entire 80% region is covered. The error angle from the orientation direction is defined as the degree of orientation, and the smaller the error angle, the more the whole crystal is aligned in the orientation direction. Also, defining a specific direction on the c-plane is equivalent to defining it on the c-axis. In addition, the thermoelectric element in which the c-plane of the rhombohedral crystal is oriented in a specific direction is, for example, a plastic working method such as an extrusion process using a mold in which the pressure axis and the extrusion axis are not on one axis, or an upset forging method. Can be manufactured by.

さらに、接合面の特定の方向に垂直な方向に対する傾斜角は5度〜20度であることが好ましい。すなわち、傾斜角が5度〜20度の範囲であれば、接合面が特定の方向に垂直である場合よりも熱電素子の性能指数を高くすることが可能である。   Furthermore, the inclination angle with respect to the direction perpendicular to the specific direction of the joint surface is preferably 5 degrees to 20 degrees. That is, when the inclination angle is in the range of 5 degrees to 20 degrees, the figure of merit of the thermoelectric element can be made higher than when the joint surface is perpendicular to a specific direction.

さらに、BiSb2−xTe3−ySe(0≦x≦1、0≦y<3)の組成のxが大きくなるほど接合面の特定の方向に垂直な方向に対する傾斜角が小さくなるように構成してもよい。すなわち、xが大きくなるほど傾斜角が小さくなるように構成することにより、熱電素子の性能指数を最大化することが容易になる。 Further, as x of the composition of Bi x Sb 2-x Te 3-y Se y (0 ≦ x ≦ 1, 0 ≦ y <3) increases, the inclination angle of the bonding surface with respect to the direction perpendicular to the specific direction decreases. You may comprise as follows. That is, it is easy to maximize the figure of merit of the thermoelectric element by configuring so that the inclination angle decreases as x increases.

熱電素子の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a thermoelectric element. (2A)は金型の一例を示す模式図、(2B)(2D)は熱電素子の側面図、(2C)(2E)は熱電素子を模式的に示す図である。(2A) is a schematic diagram illustrating an example of a mold, (2B) and (2D) are side views of the thermoelectric element, and (2C) and (2E) are diagrams schematically illustrating the thermoelectric element.

ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)熱電素子の製造方法:
(2)実施例および比較例:
Here, embodiments of the present invention will be described in the following order.
(1) Thermoelectric element manufacturing method:
(2) Examples and comparative examples:

(1)熱電素子の製造方法:
図1は、熱電素子の製造方法の一実施形態を示すフローチャートである。本実施形態においては、まず、BiTe系熱電素子の原料となる元素を秤量して溶融し、インゴットを作成する(ステップS100)。すなわち、Bi,Sbからなる群から選択される少なくとも1種の元素と、Te,Seからなる群から選択される少なくとも1種の元素とのインゴットを秤量し、BiSb2−xTe3−ySe(0≦x≦1、0≦y<3)の組成とする。
(1) Thermoelectric element manufacturing method:
FIG. 1 is a flowchart showing an embodiment of a method for manufacturing a thermoelectric element. In the present embodiment, first, an element that is a raw material of a BiTe thermoelectric element is weighed and melted to create an ingot (step S100). That is, an ingot of at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se is weighed, and Bi x Sb 2-x Te 3- The composition is y Se y (0 ≦ x ≦ 1, 0 ≦ y <3).

秤量後には、各種手段によってこれらの元素を一旦溶融して冷却することにより、所望組成の合金のインゴットを作成する。次に、当該合金のインゴットをロール型液体急冷法によって急冷し、薄膜状の粉末を作成する(ステップS105)。すなわち、合金のインゴットを溶融させ、回転するロールに吹き付けることによって薄膜状の粉末とする。むろん、液体急冷の手法としては単ロール法でもよいし、双ロール法でもよい。また、ガスアトマイズや回転ディスクを用いて合金を粉末化した材料を利用しても良いし、合金のインゴットを粉砕して利用しても良い。さらに、秤量した各元素を溶融した後、冷却してインゴットにする工程を省略し、溶融状態の合金を液体急冷してもよい。むろん、材料を水素等で還元しても良い。   After weighing, these elements are once melted and cooled by various means, thereby producing an alloy ingot having a desired composition. Next, the ingot of the alloy is rapidly cooled by a roll type liquid quenching method to produce a thin film powder (step S105). That is, an alloy ingot is melted and sprayed onto a rotating roll to form a thin film powder. Of course, the liquid quenching method may be a single roll method or a twin roll method. Further, a material obtained by pulverizing an alloy using gas atomization or a rotating disk may be used, or an alloy ingot may be crushed and used. Further, after melting each weighed element, the step of cooling to ingot may be omitted, and the molten alloy may be liquid quenched. Of course, the material may be reduced with hydrogen or the like.

合金の粉末材料が準備されると、図示しないチャンバー内で当該粉末を金型にセットする(ステップS110)。図2Aは、ECAP(Equal Channel Angular Pressing)法による押出処理を実施するための金型の一例を示す模式図である。この実施形態において、金型10は直方体であり、面11に長方形の穴11aが形成され、面11に隣接する面12に長方形の穴12aが形成されている。穴11aは、面11における開口部から当該面11に対して垂直な方向に形成されており、金型10の内部の所定位置まで延びている。また、穴12aは、面12における開口部から当該面12に対して垂直な方向に形成されており、金型10の内部にて穴11aとつながっている。   When an alloy powder material is prepared, the powder is set in a mold in a chamber (not shown) (step S110). FIG. 2A is a schematic diagram illustrating an example of a mold for performing an extrusion process by an ECAP (Equal Channel Angular Pressing) method. In this embodiment, the mold 10 is a rectangular parallelepiped, and a rectangular hole 11 a is formed in the surface 11, and a rectangular hole 12 a is formed in the surface 12 adjacent to the surface 11. The hole 11 a is formed from the opening in the surface 11 in a direction perpendicular to the surface 11 and extends to a predetermined position inside the mold 10. The hole 12 a is formed in a direction perpendicular to the surface 12 from the opening in the surface 12, and is connected to the hole 11 a inside the mold 10.

本実施形態においては、穴11aが延びて金型10内に形成する内壁が加圧通路11bを構成し、穴12aが延びて金型10内に形成する内壁が押出通路12bとなる。また、加圧通路11bの中央において加圧通路11bが延びる方向と同一方向に延びる仮想的な直線を加圧軸と呼び、押出通路12bの中央において押出通路12bが延びる方向と同一方向に延びる仮想的な直線を押出軸と呼ぶ。本実施形態においては、加圧軸と押出軸とが直交しており、図2においては加圧軸をZ軸として示し、押出軸をX軸として示している。また、Z軸およびX軸に垂直な方向にY軸を設定し、各軸の交点を原点とする。なお、加圧通路11bにおける材料の加圧方向はZ軸の向きと逆向きであり、押出通路12bにおける材料の押出方向はX軸の向きと同一である。   In the present embodiment, the inner wall formed in the mold 10 by extending the hole 11a constitutes the pressurizing passage 11b, and the inner wall formed in the mold 10 by extending the hole 12a becomes the extrusion passage 12b. An imaginary straight line extending in the same direction as the direction in which the pressurizing passage 11b extends in the center of the pressurizing passage 11b is called a pressurizing shaft, and a virtual line extending in the same direction as the direction in which the extruding passage 12b extends in the center of the extrusion passage 12b. A straight line is called an extrusion shaft. In the present embodiment, the pressure axis and the extrusion axis are orthogonal to each other. In FIG. 2, the pressure axis is indicated as the Z axis, and the extrusion axis is indicated as the X axis. Also, the Y axis is set in a direction perpendicular to the Z axis and the X axis, and the intersection of each axis is set as the origin. The pressing direction of the material in the pressurizing passage 11b is opposite to the direction of the Z axis, and the extruding direction of the material in the extrusion passage 12b is the same as the direction of the X axis.

すなわち、金型10は、加圧通路11b側に加圧対象の材料をセットして加圧し、押出通路12bを通して材料を押し出す押出処理を行うことが可能である。さらに、加圧軸に垂直な方向の加圧通路11bの断面は穴11aと同形、押出軸に垂直な方向の押出通路12bの断面は穴12aと同形であるとともに、穴11aと穴12aも同形である。従って、金型10を用いてECAP法による押出処理を行うことが可能である。   That is, the mold 10 can perform an extrusion process in which a material to be pressurized is set and pressurized on the pressure passage 11b side and the material is pushed out through the extrusion passage 12b. Further, the cross section of the pressurizing passage 11b in the direction perpendicular to the pressurizing shaft has the same shape as the hole 11a, the cross section of the pushout passage 12b in the direction perpendicular to the extruding shaft is the same shape as the hole 12a, and the holes 11a and 12a have the same shape. It is. Therefore, it is possible to perform extrusion processing by the ECAP method using the mold 10.

ステップS110においては、当該ECAP法による押出処理を行うために、薄膜の厚さ方向に整列するように材料を積層する。すなわち、ロール急冷法で作成された薄膜状の粉末は膜厚方向に平行な方向にc面が揃っているため、薄膜の厚さ方向に整列するように積層することにより、押出処理の際の変形抵抗が低減され、押出処理における加工圧力を低減することができる。   In step S110, in order to perform the extrusion process by the ECAP method, materials are laminated so as to be aligned in the thickness direction of the thin film. That is, since the c-plane is aligned in the direction parallel to the film thickness direction in the thin film-like powder prepared by the roll quenching method, by laminating so as to align in the thickness direction of the thin film, The deformation resistance is reduced, and the processing pressure in the extrusion process can be reduced.

ステップS110にて粉末を金型10にセットすると、前記チャンバー内を真空引きし、真空引きが完了した後にチャンバー内にアルゴンガスを導入する(ステップS115)。すなわち、金型10の雰囲気をアルゴンガスに置換する。この後、図示しないヒータによって金型10を加熱し(ステップS120)、金型10を予め決められた温度に設定する。本実施形態において、この温度は材料の融点より250℃低い温度〜融点より20℃低い温度の範囲で設定される。   When the powder is set in the mold 10 in step S110, the inside of the chamber is evacuated, and after the evacuation is completed, argon gas is introduced into the chamber (step S115). That is, the atmosphere of the mold 10 is replaced with argon gas. Thereafter, the mold 10 is heated by a heater (not shown) (step S120), and the mold 10 is set to a predetermined temperature. In this embodiment, this temperature is set in the range of a temperature that is 250 ° C. lower than the melting point of the material to a temperature that is 20 ° C. lower than the melting point.

金型10が温度に達したら、図示しないプランジャで加圧通路11b内の材料を押すことによってECAP法による押出処理を実行する(ステップS125)。すなわち、材料に対してせん断力を与えながら予め決められた押出速度で押出処理を行う。ECAP法による押出処理を実行すると、図示しない冷却機構によって金型10を冷却し(ステップS130)、材料を取り出し可能な温度まで金型10が冷却されると、金型10から熱電材料を取り出す(ステップS135)。   When the mold 10 reaches the temperature, an extrusion process by the ECAP method is executed by pushing the material in the pressure passage 11b with a plunger (not shown) (step S125). That is, the extrusion process is performed at a predetermined extrusion speed while applying a shearing force to the material. When the extrusion process by the ECAP method is executed, the mold 10 is cooled by a cooling mechanism (not shown) (step S130). When the mold 10 is cooled to a temperature at which the material can be taken out, the thermoelectric material is taken out from the mold 10 ( Step S135).

以上のような押出処理によれば、材料の菱面体結晶のc面が特定の方向に配向したバルク材料を製造することができる。例えば、図2Aに示すように押出通路12bから押し出された熱電材料の一側面の頂点に符号A,B,C,Dを対応づけた場合、図2Bに示すように側面ABCDからみたときにc面が実線の矢印方向に配向した熱電材料を製造することができる。   According to the extrusion process as described above, a bulk material in which the c-plane of the rhombohedral crystal of the material is oriented in a specific direction can be produced. For example, when symbols A, B, C, and D are associated with the apexes of one side surface of the thermoelectric material extruded from the extrusion passage 12b as shown in FIG. 2A, when viewed from the side surface ABCD as shown in FIG. 2B, c A thermoelectric material whose surface is oriented in the direction of the solid arrow can be manufactured.

そこで、製造された熱電材料を切断し、接合面を形成し(ステップS140)、接合面に対して平板対向電極を接合する(ステップS145)ことによって熱電素子を製造する。本実施形態のステップS140においては、熱電材料から、平板対向電極の接合面がc面の配向方向である特定の方向に垂直である場合よりも熱電素子の性能指数が大きくなる範囲で、特定の方向に垂直な方向に対して傾斜させた方向を切断方向として切断し、切断面を接合面とする。すなわち、従来の技術では、図2Bに実線の矢印で示すc面の配向方向である特定の方向D1に垂直および平行な方向(図2Bにて破線で示す方向)に熱電材料を切断することにより直方体の熱電素子としていた。そして、図2Cに示すように特定の方向D1に対して垂直な方向を接合面Sとして熱電素子Pに対して平板対向電極Eを接合することが性能指数を最大化すると考えられていた。 Therefore, the manufactured thermoelectric material is cut to form a bonding surface (step S140), and a plate counter electrode is bonded to the bonding surface (step S145), thereby manufacturing a thermoelectric element. In step S140 of the present embodiment, the thermoelectric material has a specific index within a range in which the figure of merit of the thermoelectric element is larger than the case where the bonding surface of the flat plate counter electrode is perpendicular to the specific direction that is the orientation direction of the c-plane. A direction inclined with respect to a direction perpendicular to the direction is cut as a cutting direction, and the cut surface is defined as a bonding surface. That is, in the conventional art, cutting the thermoelectric material perpendicular and parallel direction (indicated by broken lines in FIG. 2B) in a specific direction D 1 which is the orientation direction of the c-plane indicated by solid line arrow in FIG. 2B Therefore, the thermoelectric element was a rectangular parallelepiped. Then, as shown in FIG. 2C, it has been thought that joining the flat plate counter electrode E to the thermoelectric element P with the joining surface S as a direction perpendicular to the specific direction D 1 maximizes the figure of merit.

しかし、本願出願人の解析によれば、同じ製法で製造された熱電材料であっても、平板対向電極の接合面がc面の配向方向である特定の方向に垂直な方向に対して傾斜している方が性能指数をより大きくできることが判明した。そこで、本実施形態においては、まず、図2Dに実線の矢印で示すc面の配向方向である特定の方向D1に垂直な方向(図2Bにて一点鎖線で示す方向)を特定する。そして、当該特定の方向D1に垂直な方向に対して傾斜角θだけ傾斜させた方向および当該傾斜させた方向に対して垂直な方向(図2Dにて破線で示す方向)に熱電材料を切断することにより直方体の熱電素子を製造する。そして、図2Eに示すように特定の方向D1に対して垂直な方向(図2Eにて一点鎖線で示す方向)に対して傾斜角θ傾斜させた方向(図2Eにてい破線で示す方向)の面を接合面Sとして熱電素子Pに対して平板対向電極Eを接合する。なお、本実施形態において、特定の方向D1に垂直な方向に対する傾斜角θは5度〜20度である。この構成により、図2Cに示す構成よりも高い性能指数の熱電素子を製造することが可能になる。 However, according to the analysis of the applicant of the present application, even in the thermoelectric material manufactured by the same manufacturing method, the joint surface of the flat plate counter electrode is inclined with respect to the direction perpendicular to the specific direction which is the orientation direction of the c-plane. It has been found that the figure of merit can increase the figure of merit. Therefore, in the present embodiment, first, to identify the vertical direction (indicated by a dashed line in FIG. 2B) in a specific direction D 1 which is the orientation direction of the c-plane indicated by solid line arrow in FIG. 2D. Then, the thermoelectric material is cut in a direction inclined by an inclination angle θ with respect to a direction perpendicular to the specific direction D 1 and a direction perpendicular to the inclined direction (direction indicated by a broken line in FIG. 2D). Thus, a rectangular parallelepiped thermoelectric element is manufactured. Then, as shown in FIG. 2E, a direction (indicated by a broken line in FIG. 2E) inclined by an inclination angle θ with respect to a direction perpendicular to a specific direction D 1 (direction indicated by a one-dot chain line in FIG. 2E). The flat counter electrode E is bonded to the thermoelectric element P with the surface of the plate as a bonding surface S. In the present embodiment, the inclination angle θ is 5 degrees to 20 degrees with respect to the direction perpendicular to the specific direction D 1. This configuration makes it possible to manufacture a thermoelectric element having a higher figure of merit than the configuration shown in FIG. 2C.

(2)実施例および比較例:
表1は、上述のフローチャートに従ってBi0.4Sb1.6Te3の組成の熱電材料を製造し、当該熱電材料から傾斜角θを変更して複数の熱電素子を製造した場合の、ゼーベック係数α(μV/K)、電気抵抗率ρ(×10-5Ωm)、パワーファクタP.F.(×10-3W/(m・K2))、熱伝導率κ(W/(m・K))、性能指数Z(×10-3/K)を示している。なお、性能指数Zは平板対向電極間に通電した場合の性能指数であり、押出処理を行った時点での金型10の温度は380℃である。また、本例の熱電素子の接合面の80%を示す結晶においてc面の配向方向の誤差は22度以下であり、接合面において最も多数の結晶のc面が配向している方向に垂直な方向を傾斜角0度とした。

Figure 2012124450
(2) Examples and comparative examples:
Table 1 shows the Seebeck coefficient α (μV / μ) when a thermoelectric material having a composition of Bi 0.4 Sb 1.6 Te 3 is manufactured according to the above-described flowchart, and a plurality of thermoelectric elements are manufactured by changing the inclination angle θ from the thermoelectric material. K), electrical resistivity ρ (× 10 −5 Ωm), power factor P.I. F. (× 10 −3 W / (m · K 2 )), thermal conductivity κ (W / (m · K)), and figure of merit Z (× 10 −3 / K) are shown. In addition, the figure of merit Z is a figure of merit when energizing between the flat counter electrodes, and the temperature of the mold 10 at the time of performing the extrusion treatment is 380 ° C. Further, in the crystal showing 80% of the bonding surface of the thermoelectric element of this example, the error in the orientation direction of the c-plane is 22 degrees or less, and is perpendicular to the direction in which the c-plane of the largest number of crystals in the bonding surface is oriented. The direction was set at an inclination angle of 0 degree.
Figure 2012124450

表1に示すように、傾斜角が0,5,10,15,20,25,30,45,60,90度のそれぞれについて性能指数Zを比較すると、傾斜角が5〜20度である場合には傾斜角が0度である場合よりも性能指数Zが大きくなる。従って、傾斜角を5〜20度、好ましくは10〜20度、特に好ましくは15度に設定して接合面を形成すれば、傾斜角が0度である場合よりも大きい性能指数の熱電素子を製造することが可能である。   As shown in Table 1, when the figure of merit Z is compared for each of inclination angles 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 degrees, the inclination angle is 5 to 20 degrees. The figure of merit Z is larger than when the tilt angle is 0 degree. Accordingly, if the joining surface is formed by setting the inclination angle to 5 to 20 degrees, preferably 10 to 20 degrees, and particularly preferably 15 degrees, a thermoelectric element having a larger figure of merit than the case where the inclination angle is 0 degrees is obtained. It is possible to manufacture.

表2は、性能指数の最大値と傾斜角が0度である場合の性能指数との比および最大の性能指数となる傾斜角を複数の組成について示している。すなわち、BiSb2−xTe3−ySeの組成式において、x=0.0,0.2,0.4,0.5,0.7,1.0,1.5,1.9,2.0、y=3とした場合のそれぞれについて上述のフローチャートに従って熱電材料を製造し、傾斜角θを変更して複数の熱電素子を製造した。そして、各傾斜角の熱電素子に対して平板対向電極間に通電した場合の性能指数を測定し、性能指数の最大値を傾斜角が0度の場合の性能指数で除した値と、性能指数が最大値となる傾斜角とを特定した。なお、押出処理を行った時点での金型10の温度は460℃である。また、本例の熱電素子の接合面の80%を示す結晶においてc面の配向方向の誤差は25度以下であり、接合面において最も多数の結晶のc面が配向している方向に垂直な方向を傾斜角0度とした。

Figure 2012124450
Table 2 shows the ratio of the maximum figure of merit and the figure of merit when the tilt angle is 0 degrees and the tilt angle that gives the maximum figure of merit for a plurality of compositions. That is, in the composition formula of Bi x Sb 2-x Te 3-y Se y , x = 0.0, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 1 .9, 2.0, and y = 3, a thermoelectric material was manufactured in accordance with the above-described flowchart, and a plurality of thermoelectric elements were manufactured by changing the inclination angle θ. Then, the figure of merit in the case where current is applied between the flat plate counter electrodes for the thermoelectric elements of each inclination angle is measured, and the value obtained by dividing the maximum figure of merit by the figure of merit when the inclination angle is 0 degree, and the figure of merit Was determined to be the maximum inclination angle. In addition, the temperature of the metal mold | die 10 at the time of performing an extrusion process is 460 degreeC. Further, in the crystal showing 80% of the bonding surface of the thermoelectric element of this example, the error in the orientation direction of the c-plane is 25 degrees or less, and is perpendicular to the direction in which the c-plane of the largest number of crystals are oriented in the bonding surface. The direction was set at an inclination angle of 0 degree.
Figure 2012124450

表2に示すように、上述の組成式におけるxが0.0から1.0に向けて大きくなるほど、性能指数が最大値となる傾斜角は20度から5度に向けて小さくなる。また、上述の組成式におけるxが0.0から1.0の範囲においては、性能指数の最大値を傾斜角が0度の場合の性能指数で除した値が1よりも大きい。従って、上述の組成式におけるxが0.0から1.0の範囲においては、傾斜角が0度である場合よりも大きい性能指数の熱電素子を製造することが可能である。なお、上述の組成式におけるyを0≦y<3に含まれる範囲で変化させても、性能指数の最大値を傾斜角が0度である場合の性能指数で除した値や、性能指数が最大値となる傾斜角は変化しない。   As shown in Table 2, as x in the composition formula increases from 0.0 to 1.0, the inclination angle at which the figure of merit reaches the maximum value decreases from 20 degrees to 5 degrees. Further, when x in the above composition formula is in the range of 0.0 to 1.0, a value obtained by dividing the maximum value of the figure of merit by the figure of merit when the tilt angle is 0 degree is larger than 1. Therefore, when x in the above composition formula is in the range of 0.0 to 1.0, it is possible to manufacture a thermoelectric element having a figure of merit larger than that when the inclination angle is 0 degree. Even when y in the above composition formula is changed within the range included in 0 ≦ y <3, the value obtained by dividing the maximum value of the figure of merit by the figure of merit when the tilt angle is 0 degrees, The maximum inclination angle does not change.

さらに、表3は複数の加工法によって作成した熱電材料から熱電素子を製造した場合の性能指数の最大値と傾斜角が0度である場合の性能指数との比および最大の性能指数となる傾斜角を示している。すなわち、上述のフローチャートに従ってECAP法によってBi0.4Sb1.6Te2.9Se0.1の組成の熱電材料を製造し、また、据込鍛造、押出法によってBi0.4Sb1.6Te2.9Se0.1の組成の熱電材料を製造し、各熱電材料から傾斜角θを変更して複数の熱電素子を製造した。そして、各傾斜角の熱電素子に対して平板対向電極間に通電した場合の性能指数を測定し、性能指数の最大値を傾斜角が0度の場合の性能指数で除した値と、性能指数が最大値となる傾斜角を特定した。また、各性能指数が最大値となった熱電素子において、接合面の80%を示す結晶におけるc面の配向方向の誤差が何度以下であるかを測定した。なお、加工を行った時点での加工温度は550℃であり、接合面において最も多数の結晶のc面が配向している方向に垂直な方向を傾斜角0度とした。

Figure 2012124450
Further, Table 3 shows the ratio between the maximum figure of merit and the figure of merit when the tilt angle is 0 degree when the thermoelectric element is manufactured from thermoelectric materials prepared by a plurality of processing methods, and the slope that becomes the maximum figure of merit. Shows corners. That is, a thermoelectric material having a composition of Bi 0.4 Sb 1.6 Te 2.9 Se 0.1 is manufactured by the ECAP method according to the above-described flowchart, and Bi 0.4 Sb 1. A thermoelectric material having a composition of 6 Te 2.9 Se 0.1 was manufactured, and a plurality of thermoelectric elements were manufactured by changing the inclination angle θ from each thermoelectric material. Then, the figure of merit in the case where current is applied between the flat plate counter electrodes for the thermoelectric elements of each inclination angle is measured, and the value obtained by dividing the maximum figure of merit by the figure of merit when the inclination angle is 0 degree, and the figure of merit The inclination angle that gives the maximum value was specified. Further, in the thermoelectric element where each figure of merit became the maximum value, the number of errors in the orientation direction of the c-plane in the crystal showing 80% of the joint surface was measured. Note that the processing temperature at the time of processing was 550 ° C., and the direction perpendicular to the direction in which the c-planes of the largest number of crystals were oriented on the bonding surface was defined as an inclination angle of 0 degree.
Figure 2012124450

表3において、ECAP法で加工した、接合面の80%を示す結晶におけるc面の配向方向の誤差が誤差32.1度以下の熱電材料においては、傾斜角が0度である場合の性能指数が最大値となった。当該材料は、菱面体結晶のc面が特定の方向に配向していない材料であるとみなすことができ、菱面体結晶のc面が特定の方向に配向していない材料は、特定の方向に垂直な方向に傾斜させた接合面を形成しても性能指数を高めることはできなかった。   In Table 3, the figure of merit when the tilt angle is 0 degree in the thermoelectric material in which the error in the orientation direction of the c-plane in the crystal showing 80% of the joint surface processed by the ECAP method has an error of 32.1 degrees or less Became the maximum. The material can be regarded as a material in which the c-plane of the rhombohedral crystal is not oriented in a specific direction, and the material in which the c-plane of the rhombohedral crystal is not oriented in a specific direction The figure of merit could not be increased even if the joint surface inclined in the vertical direction was formed.

また、接合面の80%を示す結晶におけるc面の配向方向の誤差が誤差28度以下の熱電材料においては、いずれの加工法であっても特定の方向に垂直な方向に傾斜させた接合面を形成することで性能指数を高めることが可能であった。そして、いずれの加工法においても、性能指数が最大値となる傾斜角は5〜20度の範囲内に含まれていた。従って、各種の加工方法により、傾斜角が0度である場合よりも大きい性能指数の熱電素子を製造することが可能である。   Further, in a thermoelectric material in which an error in the orientation direction of the c-plane in a crystal showing 80% of the bonding surface is an error of 28 degrees or less, the bonding surface is inclined in a direction perpendicular to a specific direction in any processing method. It was possible to improve the figure of merit by forming And in any processing method, the inclination | tilt angle from which a figure of merit becomes the maximum value was contained in the range of 5-20 degrees. Therefore, it is possible to manufacture a thermoelectric element having a figure of merit larger than that when the inclination angle is 0 degrees by various processing methods.

10…金型
11…面
11a…穴
11b…加圧通路
12…面
12a…穴
12b…押出通路
DESCRIPTION OF SYMBOLS 10 ... Mold 11 ... Surface 11a ... Hole 11b ... Pressure passage 12 ... Surface 12a ... Hole 12b ... Extrusion passage

Claims (3)

特定の方向に菱面体結晶のc面が配向したBiSb2−xTe3−ySe(0≦x≦1、0≦y<3)の組成の熱電素子であって、
平行な平板対向電極の接合面を備えるとともに、前記接合面が前記特定の方向に垂直である場合よりも前記熱電素子の性能指数が大きくなる範囲で前記接合面が前記特定の方向に垂直な方向に対して傾斜している、
熱電素子。
A thermoelectric element having a composition of Bi x Sb 2-x Te 3-y Se y (0 ≦ x ≦ 1, 0 ≦ y <3) in which the c-plane of the rhombohedral crystal is oriented in a specific direction,
A direction in which the joint surface is perpendicular to the specific direction as long as the performance index of the thermoelectric element is larger than a case where the joint surface of the parallel plate counter electrode is provided and the joint surface is perpendicular to the specific direction. Inclined against
Thermoelectric element.
前記接合面の前記特定の方向に垂直な方向に対する傾斜角は5度〜20度である、
請求項1に記載の熱電素子。
An inclination angle of the joint surface with respect to a direction perpendicular to the specific direction is 5 degrees to 20 degrees.
The thermoelectric element according to claim 1.
前記xが大きくなるほど前記傾斜角が小さくなる、
請求項2に記載の熱電素子。
The tilt angle decreases as x increases.
The thermoelectric element according to claim 2.
JP2011050244A 2010-11-15 2011-03-08 Thermoelectric element Active JP5750945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050244A JP5750945B2 (en) 2010-11-15 2011-03-08 Thermoelectric element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010254545 2010-11-15
JP2010254545 2010-11-15
JP2011050244A JP5750945B2 (en) 2010-11-15 2011-03-08 Thermoelectric element

Publications (2)

Publication Number Publication Date
JP2012124450A true JP2012124450A (en) 2012-06-28
JP5750945B2 JP5750945B2 (en) 2015-07-22

Family

ID=46505561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050244A Active JP5750945B2 (en) 2010-11-15 2011-03-08 Thermoelectric element

Country Status (1)

Country Link
JP (1) JP5750945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698203A (en) * 2019-09-27 2020-01-17 太原理工大学 Preparation method of elemental tellurium-based composite thermoelectric material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187280A (en) * 1989-12-18 1991-08-15 Nkk Corp Bi-te thermoelectric conversion thin film and its thermoelectric conversion element
JP2000507398A (en) * 1997-01-09 2000-06-13 松下電工株式会社 Ingot plate made of thermoelectric material
JP2003318454A (en) * 2002-04-24 2003-11-07 Kyocera Corp Thermoelectric conversion element and thermoelectric module
JP2004363620A (en) * 2000-11-30 2004-12-24 Yamaha Corp Thermoelectric material, its manufacturing method and peltier module
JP2008108795A (en) * 2006-10-23 2008-05-08 Yamaha Corp Method of manufacturing thermoelectric material, thermoelectric material and thermoelectric conversion module
JP2010518600A (en) * 2007-02-02 2010-05-27 ネクストリーム・サーマル・ソリューションズ,インコーポレイテッド Method and associated apparatus for depositing epitaxial thermoelectric films with reduced crack and / or surface defect density

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187280A (en) * 1989-12-18 1991-08-15 Nkk Corp Bi-te thermoelectric conversion thin film and its thermoelectric conversion element
JP2000507398A (en) * 1997-01-09 2000-06-13 松下電工株式会社 Ingot plate made of thermoelectric material
JP2004363620A (en) * 2000-11-30 2004-12-24 Yamaha Corp Thermoelectric material, its manufacturing method and peltier module
JP2003318454A (en) * 2002-04-24 2003-11-07 Kyocera Corp Thermoelectric conversion element and thermoelectric module
JP2008108795A (en) * 2006-10-23 2008-05-08 Yamaha Corp Method of manufacturing thermoelectric material, thermoelectric material and thermoelectric conversion module
JP2010518600A (en) * 2007-02-02 2010-05-27 ネクストリーム・サーマル・ソリューションズ,インコーポレイテッド Method and associated apparatus for depositing epitaxial thermoelectric films with reduced crack and / or surface defect density

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014043265; L.N. LUKYANOVA, 外3名: 'Features of the Behavior of the Figure of Merit for p-Type Solid Solutions Based on Bismuth and Anti' Journal of Electronic Materials Vol. 39, No. 9, 20091204, p. 2070-2073 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698203A (en) * 2019-09-27 2020-01-17 太原理工大学 Preparation method of elemental tellurium-based composite thermoelectric material

Also Published As

Publication number Publication date
JP5750945B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP3594008B2 (en) Thermoelectric material, manufacturing method thereof and Peltier module
CN1816919B (en) Thermoelectric semiconductor material, and process for producing same
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JP4645575B2 (en) Thermoelectric material manufacturing method, thermoelectric material, and thermoelectric conversion module
JP2002248517A (en) Apparatus and method for extrusion forming
JP5750945B2 (en) Thermoelectric element
US20140246065A1 (en) Method for enhancement of thermoelectric efficiency by the preparation of nano thermoelectric powder with core-shell structure
JP6136591B2 (en) Thermoelectric conversion parts
JPH1056210A (en) Thermoelectric semiconductor sintered element and production thereof
JP3979290B2 (en) Thermoelectric material and manufacturing method thereof
JP2001053344A (en) Manufacture of thermoelectric semiconductor material or element, and manufacture of thermoelectric module
JP2009289911A (en) Method of manufacturing thermoelectric semiconductor material
CN104120372A (en) Method for manufacturing high-performance thermoelectric material through cold forming
JP5353213B2 (en) Thermoelectric material, method for producing thermoelectric material
JP4200770B2 (en) Thermoelectric material ingot, method for producing the same, and method for producing the thermoelectric module
JP3956919B2 (en) Peltier module manufacturing method
KR20180055227A (en) Manufacturing method for thermoelectric material having high efficiency and manufacturing method for thermoelectric module
JP5564827B2 (en) Thermoelectric material manufacturing method and thermoelectric material
JP4114645B2 (en) Thermoelectric material, manufacturing method thereof, and Peltier module
JP2004221464A (en) Method of manufacturing thermoelectric semiconductor, method of manufacturing thermoelectric converter or conversion device, and apparatus for implementation thereof
CN110330950A (en) Composite heat dissipation material and preparation method thereof containing diamond strips
JP2004146535A (en) Thermoelectric material and its manufacturing method
JP2012109337A (en) Method for manufacturing thermoelectric material, and thermoelectric material
JP2013168608A (en) Thermoelectric element and manufacturing method therefor
JP2001160634A (en) Method for manufacturing thermoelectric semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R151 Written notification of patent or utility model registration

Ref document number: 5750945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250