JP2012123909A - Positive electrode material for lithium ion secondary battery, and method of manufacturing the same, positive electrode active substance for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Positive electrode material for lithium ion secondary battery, and method of manufacturing the same, positive electrode active substance for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2012123909A
JP2012123909A JP2010271024A JP2010271024A JP2012123909A JP 2012123909 A JP2012123909 A JP 2012123909A JP 2010271024 A JP2010271024 A JP 2010271024A JP 2010271024 A JP2010271024 A JP 2010271024A JP 2012123909 A JP2012123909 A JP 2012123909A
Authority
JP
Japan
Prior art keywords
lithium ion
positive electrode
ion secondary
particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010271024A
Other languages
Japanese (ja)
Other versions
JP2012123909A5 (en
JP5557715B2 (en
Inventor
Masanari Oda
将成 織田
Hiroshi Kitagawa
寛 北川
Toyotaka Yuasa
豊隆 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010271024A priority Critical patent/JP5557715B2/en
Publication of JP2012123909A publication Critical patent/JP2012123909A/en
Publication of JP2012123909A5 publication Critical patent/JP2012123909A5/ja
Application granted granted Critical
Publication of JP5557715B2 publication Critical patent/JP5557715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery excellent in battery characteristics by defining the form of a secondary particle which allows the carbon coating to be performed readily even with olivine-based positive electrode micro particles with a high aspect ratio cohering into secondary particles.SOLUTION: The positive electrode material for a lithium ion secondary battery comprises a compound expressed by the formula LiMPO, where M represents one or more elements selected from a group consisting of Mg, Al, Ti, Mn, Fe, Co, Ni, Cu, and Zn. Each primary particle of the compound has a form having a short diameter of 200 nm or smaller, and an aspect ratio of 1.5 to 200 inclusive, which is an a ratio of the long diameter of the particle to the short diameter thereof. Further, the primary particles cohere into secondary particles. As to the form of the secondary particles, the primary particles cohere using, as a main portion to close contact with, a portion in the vicinity of the center of the long diameter of the secondary particle, and the maximum diameter of the short diameters of the secondary particle vs. the diameter at the center is 1.2 or larger.

Description

この発明は、リチウム二次電池用正極およびリチウム二次電池に関する。   The present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery.

リチウムイオン二次電池の正極材料として実用化されている材料には、例えばコバルト酸リチウムが挙げられる。しかし材料中のコバルトは希少金属であり高コストのため、脱コバルトを目指した材料の開発が展開されている。近年では、LiNiO2に代表される層状ニッケル系酸化物や、LiMn24に代表されるスピネルマンガン系正極材料の開発が進められている。しかし層状ニッケル系酸化物は、充電生成物がコバルト酸リチウムに比べ熱安定性に劣り、特に過充電時における安全性に課題がある。一方スピネルマンガン系正極材料は、充電生成物の熱安定性に優れ安全性が高いものの、その実用容量は100mAh/g程度とコバルト酸リチウムに比べ小さい。 Examples of a material that has been put into practical use as a positive electrode material of a lithium ion secondary battery include lithium cobaltate. However, since cobalt in the material is a rare metal and is expensive, development of materials aiming at cobalt removal is being developed. In recent years, development of layered nickel-based oxides typified by LiNiO 2 and spinel manganese-based positive electrode materials typified by LiMn 2 O 4 has been promoted. However, the layered nickel-based oxide has a charge product inferior in thermal stability as compared with lithium cobalt oxide, and has a problem in safety particularly during overcharge. On the other hand, the spinel manganese-based positive electrode material has excellent thermal stability of the charge product and high safety, but its practical capacity is about 100 mAh / g, which is smaller than that of lithium cobalt oxide.

この中で近年、オリビン系化合物と総称される、式LiMPO4(Mは任意の金属元素)で表わされる含リチウム複合酸化物が注目を集めている。これは同材料の比重量エネルギー密度、および比容量エネルギー密度が、スピネルマンガン系を上回るとともに、卓越した安全性も併せ持つためである。 In recent years, lithium-containing composite oxides represented by the formula LiMPO 4 (M is an arbitrary metal element), which is collectively referred to as an olivine compound, have attracted attention. This is because the specific weight energy density and specific capacity energy density of the same material are superior to those of the spinel manganese system and have excellent safety.

しかしオリビン系化合物は、単体で実電池の正極材料として用いた場合、コバルト酸リチウムなどの従来材に比べてリチウムイオンの伝導性や、電子伝導性が低いという欠点がある。それらの欠点を補うため、小粒径化や、炭素被覆などの技術がそれぞれ開発され、これらの適応はオリビン系化合物では不可欠である。   However, when used alone as a positive electrode material for an actual battery, the olivine-based compound has a drawback that it has lower lithium ion conductivity and electronic conductivity than conventional materials such as lithium cobaltate. In order to compensate for these drawbacks, technologies such as particle size reduction and carbon coating have been developed, and these adaptations are essential for olivine compounds.

オリビン系化合物の小粒径化には様々な方法が報告されている。この中でも特に水や有機溶媒などの溶媒を材料の合成過程に用いた液相法合成では、他の合成法に比べて結晶性が高く、アスペクト比の高いオリビン系化合物を、ナノサイズで合成できることが知られ、同手法を用いて合成した試料を用いた正極材は条件によっては高容量となる。例えば非特許文献1では、液相法合成を用いることで、オリビン系化合物の中でもM=MnであるLiMnPO4が、4.4V充電条件で高い放電容量を示す事を報告している。 Various methods for reducing the particle size of olivine compounds have been reported. In particular, in liquid phase synthesis using solvents such as water and organic solvents in the synthesis process of materials, olivine compounds with higher crystallinity and higher aspect ratio than other synthesis methods can be synthesized in nano size. A positive electrode material using a sample synthesized using the same method has a high capacity depending on conditions. For example, Non-Patent Document 1 reports that LiMnPO 4 in which M = Mn among olivine compounds exhibits a high discharge capacity under a 4.4 V charge condition by using liquid phase synthesis.

特表2008−541364号公報Special table 2008-541364 gazette 特開2007−173210号公報JP 2007-173210 A

Journal of Power Sources 189 (2009) 624-628Journal of Power Sources 189 (2009) 624-628

液相法合成では、合成したオリビン系化合物と溶媒とを分離する工程が必要であり、その工程において一次粒子同士は凝集して二次粒子化する。この際特に、板状・針状などのアスペクト比の高い試料では、粒子同士の接触面積が広く結合力が強いために凝集が顕著となる。一般にオリビン系化合物は、導電性向上のため炭素被覆を行うが、その際には炭素源と共にオリビン系化合物をボールミル粉砕法などで粉砕・混合する。凝集の顕著なオリビン系化合物は、炭素源との混合・粉砕が困難となる。このような化合物を電極に用いる場合、放電容量が十分に取り出せないなどの問題点がある。ここで言う密着,凝集とはそれぞれ、液相法で用いた溶媒あるいは、合成後の洗浄工程において用いた液体を介して、一次粒子同士が接触している状態と、複数の一次粒子が集まっている状態を意味する。   In the liquid phase synthesis, a step of separating the synthesized olivine compound and the solvent is required, and in this step, primary particles aggregate to form secondary particles. At this time, in particular, in a sample having a high aspect ratio such as a plate shape or a needle shape, aggregation is remarkable because the contact area between particles is wide and the binding force is strong. In general, an olivine compound is coated with carbon to improve conductivity. In this case, the olivine compound is pulverized and mixed together with a carbon source by a ball mill pulverization method or the like. An olivine-based compound with significant aggregation is difficult to mix and pulverize with a carbon source. When such a compound is used for an electrode, there is a problem that the discharge capacity cannot be taken out sufficiently. The adhesion and aggregation referred to here are a state where primary particles are in contact with each other via a solvent used in a liquid phase method or a liquid used in a washing step after synthesis, and a plurality of primary particles are gathered together. Means the state.

特許文献1では一次粒子の形状をフレーク状に形状制御することで高い放電容量とすることを主張しているが、粉砕工程に関する詳細な記載は無く、また、非特許文献1についても二次粒子形状についての言及がない上、観測する粒子の中では、ほぼ同様の二次粒子形状を持つ粒子を高確率には合成できていない。   Patent Document 1 claims that the discharge capacity is increased by controlling the shape of the primary particles into flakes, but there is no detailed description of the pulverization process. There is no mention of the shape, and among the observed particles, particles with almost the same secondary particle shape cannot be synthesized with high probability.

また、特許文献2ではアスペクト比の高い正極材を得る製造方法と、該正極材を用いたリチウムイオン二次電池に関する開示があるが、工業的な手法ではない上に、炭素被覆のための粉砕工程や、二次粒子に関する記載がない。   Further, Patent Document 2 discloses a manufacturing method for obtaining a positive electrode material having a high aspect ratio and a lithium ion secondary battery using the positive electrode material, but it is not an industrial technique and is also pulverized for carbon coating. There is no description about a process or a secondary particle.

本発明は、ナノサイズの一次粒子を構成要素に持つ二次粒子の、形状制御に関する。微粒子であるため、二次粒子として凝集した際に炭素被覆が困難となるアスペクト比の高いオリビン系化合物について、炭素被覆が容易となる二次粒子形状を規定し、電池特性に優れる電池を提供することにある。   The present invention relates to shape control of secondary particles having nano-sized primary particles as constituent elements. Provided a battery with excellent battery characteristics by defining a secondary particle shape that facilitates carbon coating for olivine compounds having a high aspect ratio that makes it difficult to coat carbon when agglomerated as secondary particles because they are fine particles. There is.

本発明ではナノサイズの一次粒子を構成要素に持つ二次粒子の、形状を制御することで課題を解決する。本発明は、式LiMPO4(MはMg,Al,Ti,Mn,Fe,Co,Ni,Cu,Znから選ばれる一種類以上の元素)で表わされる化合物であり、前記化合物の一次粒子形状は、短径が200nm以下であり、かつ粒子の長径と短径との比であるアスペクト比が1.5以上,200以下であることを特徴とし、さらに該一次粒子同士が凝集して二次粒子化していることを特徴とし、該二次粒子の形態として、前記一次粒子同士が二次粒子の長径の中心付近を主な密着部分として凝集し、二次粒子の短径のうちの最大部分と、中心部分の比が1.2以上であることを特徴とするリチウムイオン二次電池用正極材料を用いることを主な特徴とする。 In the present invention, the problem is solved by controlling the shape of secondary particles having nano-sized primary particles as constituent elements. The present invention is a compound represented by the formula LiMPO 4 (M is one or more elements selected from Mg, Al, Ti, Mn, Fe, Co, Ni, Cu, Zn), and the primary particle shape of the compound is The minor axis is 200 nm or less, and the aspect ratio, which is the ratio of the major axis to the minor axis of the particle, is 1.5 or more and 200 or less, and the primary particles are aggregated to form secondary particles. The primary particles are agglomerated as a main close contact portion in the vicinity of the center of the major axis of the secondary particles, and the largest part of the minor axis of the secondary particles, The main feature is the use of a positive electrode material for a lithium ion secondary battery characterized in that the ratio of the central portion is 1.2 or more.

また本発明で用いる前記した密着部分の長さとしては一次粒子の長径の1/2未満の長さである場合、特に性能が優れる。   Further, when the length of the close contact portion used in the present invention is less than half the major axis of the primary particles, the performance is particularly excellent.

また、本発明で用いる前記アスペクト比の高い一次粒子の形状としては、針状の粒子を用いる場合、特に性能が優れる。   In addition, as the shape of the primary particles having a high aspect ratio used in the present invention, the performance is particularly excellent when needle-like particles are used.

また、前記したリチウムイオン二次電池用正極材料中の二次粒子は、前記した密着部分を起点として、最も近い針状一次粒子の長軸方向の中心軸同士が0度を超える角度をなして凝集することで形成することを特徴としており、その角度のために、二次粒子の短径のうちの最大部分と、中心部分の比が1.2以上となる場合、特に性能が優れる。   Further, the secondary particles in the positive electrode material for a lithium ion secondary battery described above have an angle in which the central axes in the major axis direction of the closest acicular primary particles exceed 0 degree starting from the above-described close contact portion. It is characterized by being formed by agglomeration. Due to the angle, the performance is particularly excellent when the ratio of the maximum part of the minor axis of the secondary particles to the central part is 1.2 or more.

また、前記した二次粒子は、二次粒子の短軸および長軸方向の中心軸に対してほぼ対象の構造であることを特徴とする。   In addition, the secondary particles described above are characterized by having a substantially target structure with respect to the short axis and the central axis in the long axis direction of the secondary particles.

さらに本発明では、上に記載の正極材料を用いて作製されるリチウムイオン二次電池用正極活物質及び正極およびリチウムイオン二次電池を提供する。   Furthermore, in this invention, the positive electrode active material for lithium ion secondary batteries produced using the positive electrode material described above, a positive electrode, and a lithium ion secondary battery are provided.

本発明は、オリビン系材料の形状制御に関し、炭素源との粉砕・混合が容易である粒子形状を持つオリビン系化合物を提供する。すなわち、一次粒子あるいは二次粒子同士の接触面積が従来材に比べて小さい粒子を提供することにより粉砕・混合を容易にする。本発明の正極活物質によれば、炭素被覆が容易となり、充放電容量やサイクル特性の高いオリビン系化合物を提供することが可能になる。   The present invention relates to shape control of an olivine-based material, and provides an olivine-based compound having a particle shape that can be easily pulverized and mixed with a carbon source. That is, pulverization and mixing are facilitated by providing particles having a contact area between primary particles or secondary particles smaller than that of conventional materials. According to the positive electrode active material of the present invention, carbon coating becomes easy, and it becomes possible to provide an olivine-based compound having high charge / discharge capacity and high cycle characteristics.

また、微粒子であるため、二次粒子として凝集した際に炭素被覆が困難となるアスペクト比の高いオリビン系化合物について、炭素被覆が容易となる二次粒子形状を規定し、容量や容量維持率などの電池特性に優れる電池を提供することができる。   In addition, because it is a fine particle, olivine compounds with a high aspect ratio that make it difficult to coat carbon when agglomerated as secondary particles define the secondary particle shape that makes carbon coating easy, such as capacity and capacity retention rate. A battery having excellent battery characteristics can be provided.

実施例1で得られた粒子のSEM観察写真。2 is a SEM observation photograph of particles obtained in Example 1. 実施例1で得られた粒子のSEM観察写真の拡大像。The enlarged image of the SEM observation photograph of the particle | grains obtained in Example 1. FIG. 実施例2で得られた粒子のSEM観察写真。4 is a SEM observation photograph of particles obtained in Example 2. 実施例2で得られた粒子のSEM観察写真の拡大像。The enlarged image of the SEM observation photograph of the particle | grains obtained in Example 2. FIG. 実施例5で得られた粒子であり、一次粒子同士の接触距離が一次粒子の長径の1/2未満の距離である二次粒子。Secondary particles obtained in Example 5, wherein the contact distance between the primary particles is a distance less than ½ of the major axis of the primary particles. 比較例1で得られた粒子のSEM観察写真。4 is a SEM observation photograph of particles obtained in Comparative Example 1. 比較例2で得られた粒子のSEM観察写真。4 is a SEM observation photograph of particles obtained in Comparative Example 2. 比較例4で得られた粒子のSEM観察写真。4 is a SEM observation photograph of particles obtained in Comparative Example 4. 本発明で行った材料合成のプロセスフロー。Process flow of material synthesis performed in the present invention.

本発明は、式LiMPO4(MはMg,Al,Ti,Mn,Fe,Co,Ni,Cu,Znから選ばれる一種類以上の元素)で表わされるオリビン系化合物、特に平均放電電位が高いMnをMの主成分とするオリビン系化合物を用いる。ただし、先記したMとする元素のうちで、Mn以外の元素をMの主成分とすることでも本発明の効果は現れる。本発明では、化合物の一次粒子形状として、短径が200nm以下であり、かつ粒子の長径と短径との比であるアスペクト比が1.5以上である試料を用いることを特徴とする。実施例1から5では、図1から5に示すように、本発明における形状を持つ一次粒子からなる粒子が観測されている。 The present invention relates to an olivine compound represented by the formula LiMPO 4 (M is one or more elements selected from Mg, Al, Ti, Mn, Fe, Co, Ni, Cu, and Zn), particularly Mn having a high average discharge potential. Is used as the main component of M. However, the effect of the present invention can also be obtained by using an element other than Mn as the main component of M among the elements described above as M. In the present invention, as a primary particle shape of a compound, a sample having a minor axis of 200 nm or less and an aspect ratio which is a ratio of a major axis to a minor axis of the particle is 1.5 or more is used. In Examples 1 to 5, as shown in FIGS. 1 to 5, particles composed of primary particles having the shape of the present invention are observed.

一方で比較例1における図6に示すように、粒子の短径が200nm以上である場合、下記実施例、特に実施例1あるいは2との比較から示すように容量が低下し、好ましくない。これは粒子の粉砕および炭素被覆が著しく困難になったためと考えられる。   On the other hand, as shown in FIG. 6 in Comparative Example 1, when the minor axis of the particles is 200 nm or more, the capacity is lowered as shown in the following Examples, particularly in comparison with Example 1 or 2, which is not preferable. This is thought to be because the grinding of the particles and the carbon coating became extremely difficult.

また本発明では、アスペクト比が1.5以上、あるいは好ましくは1.5以上,200以下の一次粒子を構成要素に持つ材料を用いている。アスペクト比は、一次粒子中の最長軸径(最大径)と、最短軸径(最小径)の比とし、電子顕微鏡などを利用して測定することができる。比較例2における図7に示すように、液相法で合成した試料において、粒子のアスペクト比が1.5以下である場合、一次粒子短径が50nm程度であっても、下記実施例、特に実施例1および2との比較から示すように、容量,容量利用率,容量維持率などの電池特性が劣る場合があった。ただし、ここでいう容量利用率とは、実施例1に示す理論容量に対する容量の割合(%)を意味し、容量維持率とは実施例1に示す電流値で充放電を行った際の、3サイクル目の容量に対する、20サイクル目の容量の割合(%)を意味する。   In the present invention, a material having primary particles as constituent elements having an aspect ratio of 1.5 or more, or preferably 1.5 or more and 200 or less is used. The aspect ratio is the ratio of the longest axis diameter (maximum diameter) in the primary particles to the shortest axis diameter (minimum diameter), and can be measured using an electron microscope or the like. As shown in FIG. 7 in Comparative Example 2, in the sample synthesized by the liquid phase method, when the particle aspect ratio is 1.5 or less, even if the primary particle minor axis is about 50 nm, As shown by comparison with Examples 1 and 2, battery characteristics such as capacity, capacity utilization rate, and capacity maintenance rate were sometimes inferior. However, the capacity utilization rate here means the ratio (%) of the capacity to the theoretical capacity shown in Example 1, and the capacity maintenance rate is when charging / discharging at the current value shown in Example 1, It means the ratio (%) of the capacity of the 20th cycle to the capacity of the 3rd cycle.

比較例2における試料の放電容量が実施例1−2における試料の放電容量に劣った原因は明らかではないが、アスペクト比の低い試料中には、アモルファスであるなど、結晶性が低く、材料自身の電子伝導性が極端に悪いオリビン粒子も含まれる可能性があり、そのため材料の充放電特性が悪化したものと考えられる。本発明で提供する、アスペクト比の高い試料を用いる場合、結晶性の良いLiMPO4を選択的に原料とできたため、特性の劣化が緩和されたことが推測される。 The reason why the discharge capacity of the sample in Comparative Example 2 is inferior to the discharge capacity of the sample in Example 1-2 is not clear, but in the sample having a low aspect ratio, the material itself is low in crystallinity such as amorphous. There is a possibility that olivine particles having extremely poor electron conductivity may be included, and it is considered that the charge / discharge characteristics of the material deteriorated. When a sample with a high aspect ratio provided by the present invention is used, it is presumed that the deterioration of the characteristics was alleviated because LiMPO 4 having good crystallinity was selectively used as a raw material.

また、粒子のアスペクト比が200以上である場合、充放電特性などが低下する傾向にあった。これは、一辺の長さが長すぎるため、同試料の粉砕および炭素被覆が困難となったことが原因の一つとして考えられる。   Moreover, when the aspect ratio of the particles was 200 or more, the charge / discharge characteristics and the like tended to deteriorate. This is considered to be one of the causes that it was difficult to grind and coat the sample because the length of one side was too long.

本発明で提供する二次粒子は、図1から図4に示すように、前記一次粒子同士が二次粒子の長径の中心付近を主な密着部分として凝集し、密着部分を起点として、最も近い針状一次粒子の長軸方向の中心軸同士が0度を超える角度をなして凝集している。   As shown in FIGS. 1 to 4, the secondary particles provided by the present invention are closest to each other, with the primary particles aggregating around the center of the major axis of the secondary particles as the main close contact portion, and starting from the close contact portion. The central axes in the major axis direction of the acicular primary particles are aggregated at an angle exceeding 0 degree.

その結果、二次粒子の短径のうちの最大部分(A)と、中心部分の長さ(B)の比(以下、A/B)が、1.2以上であることを特徴とする二次粒子では、下記実施例、特に実施例1−2および比較例3との比較から示すように、1.2未満である試料に比べて放電特性とサイクル特性が優れていた。   As a result, the ratio of the maximum part (A) of the minor axis of the secondary particles to the length (B) of the central part (hereinafter referred to as A / B) is 1.2 or more. The secondary particles were superior in discharge characteristics and cycle characteristics as compared with the samples below 1.2, as shown by comparison with the following examples, particularly Example 1-2 and Comparative Example 3.

アスペクト比が高い一次粒子同士を、A/Bが1.2以上となるように凝集させることにより、一次粒子同士の接触面積を狭くすることが可能になっていると考えられる。そのため、炭素源との粉砕・混合が容易となり、放電特性とサイクル特性が優れた材料が合成できたと考えられる。   It is considered that the contact area between the primary particles can be reduced by aggregating primary particles having a high aspect ratio so that A / B is 1.2 or more. Therefore, pulverization and mixing with the carbon source became easy, and it was considered that a material having excellent discharge characteristics and cycle characteristics could be synthesized.

一方で、A/Bが1.2未満の場合、粒子を構成している一次粒子同士の接触距離が長くなり、粉砕・混合が困難になる傾向があるため、充放電とサイクル特性が低下したと考えられる。   On the other hand, when A / B is less than 1.2, the contact distance between the primary particles constituting the particles becomes long, and the pulverization / mixing tends to be difficult. it is conceivable that.

また、本発明において得られる二次粒子は、前記するような特異な形状を持つため、二次粒子同士の接触距離が短く、二次粒子同士の凝集の影響も少ない。   Further, since the secondary particles obtained in the present invention have the unique shape as described above, the contact distance between the secondary particles is short, and the influence of aggregation between the secondary particles is small.

また、本発明で用いる前記アスペクト比の高い一次粒子の形状としては、特に限定されないが、中でも図2,図4にあるような針状粒子であることが好ましい。   In addition, the shape of the primary particles having a high aspect ratio used in the present invention is not particularly limited, but needle-like particles such as those shown in FIGS. 2 and 4 are preferable.

これは、一次元的で幅の狭い、理想的な針状試料を一次粒子として用いる場合、中心部分で0度以上の角度をなして凝集すると、二次粒子の長径の中心点以外に接触部分は無く、粉砕・混合がより容易となると考えられるためである。   This is because when an ideal needle-like sample that is one-dimensional and narrow is used as a primary particle, if it aggregates at an angle of 0 ° or more at the center portion, it will contact other than the center point of the major axis of the secondary particles. This is because crushing and mixing are considered to be easier.

本発明で示す二次粒子は、図1,図3に示すように、針状の一次粒子が中心部分のみを接触部分として角度をなして凝集していることを反映し、二次粒子の短軸および長軸方向の中心軸に対してほぼ対象な、非常に特徴的な形となる。   As shown in FIG. 1 and FIG. 3, the secondary particles shown in the present invention reflect that the acicular primary particles are aggregated at an angle with only the central portion as a contact portion, It has a very characteristic shape, which is almost of interest with respect to the axial axis and the central axis in the longitudinal direction.

本形状の粒子はその凝集形態を反映し粉砕が容易なため、放電特性とサイクル特性が優れると考えられる。   Since the particles of this shape reflect the aggregation form and are easily pulverized, it is considered that the discharge characteristics and the cycle characteristics are excellent.

また前記二次粒子の長径の長さとしては特に限定されないが、10μm未満が好ましい。これは二次粒子の長径が短い方が粉砕・混合がより容易となるためである。   The length of the major axis of the secondary particles is not particularly limited, but is preferably less than 10 μm. This is because pulverization and mixing are easier when the major axis of the secondary particles is shorter.

本発明では、ほぼ同様の二次粒子形状を持つ粒子を、観測した視野の中で、高確率に観測できる。以上の事から、本発明では上記するような形状を持つ試料ばかりを選択的に合成可能であると分かる。   In the present invention, particles having substantially the same secondary particle shape can be observed with high probability in the observed visual field. From the above, it can be seen that in the present invention, only samples having the shapes as described above can be selectively synthesized.

一方で、前記した一次粒子同士の密着部分の長さとして、一次粒子の長径の1/2未満の長さである場合も、性能が優れた。一次粒子同士の密着部分が少ないため、炭素源と共に行う粉砕・混合が容易であることを意味している。密着部分の小さい試料としては、上記したA/Bが1.2以上の試料も挙げられるが、一次粒子同士が接触あるいは結合している距離が、一次粒子全体の長径の1/2未満の長さであればどのような形状をとっても良く、例えば実施例5および図5に示すように、網目状に一次粒子同士が配置された二次粒子においても充放電特性やサイクル特性が優れていた。   On the other hand, the performance was excellent even when the length of the close contact portion between the primary particles was less than ½ of the major axis of the primary particles. Since there are few close_contact | adherence parts of primary particles, it means that the grinding | pulverization and mixing performed with a carbon source are easy. Examples of the sample having a small adhesion portion include samples having the above-mentioned A / B of 1.2 or more. However, the distance at which the primary particles are in contact with or bonded to each other is less than ½ of the major axis of the entire primary particle. Any shape may be adopted as long as the secondary particles in which the primary particles are arranged in a mesh shape are excellent as shown in Example 5 and FIG. 5, for example.

ところで、前記した二次粒子と同様の形状を、一次粒子として実現している試料についても同様の効果が認められる。これは前記した、粉砕・混合が容易となる全ての効果が、同様に期待できるためである。例えば、実施例1,2に示す粒子が、ある一点から放射状に、針状の構造が伸びた結果、最も近い針状構造の長軸方向の中心軸同士が0度を超える角度をなしている結果形成された、特異な形をした一次粒子であり、その角度のために、一次粒子の短径のうちの最大部分と、中心部分の比が1.2以上となっているとしても、サイクル特性や充放電特性が優れるためである。   By the way, the same effect is recognized also about the sample which implement | achieved the shape similar to the above-mentioned secondary particle as a primary particle. This is because all the effects described above that facilitate crushing and mixing can be expected in the same manner. For example, the particles shown in Examples 1 and 2 have a needle-like structure extending radially from a certain point, and as a result, the central axes in the major axis direction of the closest needle-like structure form an angle exceeding 0 degrees. The resulting primary particles have a unique shape, and because of the angle, even if the ratio of the largest part of the minor axis of the primary particles to the central part is 1.2 or more, the cycle This is because the characteristics and charge / discharge characteristics are excellent.

本二次粒子形態は式LiMPO4を炭素源と共に粉砕・混合する際に有効であるが、液相法を用いて合成する材料を、微粒子化するために粉砕するのには有効な手法であるといえる。例えば液相法を用いて合成した結晶性の良い層状構造を持つ酸化物やスピネルマンガン系酸化物、あるいはケイ酸塩系酸化物やその他のポリアニオン化合物への適応も可能と考えられる。 This secondary particle form is effective when pulverizing and mixing the formula LiMPO 4 together with the carbon source, but it is an effective technique for pulverizing the material synthesized using the liquid phase method to make fine particles. It can be said. For example, it is considered possible to adapt to oxides or spinel manganese oxides, spinel manganese oxides, silicate oxides, or other polyanion compounds synthesized using a liquid phase method and having a layered structure with good crystallinity.

さらに、本発明におけるLiMPO4および、本発明におけるLiMPO4を用いて作製されるリチウムイオン二次電池用正極活物質および正極およびリチウムイオン二次電池を得るためには、以下に示す詳細な製造条件を設定する必要がある。本発明で提供する粒子を得るためには、下記の製造方法に従い材料を合成することが好ましいが、合成方法は下記のみに限定されるものではない。 Furthermore, in order to obtain LiMPO 4 in the present invention, and a positive electrode active material for a lithium ion secondary battery and a positive electrode and a lithium ion secondary battery produced using LiMPO 4 in the present invention, the following detailed production conditions Need to be set. In order to obtain the particles provided in the present invention, it is preferable to synthesize materials according to the following production method, but the synthesis method is not limited to the following.

以下に、本発明で提供する形状を持つLiMPO4粒子の製造方法、および、本発明におけるLiMPO4を用いて作製されるリチウムイオン二次電池用正極活物質および正極およびリチウムイオン二次電池の製造方法の詳細を示す。 Hereinafter, a manufacturing method of LiMPO 4 particles having a shape provided by the present invention, and the production of the positive active material and a positive electrode and a lithium ion secondary battery for a lithium ion secondary battery produced using the LiMPO 4 of the present invention Details of the method are shown.

<A.本発明で提供する形状を持つLiMPO4粒子の製造方法>
本発明におけるLiMPO4粒子の製造は、図9に示すプロセスフローに従って行った。主な合成過程を過程順にあげると、A−1(混合過程),A−2(加熱加圧過程)である。
<A. Method for producing LiMPO 4 particles having the shape provided by the present invention>
The production of LiMPO 4 particles in the present invention was performed according to the process flow shown in FIG. The main synthesis processes are A-1 (mixing process) and A-2 (heating and pressing process) in order of process.

<A−1:混合過程>
まず、混合過程について説明する。混合過程においては、LiMPO4(MはMg,Al,Ti,Mn,Fe,Co,Ni,Cu,Znから選ばれる一種類以上の元素)の原料である前駆体を、100℃以上に加熱した有機溶媒中に拡散させる。
<A-1: Mixing process>
First, the mixing process will be described. In the mixing process, a precursor which is a raw material of LiMPO 4 (M is one or more elements selected from Mg, Al, Ti, Mn, Fe, Co, Ni, Cu and Zn) was heated to 100 ° C. or higher. Diffuse in organic solvent.

LiMPO4の原料を有機溶媒中に拡散させる方法としては、原料を水に溶かして有機溶媒中に滴下するなどの方法をとることができる。この際、有機溶媒は攪拌子で攪拌していることが好ましい。またLiMPO4の原料としては、水溶性である必要があるが、それ以外の条件は特に限定されない。すなわちLi源としては、Liを含み、溶媒に溶解するものであれば特に限定されないが、例えば酢酸リチウム二水和物などを挙げることができる。また、M源についても同様であるが、原料中のMの形式価数が二価である硫酸塩の水和物,硝酸塩の水和物、あるいは酢酸塩の水和物などを挙げることができる。例えば、M=Mnの場合には硫酸マンガン(II)七水和物などが挙げられる。またP源についても同様で、リン酸などを挙げることができる。 As a method of diffusing the raw material of LiMPO 4 into the organic solvent, a method of dissolving the raw material in water and dropping it into the organic solvent can be employed. At this time, the organic solvent is preferably stirred with a stirrer. Further, the raw material for LiMPO 4 needs to be water-soluble, but other conditions are not particularly limited. That is, the Li source is not particularly limited as long as it contains Li and dissolves in a solvent, and examples thereof include lithium acetate dihydrate. The same applies to the M source, and examples thereof include a sulfate hydrate, a nitrate hydrate, and an acetate hydrate in which the formal valence of M in the raw material is divalent. . For example, when M = Mn, manganese sulfate (II) heptahydrate is exemplified. The same applies to the P source, and examples thereof include phosphoric acid.

前述の原料を用いてLiMPO4を合成するに当たり、粒子の形状や合成の可・不可を大きく左右する原因として、大きく分けて以下の二つが挙げられた。 In synthesizing LiMPO 4 using the above-mentioned raw materials, the following two broad categories can be cited as the factors that greatly influence the shape of particles and the availability of synthesis.

一つは用いる有機溶媒種の選択であり、もう一つは、前駆体を有機溶媒中に拡散させる際の有機溶媒の温度(以下、加熱攪拌温度)であった。   One was the selection of the organic solvent species to be used, and the other was the temperature of the organic solvent when the precursor was diffused into the organic solvent (hereinafter referred to as heating and stirring temperature).

まず本発明における混合過程で用いる溶媒の種類について説明する。   First, the type of solvent used in the mixing process in the present invention will be described.

本発明では、混合過程において用いる有機溶媒として、エタノールアミンを用いることを特徴とし、エタノールアミンとしては、一般式(Cp2pOH)qNH(3-q)を有し、式中pは2〜3、qは1〜3の数であり、モノエタノールアミン,ジエタノールアミン,トリエタノールアミン(TEA)を用いることで本発明で提供する形状を持つ粒子が合成できた。 In the present invention, ethanolamine is used as the organic solvent used in the mixing process, and the ethanolamine has the general formula (C p H 2p OH) q NH (3-q) , where p is 2 to 3 and q are numbers from 1 to 3, and particles having the shape provided by the present invention could be synthesized by using monoethanolamine, diethanolamine, or triethanolamine (TEA).

本発明で提供する形状を持つ粒子を得るためには、水に溶けた原料が有機溶媒中に拡散可能であるように、水と混合できる極性溶媒である必要がある。また、本発明で示すようにアスペクト比の高い粒子を得るためには、合成を所望する粒子の結晶面に対して、面特異的吸着を起こす有機溶媒を用いる必要がある。   In order to obtain particles having the shape provided in the present invention, it is necessary to be a polar solvent that can be mixed with water so that the raw material dissolved in water can diffuse into the organic solvent. In addition, as shown in the present invention, in order to obtain particles having a high aspect ratio, it is necessary to use an organic solvent that causes surface-specific adsorption to the crystal plane of the particles desired to be synthesized.

本発明におけるような特徴的な形状を持つ粒子が合成できた原因として、トリエタノールアミンをはじめとするアミン系溶媒が、極性溶媒であることに加え、金属と酸素の結合を持つ酸化物一般に対して面特異的吸着を起こし易く、特異的な軸方向への結晶成長を助ける効果があるためと考えられる。   The reason why particles having a characteristic shape as in the present invention can be synthesized is that amine solvents such as triethanolamine are polar solvents, and in general, oxides having a bond between metal and oxygen. This is because surface-specific adsorption is likely to occur, and it has an effect of helping crystal growth in a specific axial direction.

特に、図2,図4に示すような針状の一次粒子を構成要素に含む試料を合成するためには有機溶媒としてトリエタノールアミンを用いることが好ましい。   In particular, it is preferable to use triethanolamine as an organic solvent in order to synthesize a sample containing acicular primary particles as shown in FIGS.

次に、粒子形状を大きく左右するもう一つの条件である、加熱攪拌温度について説明する。   Next, the heating and stirring temperature, which is another condition that greatly affects the particle shape, will be described.

有機溶媒中へ前駆体を混合する際の有機溶媒の温度が100℃以下の場合、比較例2に示すように、合成したLiMPO4の形状は、本発明で提供する形状とは異なり、一次粒子のアスペクト比は1に近くなった。さらに110℃の温度で合成したLiMPO4を、比較例4および図8に示す。比較例3では、アスペクト比が高い一次粒子が合成できたものの、一次粒子同士が、接触領域が広い状態で凝集し、A/Bの値が1に近かった。これらの試料を用いた場合、充放電特性やサイクル特性が、実施例1,2に比べて劣った。 When the temperature of the organic solvent when the precursor is mixed into the organic solvent is 100 ° C. or lower, as shown in Comparative Example 2, the shape of the synthesized LiMPO 4 is different from the shape provided in the present invention, and the primary particles The aspect ratio was close to 1. Further, LiMPO 4 synthesized at a temperature of 110 ° C. is shown in Comparative Example 4 and FIG. In Comparative Example 3, although primary particles having a high aspect ratio could be synthesized, the primary particles aggregated with a wide contact area, and the value of A / B was close to 1. When these samples were used, the charge / discharge characteristics and cycle characteristics were inferior to those of Examples 1 and 2.

一方で混合過程における有機溶媒の温度が110℃を超える場合は、実施例本発明で提供する形状のLiMPO4を得ることができた。この際の有機溶媒の温度条件は、110℃を超える温度であれば有機溶媒が蒸発して無くならない限り特に限定されないが、120−220℃が好ましく、最も好ましくは120−160℃であった。 On the other hand, when the temperature of the organic solvent in the mixing process exceeded 110 ° C., LiMPO 4 having the shape provided in the examples of the present invention could be obtained. The temperature condition of the organic solvent at this time is not particularly limited as long as the temperature exceeds 110 ° C. as long as the organic solvent evaporates and disappears, but is preferably 120-220 ° C., and most preferably 120-160 ° C.

混合過程において、還流などの手法をとり、220℃以上の温度に有機溶媒を加熱することでも合成は可能であったが、必要不可欠な条件ではなかった。   In the mixing process, synthesis was possible by taking a method such as reflux and heating the organic solvent to a temperature of 220 ° C. or higher, but it was not an indispensable condition.

混合過程において、有機溶媒中に界面活性剤を加えることで、実施例2−4に示すように、前記A/Bのより大きい試料を合成することができた。界面活性剤としては例えばポリ(オキシエチレン)=オクチルフェニルエーテルなどが挙げられる。界面活性剤を添加することにより、二次粒子の短径のうちの最大部分と、中心部分の比が大きくなる傾向があった。この原因については明らかではないが、界面活性剤中の親水基が粒子に吸着し、立体障壁として働いた結果であると考察できる。   In the mixing process, by adding a surfactant in an organic solvent, a sample having a larger A / B could be synthesized as shown in Example 2-4. Examples of the surfactant include poly (oxyethylene) = octylphenyl ether. By adding the surfactant, the ratio of the maximum portion of the minor axis of the secondary particles to the central portion tends to increase. Although the cause of this is not clear, it can be considered that the hydrophilic group in the surfactant is adsorbed on the particles and acts as a steric barrier.

<A−2:加熱加圧過程>
次に、図9のプロセスフロー中の加熱加圧過程について説明する。
<A-2: Heating and pressing process>
Next, the heating and pressing process in the process flow of FIG. 9 will be described.

本過程では、オートクレーブ中に、前記した混合過程を経た有機溶媒を密閉し、加熱することでLiMPO4の固体を沈殿させる。 In this process, the organic solvent that has undergone the mixing process described above is sealed in an autoclave and heated to precipitate a LiMPO 4 solid.

この過程ではオートクレーブを加熱する温度(以下、加熱加圧時の温度)によって粒子の形状が大きく左右された。   In this process, the shape of the particles was greatly influenced by the temperature at which the autoclave was heated (hereinafter, the temperature at the time of heating and pressing).

加熱加圧時の温度は、180℃を超える、220℃未満の温度であることが好ましく、最も好ましくは190−210℃であった。180℃以下の温度で加熱加圧処理を行った場合、比較例4に示すように、XRD測定結果からはLiMPO4が主相として現れず、合成できなかった。一方で、220℃以上の温度で加熱加圧処理を行った場合、比較例1に示すようにLiMPO4の粒子が粗大化し、短径が200nm以下の粒子を得ることができなかった。 The temperature at the time of heating and pressing is preferably a temperature exceeding 180 ° C. and less than 220 ° C., most preferably 190-210 ° C. When the heat and pressure treatment was performed at a temperature of 180 ° C. or lower, as shown in Comparative Example 4, LiMPO 4 did not appear as a main phase from the XRD measurement result, and synthesis was not possible. On the other hand, when the heat and pressure treatment was performed at a temperature of 220 ° C. or higher, as shown in Comparative Example 1, the particles of LiMPO 4 were coarsened, and particles having a minor axis of 200 nm or less could not be obtained.

また比較例5には、有機溶媒としてトリエチレングリコール(TEG)を用いて、実施例1と同様の温度条件、手順で材料合成を行った結果を示すが、LiMPO4を主沿うとする材料を合成することができなかった。 Comparative Example 5 shows the result of material synthesis under the same temperature conditions and procedure as in Example 1 using triethylene glycol (TEG) as the organic solvent. A material mainly composed of LiMPO 4 is shown. It could not be synthesized.

また、本工程を行う方法としては、上記の加熱加圧条件を実現でき、所望のLiMPO4を得ることができれば特に限定されるものではないが、具体的には、オートクレーブを用いた水熱合成法やソルボサーマル合成法等を挙げることができる。また、上記オートクレーブとしては、特に限定されるものではなく、市販のオートクレーブを用いることができる。加熱加圧過程において得られたLiMPO4の沈殿物は、その後ろ過され、洗浄,乾燥を経て有機溶媒と分離する。 In addition, the method for performing this step is not particularly limited as long as the above heating and pressurization conditions can be realized and a desired LiMPO 4 can be obtained. Specifically, hydrothermal synthesis using an autoclave is possible. Method and solvothermal synthesis method. The autoclave is not particularly limited, and a commercially available autoclave can be used. The LiMPO 4 precipitate obtained in the heating and pressurizing process is then filtered, separated from the organic solvent through washing and drying.

<B.本発明におけるLiMPO4を用いて作製されるリチウムイオン二次電池用正極活物質および正極およびリチウムイオン二次電池の製造方法>
本発明におけるリチウムイオン二次電池用正極活物質は図9におけるプロセスフローにしたがって行った。すなわちB−1(導電化剤との混合過程),B−2(熱処理過程)である。
<B. Positive electrode active material for lithium ion secondary battery produced using LiMPO 4 in the present invention, and method for producing positive electrode and lithium ion secondary battery>
The positive electrode active material for a lithium ion secondary battery in the present invention was performed according to the process flow in FIG. That is, B-1 (mixing process with a conductive agent) and B-2 (heat treatment process).

<B−1:導電化剤との混合過程>
本発明における導電化剤との混合過程を説明する。本過程は、上記LiMPO4と導電化剤とを混合することで混合体を得る過程である。本発明に用いられるLiMPO4は、上記<A.本発明で提供する形状を持つLiMPO4粒子の製造方法>に記載した方法により得られるものである。
<B-1: Mixing process with conductive agent>
The mixing process with the conductive agent in the present invention will be described. This process is a process of obtaining a mixture by mixing the LiMPO 4 and the conductive agent. LiMPO 4 used in the present invention has the above <A. It is obtained by the method described in the method for producing LiMPO 4 particles having the shape provided in the present invention.

また、本発明に用いられる導電化剤は、導電性を向上させることができるものであれば特に限定されるものではないが、例えば、スクロース,ショ糖などの糖類や、クエン酸,グラファイト、あるいはアセチレンブラック等の炭素を構成元素に含む材料、およびそれらの組み合わせをいい、特にスクロースが好ましい。   Further, the conductive agent used in the present invention is not particularly limited as long as it can improve the conductivity. For example, saccharides such as sucrose and sucrose, citric acid, graphite, or A material containing carbon as a constituent element, such as acetylene black, and a combination thereof, and sucrose is particularly preferable.

また、上記導電化剤は、LiMPO4、100重量部に対して、3〜25重量部の範囲内、中でも5〜15重量部の範囲内で添加することが好ましい。 Further, the conductive agent with respect to LiMPO 4, 100 parts by weight, in the range of 3 to 25 parts by weight, it is preferably added in a range of inter alia 5 to 15 parts by weight.

本発明において、上記LiMPO4と上記導電化剤とを混合する方法としては、特に限定されるものではないが、例えば、物理混合であることが好ましく、中でも機械混合であることが好ましい。具体的には、ボールミル粉砕法等を挙げることができる。特に、ボールミル粉砕法を用いる際は、上記LiMPO4と上記導電化剤とともに溶媒を同時に加えて混合することが好ましい。 In the present invention, the method of mixing the LiMPO 4 and the conductive agent is not particularly limited. For example, physical mixing is preferable, and mechanical mixing is particularly preferable. Specific examples include a ball mill pulverization method. In particular, when the ball milling method is used, it is preferable to add and mix the solvent together with the LiMPO 4 and the conductive agent.

混合時に用いられる溶媒としては、特に限定されるものではないが、例えば水やエタノールやアセトンや、それらの組み合わせを挙げることができ、中でもアセトンが好ましい。本導電化剤との混合過程の後、溶媒を蒸発させることで導電化材とLiMPO4の混合粉末を得る。 Although it does not specifically limit as a solvent used at the time of mixing, For example, water, ethanol, acetone, and those combinations can be mentioned, Acetone is especially preferable. After mixing with the conductive agent, the solvent is evaporated to obtain a mixed powder of the conductive material and LiMPO 4 .

<B−2:熱処理過程>
次に、本発明における熱処理過程について説明する。本発明における熱処理過程では、<B−1:導電化剤との混合過程>により得られた粉末を、500〜900℃の温度で加熱することで、上記LiMPO4と上記導電化剤との複合体を得ることができる。
<B-2: Heat treatment process>
Next, the heat treatment process in the present invention will be described. In the heat treatment process of the present invention, the powder obtained by <B-1: mixing process with conductive agent> is heated at a temperature of 500 to 900 ° C., whereby the composite of LiMPO 4 and the conductive agent is combined. You can get a body.

また、本発明により得られる正極活物質の用途としては、特に限定されるものではないが、例えば、リチウム二次電池等に用いることができる。   In addition, the use of the positive electrode active material obtained by the present invention is not particularly limited, but can be used for, for example, a lithium secondary battery.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

〔実施例〕
以下、具体的な検討結果を表1から3にまとめ、詳細を説明する。実施例1から5および比較例1から5で合成した試料について、表1では一次粒子・二次粒子の形状に関する結果を、表2では合成時における温度条件を、表3では容量やサイクル特性に関する特性をまとめた。
〔Example〕
Hereinafter, specific examination results are summarized in Tables 1 to 3, and the details will be described. For the samples synthesized in Examples 1 to 5 and Comparative Examples 1 to 5, Table 1 shows the results regarding the shape of the primary particles and secondary particles, Table 2 shows the temperature conditions during the synthesis, and Table 3 shows the capacity and cycle characteristics. The characteristics are summarized.

本発明はその要旨を超えない限り、これらの実施例によって制限されるものではない。   The present invention is not limited by these examples unless it exceeds the gist.

(1)本発明で提供するLiMPO4の合成
マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4を溶かした溶媒を加熱した。この溶媒を以下、溶媒A1と呼ぶ。次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A1の中に滴下した(滴下過程)。
(1) Synthesis of LiMPO 4 Provided in the Present Invention In a beaker placed in a silicone oil oil bath heated on a magnetic slurler, a solvent in which H 3 PO 4 was dissolved in a triethanolamine solvent was heated. . This solvent is hereinafter referred to as solvent A1. Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a Li / M mixed raw solution, which was dropped into the solvent A1 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B1)の温度を測定した結果、145℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B1を145℃で加熱攪拌を続けた後、ポリテトラフルオロエチレン(以下,PTFE)製のオートクレーブ中に溶媒B1を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B1) was measured and found to be 145 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. After the completion of the dropping, the solvent B1 was continuously heated and stirred at 145 ° C. for 3 hours, and then the solvent B1 was transferred into an autoclave made of polytetrafluoroethylene (hereinafter referred to as PTFE), and the heating and pressurizing process was experienced at 200 ° C. I let you.

加熱加圧過程後、オートクレーブの底部に、沈殿物が得られた。沈殿物をろ過し、エタノールで三回洗浄した後、120℃で2時間以上乾燥させる事で本発明におけるLiMnPO4を得た。 After the heating and pressurizing process, a precipitate was obtained at the bottom of the autoclave. The precipitate was filtered, washed three times with ethanol, and then dried at 120 ° C. for 2 hours or longer to obtain LiMnPO 4 in the present invention.

得られた材料を用いて、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   As a result of X-ray diffraction measurement using the obtained material, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

合成した試料を走査型電子顕微鏡(SEM)により観察した。その結果、図1に示すような粒子が観察された。観察結果から、粒子の平均の長径は約4μmであった。図1を拡大した写真を図2に示す。図2から、図1で観測できる粒子内部にさらに、短径が 20−30nmの範囲内である微細な一次粒子あるいは構造が存在することが分かる。図1の結果から、一次粒子の平均長径が4μmであることがわかっており、かつ一次粒子の短径が20−30nmであることから、4μmの巨大粒子を構成する微細粒子は、長径と短径との比であるアスペクト比が1.5−200の範囲内にあることが分かる。また、該粒子の短径のうちの最大部分(A)と中心付近の最小部分(B)の比(A/B)は約1.2であった。   The synthesized sample was observed with a scanning electron microscope (SEM). As a result, particles as shown in FIG. 1 were observed. From the observation results, the average major axis of the particles was about 4 μm. An enlarged photograph of FIG. 1 is shown in FIG. From FIG. 2, it can be seen that fine primary particles or structures having a minor axis in the range of 20-30 nm are further present inside the particles that can be observed in FIG. From the results of FIG. 1, it is known that the average major axis of primary particles is 4 μm, and the minor axis of primary particles is 20-30 nm. It can be seen that the aspect ratio, which is the ratio to the diameter, is in the range of 1.5-200. The ratio (A / B) of the largest part (A) of the minor axis of the particles to the smallest part (B) near the center was about 1.2.

(2)正極活物質の作製
次に、本試料100重量部に対して、7重量部のスクロースを添加し、アセトンと共に3時間ボールミルで粉砕を行うことで、前記した導電化材との混合過程を経験させた。
(2) Preparation of positive electrode active material Next, 7 parts by weight of sucrose is added to 100 parts by weight of the sample, and the mixture is pulverized with acetone for 3 hours in a ball mill, thereby mixing with the conductive material described above. Experienced.

その後、粉砕後の試料を前記した熱処理過程にかけ、730℃の温度で加熱行う事で上記LiMnPO4と上記導電化剤との複合体を得た。 Thereafter, the pulverized sample was subjected to the heat treatment described above and heated at a temperature of 730 ° C. to obtain a composite of LiMnPO 4 and the conductive agent.

(3)電池特性の評価
電極特性は、前記方法で得た炭素とLiMnPO4の複合体材料を80重量部、導電助剤としてアセチレンブラックを10重量部、ポリフッ化ビニリデン(PVdF)溶液をPVdF含率として10重量部となるように秤量して作製したスラリーを用いて作製した電極を用いて測定した。電極評価にはモデルセルを用い、負極にリチウム金属を用いた二極式セルを用いて利用放電効率の測定を室温で行った。正極を15mφの円形状に成型し、セパレータは30μ厚みのポリプロピレンとポリエチレンの積層セパレータを用いた。負極にはリチウム金属を用いた。電解液は1M LiPF6 EC/EMC(1/2)溶液を用いた。利用容量効率は、電流密度0.1mA/cm2として、電圧3Vから4.3Vの範囲で充放電させて得られた放電容量を、次式で表わされる理論容量を基準として率を算出した結果、53.8%となった。
(3) Evaluation of battery characteristics The electrode characteristics include 80 parts by weight of the composite material of carbon and LiMnPO 4 obtained by the above method, 10 parts by weight of acetylene black as a conductive auxiliary agent, and PVdF containing a polyvinylidene fluoride (PVdF) solution. It measured using the electrode produced using the slurry produced by weighing so that it might become 10 weight part as a rate. The model discharge was used for electrode evaluation, and the measurement of the use discharge efficiency was performed at room temperature using a bipolar cell using lithium metal for the negative electrode. The positive electrode was molded into a circular shape of 15 mφ, and the separator used was a laminated separator of polypropylene and polyethylene having a thickness of 30 μm. Lithium metal was used for the negative electrode. As the electrolytic solution, a 1M LiPF 6 EC / EMC (1/2) solution was used. Utilization capacity efficiency is the result of calculating the rate based on the theoretical capacity expressed by the following equation, with the discharge capacity obtained by charging / discharging in the voltage range of 3V to 4.3V with a current density of 0.1 mA / cm 2. , 53.8%.

LiMnPO4→Li++MnPO4+e-:理論容量170.9mAh/g
また、20サイクル後の容量維持率を測定した結果、96.8%となった。以上の結果を表1および表2にまとめる。
LiMnPO 4 → Li + + MnPO 4 + e : Theoretical capacity 170.9 mAh / g
Moreover, as a result of measuring the capacity | capacitance maintenance factor after 20 cycles, it was 96.8%. The above results are summarized in Tables 1 and 2.

マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4およびポリ(オキシエチレン)=オクチルフェニルエーテルを加えた溶媒を加熱した。この溶媒を以下、溶媒A2と呼ぶ。
次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A2の中に滴下した(滴下過程)。
In a beaker placed in an oil bath of silicone oil heated on a magnetic slurler, a solvent of H 3 PO 4 and poly (oxyethylene) = octylphenyl ether in a triethanolamine solvent was heated. This solvent is hereinafter referred to as solvent A2.
Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a Li and M mixed raw solution, which was dropped into the solvent A2 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B2)の温度を測定した結果、155℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B2を155℃で加熱攪拌を続けた後、PTFE製のオートクレーブ中に溶媒B2を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B2) was measured and found to be 155 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. After the completion of the dropping, the solvent B2 was continuously heated and stirred at 155 ° C. for 3 hours, and then the solvent B2 was transferred into an autoclave made of PTFE to experience the heating and pressurizing process at 200 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   Hereinafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

合成した試料を走査型電子顕微鏡(SEM)により観察した。その結果、図3に示すような粒子が観察された。観察結果から、粒子の平均の長径は約4μmであった。図3を拡大した写真を図4に示す。図4の結果から、実施例1と同様、図3で観測できる粒子内部にはさらに、短径が20−30nmの範囲内である微細な一次粒子あるいは構造が存在することが分かる。また、実施例1と同様にして一次粒子のアスペクト比を求めた結果、160程度であった。該粒子の短径のうちの最大部分(A)と中心付近の最小部分(B)の比(A/B)は約4であった。   The synthesized sample was observed with a scanning electron microscope (SEM). As a result, particles as shown in FIG. 3 were observed. From the observation results, the average major axis of the particles was about 4 μm. An enlarged photograph of FIG. 3 is shown in FIG. From the results of FIG. 4, it can be seen that, as in Example 1, fine primary particles or structures having a minor axis in the range of 20-30 nm are further present inside the particles that can be observed in FIG. Further, as a result of obtaining the aspect ratio of the primary particles in the same manner as in Example 1, it was about 160. The ratio (A / B) of the largest part (A) of the minor axis of the particles to the smallest part (B) near the center was about 4.

正極活物質の作製、および電池特性の評価は、実施例1と同様の手法で評価を行った。
以上の結果は表1,2,3にまとめる。
The production of the positive electrode active material and the evaluation of the battery characteristics were evaluated in the same manner as in Example 1.
The above results are summarized in Tables 1, 2, and 3.

以下、実施例3〜4では組織観察写真を省くが、実施例2とほぼ同じ粒子形状となったためである。   Hereinafter, in Examples 3-4, although the structure observation photograph is omitted, the particle shape is almost the same as in Example 2.

マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4およびポリ(オキシエチレン)=オクチルフェニルエーテルを加えた溶媒を加熱した。この溶媒を以下、溶媒A3と呼ぶ。
次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物,硫酸マグネシウム(II)七水和物を溶解させたLi,M混合原溶液を作製し、溶媒A3の中に滴下した(滴下過程)。
In a beaker placed in an oil bath of silicone oil heated on a magnetic slurler, a solvent of H 3 PO 4 and poly (oxyethylene) = octylphenyl ether in a triethanolamine solvent was heated. This solvent is hereinafter referred to as solvent A3.
Next, a Li and M mixed raw solution in which lithium acetate dihydrate, manganese (II) sulfate pentahydrate, and magnesium (II) sulfate heptahydrate are dissolved in water is prepared. It was dripped (drip process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B3)の温度を測定した結果、150℃であった。この際、合成後のLiMPO4の組成比がLi:P:Mn:Mg=1:1:0.97:0.03となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B3を150℃で加熱攪拌を続けた後、PTFE製のオートクレーブへ溶媒B3を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B3) was measured and found to be 150 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMPO 4 after synthesis was Li: P: Mn: Mg = 1: 1: 0.97: 0.03. After the completion of the dropping, the solvent B3 was continuously heated and stirred at 150 ° C. for 3 hours, and then the solvent B3 was transferred to a PTFE autoclave, and the heating and pressurizing process was experienced at 200 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   Hereinafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

また、実施例1と同様にして一次粒子の短径,アスペクト比を求めた結果、それぞれ30nm,160程度であった。該粒子の短径のうちの最大部分(A)と中心付近の最小部分(B)の比(A/B)は約3であった。   Moreover, as a result of calculating | requiring the short diameter and aspect-ratio of a primary particle like Example 1, it was about 30 nm and 160, respectively. The ratio (A / B) of the largest part (A) of the minor axis of the particles to the smallest part (B) near the center was about 3.

正極活物質の作製、および電池特性の評価は、実施例1と同様の手法で評価を行った。
以上の結果は表1,2,3にまとめる。
The production of the positive electrode active material and the evaluation of the battery characteristics were evaluated in the same manner as in Example 1.
The above results are summarized in Tables 1, 2, and 3.

マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4およびポリ(オキシエチレン)=オクチルフェニルエーテルを加えた溶媒を加熱した。この溶媒を以下、溶媒A4と呼ぶ。
次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物,硫酸亜鉛(II)七水和物を溶解させたLi,M混合原溶液を作製し、溶媒A4の中に滴下した(滴下過程)。
In a beaker placed in an oil bath of silicone oil heated on a magnetic slurler, a solvent of H 3 PO 4 and poly (oxyethylene) = octylphenyl ether in a triethanolamine solvent was heated. This solvent is hereinafter referred to as solvent A4.
Next, a Li and M mixed raw solution in which lithium acetate dihydrate, manganese (II) sulfate pentahydrate, and zinc (II) sulfate heptahydrate are dissolved in water is prepared. It was dripped (drip process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B4)の温度を測定した結果、150℃であった。この際、合成後のLiMPO4の組成比がLi:P:Mn:Zn=1:1:0.97:0.03となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B4を150℃で加熱攪拌を続けた後、PTFE製のオートクレーブへ溶媒B4を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B4) was measured and found to be 150 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMPO 4 after synthesis was Li: P: Mn: Zn = 1: 1: 0.97: 0.03. After the completion of dropping, the solvent B4 was continuously heated and stirred at 150 ° C. for 3 hours, and then the solvent B4 was transferred to an autoclave made of PTFE, and the heating and pressurizing process was experienced at 200 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   Hereinafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

また、実施例1と同様にして一次粒子の短径,アスペクト比を求めた結果、それぞれ30nm,160程度であった。該粒子の短径のうちの最大部分(A)と中心付近の最小部分(B)の比(A/B)は約3であった。   Moreover, as a result of calculating | requiring the short diameter and aspect-ratio of a primary particle like Example 1, it was about 30 nm and 160, respectively. The ratio (A / B) of the largest part (A) of the minor axis of the particles to the smallest part (B) near the center was about 3.

正極活物質の作製、および電池特性の評価は、実施例1と同様の手法で評価を行った。
以上の結果は表1,2,3にまとめる。
The production of the positive electrode active material and the evaluation of the battery characteristics were evaluated in the same manner as in Example 1.
The above results are summarized in Tables 1, 2, and 3.

マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4を溶かした溶媒を加熱した。この溶媒を以下、溶媒A5と呼ぶ。次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A5の中に滴下した(滴下過程)。 A solvent in which H 3 PO 4 was dissolved in a triethanolamine solvent was heated in a beaker placed in a silicone oil oil bath heated on a magnetic slurler. This solvent is hereinafter referred to as solvent A5. Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a mixed Li and M solution, which was dropped into the solvent A5 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B5)の温度を測定した結果、120℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B5を120℃で加熱攪拌を続けた後、PTFE製のオートクレーブ中に溶媒B5を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B5) was measured and found to be 120 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. After the completion of the dropwise addition, the solvent B5 was continuously heated and stirred at 120 ° C. for 3 hours, and then the solvent B5 was transferred into a PTFE autoclave to experience a heating and pressing process at 200 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   Hereinafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

合成した試料を走査型電子顕微鏡(SEM)により観察した。その結果、図5に示すような粒子が観察された。観察結果から、粒子の平均の長径は約2.5μmであった。実施例1と同様、図5で観測できる粒子内部にはさらに、短径が50−80nmの範囲内である微細な一次粒子あるいは構造が存在することが分かる。また、実施例1と同様にして一次粒子のアスペクト比を求めた結果、10程度であった。該粒子の短径のうちの最大部分(A)は写真の奥行き方向の長さで250nm程度であったため、A/Bは約10であると計算された。   The synthesized sample was observed with a scanning electron microscope (SEM). As a result, particles as shown in FIG. 5 were observed. From the observation results, the average major axis of the particles was about 2.5 μm. As in Example 1, it can be seen that fine primary particles or structures having a minor axis in the range of 50 to 80 nm are further present inside the particles that can be observed in FIG. Further, as a result of obtaining the aspect ratio of the primary particles in the same manner as in Example 1, it was about 10. Since the maximum part (A) of the minor axis of the particles was about 250 nm in the depth direction of the photograph, A / B was calculated to be about 10.

正極活物質の作製、および電池特性の評価は、実施例1と同様に行った。以上の結果は表1,2,3にまとめる。   Preparation of the positive electrode active material and evaluation of battery characteristics were performed in the same manner as in Example 1. The above results are summarized in Tables 1, 2, and 3.

〔比較例1〕
マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4を溶かした溶媒を加熱した。この溶媒を以下、溶媒A6と呼ぶ。次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A6の中に滴下した(滴下過程)。
[Comparative Example 1]
A solvent in which H 3 PO 4 was dissolved in a triethanolamine solvent was heated in a beaker placed in a silicone oil oil bath heated on a magnetic slurler. This solvent is hereinafter referred to as solvent A6. Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a Li and M mixed raw solution, which was dropped into the solvent A6 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B6)の温度を測定した結果、145℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B6を145℃で加熱攪拌を続けた後、PTFE製のオートクレーブ中に溶媒B6を移し、220℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B6) was measured and found to be 145 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. After the completion of the dropping, the solvent B6 was continuously heated and stirred at 145 ° C. for 3 hours, and then the solvent B6 was transferred into an autoclave made of PTFE to experience the heating and pressurizing process at 220 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   Hereinafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

合成した試料を走査型電子顕微鏡(SEM)により観察した。その結果、図6に示すような粒子が観察された。観察結果から、本試料では特定の方向に結晶成長が行われているようには見えず、粒子の平均粒径は約220nmで、一次粒子のアスペクト比も約1であった。   The synthesized sample was observed with a scanning electron microscope (SEM). As a result, particles as shown in FIG. 6 were observed. From the observation results, in this sample, crystal growth did not appear to be in a specific direction, the average particle diameter of the particles was about 220 nm, and the aspect ratio of the primary particles was about 1.

正極活物質の作製、および電池特性の評価は、実施例1と同様の手法で評価を行った。
以上の結果は表1,2,3にまとめる。
The production of the positive electrode active material and the evaluation of the battery characteristics were evaluated in the same manner as in Example 1.
The above results are summarized in Tables 1, 2, and 3.

〔比較例2〕
マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4を溶かした溶媒を加熱した。この溶媒を以下、溶媒A7と呼ぶ。次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A7の中に滴下した(滴下過程)。
[Comparative Example 2]
A solvent in which H 3 PO 4 was dissolved in a triethanolamine solvent was heated in a beaker placed in a silicone oil oil bath heated on a magnetic slurler. This solvent is hereinafter referred to as solvent A7. Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a Li / M mixed raw solution, which was dropped into the solvent A7 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B7)の温度を測定した結果、100℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B7を100℃で加熱攪拌を続けた後、PTFE製のオートクレーブ中に溶媒B7を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B7) was measured and found to be 100 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. After the completion of the dropping, the solvent B7 was continuously heated and stirred at 100 ° C. for 3 hours, and then the solvent B7 was transferred into a PTFE autoclave to experience the heating and pressurizing process at 200 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   Hereinafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

合成した試料を走査型電子顕微鏡(SEM)により観察した。その結果、図7に示すような粒子が観察された。観察結果から、粒子の一次粒子短径は約50nmで、一次粒子のアスペクト比は約1.2であった。   The synthesized sample was observed with a scanning electron microscope (SEM). As a result, particles as shown in FIG. 7 were observed. From the observation results, the primary particle minor axis of the particles was about 50 nm, and the aspect ratio of the primary particles was about 1.2.

正極活物質の作製、および電池特性の評価は、実施例1と同様の手法で評価を行った。
以上の結果は表1,2,3にまとめる。
The production of the positive electrode active material and the evaluation of the battery characteristics were evaluated in the same manner as in Example 1.
The above results are summarized in Tables 1, 2, and 3.

〔比較例3〕
マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4を溶かした溶媒を加熱した。この溶媒を以下、溶媒A8と呼ぶ。次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A8の中に滴下した(滴下過程)。
[Comparative Example 3]
A solvent in which H 3 PO 4 was dissolved in a triethanolamine solvent was heated in a beaker placed in a silicone oil oil bath heated on a magnetic slurler. This solvent is hereinafter referred to as solvent A8. Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a Li / M mixed raw solution, which was dropped into the solvent A8 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B8)の温度を測定した結果、110℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B8を110℃で加熱攪拌を続けた後、PTFE製のオートクレーブ中に溶媒B8を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter referred to as solvent B8) was measured and found to be 110 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. After the completion of dropping, the solvent B8 was continuously heated and stirred at 110 ° C. for 3 hours, and then the solvent B8 was transferred into an autoclave made of PTFE to experience the heating and pressurizing process at 200 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、試料の回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   Hereinafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, it was confirmed that the diffraction pattern of the sample belonged to the olivine structure (space group Pnma).

合成した試料を走査型電子顕微鏡(SEM)により観察した。その結果、図8に示すような粒子が観察された。該粒子の短径のうちの最大部分(A)と中心付近の最小部分(B)の比(A/B)は約1であった。   The synthesized sample was observed with a scanning electron microscope (SEM). As a result, particles as shown in FIG. 8 were observed. The ratio (A / B) of the largest part (A) of the minor axis of the particles to the smallest part (B) near the center was about 1.

正極活物質の作製、および電池特性の評価は、実施例1と同様の手法で評価を行った。
以上の結果は表1,2,3にまとめる。
The production of the positive electrode active material and the evaluation of the battery characteristics were evaluated in the same manner as in Example 1.
The above results are summarized in Tables 1, 2, and 3.

〔比較例4〕
マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエタノールアミン溶媒中にH3PO4を溶かした溶媒を加熱した。この溶媒を以下、溶媒A9と呼ぶ。次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A9の中に滴下した(滴下過程)。
[Comparative Example 4]
A solvent in which H 3 PO 4 was dissolved in a triethanolamine solvent was heated in a beaker placed in a silicone oil oil bath heated on a magnetic slurler. This solvent is hereinafter referred to as solvent A9. Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a Li and M mixed raw solution, which was dropped into the solvent A9 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B9)の温度を測定した結果、145℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B9を145℃で加熱攪拌を続けた後、PTFE製のオートクレーブ中に溶媒B9を移し、180℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B9) was measured and found to be 145 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. The solvent B9 was continuously heated and stirred at 145 ° C. for 3 hours after the completion of the dropping, and then the solvent B9 was transferred into an autoclave made of PTFE, and the heating and pressurizing process was experienced at 180 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、オリビン型構造(空間群Pnma)に帰属しない回折ピークが主ピークとして現れ、LiMPO4が合成されていないことが確認できた。 Thereafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, a diffraction peak not belonging to the olivine structure (space group Pnma) appeared as a main peak, and LiMPO 4 was not synthesized. I was able to confirm.

〔比較例5〕
マグネティックスラーラー上で加熱したシリコーンオイルのオイルバスの中に配置したビーカー中で、トリエチレングリコール溶媒中にH3PO4を溶かした溶媒を加熱した。この溶媒を以下、溶媒A9と呼ぶ。次に、水に酢酸リチウム二水和物,硫酸マンガン(II)五水和物を溶解させ、Li,M混合原溶液を作製し、溶媒A9の中に滴下した(滴下過程)。
[Comparative Example 5]
In a beaker placed in a silicone oil oil bath heated on a magnetic slurler, a solvent of H 3 PO 4 dissolved in triethylene glycol solvent was heated. This solvent is hereinafter referred to as solvent A9. Next, lithium acetate dihydrate and manganese (II) sulfate pentahydrate were dissolved in water to prepare a Li and M mixed raw solution, which was dropped into the solvent A9 (dropping process).

前記滴下過程において、加熱されている有機溶媒(以下、溶媒B9)の温度を測定した結果、145℃であった。この際、合成後のLiMnPO4の組成比がLi:P:Mn=1:1:1となるようにモル比を調整した。滴下が終了した後も3時間、溶媒B9を145℃で加熱攪拌を続けた後、PTFE製のオートクレーブ中に溶媒B9を移し、200℃で加熱加圧過程を経験させた。 In the dropping process, the temperature of the heated organic solvent (hereinafter, solvent B9) was measured and found to be 145 ° C. At this time, the molar ratio was adjusted so that the composition ratio of LiMnPO 4 after synthesis was Li: P: Mn = 1: 1: 1. After the completion of the dropwise addition, the solvent B9 was continuously heated and stirred at 145 ° C. for 3 hours, and then the solvent B9 was transferred into a PTFE autoclave to experience the heating and pressurizing process at 200 ° C.

以下、実施例1と同様にして沈殿を濾過した後、X線回折測定を行った結果、オリビン型構造(空間群Pnma)に帰属しない回折ピークが主ピークとして現れ、LiMPO4が合成されていないことが確認できた。 Thereafter, the precipitate was filtered in the same manner as in Example 1, and then X-ray diffraction measurement was performed. As a result, a diffraction peak not belonging to the olivine structure (space group Pnma) appeared as a main peak, and LiMPO 4 was not synthesized. I was able to confirm.

実施例および比較例の特性を比較検討した結果を次に述べる。ただし、表中の横棒は、測定する意味が無いため測定値を示さないことを意味する。   The results of a comparative study of the characteristics of the examples and comparative examples are described below. However, the horizontal bar in the table means that the measured value is not shown because there is no meaning to measure.

Figure 2012123909
Figure 2012123909

Figure 2012123909
Figure 2012123909

Figure 2012123909
Figure 2012123909

表1に実施例と比較例に示した試料の組成,一次粒子短径,一次粒子のアスペクト比、および本発明で合成する粒子の短径のうちの最大部分(A)と中心付近の最小部分(B)の比(以下A/B)をまとめた。その結果、本発明で実施例に示す試料の平均粒子短径は20−80nmの間であり、200nm以下であることが分かる。さらにアスペクト比は10を超えており、比較例1,2の結果との比較から、本発明で提供する形状を持つ粒子のアスペクト比は1.5以上200以下であることが好ましいとわかる。   Table 1 shows the composition of the samples shown in Examples and Comparative Examples, primary particle short diameter, primary particle aspect ratio, and the maximum portion (A) of the short diameter of the particles synthesized in the present invention and the minimum portion near the center. The ratio of (B) (hereinafter referred to as A / B) is summarized. As a result, it can be seen that the average particle minor axis of the samples shown in Examples in the present invention is between 20-80 nm and is 200 nm or less. Furthermore, the aspect ratio exceeds 10, and it can be seen from the comparison with the results of Comparative Examples 1 and 2 that the aspect ratio of the particles having the shape provided by the present invention is preferably 1.5 or more and 200 or less.

また、表1の結果から、実施例に示す試料のA/Bはすべて1.2以上であることが分かる。   Moreover, from the results of Table 1, it can be seen that the A / B of the samples shown in the examples are all 1.2 or more.

また、表2に実施例と比較例に示した試料の有機溶媒の種類,加熱攪拌温度(℃)条件,加熱加圧時の温度(℃),界面活性剤の有無をまとめた。表2の結果から、本発明で実施例に示す試料の合成に用いた有機溶媒はエタノールアミン、特にトリエタノールアミンであることがわかる。さらに、加熱攪拌温度は110℃を超える温度であることがわかる。さらに、加熱加圧時の温度は200℃付近であることがわかる。   Table 2 summarizes the types of organic solvents, the heating and stirring temperature (° C) conditions, the temperature during heating and pressurization (° C), and the presence or absence of surfactants in the samples shown in Examples and Comparative Examples. From the results in Table 2, it can be seen that the organic solvent used for the synthesis of the samples shown in the examples in the present invention is ethanolamine, particularly triethanolamine. Furthermore, it turns out that heating stirring temperature is a temperature exceeding 110 degreeC. Furthermore, it can be seen that the temperature at the time of heating and pressing is around 200 ° C.

また表2の結果から、有機溶媒に界面活性剤を加えても本発明で提供する粒子が合成できることがわかる。   Further, the results shown in Table 2 show that the particles provided in the present invention can be synthesized even when a surfactant is added to the organic solvent.

表3に実施例と比較例に示した試料の組成,容量(mAh/g),容量利用率(%),容量維持率(%)をまとめた。この結果から、本発明で提供する粒子は、比較例に示す材料に比べて容量,容量利用率,容量維持率が高いことがわかる。   Table 3 summarizes the composition, capacity (mAh / g), capacity utilization rate (%), and capacity retention rate (%) of the samples shown in Examples and Comparative Examples. From these results, it can be seen that the particles provided in the present invention have higher capacity, capacity utilization rate, and capacity maintenance rate than the materials shown in the comparative examples.

表1−3の結果から、比較例1は実施例1に比べて低容量であることが分かる。比較例1は一次粒子短径が220nmと大きい。これは、表3の結果から実施例1に比べて加熱加圧時の温度が高いためであると考えられる。以上の結果から、短径が200nmを超える温度では特性が劣化することが分かる。   From the results in Table 1-3, it can be seen that Comparative Example 1 has a lower capacity than Example 1. Comparative Example 1 has a large primary particle short diameter of 220 nm. This is considered to be because the temperature at the time of heating and pressurization is higher than that of Example 1 from the results of Table 3. From the above results, it is understood that the characteristics deteriorate at a temperature where the minor axis exceeds 200 nm.

また比較例1,4は、実施例1と比べて、加熱加圧時の温度が異なるのみであるが、実施例1に比べて容量が大きく劣るか、充放電特性を示さない。以上から、加熱加圧時の温度として180℃を超え、220℃未満である温度領域とすることが好ましいことが分かる。   Comparative Examples 1 and 4 differ from Example 1 only in the temperature at the time of heating and pressurization, but the capacity is greatly inferior to Example 1 or does not show charge / discharge characteristics. From the above, it can be seen that the temperature at the time of heating and pressurization is preferably in a temperature range exceeding 180 ° C. and less than 220 ° C.

また、表2の比較例5は、実施例1とは異なる溶媒種であるTEGを用いる以外はほぼ同じ条件で合成を試みているが、LiMPO4の合成が不可能であった。そのため、この温度条件では有機溶媒としてトリエタノールアミンなどのアミン系溶媒を用いることが好ましいことが分かる。 In Comparative Example 5 of Table 2, synthesis was attempted under substantially the same conditions except that TEG, which is a solvent type different from Example 1, was used, but synthesis of LiMPO 4 was impossible. Therefore, it can be seen that it is preferable to use an amine solvent such as triethanolamine as the organic solvent under this temperature condition.

また、表3から、比較例2,3も実施例1に比べて容量と容量維持率が劣る。表1,2から実施例1と比較例2,3の違いは加熱攪拌時の温度であると分かる。そのため、加熱攪拌時の温度は110℃を超える温度であることが好ましいと分かる。さらに、比較例3と実施例1,2の比較から、A/Bが1.2以上であることが好ましいとわかる。   Also, from Table 3, Comparative Examples 2 and 3 are inferior in capacity and capacity retention rate as compared to Example 1. From Tables 1 and 2, it can be seen that the difference between Example 1 and Comparative Examples 2 and 3 is the temperature during heating and stirring. Therefore, it turns out that it is preferable that the temperature at the time of heating and stirring is a temperature exceeding 110 degreeC. Furthermore, it can be seen from comparison between Comparative Example 3 and Examples 1 and 2 that A / B is preferably 1.2 or more.

さらに、表1,2,3の結果から、M=Mn,MgあるいはM=Mn,Znとした際も本発明で示す形状の粒子が合成可能であり、さらに比較例にくらべて容量などの電池特性が優れることが分かる。   Furthermore, from the results of Tables 1, 2, and 3, it is possible to synthesize particles having the shape shown in the present invention even when M = Mn, Mg or M = Mn, Zn. It can be seen that the characteristics are excellent.

実施例5では、図5と図1あるいは図5と図3との比較から明らかなように、異なる粒子形状であるが、表3に示すように比較例に比べて容量などの電池特性が優れる。図5と図1、あるいは図5と図3の共通点は、一つの一次粒子が接触あるいは結合している距離が短く、一次粒子全体の長径の1/2未満の長さであることであると考えられる。   In Example 5, as is clear from the comparison between FIG. 5 and FIG. 1 or FIG. 5 and FIG. 3, the particle shape is different, but as shown in Table 3, the battery characteristics such as capacity are superior to the comparative example. . 5 and FIG. 1 or FIG. 5 and FIG. 3 have a common point in that the distance that one primary particle is in contact with or coupled is short, and the length is less than ½ of the major axis of the entire primary particle. it is conceivable that.

このような粒子は、上述したように、解砕が用意であるためと考えられる。   Such particles are considered to be prepared for crushing as described above.

Claims (15)

組成式LiMPO4(MはMg,Al,Ti,Mn,Fe,Co,Ni,Cu,Znから選ばれる一種類以上の元素)で表わされる化合物を有するリチウムイオン二次電池用正極材料において、
該化合物の一次粒子の形状は、短径が200nm以下であり、かつ該一次粒子の長径と短径とのアスペクト比が1.5以上,200以下であり、
さらに該一次粒子同士が凝集して二次粒子化しており、
該二次粒子は、前記一次粒子同士が、該二次粒子の長径の中心付近を主な密着部分として凝集し、該二次粒子の短径のうちの最大部分と、中心部分の比が1.2以上であることを特徴とするリチウムイオン二次電池用正極材料。
In a positive electrode material for a lithium ion secondary battery having a compound represented by a composition formula LiMPO 4 (M is one or more elements selected from Mg, Al, Ti, Mn, Fe, Co, Ni, Cu, Zn),
The primary particle shape of the compound is such that the minor axis is 200 nm or less, and the aspect ratio between the major axis and the minor axis of the primary particle is 1.5 or more and 200 or less,
Furthermore, the primary particles are aggregated into secondary particles,
In the secondary particles, the primary particles agglomerate with the vicinity of the center of the major axis of the secondary particles as a main adhesion part, and the ratio of the largest part of the minor axis of the secondary particles to the central part is 1. . A positive electrode material for a lithium ion secondary battery, characterized by being 2 or more.
請求項1に記載のリチウムイオン二次電池用正極材料において、該密着部分の長さが一次粒子の長径の1/2未満であることを特徴とするリチウムイオン二次電池用正極材料。   2. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the length of the adhesion portion is less than ½ of the major axis of the primary particles. 請求項1〜2に記載のリチウムイオン二次電池用正極材料において、該一次粒子の形状が針状であることを特徴とするリチウムイオン二次電池用正極材料。   3. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the primary particles have a needle shape. 4. 請求項1〜3に記載のリチウムイオン二次電池用正極材料において、該二次粒子は、該密着部分を起点として、最も近い針状一次粒子の長軸方向の中心軸同士が0度を超える角度をなして凝集しており、二次粒子の短径のうちの最大部分と中心部分の比が1.2以上となることを特徴とするリチウムイオン二次電池用正極材料。   4. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the secondary particles start from the adhesion portion and the central axes in the major axis direction of the closest acicular primary particles exceed 0 degree. A positive electrode material for a lithium ion secondary battery, characterized by agglomerating at an angle and having a ratio of the largest part to the central part of the minor axis of the secondary particles of 1.2 or more. 請求項1〜4に記載のリチウムイオン二次電池用正極材料において、該二次粒子は、二次粒子の短軸および長軸方向の中心軸に対してほぼ対象の構造であることを特徴とするリチウムイオン二次電池用正極材料。   5. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the secondary particles have a substantially target structure with respect to a short axis and a central axis in a major axis direction of the secondary particles. A positive electrode material for a lithium ion secondary battery. 組成式LiMPO4(MはMg,Al,Ti,Mn,Fe,Co,Ni,Cu,Znから選ばれる一種類以上の元素)で表わされる化合物を有するリチウムイオン二次電池用正極材料において、
該化合物の一次粒子形状は、粒子の短径のうちの最大部分の長さが、粒子の中心部分である最小部分の長さの1.2倍以上であり、該粒子中には部分的に、短径が200nm以下でありかつ粒子の長径と短径との比であるアスペクト比が1.5−200である針状構造を含み、
さらに該針状構造は、粒子の短径のうちの最小部分から粒子の端部方向にむけて、最も近い針状構造同士の長軸方向の中心軸同士が0度を超える角度をなして配置されていることを特徴とするリチウムイオン二次電池用正極材料。
In a positive electrode material for a lithium ion secondary battery having a compound represented by a composition formula LiMPO 4 (M is one or more elements selected from Mg, Al, Ti, Mn, Fe, Co, Ni, Cu, Zn),
The primary particle shape of the compound is such that the length of the largest part of the minor axis of the particle is 1.2 times or more of the length of the smallest part which is the central part of the particle, A needle-like structure having a minor axis of 200 nm or less and an aspect ratio of 1.5 to 200, which is the ratio of the major axis to the minor axis of the particles,
Further, the needle-like structures are arranged such that the central axes in the major axis direction of the closest needle-like structures are more than 0 degree from the smallest part of the minor axis of the particles toward the end of the particle. A positive electrode material for a lithium ion secondary battery.
組成式LiMPO4(MはMg,Al,Ti,Mn,Fe,Co,Ni,Cu,Znから選ばれる一種類以上の元素)で表わされる化合物を有するリチウムイオン二次電池用正極材料において、
該化合物は、粒子の短径が200nm以下の範囲内であり、かつアスペクト比が1.5−200である一次粒子が凝集あるいは結合してできた集合体であり、該一次粒子同士が接触あるいは結合している距離が、一次粒子全体の長径の1/2未満の長さであることを特徴とするリチウムイオン二次電池用正極材料。
In a positive electrode material for a lithium ion secondary battery having a compound represented by a composition formula LiMPO 4 (M is one or more elements selected from Mg, Al, Ti, Mn, Fe, Co, Ni, Cu, Zn),
The compound is an aggregate formed by agglomeration or bonding of primary particles having a minor axis within a range of 200 nm or less and an aspect ratio of 1.5 to 200, and the primary particles are in contact with each other. A positive electrode material for a lithium ion secondary battery, wherein the bonded distance is less than half the major axis of the entire primary particle.
請求項7に記載のリチウムイオン二次電池用正極材料において、該集合体は一次粒子同士が網目状に凝集していることを特徴とするリチウムイオン二次電池用正極材料。   The positive electrode material for a lithium ion secondary battery according to claim 7, wherein the aggregate is formed by agglomerating primary particles in a network. 請求項1〜8に記載の一次粒子あるいは二次粒子のうちの一部分を用いることを特徴とするリチウムイオン二次電池用正極材料。   A part of the primary particles or secondary particles according to claim 1, wherein a positive electrode material for a lithium ion secondary battery is used. 請求項1〜9に記載のリチウムイオン二次電池用正極材料を用いて作製されるリチウムイオン二次電池用正極活物質。   The positive electrode active material for lithium ion secondary batteries produced using the positive electrode material for lithium ion secondary batteries of Claims 1-9. 請求項10に記載のリチウムイオン二次電池用正極活物質を用いて作製されるリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries produced using the positive electrode active material for lithium ion secondary batteries of Claim 10. 請求項11に記載のリチウムイオン二次電池用正極を用いて作製されるリチウムイオン二次電池。   The lithium ion secondary battery produced using the positive electrode for lithium ion secondary batteries of Claim 11. 請求項1〜10に記載のリチウムイオン二次電池用正極材料の製造方法であって、
組成式LiMPO4(MはMg,Al,Ti,Mn,Fe,Co,Ni,Cu,Znから選ばれる一種類以上の元素)で表わされる化合物の原料である前駆体を、110℃を超える温度に加熱しながら攪拌したエタノールアミンを含む有機溶媒中に拡散させ、
得られた混合後の溶媒をオートクレーブの中に密閉し、180℃を超え220℃未満の温度で加熱加圧を行うことを特徴とするリチウムイオン二次電池用正極材料の製造方法。
A method for producing a positive electrode material for a lithium ion secondary battery according to claim 1,
A precursor that is a raw material of a compound represented by the composition formula LiMPO 4 (M is one or more elements selected from Mg, Al, Ti, Mn, Fe, Co, Ni, Cu, and Zn) is used at a temperature exceeding 110 ° C. Diffusion in an organic solvent containing ethanolamine stirred while heating to
A method for producing a positive electrode material for a lithium ion secondary battery, wherein the obtained mixed solvent is sealed in an autoclave and heated and pressurized at a temperature exceeding 180 ° C. and less than 220 ° C.
請求項13に記載のリチウムイオン二次電池用正極材料の製造方法において、該エタノールアミンは、一般式(Cp2pOH)qNH(3-q)を有し、式中pは2〜3、qは1〜3の数であり、モノエタノールアミン,ジエタノールアミン,トリエタノールアミンの少なくとも一つを含むことを特徴とするリチウムイオン二次電池用正極材料の製造方法。 The method of manufacturing a cathode material for a lithium ion secondary battery according to claim 13, wherein the ethanolamine has the general formula (C p H 2p OH) q NH (3-q), p in the formula 2 3, q is a number from 1 to 3, and includes at least one of monoethanolamine, diethanolamine, and triethanolamine, and a method for producing a positive electrode material for a lithium ion secondary battery. 請求項13に記載のリチウムイオン二次電池用正極材料の製造方法において、該有機溶媒に界面活性剤を加えることを特徴とするリチウムイオン二次電池用正極材料の製造方法。   14. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 13, wherein a surfactant is added to the organic solvent.
JP2010271024A 2010-12-06 2010-12-06 Positive electrode material for lithium ion secondary battery and manufacturing method thereof, positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery Expired - Fee Related JP5557715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271024A JP5557715B2 (en) 2010-12-06 2010-12-06 Positive electrode material for lithium ion secondary battery and manufacturing method thereof, positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271024A JP5557715B2 (en) 2010-12-06 2010-12-06 Positive electrode material for lithium ion secondary battery and manufacturing method thereof, positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery

Publications (3)

Publication Number Publication Date
JP2012123909A true JP2012123909A (en) 2012-06-28
JP2012123909A5 JP2012123909A5 (en) 2013-12-05
JP5557715B2 JP5557715B2 (en) 2014-07-23

Family

ID=46505171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271024A Expired - Fee Related JP5557715B2 (en) 2010-12-06 2010-12-06 Positive electrode material for lithium ion secondary battery and manufacturing method thereof, positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5557715B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089393A (en) * 2011-10-14 2013-05-13 Gs Yuasa Corp Active material for secondary battery, and method for producing active material for secondary battery
JP2014091657A (en) * 2012-11-06 2014-05-19 Taiheiyo Cement Corp Method for producing secondary battery cathode-active material precursor
WO2014077445A1 (en) * 2012-11-15 2014-05-22 주식회사 포스코이에스엠 Lithium-manganese composite oxide in which size of vertical angle of primary particle is adjusted, and method for preparing same
WO2014109579A1 (en) * 2013-01-10 2014-07-17 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
WO2014109582A1 (en) * 2013-01-10 2014-07-17 주식회사 엘지화학 Method for preparing carbon-coated lithium iron phosphate nanopowder
KR20150006763A (en) * 2013-07-09 2015-01-19 주식회사 엘지화학 Method for manufacturing lithium iron phosphate nanopowder coated with carbon
CN104582878A (en) * 2013-01-10 2015-04-29 株式会社Lg化学 Method for preparing lithium iron phosphate nanopowder
JP2015210928A (en) * 2014-04-25 2015-11-24 株式会社豊田自動織機 Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
WO2016002158A1 (en) * 2014-06-30 2016-01-07 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JP2017514781A (en) * 2014-05-07 2017-06-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Method for preparing carbon-coated lithium transition metal phosphate and use thereof
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR101787212B1 (en) * 2012-08-28 2017-10-18 어드밴스드 리튬 일렉트로케미스트리 컴퍼니 리미티드 Method of producing battery composite material and its precursor
US20180013151A1 (en) * 2016-07-08 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode active material
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119304A (en) * 2005-10-28 2007-05-17 Toyota Motor Corp METHOD OF MANUFACTURING LiMnPO4
JP2010073520A (en) * 2008-09-19 2010-04-02 Hitachi Ltd Lithium ion secondary battery
JP2010092599A (en) * 2008-10-03 2010-04-22 Gs Yuasa Corporation Positive electrode material, manufacturing method for positive electrode material, and nonaqueous electrolyte secondary battery equipped with positive electrode material manufactured by the same manufacturing method
JP2011517653A (en) * 2008-04-17 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119304A (en) * 2005-10-28 2007-05-17 Toyota Motor Corp METHOD OF MANUFACTURING LiMnPO4
JP2011517653A (en) * 2008-04-17 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
JP2010073520A (en) * 2008-09-19 2010-04-02 Hitachi Ltd Lithium ion secondary battery
JP2010092599A (en) * 2008-10-03 2010-04-22 Gs Yuasa Corporation Positive electrode material, manufacturing method for positive electrode material, and nonaqueous electrolyte secondary battery equipped with positive electrode material manufactured by the same manufacturing method

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089393A (en) * 2011-10-14 2013-05-13 Gs Yuasa Corp Active material for secondary battery, and method for producing active material for secondary battery
US9932235B2 (en) 2012-08-28 2018-04-03 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof
KR101787212B1 (en) * 2012-08-28 2017-10-18 어드밴스드 리튬 일렉트로케미스트리 컴퍼니 리미티드 Method of producing battery composite material and its precursor
JP2014091657A (en) * 2012-11-06 2014-05-19 Taiheiyo Cement Corp Method for producing secondary battery cathode-active material precursor
WO2014077445A1 (en) * 2012-11-15 2014-05-22 주식회사 포스코이에스엠 Lithium-manganese composite oxide in which size of vertical angle of primary particle is adjusted, and method for preparing same
KR101409973B1 (en) * 2012-11-15 2014-06-19 주식회사 포스코이에스엠 Lithium manganese composite oxide comprising primary particle having controlled vertical angle, and manufacturing method of the same
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
EP2924007A4 (en) * 2013-01-10 2015-12-09 Lg Chemical Ltd Method for producing carbon-coated lithium iron phosphate nanopowder
CN104583127B (en) * 2013-01-10 2016-08-24 株式会社Lg化学 The preparation method of lithium iron phosphate nano powder
CN104918888A (en) * 2013-01-10 2015-09-16 株式会社Lg化学 Method for manufacturing lithium iron phosphate nanopowder
JP2015527291A (en) * 2013-01-10 2015-09-17 エルジー・ケム・リミテッド Method for producing lithium iron phosphate nanopowder
JP2015527290A (en) * 2013-01-10 2015-09-17 エルジー・ケム・リミテッド Method for producing lithium iron phosphate nanopowder
EP2871010A4 (en) * 2013-01-10 2015-10-14 Lg Chemical Ltd Method for producing lithium iron phosphate nanopowder
EP2871158A4 (en) * 2013-01-10 2015-10-14 Lg Chemical Ltd Method for preparing carbon-coated lithium iron phosphate nanopowder
EP2881368A4 (en) * 2013-01-10 2015-10-14 Lg Chemical Ltd Method for preparing carbon-coated lithium iron phosphate nanopowder
KR101561377B1 (en) * 2013-01-10 2015-10-20 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
KR101561378B1 (en) * 2013-01-10 2015-10-20 주식회사 엘지화학 Method for preparing lithium iron phospate nanopowder coated with carbon
EP2871160A4 (en) * 2013-01-10 2015-10-21 Lg Chemical Ltd Method for preparing lithium iron phosphate nanopowder
EP2878580A4 (en) * 2013-01-10 2015-10-21 Lg Chemical Ltd Method for preparing lithium iron phosphate nanopowder
JP2015530965A (en) * 2013-01-10 2015-10-29 エルジー・ケム・リミテッド Method for producing carbon-coated lithium iron phosphate nanopowder
JP2015531738A (en) * 2013-01-10 2015-11-05 エルジー・ケム・リミテッド Method for producing lithium iron phosphate nanopowder
JP2015532632A (en) * 2013-01-10 2015-11-12 エルジー・ケム・リミテッド Method for producing lithium iron phosphate nanopowder
KR101572345B1 (en) * 2013-01-10 2015-11-26 주식회사 엘지화학 Method for preparing lithium iron phospate nanopowder coated with carbon
EP2924008A4 (en) * 2013-01-10 2015-12-09 Lg Chemical Ltd Method for manufacturing lithium iron phosphate nanopowder
EP2924006A4 (en) * 2013-01-10 2015-12-09 Lg Chemical Ltd Method for manufacturing lithium iron phosphate nanopowder
CN104582878A (en) * 2013-01-10 2015-04-29 株式会社Lg化学 Method for preparing lithium iron phosphate nanopowder
EP2871157A4 (en) * 2013-01-10 2016-02-10 Lg Chemical Ltd Method for preparing lithium iron phosphate nanopowder
CN104582878B (en) * 2013-01-10 2016-06-29 株式会社Lg化学 The preparation method of lithium iron phosphate nano powder
US10581076B2 (en) 2013-01-10 2020-03-03 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
TWI658028B (en) * 2013-01-10 2019-05-01 Lg化學股份有限公司 Method for preparing lithium iron phosphate nanopowder
CN104619643A (en) * 2013-01-10 2015-05-13 株式会社Lg化学 Method for preparing carbon-coated lithium iron phosphate nanopowder
TWI564271B (en) * 2013-01-10 2017-01-01 Lg化學股份有限公司 Method for preparing lithium iron phosphate nanopowder
US9543582B2 (en) 2013-01-10 2017-01-10 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
TWI565684B (en) * 2013-01-10 2017-01-11 Lg化學股份有限公司 Method for preparing lithium iron phosphate nanopowder coated with carbon
US9608270B2 (en) 2013-01-10 2017-03-28 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9620776B2 (en) 2013-01-10 2017-04-11 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US9627685B2 (en) 2013-01-10 2017-04-18 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US10020499B2 (en) 2013-01-10 2018-07-10 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
WO2014109579A1 (en) * 2013-01-10 2014-07-17 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
CN104583127A (en) * 2013-01-10 2015-04-29 株式会社Lg化学 Method for producing lithium iron phosphate nanopowder
US9742006B2 (en) 2013-01-10 2017-08-22 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US9755234B2 (en) 2013-01-10 2017-09-05 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US20150037666A1 (en) * 2013-01-10 2015-02-05 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US9865875B2 (en) 2013-01-10 2018-01-09 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
WO2014109582A1 (en) * 2013-01-10 2014-07-17 주식회사 엘지화학 Method for preparing carbon-coated lithium iron phosphate nanopowder
US10153488B2 (en) 2013-07-09 2018-12-11 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
KR101580030B1 (en) * 2013-07-09 2015-12-23 주식회사 엘지화학 Method for manufacturing lithium iron phosphate nanopowder coated with carbon
KR20150006763A (en) * 2013-07-09 2015-01-19 주식회사 엘지화학 Method for manufacturing lithium iron phosphate nanopowder coated with carbon
JP2015210928A (en) * 2014-04-25 2015-11-24 株式会社豊田自動織機 Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2017514781A (en) * 2014-05-07 2017-06-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Method for preparing carbon-coated lithium transition metal phosphate and use thereof
WO2016002158A1 (en) * 2014-06-30 2016-01-07 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
US20180013151A1 (en) * 2016-07-08 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode active material
US11637293B2 (en) 2016-07-08 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing complex phosphate elliptical particles

Also Published As

Publication number Publication date
JP5557715B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5557715B2 (en) Positive electrode material for lithium ion secondary battery and manufacturing method thereof, positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
Wu et al. Facile synthesis of one-dimensional LiNi 0.8 Co 0.15 Al 0.05 O 2 microrods as advanced cathode materials for lithium ion batteries
JP6256337B2 (en) Positive electrode active material-graphene composite particles, positive electrode material for lithium ion battery, and method for producing positive electrode active material-graphene composite particles
KR101403828B1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5174803B2 (en) Synthesis of nanoparticles of lithium metal phosphate cathode material for lithium secondary battery
JP5959953B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery active material manufacturing method, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
WO2014136760A1 (en) Lithium metal composite oxide powder
WO2012164752A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2010047334A1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP5165515B2 (en) Lithium ion secondary battery
JP5245084B2 (en) Olivine-type compound ultrafine particles and method for producing the same
JP4316656B1 (en) Lithium transition metal oxide with layer structure
JP2009532323A5 (en)
JP2007022894A (en) Method for producing lithium-iron multiple oxide
US9490481B2 (en) Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it
JP2013010677A (en) Method of manufacturing spinel type lithium manganese nickel composite oxide, lithium secondary battery positive electrode combination, and lithium secondary battery
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP2005135723A (en) Compound powder for electrode and its manufacturing method
Peralta et al. Submicronic LiNi1/3Mn1/3Co1/3O2 synthesized by co-precipitation for lithium ion batteries-Tailoring a classic process for enhanced energy and power density
JP4823540B2 (en) Manufacturing method of electrode material, electrode material, electrode, and lithium battery
Zhu et al. Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process
JP6168224B1 (en) ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY
JP2011216233A (en) Electrode material and film
JP6197202B2 (en) Electrode material and membrane
JP6394391B2 (en) Method for producing polyanionic positive electrode active material composite particles

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

LAPS Cancellation because of no payment of annual fees