JP2012122057A - Inorganic organic composite composition - Google Patents

Inorganic organic composite composition Download PDF

Info

Publication number
JP2012122057A
JP2012122057A JP2011227522A JP2011227522A JP2012122057A JP 2012122057 A JP2012122057 A JP 2012122057A JP 2011227522 A JP2011227522 A JP 2011227522A JP 2011227522 A JP2011227522 A JP 2011227522A JP 2012122057 A JP2012122057 A JP 2012122057A
Authority
JP
Japan
Prior art keywords
inorganic
organic composite
composite composition
component
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011227522A
Other languages
Japanese (ja)
Inventor
Kenji Nagata
謙二 永田
Shinko Higuchi
真弘 樋口
Takatoshi Kinoshita
隆利 木下
Yuji Hotta
裕司 堀田
Kimiyasu Sato
佐藤  公泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nagoya Institute of Technology NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Nagoya Institute of Technology NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011227522A priority Critical patent/JP2012122057A/en
Publication of JP2012122057A publication Critical patent/JP2012122057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high heat dissipation inorganic organic composite composition which has high thermal conductivity, high insulation, and easy to mold nature.SOLUTION: The inorganic organic composite composition includes: thermoplastic resins of two or more components which compose a matrix; and a high thermal conductivity filler in which the thermal conductivity is higher than that of the thermoplastic resins, and which consists of an inorganic component, wherein the high thermal conductivity filler is more contained in the thermoplastic resin of one component than in the thermoplastic resins of other components, and in the thermoplastic resin of the one component, the high thermal conductivity fillers directly contact, and form a network structure.

Description

本発明は、自動車分野をはじめ、エレクトロニクス分野等における電子機器デバイスの高出力化に伴い、放熱対策が重要となっている放熱材料として用いられる高放熱性無機/有機ハイブリッド材料に関する。   The present invention relates to a highly heat-dissipating inorganic / organic hybrid material used as a heat-dissipating material in which measures for heat-dissipation have become important with the increase in output of electronic device devices in the automotive field and other electronic fields.

エレクトロニクス分野の急速な発展により、電子回路や半導体など電子部品の小型化・高密度実装化が進んでいる。これに伴って機器内部の発熱量は増加する傾向にあり、熱対策が必須課題となっている。しかし、放熱装置として用いられるファンやヒートシンク(金属板)を熱量増大に対応させるには大型化せざるを得ず、小型の電子機器に組み込むことは困難である。   Due to the rapid development of the electronics field, electronic components such as electronic circuits and semiconductors are being downsized and mounted with high density. Along with this, the amount of heat generated inside the device tends to increase, and heat countermeasures are an essential issue. However, a fan or a heat sink (metal plate) used as a heat dissipation device must be increased in size in order to cope with an increase in the amount of heat, and it is difficult to incorporate it into a small electronic device.

一方、現在電子部品の封止や電気絶縁部を担っているプラスチック材料の熱伝導率は0.1〜0.6 W/m・K(例えば、非特許文献1参照)と低く、発生する熱を効果的に拡散することができていない。こうした状況から、基板や筐体材料の高熱伝導化が強く求められ、非導電性(電気絶縁性)かつ高熱伝導性の無機充填材(セラミックスフィラー)を充填した高熱伝導性樹脂の開発が進んでいる(例えば、特許文献1および非特許文献2〜4参照)。例えば、特許文献1の実施例には、マトリックス樹脂としてのメチルアクリレートと、高熱伝導性フィラーとしてのSiCウィスカーとを含む無機有機複合組成物であって、マトリックス樹脂中で、高熱伝導性フィラー同士が直接接触して網目構造を形成しているものが記載されている。   On the other hand, the thermal conductivity of the plastic material that is currently responsible for sealing electronic parts and electrically insulating parts is as low as 0.1 to 0.6 W / m · K (for example, see Non-Patent Document 1), and the generated heat is effectively reduced. Can't diffuse. Under these circumstances, there is a strong demand for high thermal conductivity of substrates and housing materials, and development of highly thermally conductive resins filled with non-conductive (electrical insulating) and high thermal conductive inorganic fillers (ceramic fillers) is advancing. (For example, refer to Patent Document 1 and Non-Patent Documents 2 to 4). For example, an example of Patent Document 1 is an inorganic-organic composite composition containing methyl acrylate as a matrix resin and SiC whisker as a high thermal conductive filler, and the high thermal conductive fillers are included in the matrix resin. It describes what forms a network structure in direct contact.

従来、高熱伝導性セラミックスや高熱伝導性金属を充填したプラスチック材料の開発が行われているが、充填材の形状や大きさの効果は期待できず、高熱伝導率(高放熱性)を得るために、充填材の高充填を行なってきた。その結果、部品に対して充填材を体積分率で60%以上高充填しても、その熱伝導率は1〜5W/(m・K)程度(例えば、非特許文献2参照)であり、その上、充填材−プラスチック材料間の界面が存在して接着性が期待できない事から、良好な力学特性を得る事ができない。   Conventionally, plastic materials filled with high thermal conductive ceramics and high thermal conductive metals have been developed. However, the effect of the shape and size of the filler cannot be expected, and high thermal conductivity (high heat dissipation) can be obtained. In addition, high filling of the filler has been performed. As a result, even if the filler is filled at a high volume fraction of 60% or more, the thermal conductivity is about 1 to 5 W / (m · K) (for example, see Non-Patent Document 2) In addition, since there is an interface between the filler and the plastic material and adhesiveness cannot be expected, good mechanical properties cannot be obtained.

セラミックスフィラーの中でも、窒化物は酸化物に対して5〜40倍の高い熱伝導率を示し、複合材料における放熱効果の向上が期待できる。最近の研究では、表面に多量の官能基をもつ窒化ホウ素フィラーを用いることで複合材料の熱伝導率を向上させた(フィラー充填量60vol.%で7W/mK)という報告がある。   Among ceramic fillers, nitrides exhibit a high thermal conductivity of 5 to 40 times that of oxides, and an improvement in the heat dissipation effect of the composite material can be expected. In a recent study, there is a report that the thermal conductivity of a composite material was improved by using a boron nitride filler having a large amount of functional groups on the surface (7 W / mK at 60 vol.% Filler filling).

特開2010−13580号公報(段落0017、0020、0050参照)JP 2010-13580 A (see paragraphs 0017, 0020, 0050)

Journal of the Society of Materials Science, 57, 528-531 (2008)Journal of the Society of Materials Science, 57, 528-531 (2008) 産業技術総合研究所:プレスリリース2008年10月15日 “高い熱伝導率の無機粒子分散プラスチック複合フィルムを作製”National Institute of Advanced Industrial Science and Technology: Press release October 15, 2008 “Preparation of high thermal conductivity inorganic particle dispersed plastic composite film” Polyfile,44(526),34-38(2007)Polyfile, 44 (526), 34-38 (2007) 東ソー研究・技術報告,51,87-90(2007)Tosoh Research and Technology Report, 51, 87-90 (2007)

しかしながら、特許文献1の実施例に記載の無機有機複合組成物のように、1成分の樹脂からなるマトリックス樹脂に対して、高熱伝導性フィラーを充填する場合、フィラーの充填率を高くすれば、熱伝導率を向上させることができるが、その反面、流動性が低下し、成形性が悪化する。
なお、特許文献1の段落0017には、マトリックス樹脂として2種以上の樹脂材料を混合して用いることが記載されているが、単に、2種以上の樹脂材料を用いただけでは、2種以上の樹脂材料のそれぞれに同様の割合でフィラーが存在するため、易成形性を確保しながら、フィラーの充填率を高くして熱伝導性を向上させることはできない。
本発明は、前述の実情に鑑みなされたものであり、高熱伝導性、高絶縁性、易成形性を有する高放熱性無機有機複合組成物を提供することを目的とする。
However, when the high thermal conductive filler is filled into the matrix resin composed of one component resin, like the inorganic-organic composite composition described in the examples of Patent Document 1, if the filler filling rate is increased, The thermal conductivity can be improved, but on the other hand, the fluidity is lowered and the moldability is deteriorated.
In paragraph 0017 of Patent Document 1, it is described that two or more kinds of resin materials are mixed and used as a matrix resin. However, when two or more kinds of resin materials are used, two or more kinds of resin materials are used. Since the filler is present in each resin material at the same ratio, it is impossible to increase the filler filling rate and improve the thermal conductivity while ensuring easy moldability.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a highly heat-dissipating inorganic-organic composite composition having high thermal conductivity, high insulation, and easy moldability.

上記目的を達成するため、請求項1に記載の発明である無機有機複合組成物は、マトリックスを構成する複数成分の熱可塑性樹脂と、前記熱可塑性樹脂よりも熱伝導性が高く、無機成分からなる高熱伝導性フィラーとを含む無機有機複合組成物であって、当該一の成分の熱可塑性樹脂がポリアミド系樹脂であり、当該他の成分の熱可塑性樹脂がポリオレフィン系樹脂であり、前記高熱伝導性フィラーが、一の成分の熱可塑性樹脂中に他の成分の熱可塑性樹脂中より多く含まれ、前記高熱伝導性フィラー同士が直接接触して網目構造を形成していることを特徴とする。   In order to achieve the above object, an inorganic-organic composite composition according to the first aspect of the present invention comprises a thermoplastic resin having a plurality of components constituting a matrix, and a thermal conductivity higher than that of the thermoplastic resin. An inorganic-organic composite composition comprising a high thermal conductivity filler, wherein the one component thermoplastic resin is a polyamide-based resin, and the other component thermoplastic resin is a polyolefin-based resin. The filler is more contained in the thermoplastic resin of one component than in the thermoplastic resin of the other component, and the high thermal conductive fillers are in direct contact with each other to form a network structure.

本発明の無機有機複合組成物は、一の成分の熱可塑性樹脂中に高熱伝導性フィラーが偏在化し、かつ、その一の成分の熱可塑性樹脂中で、高熱伝導性フィラー同士が直接接触して網目構造を形成しているので、高熱伝導性フィラーを含まない場合よりも熱伝導性を向上できる。
また、他の成分の熱可塑性樹脂中では、高熱伝導性フィラーは一の成分の熱可塑性樹脂中の高熱伝導性フィラーよりも少ないので、一の成分の熱可塑性樹脂中の高熱伝導性フィラーの充填率を高めても、この他の成分の熱可塑性樹脂によって、樹脂としての特性を発揮することができ、すなわち、流動性を確保することができる。
よって、本発明によれば、高熱伝導性、高絶縁性、易成形性を有する高放熱性無機有機複合組成物を提供することができる。
In the inorganic-organic composite composition of the present invention, the highly thermally conductive filler is unevenly distributed in the thermoplastic resin of one component, and the highly thermally conductive fillers are in direct contact with each other in the thermoplastic resin of the one component. Since the network structure is formed, the thermal conductivity can be improved as compared with the case where the high thermal conductive filler is not included.
Also, in the thermoplastic resin of the other component, since the high thermal conductive filler is less than the high thermal conductive filler in the thermoplastic resin of one component, the filling of the high thermal conductive filler in the thermoplastic resin of one component Even if the rate is increased, the thermoplastic resin of the other components can exhibit the characteristics as a resin, that is, the fluidity can be ensured.
Therefore, according to the present invention, it is possible to provide a highly heat-dissipating inorganic-organic composite composition having high thermal conductivity, high insulation, and easy moldability.

本発明の熱可塑性樹脂としては、前記ポリアミド樹脂がポリエチレンテレフタレート、ポリブチレンテレフタレート、あるいはポリトリメチレンテレフタレートのいずれか1種以上であり、 前記ポリオレフィン系樹脂は、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、アクリロニトリル−ブチレン−スチレン共重合体およびポリオキシメチレンのいずれか1種以上であることを特徴とする。   As the thermoplastic resin of the present invention, the polyamide resin is at least one of polyethylene terephthalate, polybutylene terephthalate, or polytrimethylene terephthalate, and the polyolefin resin is polypropylene, polystyrene, polymethyl methacrylate, acrylonitrile- It is one or more of a butylene-styrene copolymer and polyoxymethylene.

本発明でいう無機充填材である高熱伝導性フィラーとしては、熱伝導率が10〜2000W/m・Kかつ電気抵抗率が1×10〜1×1015Ω・cmである高絶縁性高熱伝導性フィラーを用いることが好ましく、例えば、窒化アルミニウム、窒化ホウ素、酸化亜鉛、酸化マグネシウム、酸化アルミニウムなどの無機化合物を用いることができ、該高熱伝導性フィラーの形状は、平板状、針状、球状、繊維状または鱗片状等、様々な形態をとることが可能である。 As the high thermal conductive filler which is an inorganic filler in the present invention, a high insulating high heat having a thermal conductivity of 10 to 2000 W / m · K and an electrical resistivity of 1 × 10 5 to 1 × 10 15 Ω · cm. It is preferable to use a conductive filler, for example, an inorganic compound such as aluminum nitride, boron nitride, zinc oxide, magnesium oxide, aluminum oxide can be used, and the shape of the high thermal conductive filler is a flat plate shape, a needle shape, It can take various forms such as a spherical shape, a fibrous shape, or a scale shape.

本発明でいう高熱伝導性フィラーは表面改質剤を表面に付着させることが好ましく、表面改質剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、リン酸エステル系カップリング剤等を用いることができる。
一般に、熱可塑性樹脂と無機成分である高熱伝導性フィラーは表面エネルギーの差が大きく、相溶性が悪い。そこで、前記表面改質剤の使用により、前記熱可塑性樹脂と前記高熱伝導性フィラーとの間の界面張力を低下させ、両成分の相溶性を高める、もしくは、前記高熱伝導性フィラーの分散性を向上させることが可能となる。
In the present invention, the high thermal conductive filler preferably has a surface modifier attached to the surface. Examples of the surface modifier include silane coupling agents, titanate coupling agents, aluminum coupling agents, and zirco. An aluminate coupling agent, a phosphate ester coupling agent, or the like can be used.
In general, a thermoplastic resin and a highly thermally conductive filler that is an inorganic component have a large difference in surface energy and poor compatibility. Therefore, by using the surface modifier, the interfacial tension between the thermoplastic resin and the high thermal conductive filler is decreased, the compatibility of both components is increased, or the dispersibility of the high thermal conductive filler is increased. It becomes possible to improve.

本発明の無機有機複合組成物の好ましい実施形態においては、前記一の成分の熱可塑性樹脂と前記他の成分の熱可塑性樹脂との体積比は10:90〜30:70であり、前記マトリックス樹脂に対する前記高熱伝導性フィラーの充填率は10〜70重量%であることを特徴とする。   In a preferred embodiment of the inorganic-organic composite composition of the present invention, the volume ratio of the thermoplastic resin of the one component and the thermoplastic resin of the other component is 10:90 to 30:70, and the matrix resin The filling rate of the high thermal conductive filler with respect to is 10 to 70% by weight.

本発明の無機有機複合組成物の他の好ましい実施形態においては、前記高熱伝導性フィラーは、前記一の成分と前記他の成分の熱可塑性樹脂のうち前記一の成分の熱可塑性樹脂中のみに含まれることを特徴とする。   In another preferable embodiment of the inorganic-organic composite composition of the present invention, the high thermal conductive filler is contained only in the thermoplastic resin of the one component among the thermoplastic resins of the one component and the other component. It is included.

本発明実施例5における無機有機複合組成物の走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the inorganic organic composite composition in this invention Example 5. 図1に示す領域のエネルギー分散形X線分光器(EDX)によるAl元素マッピングを示す。The Al element mapping by the energy dispersive X ray spectrometer (EDX) of the area | region shown in FIG. 1 is shown. 図1中のNY相の拡大図を示す。The enlarged view of the NY phase in FIG. 1 is shown.

本実施の形態の無機有機複合組成物は、熱伝導性フィラーと、マトリックスを構成するマトリックス樹脂が2成分以上からなるマトリックス樹脂とを含有してなる。 Inorganic-organic composite composition of the present embodiment, comprising a high thermally conductive filler, and a matrix resin matrix resin constituting the matrix is composed of two or more components.

高熱伝導性フィラーとしては、何も表面改質されていないものが用いられても良いが、表面改質剤を表面に付着させたものが用いられることが好ましい。   As the high thermal conductive filler, those having no surface modification may be used, but those having a surface modifier attached to the surface are preferably used.

〔無機有機複合組成物の製造方法〕
本実施の形態の無機有機複合組成物を製造する方法については、特に限定されるものではないが、ポリマーブレンド技術(高機能・高性能プラスチック材料の開発の為に、異種プラスチックを溶融混練する技術)を適用し、例えば、複数成分の熱可塑性樹脂と高熱伝導性フィラーとを、押出機を用いて溶融混練することにより製造できる。
特に、原材料成分を製造工程の途中で添加可能な二軸押出機が、高い生産性を確保し、良質な無機有機複合組成物を得る観点から好ましい。さらに、製造された該無機有機複合組成物をマスターバッチもしくはペレットとして製造加工を行い、射出成形機にて成形品に加工可能である。
[Method for producing inorganic-organic composite composition]
The method for producing the inorganic-organic composite composition of the present embodiment is not particularly limited, but polymer blending technology (technology for melting and kneading dissimilar plastics for the development of high-performance and high-performance plastic materials) For example, by melt-kneading a multi-component thermoplastic resin and a high thermal conductive filler using an extruder.
In particular, a twin-screw extruder capable of adding raw material components in the course of the production process is preferable from the viewpoint of securing high productivity and obtaining a high-quality inorganic / organic composite composition. Further, the manufactured inorganic-organic composite composition can be manufactured and processed as a master batch or a pellet, and processed into a molded product with an injection molding machine.

〔無機有機複合組成物を用いた成形品〕
本実施の形態の無機有機複合組成物は、射出成形法、押出成形法等の一般的な成形方法により成形品に加工できる。特に、金型表面の温度を、射出樹脂の熱変形温度近傍以上に上げておき、樹脂の射出と保圧工程の間は熱変形温度以上に保ち、保圧工程終了後、短時間で金型温度を下げて、樹脂を冷却し、成形品を取り出すヒートサイクル成形法は、ウェルドラインが目立たず、外観特性が良好な成形品が得られる方法として優れている。
本実施の形態の無機有機複合組成物によれば、高熱伝導化を達成するために、従来から問題となっている大量添加や流動性不良を克服し、なおかつ力学特性の低下を抑制することが可能である。
[Molded product using inorganic / organic composite composition]
The inorganic-organic composite composition of the present embodiment can be processed into a molded product by a general molding method such as an injection molding method or an extrusion molding method. In particular, the temperature of the mold surface is raised above the vicinity of the heat deformation temperature of the injection resin, and is kept above the heat deformation temperature between the resin injection and the pressure holding process. The heat cycle molding method in which the temperature is lowered, the resin is cooled, and the molded product is taken out is excellent as a method for obtaining a molded product in which the weld line is not noticeable and the appearance characteristics are good.
According to the inorganic-organic composite composition of the present embodiment, in order to achieve high thermal conductivity, it has been possible to overcome mass addition and fluidity problems that have been problems in the past, and to suppress deterioration in mechanical properties. Is possible.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

無機有機複合組成物を形成するマトリックス樹脂として、ポリプロピレン(日本ポリプロ社製、ノバテックPP、グレードMA3、密度0.90g/cm3、メルトフローレート(MFR)11g/10min、熱伝導率0.117W/m・K、以下 PPと略す)、ポリアミド樹脂としてのナイロン6(宇部興産社製、グレード1022B、密度1.14g/cm3、熱伝導率0.243 W/mK、以下 NYと略す)を用いた。
高熱伝導性フィラーとして、窒化アルミニウム粉末(トクヤマ社製、グレードH、球状、平均粒径1.13μm、密度3.255g/cm3、熱伝導率180〜230W/m・K、以下 AlNと略す)を用いた。
As a matrix resin for forming an inorganic-organic composite composition, polypropylene (Nippon Polypro, Novatec PP, grade MA3, density 0.90 g / cm 3 , melt flow rate (MFR) 11 g / 10 min, thermal conductivity 0.117 W / m · K, hereinafter abbreviated as PP), and nylon 6 (manufactured by Ube Industries, Grade 1022B, density 1.14 g / cm 3 , thermal conductivity 0.243 W / mK, hereinafter abbreviated as NY) as a polyamide resin were used.
Aluminum nitride powder (grade H, spherical, average particle size 1.13 μm, density 3.255 g / cm 3 , thermal conductivity 180-230 W / m · K, hereinafter abbreviated as AlN) is used as a highly thermally conductive filler. It was.

なお、本実施例における各種物性の測定方法を次に示す。密度測定は、固体密度/比重測定用キット(メトラー・トレド)を用い、密度測定を行った。測定溶液は、密度値が既知の液体であるエタノールを用いた。示差走査熱量測定は、示差走査熱量測定装置 DSC 220C(エスアイアイ・ナノテクノロジー)を用い、プラスチックの比熱容量測定方法(JIS K7123)に準拠し、測定温度領域:10℃〜240℃、昇温温度: 10℃/min、窒素ガス雰囲気:25ml/minで比熱容量の測定を行った。なお、基準物質としてサファイアを用いた。熱拡散率測定は、ファインセラミックスのレーザーフラッシュ法による熱拡散率・比熱・熱伝導率試験方法(JIS R1611)に準拠し、レーザーフラッシュ法熱定数測定装置TC 7000Win(真空理工)を用い、測定した。電気抵抗率測定は、デジタル超高抵抗/微少電流計R8340A(アドバンテスト)を用いて、試料寸法:φ50mm×0.5mm、測定温度:17℃、測定電圧:10V、電極係数:3.14で、体積抵抗率の測定を行った。三点曲げ試験は、JIS K7171に準拠して、支点間距離:32mm、たわみ速度:1mm/minで行った。示差熱熱重量測定は、TG/DTA200(エスアイアイ・ナノテクノロジー)を用い、測定温度領域:30℃〜600℃、昇温温度: 10℃/min、窒素ガス雰囲気:200ml/minで行った。
(実施例)
In addition, the measuring method of various physical properties in a present Example is shown next. Density measurement was performed using a solid density / specific gravity measurement kit (Mettler Toledo). As the measurement solution, ethanol, which is a liquid with a known density value, was used. Differential scanning calorimetry uses a differential scanning calorimeter DSC 220C (SII NanoTechnology) and conforms to the specific heat capacity measurement method for plastics (JIS K7123). Measurement temperature range: 10 ° C to 240 ° C, temperature rise temperature : Specific heat capacity was measured at 10 ° C./min, nitrogen gas atmosphere: 25 ml / min. Sapphire was used as a reference material. The thermal diffusivity was measured using the laser flash method thermal constant measuring device TC 7000Win (vacuum science and engineering) in accordance with the thermal diffusivity, specific heat, and thermal conductivity test method (JIS R1611) of the fine ceramics by the laser flash method. . Electrical resistivity measurement is performed using a digital ultra-high resistance / microammeter R8340A (Advantest), sample size: φ50mm x 0.5mm, measurement temperature: 17 ° C, measurement voltage: 10V, electrode coefficient: 3.14, volume resistivity Was measured. The three-point bending test was performed at a fulcrum distance of 32 mm and a deflection rate of 1 mm / min in accordance with JIS K7171. Differential thermothermogravimetry was performed using TG / DTA200 (SII Nanotechnology) at a measurement temperature range of 30 ° C. to 600 ° C., a temperature increase temperature of 10 ° C./min, and a nitrogen gas atmosphere: 200 ml / min.
(Example)

下記の表1に示す各成分の割合で配合し、二軸押出混練機(設定温度:250℃〜270℃)により均一に混合して無機有機複合組成物を作製した。表1中に示す成分割合は無機有機複合組成物全体に対する体積分率である。
得られた無機有機複合組成物の塊状試料を型枠(厚さ1.5mmおよび厚さ2mm)に入れ、熱プレス成形機を用いて270℃で5分間溶融後、続けて2.2MPaで1分間加圧した後、水冷プレス成形機を用いて1.0MPaで10分間冷却し、板状試料を作製した。
They were blended in the proportions of the respective components shown in Table 1 below and uniformly mixed by a twin-screw extrusion kneader (set temperature: 250 ° C. to 270 ° C.) to prepare an inorganic / organic composite composition. The component ratio shown in Table 1 is a volume fraction with respect to the whole inorganic-organic composite composition.
A block sample of the obtained inorganic-organic composite composition is placed in a mold (thickness 1.5 mm and thickness 2 mm), melted at 270 ° C. for 5 minutes using a hot press molding machine, and then continuously heated at 2.2 MPa for 1 minute. After pressing, it was cooled at 1.0 MPa for 10 minutes using a water-cooled press molding machine to prepare a plate-like sample.

(実施例1〜6)
具体的には、マトリックス樹脂であるPPとNYとの体積比が80:20になるように配合し、窒化アルミニウムをマトリックス樹脂に対して10,20,30,40,60,70wt%の充填率になるようにして無機有機複合組成物を作製した。
(Examples 1-6)
Specifically, the matrix resin PP and NY are mixed so that the volume ratio is 80:20, and aluminum nitride is filled in 10, 20, 30, 40, 60, 70 wt% of the matrix resin. Thus, an inorganic / organic composite composition was prepared.

(実施例7、8)
マトリックス樹脂であるPPとNYとの体積比が90:10になるように配合し、窒化アルミニウムをマトリックス樹脂に対して60,70wt%の充填率になるようにして無機有機複合組成物を作製した。
(Examples 7 and 8)
An inorganic / organic composite composition was prepared by blending so that the volume ratio of the matrix resin PP and NY was 90:10, and filling the aluminum nitride with 60 to 70 wt% of the matrix resin. .

(実施例9、10)
マトリックス樹脂であるPPとNYとの体積比が70:30になるように配合し、窒化アルミニウムをマトリックス樹脂に対して60,70wt%の充填率になるようにして無機有機複合組成物を作製した。
(Examples 9 and 10)
An inorganic / organic composite composition was prepared by blending so that the volume ratio of the matrix resin PP and NY was 70:30, and filling the aluminum nitride with 60 to 70 wt% of the matrix resin. .

図1に実施例5における無機有機複合組成物の走査電子顕微鏡(SEM)写真を示し、図2に図1に示す領域のエネルギー分散形X線分光器(EDX)によるAl元素マッピングを示し、図3に図1中のNY相の拡大図を示す。   FIG. 1 shows a scanning electron microscope (SEM) photograph of the inorganic-organic composite composition in Example 5, and FIG. 2 shows Al element mapping by the energy dispersive X-ray spectrometer (EDX) in the region shown in FIG. Fig. 3 shows an enlarged view of the NY phase in Fig. 1.

図1において、暗い部分がPP相であり、白い部分がAlN含有NY相であり、NY相が連続相となっていることがわかる。図2において、明るい部分がAlNが存在する部分であり、図1中の白い部分と一致していることがわかる。ちなみに、図2では、PP相においてもAlNが存在するように見えるが、これは、SEM観察のために試料を研磨した際に、AlNの一部がPP相に混入したものと考えられ、PP相にはAlNがほとんど存在していないものと考えられる。 また、図3に示すように、AlN含有NY相では、球状のAlN同士が直接接触していることが観察された。このように、AlN同士が直接接触していることから、網目構造が形成されていることが推測される。 In FIG. 1, it can be seen that the dark part is the PP phase, the white part is the AlN-containing NY phase, and the NY phase is a continuous phase. In FIG. 2, it can be seen that the bright part is the part where AlN is present and matches the white part in FIG. By the way, in FIG. 2, it seems that AlN is also present in the PP phase, but this is thought to be because some of the AlN was mixed in the PP phase when the sample was polished for SEM observation. It is considered that AlN hardly exists in the phase. Further, as shown in FIG. 3, it was observed that spherical AlNs were in direct contact with each other in the AlN-containing NY phase. Thus, since AlNs are in direct contact, it is presumed that a network structure is formed.

なお、実施例1〜4、6〜10の無機有機複合組成物においても、図示しないが、実施例5の無機有機複合組成物と同様の構造を確認できた。実施例6、8、10の無機有機複合組成物は、マトリックス樹脂に対するAlNの充填率が70wt%であるが、この場合であっても、流動性が高く、易成形性を有していた。これは、PP相にAlNがほとんど存在していないためである。   In addition, also in the inorganic-organic composite composition of Examples 1-4 and 6-10, although not shown in figure, the structure similar to the inorganic-organic composite composition of Example 5 has been confirmed. In the inorganic-organic composite compositions of Examples 6, 8, and 10, the filling rate of AlN with respect to the matrix resin was 70 wt%. Even in this case, the fluidity was high and the moldability was high. This is because AlN hardly exists in the PP phase.

実施例1〜10の無機有機複合組成物の熱伝導率を表2に示す。なお、測定した熱拡散率、密度および比熱容量より熱伝導率を算出した。   Table 2 shows the thermal conductivity of the inorganic-organic composite compositions of Examples 1 to 10. The thermal conductivity was calculated from the measured thermal diffusivity, density and specific heat capacity.

表2に示すように、実施例1〜10のいずれも、高熱伝導性フィラーを含まない樹脂組成物(マトリックス樹脂のみ)よりも高い熱伝導率を示した。これは、高熱伝導性フィラーであるAlNが連続相(NY相)中でAlN同士が直接接触して、網目構造を形成しているためである。
また、表2から明らかなように、実施例6は、実施例1〜5及び実施例7〜10に比べて、無機有機複合組成物の熱伝導率が大幅に向上していることが分かる。さらに実施例6は、実施例8及び実施例10に比べて、高い熱伝導率を示した。
As shown in Table 2, all of Examples 1 to 10 showed higher thermal conductivity than a resin composition (matrix resin only) that did not contain a high thermal conductive filler. This is because AlN, which is a highly thermally conductive filler, is in direct contact with each other in a continuous phase (NY phase) to form a network structure.
Further, as is clear from Table 2, it can be seen that in Example 6, the thermal conductivity of the inorganic-organic composite composition is significantly improved as compared with Examples 1 to 5 and Examples 7 to 10. Furthermore, Example 6 showed higher thermal conductivity than Examples 8 and 10.

実施例1〜10の無機有機複合組成物の体積抵抗率を表3に示す。   Table 3 shows the volume resistivity of the inorganic-organic composite compositions of Examples 1 to 10.

表3から明らかなように、実施例1〜10の体積抵抗率は、AlNの充填率によらず、1013Ωcmより高い体積抵抗率を示し、無機有機複合組成物が絶縁性を有しており、マトリックス樹脂の絶縁性が損なわれることがないことが分かる。 As apparent from Table 3, the volume resistivity of Examples 1 to 10 shows a volume resistivity higher than 10 13 Ωcm regardless of the filling rate of AlN, and the inorganic-organic composite composition has insulating properties. It can be seen that the insulating properties of the matrix resin are not impaired.

実施例1〜10の無機有機複合組成物の三点曲げ試験から得られた曲げ弾性率および曲げ強度を表4に示す。   Table 4 shows the bending elastic modulus and bending strength obtained from the three-point bending test of the inorganic-organic composite compositions of Examples 1 to 10.

表4に示すように、実施例1〜10の曲げ弾性率および曲げ強度はいずれも良好な値を示した。
また、表4から明らかなように、実施例1〜6の曲げ弾性率は、AlNの充填率の増加に従い、高い値を示した。実施例1〜6の曲げ強度は、AlN充填率16vol%までほぼ一定値(約35MPa)を示し、AlN充填率30vol%以上で曲げ強度は急激に低下した。しかしながら、成形体の柔軟性が損なわれることはなく、マトリックス樹脂の曲げ強度に対して、約1/2程度の曲げ強度を有する。
As shown in Table 4, the bending elastic modulus and bending strength of Examples 1 to 10 both showed good values.
Further, as apparent from Table 4, the flexural moduli of Examples 1 to 6 showed high values as the filling rate of AlN increased. The bending strengths of Examples 1 to 6 showed a substantially constant value (about 35 MPa) up to an AlN filling rate of 16 vol%, and the bending strength rapidly decreased when the AlN filling rate was 30 vol% or more. However, the flexibility of the molded body is not impaired, and the bending strength of the matrix resin is about 1/2 that of the matrix resin.

実施例7〜10も同様に、無機有機複合組成物の曲げ弾性率は、AlNの充填率の増加に従い、高い値を示し、一方で無機有機複合組成物の曲げ強度は低下した。これは、PP相とNY相の界面接着性・親和性や、NY相とAlNフィラーの界面接着性に問題があり、界面の空隙が原因と考えられる。界面の接着性を考慮することにより、さらに成形体の柔軟性を向上できる。例えば、NY相とAlNフィラーの界面接着性については、AlNフィラーの表面に表面改質剤を付着させて、NYおよびPPと混合することで、改善することができる。   Similarly in Examples 7 to 10, the flexural modulus of the inorganic-organic composite composition showed a high value as the filling rate of AlN increased, while the flexural strength of the inorganic-organic composite composition decreased. This is due to the interfacial gap between the PP phase and the NY phase, and the interfacial adhesion between the NY phase and the AlN filler. By considering the adhesiveness of the interface, the flexibility of the molded body can be further improved. For example, the interfacial adhesion between the NY phase and the AlN filler can be improved by attaching a surface modifier to the surface of the AlN filler and mixing it with NY and PP.

本発明により、熱伝導率が高く、放熱性能に優れ、さらに電気絶縁性と成形体の柔軟性を併せ持つ放熱部品を安価に提供することが可能となる。 According to the present invention, it is possible to provide a heat dissipating component having high thermal conductivity, excellent heat dissipating performance, and having both electric insulation and flexibility of a molded body at low cost.

Claims (9)

マトリックスを構成する複数成分の熱可塑性樹脂と、前記熱可塑性樹脂よりも熱伝導性が高く、無機成分からなる高熱伝導性フィラーとを含む無機有機複合組成物であって、
当該一の成分の熱可塑性樹脂がポリアミド系樹脂であり、当該他の成分の熱可塑性樹脂がポリオレフィン系樹脂であり、
前記高熱伝導性フィラーが、一の成分の熱可塑性樹脂中に他の成分の熱可塑性樹脂中より多く含まれ、
前記高熱伝導性フィラー同士が直接接触して網目構造を形成していることを特徴とする無機有機複合組成物。
An inorganic-organic composite composition comprising a thermoplastic resin of a plurality of components constituting a matrix, a high thermal conductivity filler than the thermoplastic resin, and a high thermal conductive filler composed of an inorganic component,
The thermoplastic resin of the one component is a polyamide-based resin, the thermoplastic resin of the other component is a polyolefin-based resin,
The high thermal conductive filler is contained in the thermoplastic resin of one component more than in the thermoplastic resin of the other component,
The inorganic-organic composite composition, wherein the high thermal conductive fillers are in direct contact to form a network structure.
前記ポリアミド樹脂がポリエチレンテレフタレート、ポリブチレンテレフタレート、あるいはポリトリメチレンテレフタレートのいずれか1種以上であり、
前記ポリオレフィン系樹脂は、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、アクリロニトリル−ブチレン−スチレン共重合体およびポリオキシメチレンのいずれか1種以上であることを特徴とする請求項1に記載の無機有機複合組成物。
The polyamide resin is at least one of polyethylene terephthalate, polybutylene terephthalate, or polytrimethylene terephthalate,
2. The inorganic-organic composite composition according to claim 1, wherein the polyolefin-based resin is at least one of polypropylene, polystyrene, polymethyl methacrylate, acrylonitrile-butylene-styrene copolymer, and polyoxymethylene. .
前記一の成分の熱可塑性樹脂と前記他の成分の熱可塑性樹脂との体積比は10:90〜30:70であり、
前記マトリックスを構成する熱可塑性樹脂に対する前記高熱伝導性フィラーの充填率は10〜70重量%であることを特徴とする請求項1ないし2のいずれか1つに記載の無機有機複合組成物。
The volume ratio of the thermoplastic resin of the one component and the thermoplastic resin of the other component is 10:90 to 30:70,
The inorganic-organic composite composition according to any one of claims 1 to 2, wherein a filling rate of the high thermal conductive filler with respect to the thermoplastic resin constituting the matrix is 10 to 70% by weight.
前記高熱伝導性フィラーは、前記一の成分と前記他の成分の熱可塑性樹脂のうち前記一の成分の熱可塑性樹脂中のみに含まれることを特徴とする請求項1ないし3のいずれか1つに記載の無機有機複合組成物。   The high heat conductive filler is contained only in the thermoplastic resin of the one component among the thermoplastic resins of the one component and the other component. The inorganic-organic composite composition described in 1. 前記高熱伝導性フィラーは、表面改質剤を表面に付着させたものであることを特徴とする請求項1ないし4のいずれか1つに記載の無機有機複合組成物。   The inorganic-organic composite composition according to any one of claims 1 to 4, wherein the high thermal conductive filler has a surface modifier attached to the surface. 前記表面改質剤は、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、リン酸エステル系カップリング剤のうちのいずれか1以上であることを特徴とする請求項5に記載の無機有機複合組成物。   The surface modifier is at least one of a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zircoaluminate coupling agent, and a phosphate ester coupling agent. The inorganic-organic composite composition according to claim 5. 前記高熱伝導性フィラーの形状は、平板状、針状、球状、繊維状または鱗片状であることを特徴とする請求項1ないし6のいずれか1つに記載の無機有機複合組成物。   The inorganic-organic composite composition according to any one of claims 1 to 6, wherein the shape of the high thermal conductive filler is flat, acicular, spherical, fibrous, or scaly. 前記高熱伝導性フィラーは、熱伝導率が10〜2000W/m・Kかつ電気抵抗率が1×10〜1×1015Ω・cmである高絶縁性高熱伝導性フィラーであることを特徴とする請求項1ないし7のいずれか1つに記載の無機有機複合組成物。 The high thermal conductive filler is a high insulating high thermal conductive filler having a thermal conductivity of 10 to 2000 W / m · K and an electrical resistivity of 1 × 10 5 to 1 × 10 15 Ω · cm. The inorganic-organic composite composition according to any one of claims 1 to 7. 前記熱伝導性フィラーは、窒化アルミニウム、窒化ホウ素、酸化亜鉛、酸化マグネシウムまたは酸化アルミニウムであることを特徴とする請求項1ないし9のいずれか1つに記載の無機有機複合組成物。   The inorganic-organic composite composition according to any one of claims 1 to 9, wherein the thermally conductive filler is aluminum nitride, boron nitride, zinc oxide, magnesium oxide, or aluminum oxide.
JP2011227522A 2010-11-15 2011-10-17 Inorganic organic composite composition Pending JP2012122057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227522A JP2012122057A (en) 2010-11-15 2011-10-17 Inorganic organic composite composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010254444 2010-11-15
JP2010254444 2010-11-15
JP2011227522A JP2012122057A (en) 2010-11-15 2011-10-17 Inorganic organic composite composition

Publications (1)

Publication Number Publication Date
JP2012122057A true JP2012122057A (en) 2012-06-28

Family

ID=46503836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227522A Pending JP2012122057A (en) 2010-11-15 2011-10-17 Inorganic organic composite composition

Country Status (1)

Country Link
JP (1) JP2012122057A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897242A (en) * 2012-12-27 2014-07-02 山西博亮硅业有限公司 Heat-conducting polyethylene plastic and manufacturing method thereof
WO2014133309A1 (en) * 2013-02-27 2014-09-04 한양대학교 에리카산학협력단 Thermally conductive ceramic-polymer composite and method for manufacturing same
WO2015174023A1 (en) * 2014-05-15 2015-11-19 パナソニックIpマネジメント株式会社 Insulating thermally conductive resin composition
WO2016082139A1 (en) * 2014-11-27 2016-06-02 Dow Global Technologies Llc Thermal conductive composition
CN106832639A (en) * 2017-03-10 2017-06-13 安徽江淮汽车集团股份有限公司 A kind of PS composites and preparation method thereof
CN109370204A (en) * 2018-09-14 2019-02-22 江苏理工学院 A kind of modified Heat conduction nylon composite material and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959511A (en) * 1995-08-18 1997-03-04 Tokai Rubber Ind Ltd Thermally conductive resin composition
JPH1135835A (en) * 1997-07-22 1999-02-09 Toyo Ink Mfg Co Ltd Electroconductive resin composition
JP2003096317A (en) * 2001-07-18 2003-04-03 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition
JP2005255867A (en) * 2004-03-12 2005-09-22 Mitsuboshi Belting Ltd Heat conductive material and its manufacturing method
JP2007327010A (en) * 2006-06-09 2007-12-20 Kaneka Corp Thermoplastic resin composition of high thermal conductivity
JP2009263476A (en) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd Highly heat conductive resin composition
JP2010065064A (en) * 2008-09-08 2010-03-25 Tokyo Institute Of Technology Thermally conductive material, thermally conductive sheet, inter-laminar insulation film, and manufacturing method thereof
JP2010155953A (en) * 2009-01-05 2010-07-15 National Institute Of Advanced Industrial Science & Technology Structure composed of filler and non-compatible resin or elastomer, method for producing the same, and use of the same
CN102286207A (en) * 2011-06-22 2011-12-21 四川大学 Thermoplastic polymer based thermal conductive composite and preparation method thereof
JP2013203949A (en) * 2012-03-29 2013-10-07 Ube Industries Ltd Composition including polyamide resin, polyolefin resin and inorganic compound

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959511A (en) * 1995-08-18 1997-03-04 Tokai Rubber Ind Ltd Thermally conductive resin composition
JPH1135835A (en) * 1997-07-22 1999-02-09 Toyo Ink Mfg Co Ltd Electroconductive resin composition
JP2003096317A (en) * 2001-07-18 2003-04-03 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition
JP2005255867A (en) * 2004-03-12 2005-09-22 Mitsuboshi Belting Ltd Heat conductive material and its manufacturing method
JP2007327010A (en) * 2006-06-09 2007-12-20 Kaneka Corp Thermoplastic resin composition of high thermal conductivity
JP2009263476A (en) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd Highly heat conductive resin composition
JP2010065064A (en) * 2008-09-08 2010-03-25 Tokyo Institute Of Technology Thermally conductive material, thermally conductive sheet, inter-laminar insulation film, and manufacturing method thereof
JP2010155953A (en) * 2009-01-05 2010-07-15 National Institute Of Advanced Industrial Science & Technology Structure composed of filler and non-compatible resin or elastomer, method for producing the same, and use of the same
CN102286207A (en) * 2011-06-22 2011-12-21 四川大学 Thermoplastic polymer based thermal conductive composite and preparation method thereof
JP2013203949A (en) * 2012-03-29 2013-10-07 Ube Industries Ltd Composition including polyamide resin, polyolefin resin and inorganic compound

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897242A (en) * 2012-12-27 2014-07-02 山西博亮硅业有限公司 Heat-conducting polyethylene plastic and manufacturing method thereof
WO2014133309A1 (en) * 2013-02-27 2014-09-04 한양대학교 에리카산학협력단 Thermally conductive ceramic-polymer composite and method for manufacturing same
KR101493781B1 (en) 2013-02-27 2015-02-17 한양대학교 에리카산학협력단 High thermally conductive ceramic-poly composite and manufacturing method of the same
US9796897B2 (en) 2013-02-27 2017-10-24 Industry-University Cooperation Foundation Hanyang University Erica Campus Thermally conductive ceramic-polymer composite and method of preparing the same
JP2016510819A (en) * 2013-02-27 2016-04-11 インダストリー−ユニバーシティーコーペレイション ファンデーション ハンヤン ユニバーシティー エリカ キャンパス Thermally conductive ceramic-polymer composite and method for producing the same
CN106459594A (en) * 2014-05-15 2017-02-22 松下知识产权经营株式会社 Insulating thermally conductive resin composition
JPWO2015174023A1 (en) * 2014-05-15 2017-04-20 パナソニックIpマネジメント株式会社 Insulating thermal conductive resin composition
US20170154705A1 (en) * 2014-05-15 2017-06-01 Panasonic Intellectual Property Management Co., Ltd. Insulating thermally conductive resin composition
WO2015174023A1 (en) * 2014-05-15 2015-11-19 パナソニックIpマネジメント株式会社 Insulating thermally conductive resin composition
US9997274B2 (en) * 2014-05-15 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Insulating thermally conductive resin composition
CN106459594B (en) * 2014-05-15 2019-04-09 松下知识产权经营株式会社 Insulating heat-conductive resin combination
WO2016082139A1 (en) * 2014-11-27 2016-06-02 Dow Global Technologies Llc Thermal conductive composition
CN106832639A (en) * 2017-03-10 2017-06-13 安徽江淮汽车集团股份有限公司 A kind of PS composites and preparation method thereof
CN106832639B (en) * 2017-03-10 2019-06-28 安徽江淮汽车集团股份有限公司 A kind of PS composite material and preparation method
CN109370204A (en) * 2018-09-14 2019-02-22 江苏理工学院 A kind of modified Heat conduction nylon composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101899209B (en) Heat conductive insulation material and preparation method thereof
JP2012122057A (en) Inorganic organic composite composition
KR101139412B1 (en) Thermally Conductive Insulating Resin Composition and Plastic Article
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
JP2011510100A (en) Thermally processable thermally conductive polymer composition
JP2012072363A (en) Heat-conductive resin composition and heat-radiating material comprising the same
TW201229128A (en) High-heat conductive resin molded article and method for manufacturing the same
KR100927702B1 (en) Electrically insulating high thermal conductive resin composition
JP5029344B2 (en) Thermoplastic resin molded product
JP2013194223A (en) Heat conductive material
JP4938997B2 (en) Molding resin with excellent electrical insulation and thermal conductivity
JPH0959511A (en) Thermally conductive resin composition
KR100885653B1 (en) Hybrid filler type resin composition for high thermal conductivity
JP2016204420A (en) Encapsulating epoxy resin molding material and electronic component
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
WO2010053225A1 (en) Electrically insulated high thermal conductive polymer composition
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
CN104559178A (en) Radiating composition and preparation method thereof
JP2016017086A (en) Electrically insulating thermally conductive resin composition and method for producing the same
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
JP2008144094A (en) Molding resin excellent in thermal conductivity and fluidity
JP2004359712A (en) High heat-conducting member and method for producing the same
JP3989349B2 (en) Electronic component sealing device
JP5066310B2 (en) Conductive resin composition
JP2002194064A (en) Resin composition for encapsulating semiconductor and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027