JP2012121805A - Lithium-nickel-manganese-cobalt composite oxide, method for producing the same and application of the same - Google Patents

Lithium-nickel-manganese-cobalt composite oxide, method for producing the same and application of the same Download PDF

Info

Publication number
JP2012121805A
JP2012121805A JP2012055806A JP2012055806A JP2012121805A JP 2012121805 A JP2012121805 A JP 2012121805A JP 2012055806 A JP2012055806 A JP 2012055806A JP 2012055806 A JP2012055806 A JP 2012055806A JP 2012121805 A JP2012121805 A JP 2012121805A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
manganese
nickel
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012055806A
Other languages
Japanese (ja)
Other versions
JP5626245B2 (en
Inventor
Hidekazu Iwata
英一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012055806A priority Critical patent/JP5626245B2/en
Publication of JP2012121805A publication Critical patent/JP2012121805A/en
Application granted granted Critical
Publication of JP5626245B2 publication Critical patent/JP5626245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium-nickel-manganese-cobalt composite oxide used for a positive electrode active material of a Li secondary battery where battery performance, especially the discharge capacity and discharge capacity maintenance rate, are not lowered even when the filling density (pressed density) is raised.SOLUTION: The lithium-nickel-manganese-cobalt composite oxide having a pressed density of 3.47-4.5 g/cmand a ratio of particles having a size of 10 μm or less of 26-60 vol% in a particle size distribution based on volume is used as a positive electrode material. The lithium-nickel-manganese-cobalt composite oxide preferably has a BET specific surface area of 0.05-1.0 m/g which is expressed as the following chemical formula: LiNiMnCoMO(wherein, M is a metal except Ni, Mn, Co and Li; a+b+c+d+e=1; 0<a≤0.2; 0.2≤b/(b+c+d)≤0.4; 0.2≤c/(b+c+d)≤0.4; 0<d/(b+c+d)≤0.4; and 0≤e≤0.1).

Description

本発明はリチウム二次電池用正極活物質等に使用されるリチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途に関するものである。   The present invention relates to a lithium-nickel-manganese-cobalt composite oxide used for a positive electrode active material for a lithium secondary battery, a method for producing the same, and a use thereof.

近年、携帯電話、ノートパソコン、AV機器などの小型化高性能化が進んでおり、その電源としてのリチウムイオン二次電池が使用されている。当該二次電池の正極材料として、は高充填性で、高容量なLiCoOが主に使用されている。例えば、充填性の指標であるタップ嵩密度と2t/cmの圧力で加圧した場合のプレス密度(以下プレス密度と表す)において、LiCoOではタップ嵩密度が2.9g/cm程度、プレス密度が3.5g/cm程度、即ち真密度の70%の高い充填嵩密度であった。 In recent years, mobile phones, notebook computers, AV equipment, and the like have been miniaturized and improved in performance, and lithium ion secondary batteries are used as power sources thereof. As a positive electrode material of the secondary battery, LiCoO 2 having a high filling property and a high capacity is mainly used. For example, in the press bulk density (hereinafter referred to as the press density) when pressed with a tap bulk density that is an index of filling property and a pressure of 2 t / cm 2 , the tap bulk density is about 2.9 g / cm 3 in LiCoO 2 . The press density was about 3.5 g / cm 3 , that is, a high filling bulk density of 70% of the true density.

従来用いられていた二次電池用のLiCoOは高充填において電気容量の低下が少なく、例えば32mA/g、4.3〜2.5Vの条件での充放電試験において150mAh/gの高容量が達成されていた。しかし、LiCoOは、充放電の繰り返しにおいて、その放電特性に安全性の問題があり、それに対応する安全回路の付与が不可欠であり、なおかつ希少金属であるCoを主成分とするためコストおよび資源面で問題があった。 Conventionally used LiCoO 2 for secondary batteries has little decrease in electric capacity at high filling, for example, a high capacity of 150 mAh / g in a charge / discharge test under the condition of 32 mA / g, 4.3-2.5V. Has been achieved. However, LiCoO 2 has a problem of safety in its discharge characteristics in repeated charge and discharge, and it is indispensable to provide a corresponding safety circuit, and since Co is a rare metal as a main component, cost and resources are low. There was a problem in terms.

そこで他の二次電池用正極材料を用いて、高容量化するために単位容積当り高密度に正極材料を充填することが試みられているが、多くの場合LiCoO並の高充填化は達成できず、また特定の組成において高充填できた場合にも正極材料の表面積が低下する等により、電池性能が低下していた。 So by using the positive electrode material for other secondary batteries, it has been attempted to fill the high density positive electrode material per unit volume in order to increase the capacity, in many cases LiCoO 2 parallel high filling of achieving In addition, even when high filling was possible with a specific composition, the battery performance was lowered due to a decrease in the surface area of the positive electrode material.

例えば、層状構造のLiNi0.5Mn0.5が高エネルギー密度、安全性、コストを満足する可能性のある材料として提案されている(非特許文献1)。しかし、当該正極材料は、充填性と電池性能の両立が難しく、LiCoOの代替として使用されるには更なる改良が必要であった。 For example, a layered structure of LiNi 0.5 Mn 0.5 O 2 has been proposed as a material that may satisfy high energy density, safety, and cost (Non-Patent Document 1). However, it is difficult for the positive electrode material to satisfy both filling properties and battery performance, and further improvement is required to be used as an alternative to LiCoO 2 .

さらにその改良として、NiとMn以外の元素をドープした正極材料が提案されている。しかしそこに示されている正極材料は、タップ密度における充填嵩密度が1.4−2.8g/cmであり、さらに高い充填密度では容量低下の問題があり好ましくないことが記載されていた(例えば特許文献1)。 As an improvement, a positive electrode material doped with an element other than Ni and Mn has been proposed. However, the positive electrode material shown therein has a filling bulk density at a tap density of 1.4 to 2.8 g / cm 3 , and it was described that a higher filling density has a problem of capacity reduction and is not preferable. (For example, patent document 1).

一方、Li−Ni−Co−Mn系の複合酸化物において、Li原料と混合する複合酸化物としてプレス密度の範囲として2.3〜3.2g/cmが提案され、具体的には3.09g/cmまで報告されている(例えば特許文献2)。 On the other hand, in a Li—Ni—Co—Mn based composite oxide, 2.3 to 3.2 g / cm 3 is proposed as a range of press density as a composite oxide mixed with a Li raw material. It has been reported up to 09 g / cm 3 (for example, Patent Document 2).

しかし、これらの正極材料では、LiCoOに匹敵する3.1g/cmを超える、さらに言えばLiCoO並の3.3g/cmを超える高充填性で高容量なものは達成されていなかった。 However, these positive electrode materials, more than 3.1 g / cm 3 comparable to LiCoO 2, not that matter LiCoO 2 moderate 3.3 g / cm 3 and high filling property in a high capacity to exceed is achieved It was.

さらに従来の高充填性の正極材料では、例えばLiとCo,Ni,Mn及びFeからなる群より選択される少なくとも一種の遷移元素とを含む複合酸化物粒子からなる正極活物質で、そのタップ密度が2.9g/cm以上のものが提案されている(例えば特許文献3参照)。 Further, in the conventional high-filling positive electrode material, for example, a positive electrode active material composed of composite oxide particles containing Li and at least one transition element selected from the group consisting of Co, Ni, Mn and Fe, and its tap density There has been proposed including 2.9 g / cm 3 or more (for example, see Patent Document 3).

しかし当該文献では、高容量が期待できるが、従来から高充填性が達成されていなかったLi−Ni−Co−Mn系の複合酸化物について高充填とする具体例の記載はなく、さらに、高充填性を達成するための手法が酸化物粒子の形状を球状及び/又は楕円球状とする方法であり、粒子間の接触面積が小さく、内部抵抗が高くなり易いという課題があった。   However, in this document, although a high capacity can be expected, there is no description of a specific example of high filling of a Li-Ni-Co-Mn based composite oxide that has not been achieved so far, and further, A method for achieving the filling property is a method in which the shape of the oxide particles is spherical and / or elliptical, and there is a problem that the contact area between the particles is small and the internal resistance tends to be high.

特開2003−89526号公報JP 2003-89526 A 特開2003−242976号公報JP 2003-242976 A 特開2003−17050号公報JP 2003-17050 A

第41回電池討論会予稿集(2000)460−461Proceedings of the 41st Battery Conference (2000) 460-461

Li二次電池の正極材料として用いた場合の繰り返し充放電における安全性が高く、なおかつ高充填性、高電池性能であり、低コストな新規の正極活物質およびその製造方法、並びにその正極活物質を使用するLi二次電池を提供する。   New positive electrode active material having high safety in repeated charge / discharge when used as a positive electrode material for a Li secondary battery, high filling property, high battery performance, low cost, and production method thereof, and positive electrode active material thereof Li secondary battery using

本発明者等は二次電池の正極材料の充填性と電池性能について鋭意検討を重ねた結果、従来高容量であることが知られているが高充填密度とすることが困難であったリチウム、ニッケル、マンガン及びコバルトを必須の成分として有する複合酸化物において、体積基準の粒度分布において、10μm以下の粒子の割合が26〜60体積%にすると、プレス密度がLiCoO並の3.47〜4.5g/cmとなるリチウム−ニッケル−マンガン−コバルト複合酸化物(以下「複合酸化物」という)が得られ、この複合酸化物をLi二次電池用正極材料として使用すると、電池特性として重要な高放電容量で且つ放電容量維持率が高いLi二次電池が得られる事を見出し、本発明を完成するに至ったものである。 As a result of intensive studies on the filling performance and battery performance of the positive electrode material of the secondary battery, the present inventors have been known to have a high capacity, but it has been difficult to achieve a high packing density. In the composite oxide having nickel, manganese and cobalt as essential components, in the volume-based particle size distribution, when the ratio of particles of 10 μm or less is 26 to 60% by volume, the press density is the same as LiCoO 2 of 3.47 to 4 Lithium-nickel-manganese-cobalt composite oxide (hereinafter referred to as “composite oxide”) of 0.5 g / cm 3 is obtained. When this composite oxide is used as a positive electrode material for a Li secondary battery, it is important as battery characteristics. The present inventors have found that a Li secondary battery having a high discharge capacity and a high discharge capacity retention rate can be obtained, and the present invention has been completed.

本発明の複合酸化物は、プレス密度が3.47〜4.5g/cmであり、且つ、体積基準の粒度分布において、10μm以下の粒子の割合が26〜60体積%であるリチウム−ニッケル−マンガン−コバルト複合酸化物であり、3.47〜4.5g/cmの当該組成では従来にない高い充填性を有するものであり、この高いプレス密度から、このリチウム−ニッケル−マンガン−コバルト複合酸化物を二次電池用正極材料に使用して初めて、高放電容量で且つ放電容量維持率が高いLi二次電池が得られる事を明らかにして本発明を完成するに至った。 The composite oxide of the present invention has a press density of 3.47 to 4.5 g / cm 3 and a volume-based particle size distribution in which the proportion of particles of 10 μm or less is 26 to 60% by volume. -Manganese-cobalt composite oxide, which has a high filling property which is not present in the conventional composition of 3.47 to 4.5 g / cm 3 , and from this high press density, this lithium-nickel-manganese-cobalt The present invention was completed by clarifying that a Li secondary battery having a high discharge capacity and a high discharge capacity retention rate can be obtained only when the composite oxide is used as a positive electrode material for a secondary battery.

前記粒度分布にすることにより、10〜20μmの粒子の隙間に10μm以下の粒子が充填され、高いプレス密度を得ることができる。   By setting it as the said particle size distribution, the particle | grains of 10 micrometers or less are filled in the clearance gap between 10-20 micrometers particle | grains, and a high press density can be obtained.

さらに、原因は必ずしも明らかではないが、本材料を正極に用いて充放電を行った場合、10μm以下の粒子を含有することで電気的な抵抗が減り、充放電における劣化が減少し、二次電池として使用した場合、高い放電容量及び高い放電容量維持率が得られる。   Furthermore, although the cause is not necessarily clear, when charging / discharging is performed using this material as a positive electrode, the electrical resistance is reduced by containing particles of 10 μm or less, deterioration during charging / discharging is reduced, and secondary When used as a battery, a high discharge capacity and a high discharge capacity retention rate are obtained.

本発明でいうプレス密度とは、2t/cmの圧力で加圧した場合の嵩密度であり、従来技術に開示されているプレス密度と同様の条件である。粉末のプレス密度はさらに高圧で加圧しても充填密度の値は飽和し、同様の値に収斂する。また実際に二次電池を作成する際に、さらに高い圧力を加えることは現実的ではない。 The press density as used in the field of this invention is a bulk density at the time of pressing with the pressure of 2 t / cm <2>, and is the same conditions as the press density currently disclosed by the prior art. Even if the press density of the powder is further pressurized at a high pressure, the value of the packing density is saturated and converges to the same value. Moreover, it is not realistic to apply a higher pressure when actually manufacturing a secondary battery.

本発明の複合酸化物のタップ嵩密度は特に限定されないが、2.8g/cmより大きく3.5g/cm以下である。本発明の複合酸化物のタップ嵩密度は従来品と大きな違いはないが、プレス密度で評価することによって大きな差が見られる。プレス密度によってその差が顕在化する原因は定かでないが、例えば複合酸化物粒子の形状がその一因と考えられる。 The tap bulk density of the composite oxide of the present invention is not particularly limited, but is larger than 2.8 g / cm 3 and not larger than 3.5 g / cm 3 . The tap bulk density of the composite oxide of the present invention is not significantly different from that of the conventional product, but a large difference can be seen by evaluating the press density. The reason why the difference becomes obvious depending on the press density is not clear, but the shape of the composite oxide particles is considered to be one of the causes.

本発明の複合酸化物は、リチウム、ニッケル、マンガン及びコバルトを必須の成分として有する複合酸化物であれば特に限定されないが、特に下記化学式で示される組成、即ち、
Li1+aNiMnCo(但し、MはNi,Mn,Co及びLi以外の金属)
a+b+c+d+e=1
0<a≦0.2
0.2≦b/(b+c+d)≦0.4
0.2≦c/(b+c+d)≦0.4
0<d/(b+c+d)≦0.4
0≦e≦0.1
The composite oxide of the present invention is not particularly limited as long as it is a composite oxide having lithium, nickel, manganese and cobalt as essential components, but in particular, the composition represented by the following chemical formula,
Li 1 + a Ni b Mn c Co d M e O 2 ( where, M is Ni, Mn, metal other than Co and Li)
a + b + c + d + e = 1
0 <a ≦ 0.2
0.2 ≦ b / (b + c + d) ≦ 0.4
0.2 ≦ c / (b + c + d) ≦ 0.4
0 <d / (b + c + d) ≦ 0.4
0 ≦ e ≦ 0.1

なおかつ、BET比表面積が0.05〜1.0m/gの複合酸化物であることが好ましい。 And it is preferable that it is a complex oxide whose BET specific surface area is 0.05-1.0 m < 2 > / g.

当該組成の複合酸化物であれば、高充填とした際に、特に高容量となり易い。   A complex oxide having such a composition is likely to have a particularly high capacity when it is highly filled.

この化学式において、MはNi,Mn,Co及びLi以外の金属を表わす。   In this chemical formula, M represents a metal other than Ni, Mn, Co, and Li.

Mの元素としては、Na,K,Rb,Cs,Be,Mg,Ca,Sr,Ba,B,Al,Ga,In,Tl,C,Si,Ge,Sn,Pb,N,P,As,Sb,Bi,Se,Te,F,Cl,Br,I,Sc,Y,La,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Tc,Re,Fe,Ru,Os,Rh,Ir,Pd,Pt,Cu,Ag,Au,Zn,Cd等が例示される。特にMg,Ca,B,Al,In,Si,Ge,Sn,Y,Ti,Zr,V,Nb,Cr,Mo,Fe,Znが好ましい。   As elements of M, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi, Se, Te, F, Cl, Br, I, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Tc, Re, Fe, Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd and the like are exemplified. In particular, Mg, Ca, B, Al, In, Si, Ge, Sn, Y, Ti, Zr, V, Nb, Cr, Mo, Fe, and Zn are preferable.

aは、0<a≦0.2の範囲を満足するものであり、好ましくは、0<a≦0.1、より好ましくは、0.005<a≦0.05、更に好ましくは、0.01≦a≦0.04である。bおよびcは、それぞれ、0.2≦b/(b+c+d)≦0.4および0.2≦c/(b+c+d)≦0.4の範囲を満足するものであり、好ましくは、0.32≦b≦0.34,0.32≦c≦0.34である。dは、0<d/(b+c+d)≦0.4を満足するものである。特に0.32≦d≦0.34が好ましい。eは0≦e≦0.1の範囲である。   a satisfies the range of 0 <a ≦ 0.2, preferably 0 <a ≦ 0.1, more preferably 0.005 <a ≦ 0.05, and still more preferably 0.00. 01 ≦ a ≦ 0.04. b and c satisfy the ranges of 0.2 ≦ b / (b + c + d) ≦ 0.4 and 0.2 ≦ c / (b + c + d) ≦ 0.4, respectively, preferably 0.32 ≦ b ≦ 0.34, 0.32 ≦ c ≦ 0.34. d satisfies 0 <d / (b + c + d) ≦ 0.4. In particular, 0.32 ≦ d ≦ 0.34 is preferable. e is in the range of 0 ≦ e ≦ 0.1.

複合酸化物のBET比表面積は0.05〜1.0m/gであることが好ましい。該範囲よりも小さいと電池性能が低下し、大きいと充填性が低下する。BET比表面積は特に好ましくは0.1〜0.6m/gである。 The BET specific surface area of the composite oxide is preferably 0.05 to 1.0 m 2 / g. If it is smaller than this range, the battery performance is lowered, and if it is larger, the filling property is lowered. The BET specific surface area is particularly preferably 0.1 to 0.6 m 2 / g.

本発明の複合酸化物の形状は、粒子間の接触面積を大きくする形状、例えば、角を有する形状、より具体的には多面体粒子であることが好ましく、そのような形状では二次電池の正極材料として用いた際に内部抵抗が小さくなる。   The shape of the composite oxide of the present invention is preferably a shape that increases the contact area between the particles, for example, a shape having corners, more specifically a polyhedral particle, and in such a shape, the positive electrode of the secondary battery When used as a material, the internal resistance is reduced.

本発明の複合酸化物の粒子は、0.1μm以上2μm未満の一次粒子から成る二次粒子で、二次粒子の平均粒子径は5〜30μmであることが好ましい。該範囲より小さいと充填性が低下し、大きいと電池性能が低下するため、特に10〜20μmが好ましい。   The composite oxide particles of the present invention are secondary particles composed of primary particles of 0.1 μm or more and less than 2 μm, and the average particle diameter of the secondary particles is preferably 5 to 30 μm. When it is smaller than this range, the filling property is lowered, and when it is larger, the battery performance is lowered.

また、本発明の複合酸化物は50μm以上の粒子の割合が5%以下であることが好ましい。該割合が5%より多いと平坦な電極シートを作製するのが難しく、該割合は1%以下がより好ましく、0.5%以下がさらに好ましい。さらに、5μm以下の粒子の割合が5%以下であることが好ましい。該割合が5%より多いと充填性が低下するため、該割合は1%以下がより好ましく、0.5%以下がさらに好ましい。   In the composite oxide of the present invention, the proportion of particles of 50 μm or more is preferably 5% or less. When the proportion is more than 5%, it is difficult to produce a flat electrode sheet, and the proportion is more preferably 1% or less, and further preferably 0.5% or less. Furthermore, it is preferable that the ratio of particles of 5 μm or less is 5% or less. When the proportion is more than 5%, the filling property is lowered. Therefore, the proportion is more preferably 1% or less, and further preferably 0.5% or less.

本発明の複合酸化物を正極材料に用いて充放電を行った場合、10μm以下の粒子を含有することで電気的な抵抗が減り、充放電における劣化が減少し、二次電池の正極として使用した場合に、従来にない高い放電容量と高い放電容量維持率を兼ね備えたLi二次電池が得られる。従来は、正極材料の充填性を向上すると、電池の放電容量維持率が低下し、放電容量維持率を向上すると充填性が低下するという、いわゆるトレードオフの関係があったが、本発明の複合酸化物は充填性と電池の放電容量維持率の両方を満足できる材料である。   When charging / discharging using the composite oxide of the present invention as a positive electrode material, the inclusion of particles of 10 μm or less reduces electrical resistance, reduces deterioration during charging / discharging, and is used as a positive electrode for secondary batteries. In this case, a Li secondary battery having both a high discharge capacity and a high discharge capacity maintenance rate that are not conventionally obtained can be obtained. Conventionally, there has been a so-called trade-off relationship that when the filling property of the positive electrode material is improved, the discharge capacity maintenance rate of the battery is lowered, and when the discharge capacity maintenance rate is improved, the filling property is lowered. The oxide is a material that can satisfy both the filling property and the discharge capacity maintenance rate of the battery.

次に本発明の複合酸化物の製造法について説明する。   Next, the method for producing the composite oxide of the present invention will be described.

本発明の複合酸化物は、体積基準の粒度分布において、10μm以下の粒子の割合が10〜80体積%であるニッケル−マンガン−コバルトを含んでなる共沈化合物とLi化合物を混合後、800〜1100℃の温度で焼成することによって、製造することができ、特に、体積基準の粒度分布において、10μm以下の粒子の割合が30〜70体積%であるニッケル−マンガン−コバルトを含んでなる共沈化合物を使用することが好ましい。   The composite oxide of the present invention is a mixture of a coprecipitation compound containing nickel-manganese-cobalt and a Li compound in which the proportion of particles of 10 μm or less is 10 to 80% by volume in a volume-based particle size distribution, and 800 to Co-precipitation comprising nickel-manganese-cobalt, which can be produced by firing at a temperature of 1100 ° C., and in particular the proportion of particles of 10 μm or less is 30-70% by volume in a volume-based particle size distribution Preference is given to using compounds.

前述の粒度分布にすることにより、Li原料と混合し、焼成した後の本発明の複合酸化物は体積基準の粒度分布において、10μm以下の粒子の割合を10〜70体積%にすることができ、10〜20μmの粒子の隙間に10μm以下の粒子が充填され、高いプレス密度を得ることができる。   By making the particle size distribution as described above, the composite oxide of the present invention after being mixed with the Li raw material and calcined can make the proportion of particles of 10 μm or less 10 to 70% by volume in the volume-based particle size distribution. , Particles of 10 μm or less are filled in the gaps between the particles of 10 to 20 μm, and a high press density can be obtained.

該粒度分布にする方法としては、異なる共沈条件で作製した共沈化合物を混合する方法、共沈化合物を粉砕する方法、および、粉砕した共沈化合物を混合する方法が好ましい。   As the particle size distribution method, a method of mixing coprecipitation compounds prepared under different coprecipitation conditions, a method of pulverizing the coprecipitation compound, and a method of mixing the pulverized coprecipitation compound are preferable.

さらに、該共沈化合物の10μm以下の粒子の割合は、30〜70体積%とすることにより、複合酸化物の10μm以下の粒子の割合が30〜60体積%とすることができ、より好ましい。   Furthermore, the ratio of the 10 μm or less particles of the coprecipitated compound is 30 to 70% by volume, and the ratio of the 10 μm or less particles of the composite oxide can be 30 to 60% by volume.

本発明の複合酸化物はBET比表面積が0.5m/g以上10m/g未満であるニッケル−マンガン−コバルト共沈化合物若しくは、ニッケル−マンガン−コバルト−ニッケル、マンガン及びコバルト以外の金属の共沈化合物(以下「共沈化合物」という)とLi化合物を混合後、800〜1100℃の温度で焼成することによって製造することができる。 The composite oxide of the present invention is a nickel-manganese-cobalt coprecipitation compound having a BET specific surface area of 0.5 m 2 / g or more and less than 10 m 2 / g, or a metal other than nickel-manganese-cobalt-nickel, manganese and cobalt. It can be produced by mixing a coprecipitation compound (hereinafter referred to as “coprecipitation compound”) and a Li compound and then firing at a temperature of 800 to 1100 ° C.

目的物である複合酸化物の充填性などの粉体物性はLi原料と混合する前駆物質である共沈化合物の乾燥後の粉体物性、特にBET比表面積と密接な関係がある。すなわち、共沈化合物の乾燥後のBET比表面積が0.5m/g以上10m/g未満とすると、得られる複合酸化物のBET比表面積が0.05〜1.0m/gの範囲に入り、充填性を向上させることができる。 The powder physical properties such as the filling properties of the target composite oxide are closely related to the powder physical properties after drying of the coprecipitated compound, which is a precursor mixed with the Li raw material, particularly the BET specific surface area. That is, the BET specific surface area after drying coprecipitation compound is less than 0.5 m 2 / g or more 10 m 2 / g, a BET specific surface area of the composite oxide obtained is 0.05 to 1.0 m 2 / g range And the filling property can be improved.

該共沈化合物の乾燥後のBET比表面積が0.5m/gより小さいと、得られる複合酸化物をLi二次電池の正極材料に使用した場合の電池性能が低下し、10m/g以上では複合酸化物の充填性が低下する。該共沈化合物の乾燥後のBET比表面積は0.5〜8m/gが好ましく、特に1〜5m/gが好ましい。 When the BET specific surface area after drying of the coprecipitated compound is smaller than 0.5 m 2 / g, the battery performance when the obtained composite oxide is used as a positive electrode material of a Li secondary battery is reduced, and 10 m 2 / g. As described above, the filling property of the composite oxide is lowered. BET specific surface area after drying of coprecipitated compound is preferably 0.5~8m 2 / g, particularly 1 to 5 m 2 / g are preferred.

本発明で用いる共沈化合物は、幅0.2〜3μm、厚さ0.05〜2μmの板状結晶が凝集した平均粒子径が5〜30μmの粒子を用いることが好ましい。   As the coprecipitation compound used in the present invention, it is preferable to use particles having an average particle diameter of 5 to 30 μm in which plate crystals having a width of 0.2 to 3 μm and a thickness of 0.05 to 2 μm are aggregated.

該板状結晶が前記範囲より大きいと、得られる複合酸化物をLi二次電池の正極活物質に使用する場合の電池性能が低下し、小さいと充填性が低下する。   When the plate-like crystal is larger than the above range, the battery performance when the obtained composite oxide is used for the positive electrode active material of the Li secondary battery is lowered, and when it is smaller, the filling property is lowered.

本発明で用いる共沈化合物は、ニッケル、マンガンおよびコバルトの塩若しくはニッケル、マンガン、コバルトおよびニッケル、マンガン及びコバルト以外の金属を水に溶解した水溶液とアルカリ水溶液を連続的に反応槽に添加し、得られる共沈化合物スラリーを該反応槽より連続的に抜き出すことにより得られたものであることが好ましい。   The coprecipitation compound used in the present invention is a nickel, manganese and cobalt salt or nickel, manganese, cobalt and nickel, an aqueous solution in which a metal other than manganese and cobalt is dissolved in water and an alkaline aqueous solution are continuously added to the reaction vessel, It is preferable that the coprecipitation compound slurry obtained is obtained by continuously withdrawing from the reaction vessel.

上記の金属塩水溶液とアルカリ水溶液の連続添加の方法に限定はないが、両液を別々に連続的に添加する方法、いずれか一方を連続的に添加し、もう一方を反応応槽内のpHが一定になる様に間欠的に添加する方法が好ましい。この反応は、一段でも、二段でも、又、三段以上の多段に分けて行ってもよい。   There is no limitation on the method of continuous addition of the aqueous metal salt solution and the aqueous alkali solution, but a method of adding both solutions separately and continuously, either one is added continuously, and the other is the pH in the reaction chamber. A method of intermittently adding so as to be constant is preferable. This reaction may be performed in one stage, two stages, or divided into three or more stages.

該金属塩水溶液の塩の種類は特に限定されず、例えば、硫酸塩水溶液、硝酸塩水溶液、塩化物水溶液などが例示できるが、特に塩化物を使用した場合に、共沈化合物の結晶成長が進み、所望のBET比表面積、及び形状を得ることができるため特に好ましい。又、硫酸塩の場合の硫酸根残留、硝酸塩の場合の窒素酸化物発生がない点からも塩化物が好ましい。   The type of the salt of the aqueous metal salt solution is not particularly limited, and examples thereof include an aqueous sulfate solution, an aqueous nitrate solution, and an aqueous chloride solution. Particularly when chloride is used, crystal growth of the coprecipitated compound proceeds, It is particularly preferable because a desired BET specific surface area and shape can be obtained. In addition, chloride is preferable from the viewpoint that there is no sulfate radical residue in the case of sulfate and generation of nitrogen oxides in the case of nitrate.

前記共沈反応は、反応槽内のpHを8〜10の範囲とすることが特に好ましい。これは、過飽和度をコントロールするためであり、該範囲よりpHが低いと過飽和度は大きくなるが、未共沈成分が多く、工業的ではない。該範囲よりpHが高いと過飽和度が小さくなり結晶成長が乏しく好ましくない。   In the coprecipitation reaction, the pH in the reaction vessel is particularly preferably in the range of 8-10. This is for controlling the degree of supersaturation. If the pH is lower than this range, the degree of supersaturation increases, but there are many uncoprecipitated components, which is not industrial. If the pH is higher than this range, the degree of supersaturation becomes small and crystal growth is poor, which is not preferable.

さらに、反応槽内の温度を40℃以上に設定することが特に好ましい。これも過飽和度をコントロールするためであり、反応温度が低いと過飽和度が小さくなり結晶成長が乏しく好ましくない。   Furthermore, it is particularly preferable to set the temperature in the reaction vessel to 40 ° C. or higher. This is also for controlling the degree of supersaturation. If the reaction temperature is low, the degree of supersaturation becomes small and crystal growth is poor.

本発明の製造方法では,ニッケル−マンガン−コバルト共沈時にアンモニアを共存させることが好ましい。アンモニアは塩の形態で使用するのが好ましく、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウムなどが例示される。該アンモニアは、金属イオンとともにフィードさせるのが好ましい。その濃度は、共沈スラリー中にNHとして0.1〜5wt%が好ましく、0.2〜0.5wt%がより好ましい。NHを共存させると、金属イオンの溶解度の溶解度がまし、過飽和度が増加し、共沈化合物が成長する。 In the production method of the present invention, it is preferable to coexist ammonia during nickel-manganese-cobalt coprecipitation. Ammonia is preferably used in the form of a salt, and examples thereof include ammonium chloride, ammonium sulfate, and ammonium nitrate. The ammonia is preferably fed with metal ions. The concentration is preferably 0.1 to 5 wt% as NH 3 in the coprecipitation slurry, and more preferably 0.2 to 0.5 wt%. When NH 3 coexists, the solubility of metal ions is increased, the degree of supersaturation is increased, and a coprecipitated compound grows.

本発明の製造方法では、前記共沈反応を不活性ガス雰囲気で行うことが好ましい。さらに、本発明ではニッケル、マンガンおよびコバルトの塩を水に溶解した水溶液とアルカリ水溶液を連続的に反応槽に添加するため、添加するニッケル、マンガンおよびコバルトの塩水溶液とアルカリ水溶液も不活性ガスを通気するなどして不活性雰囲気とするのが好ましい。   In the production method of the present invention, the coprecipitation reaction is preferably performed in an inert gas atmosphere. Furthermore, in the present invention, since an aqueous solution in which nickel, manganese and cobalt salts are dissolved in water and an alkaline aqueous solution are continuously added to the reaction vessel, the nickel, manganese and cobalt salt aqueous solution and alkaline aqueous solution to be added also contain an inert gas. It is preferable to create an inert atmosphere by aeration.

本発明のアルカリ水溶液としては、アルカリ金属の水酸化物の水溶液が好ましく、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が例示される。   The alkali aqueous solution of the present invention is preferably an aqueous solution of an alkali metal hydroxide, and examples thereof include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.

得られた共沈化合物は、適宜、ろ過、洗浄し、スラリーの状態で使用しても良いし、必要であれば乾燥して得られるニッケル、マンガン及びコバルトの水酸化物及び/又はオキシ水酸化物粉末として取り出して使用しても良い。   The obtained coprecipitated compound may be appropriately filtered, washed and used in the form of a slurry, and if necessary, dried nickel, manganese and cobalt hydroxide and / or oxyhydroxide. You may take out and use as a product powder.

乾燥する場合は、50℃以下で行うのが好ましく、特に不活性ガス雰囲気で行うことが好ましい。   When drying, it is preferable to carry out at 50 degrees C or less, and it is especially preferable to carry out in inert gas atmosphere.

次に、本発明では、該共沈化合物とLi化合物を混合する。   Next, in the present invention, the coprecipitation compound and the Li compound are mixed.

用いるLi化合物は特に限定しないが、例えば水酸化リチウム、炭酸リチウム等が挙げられ、経済性の面からは炭酸リチウムが特に好ましい。また炭酸リチウムの平均粒子径が10μm以下であることが好ましく、5μm以下であることがより好ましい。   The Li compound to be used is not particularly limited, and examples thereof include lithium hydroxide and lithium carbonate, and lithium carbonate is particularly preferable from the viewpoint of economy. Moreover, it is preferable that the average particle diameter of lithium carbonate is 10 micrometers or less, and it is more preferable that it is 5 micrometers or less.

共沈化合物とLi化合物の混合は、均一に混合できれば如何なる方法も適用でき、乾式混合では、転動混合法、撹拌混合法等、湿式混合ではスラリー混合後にスプレー乾燥する方法などが例示できる。   As long as the coprecipitation compound and the Li compound can be mixed uniformly, any method can be applied. Examples of the dry mixing include a tumbling mixing method and a stirring mixing method. Examples of the wet mixing include a method of spray drying after slurry mixing.

次に、共沈化合物とLi化合物の混合物を焼成して複合酸化物を得る。   Next, the mixture of the coprecipitation compound and the Li compound is fired to obtain a composite oxide.

焼成は、800〜1100℃で行うのが好ましい。焼成温度が800℃より低いと複合酸化物の結晶成長が低くなり、充填性、電池性能が低下する。一方、焼成温度が1000℃より高いと結晶成長が増し、充填性は向上するが、電池性能が低下する。焼成温度としては900〜1050℃が特に好ましい。   Firing is preferably performed at 800 to 1100 ° C. When the firing temperature is lower than 800 ° C., the crystal growth of the composite oxide is lowered, and the filling property and battery performance are lowered. On the other hand, when the firing temperature is higher than 1000 ° C., crystal growth increases and the filling property is improved, but the battery performance is lowered. The firing temperature is particularly preferably 900 to 1050 ° C.

本発明では、焼成後に、複合酸化物を水洗し、乾燥することが好ましい。水洗により、電池性能に悪影響を与える不純物を除去できる。水洗は、試料重量に対して5〜10倍の水を加え撹拌するリパルプ洗浄や、カラムに試料を充填して通水するカラム洗浄などが好適に使用できる。洗浄の終点は、洗浄液のpHを測定し、11以下とするのが好ましく、10以下が更に好ましい。   In the present invention, it is preferable to wash and dry the composite oxide after firing. Washing with water can remove impurities that adversely affect battery performance. As the water washing, repulp washing in which 5 to 10 times as much water as the sample weight is added and agitated, column washing in which a sample is filled in the column and water is passed, etc. can be suitably used. The end point of washing is preferably 11 or less, more preferably 10 or less, by measuring the pH of the washing solution.

洗浄後の乾燥は、水分を充分に除去できる100〜500℃が好ましく、300〜500℃がより好ましい。   Drying after washing is preferably 100 to 500 ° C, more preferably 300 to 500 ° C, from which moisture can be sufficiently removed.

本発明の方法により、従来にはない高いプレス密度と高い電池性能(高い放電容量及び高い放電容量維持率)を満足する正極材料を得ることができる。   By the method of the present invention, a positive electrode material satisfying unprecedented high press density and high battery performance (high discharge capacity and high discharge capacity retention rate) can be obtained.

こうして得られた複合酸化物はリチウム二次電池の正極活物質として用いられる。   The composite oxide thus obtained is used as a positive electrode active material for a lithium secondary battery.

通常、正極活物質と少なくとも炭素材料等の導電材料、ポリフッ化ビニリデン等の結着剤、および、N−メチル−2−ピロリドン等の分散媒とを混合し、集電体に塗布、乾燥、プレスして、正極シートとする。   Usually, a positive electrode active material and at least a conductive material such as a carbon material, a binder such as polyvinylidene fluoride, and a dispersion medium such as N-methyl-2-pyrrolidone are mixed, applied to a current collector, dried, and pressed. Thus, a positive electrode sheet is obtained.

本発明では前述のLi二次電池用正極活物質と少なくとも導電材料および結着剤を含有した正極シートの密度が2.5g/cm以上である。 In the present invention, the density of the positive electrode sheet containing the above-described positive electrode active material for a Li secondary battery, at least a conductive material, and a binder is 2.5 g / cm 3 or more.

この密度が高いほど、電池缶内に収容できる正極活物質量が増え、エネルギー密度の高い、すなわち、高性能な電池を作製できる。   The higher the density, the more the positive electrode active material that can be accommodated in the battery can, and the higher the energy density, that is, the high-performance battery can be produced.

該密度は好ましくは2.7g/cm以上、より好ましくは3.0g/cm以上である。 The density is preferably 2.7 g / cm 3 or more, more preferably 3.0 g / cm 3 or more.

なお、本発明の正極シートの導電材料および結着剤の含有量はLi二次電池用正極活物質、導電材料および結着剤の合計の重量に対して25wt%以下であることが好ましく、15wt%以下がより好ましい。   In addition, the content of the conductive material and the binder in the positive electrode sheet of the present invention is preferably 25 wt% or less based on the total weight of the positive electrode active material for Li secondary battery, the conductive material, and the binder, % Or less is more preferable.

該含有量が多いと正極シートが嵩高くなりの電池缶内に収容できる正極活物質量が減り、電池のエネルギー密度が低下する。   When the content is large, the amount of the positive electrode active material that can be accommodated in the battery can with which the positive electrode sheet becomes bulky decreases, and the energy density of the battery decreases.

また、Li二次電池用正極シート電極のプレス圧力は4ton/cm以下が好ましく、3ton/cm以下がより好ましい。 Furthermore, the press pressure of the positive electrode sheet electrode for Li secondary batteries is preferably 4 ton / cm 2 or less, 3 ton / cm 2 or less being more preferred.

該圧力が高いとLi二次電池用正極活物質、導電材料および結着剤の構造が破壊され、材料として機能しなくなることがあるためである。   This is because when the pressure is high, the structure of the positive electrode active material for Li secondary battery, the conductive material, and the binder may be destroyed, and the material may not function as the material.

本発明のLi二次電池に用いる負極活物質としては、金属リチウム並びにリチウムまたはリチウムイオンを吸蔵放出可能な物質を用いることができる。例えば、金属リチウム、リチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金および電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が例示され、電気化学的にリチウムイオンを挿入・脱離することができる炭素材料が安全性および電池の特性の面から特に好適である。   As the negative electrode active material used in the Li secondary battery of the present invention, metallic lithium and a material capable of occluding and releasing lithium or lithium ions can be used. Examples include lithium metal, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, and carbon materials that can electrochemically insert and desorb lithium ions. A carbon material that can be desorbed is particularly preferable in terms of safety and battery characteristics.

また、本発明のLi二次電池で用いる電解質としても特に制限はなく、例えば、カーボネート類、スルホラン類、ラクトン類、エーテル顆等の有機溶媒中にリチウム塩を溶解したものや、リチウムイオン導電性の固体電解質を用いることができる。   The electrolyte used in the Li secondary battery of the present invention is not particularly limited. For example, a lithium salt dissolved in an organic solvent such as carbonates, sulfolanes, lactones, ether condyles, or lithium ion conductivity. The solid electrolyte can be used.

また、本発明のLi二次電池で用いるセパレーターとしては、特に制限はないが、例えば、ポリエチレンまたポリプロピレン製の微細多孔膜等を用いることができる。   Moreover, there is no restriction | limiting in particular as a separator used with the Li secondary battery of this invention, For example, the microporous film etc. made from polyethylene or a polypropylene can be used.

Li二次電池の正極材料として用いた場合の繰り返し充放電における安全性が高く、なおかつ高充填性、高電池性能であり、低コストな新規の正極活物質およびその製造方法、並びにその正極活物質を使用するLi二次電池を提供する。   New positive electrode active material having high safety in repeated charge / discharge when used as a positive electrode material for a Li secondary battery, high filling property, high battery performance, low cost, and production method thereof, and positive electrode active material thereof Li secondary battery using

本発明の複合酸化物は、高プレス密度でなお且つLi二次電池の正極として使用すると、高い放電容量及び高い放電容量維持率を示すLi二次電池が得られるため、Li二次電池用正極活物質として優れた電気化学的性能を発揮する。   When the composite oxide of the present invention has a high press density and is used as a positive electrode of a Li secondary battery, a Li secondary battery exhibiting a high discharge capacity and a high discharge capacity retention rate can be obtained. Exhibits excellent electrochemical performance as an active material.

実施例1〜4および比較例1〜2のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布における10μm以下の粒子の割合と2t/cmの圧力で加圧した場合のプレス密度の関係を表わすグラフである。Press density when pressed at a pressure of 2 t / cm 2 and a ratio of particles of 10 μm or less in the volume-based particle size distribution of the lithium-nickel-manganese-cobalt composite oxides of Examples 1-4 and Comparative Examples 1-2 It is a graph showing the relationship of. 実施例1のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布を表わすグラフである。2 is a graph showing a volume-based particle size distribution of the lithium-nickel-manganese-cobalt composite oxide of Example 1. FIG. 実施例2のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布を表わすグラフである。3 is a graph showing a volume-based particle size distribution of a lithium-nickel-manganese-cobalt composite oxide of Example 2. FIG. 実施例3のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布を表わすグラフである。4 is a graph showing a volume-based particle size distribution of a lithium-nickel-manganese-cobalt composite oxide of Example 3. FIG. 実施例4のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布を表わすグラフである。6 is a graph showing a volume-based particle size distribution of a lithium-nickel-manganese-cobalt composite oxide of Example 4. 比較例1のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布を表わすグラフである。4 is a graph showing a volume-based particle size distribution of a lithium-nickel-manganese-cobalt composite oxide of Comparative Example 1. 比較例2のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布を表わすグラフである。4 is a graph showing a volume-based particle size distribution of a lithium-nickel-manganese-cobalt composite oxide of Comparative Example 2.

次に、本発明を具体的な実施例で説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated with a specific Example, this invention is not limited to these Examples.

実施例および比較例において、粒度分布測定は、レーザー回折散乱型粒度分布測定装置(マイクロトラック9320HRA(X100)日機装株式会社)を用い、溶媒にメタノールを使用し、試料をメタノールに入れ、30秒間超音波分散を行った後測定した。   In Examples and Comparative Examples, the particle size distribution measurement is performed using a laser diffraction scattering type particle size distribution measuring device (Microtrack 9320HRA (X100) Nikkiso Co., Ltd.), using methanol as a solvent, putting a sample in methanol, and exceeding 30 seconds. Measurements were made after sonic dispersion.

実施例1
内容積12リットルの反応槽において、予め純水10リットルに窒素バブリングし、次に塩化ニッケル、塩化マンガン、塩化コバルトおよび塩化アンモニウムをNi:Mn:Co:NH3=0.5mol/kg:0.5mol/kg:0.5mol/kg:0.45mol/kgとした水溶液と3mol/kgの水酸化ナトリウム水溶液を反応槽内のpHを9に保ちつつ連続的に添加し、反応槽下部より連続的に共沈化合物スラリーを抜き出した。反応温度は60℃、平均滞在時間は5時間であった。
Example 1
In a reaction vessel having an internal volume of 12 liters, nitrogen bubbling was performed beforehand in 10 liters of pure water, and then nickel chloride, manganese chloride, cobalt chloride and ammonium chloride were added to Ni: Mn: Co: NH 3 = 0.5 mol / kg: 0.5 mol. / Kg: 0.5 mol / kg: 0.45 mol / kg aqueous solution and 3 mol / kg sodium hydroxide aqueous solution were continuously added while maintaining the pH in the reaction vessel at 9, and continuously from the bottom of the reaction vessel The coprecipitation compound slurry was extracted. The reaction temperature was 60 ° C. and the average residence time was 5 hours.

反応開始から20時間後から40時間後の抜き出し共沈化合物スラリーをろ過した後、純水で洗浄し、80℃で乾燥した。   The extracted coprecipitated compound slurry 20 hours to 40 hours after the start of the reaction was filtered, washed with pure water, and dried at 80 ° C.

乾燥した共沈化合物は、BET比表面積が5m/gであり、SEM観察像より幅1.0〜2.0μm,厚さ0.2〜0.3μmの板状結晶が凝集した、平均粒子径が10〜30μmの粒子であり、体積基準の粒度分布において、10μm以下の粒子の割合が3体積%であった。 The dried coprecipitated compound has a BET specific surface area of 5 m 2 / g, and average particles in which plate crystals having a width of 1.0 to 2.0 μm and a thickness of 0.2 to 0.3 μm are aggregated from the SEM observation image. The particle size was 10 to 30 μm, and the proportion of particles of 10 μm or less was 3% by volume in the volume-based particle size distribution.

得られた乾燥共沈化合物を体積基準の粒度分布において、10μm以下の粒子の割合が50体積%となるように粉砕した。   The obtained dry coprecipitated compound was pulverized so that the proportion of particles of 10 μm or less was 50% by volume in the volume-based particle size distribution.

当該粉砕乾燥共沈化合物を炭酸リチウムとヘンシェルミキサーにより撹拌混合し、空気流中940℃、12時間焼成し、複合酸化物を得た。得られた複合酸化物を純水で10%スラリーとした後、ろ過し、ろ液のpHが10.5になるまで繰り返して水洗した。その後、400℃、6時間乾燥を行った。   The pulverized and dried coprecipitated compound was stirred and mixed with lithium carbonate and a Henschel mixer, and calcined in an air stream at 940 ° C. for 12 hours to obtain a composite oxide. The obtained composite oxide was made into a 10% slurry with pure water, filtered, and repeatedly washed with water until the pH of the filtrate reached 10.5. Thereafter, drying was performed at 400 ° C. for 6 hours.

得られた複合酸化物のXRDパターンは単相で、組成はLi1.04[Ni0.32Mn0.32Co0.32]Oであり、S元素は検出されず、2t/cmの圧力で加圧した場合のプレス密度は3.56g/cmであり、高い充填性を示した。BET比表面積は0.6m/gであった。 The XRD pattern of the obtained composite oxide is a single phase, the composition is Li 1.04 [Ni 0.32 Mn 0.32 Co 0.32 ] O 2 , S element is not detected, and 2 t / cm 2 The press density when pressurized at a pressure of 3.56 g / cm 3 was high, indicating a high filling property. The BET specific surface area was 0.6 m 2 / g.

純水を添加して10wt%スラリーを構成した際の元素の溶出元素量は70ppmであった。また、平均粒子径は12μmであり、体積基準の粒度分布において、10μm以下の粒子の割合が40体積%であった。   The amount of element eluted when pure water was added to form a 10 wt% slurry was 70 ppm. The average particle size was 12 μm, and the proportion of particles of 10 μm or less was 40% by volume in the volume-based particle size distribution.

実施例2
実施例1で得られた乾燥共沈化合物の一部を粉砕して、平均粒子径が0.6μmの粉砕共沈物を得た。
Example 2
A part of the dry coprecipitation compound obtained in Example 1 was pulverized to obtain a pulverized coprecipitate having an average particle size of 0.6 μm.

未粉砕の該乾燥共沈物と該粉砕共沈物を重量比で未粉砕共沈物:粉砕共沈物=3:1で混合した。   The unground dry coprecipitate and the ground coprecipitate were mixed at a weight ratio of unground coprecipitate: ground coprecipitate = 3: 1.

得られた混合共沈化合物は、体積基準の粒度分布において、10μm以下の粒子の割合が22体積%であった。   In the obtained mixed coprecipitated compound, the ratio of particles of 10 μm or less was 22% by volume in the volume-based particle size distribution.

この混合乾燥共沈物を使用した以外は、実施例1と同じ条件で試料を調製した。   A sample was prepared under the same conditions as in Example 1 except that this mixed dry coprecipitate was used.

得られた複合酸化物は、XRDパターンが単相で、体積基準の粒度分布において、10μm以下の粒子の割合が26体積%であった。BET比表面積は0.5m/gであった。 The obtained composite oxide had a single phase XRD pattern, and the proportion of particles of 10 μm or less was 26 vol% in the volume-based particle size distribution. The BET specific surface area was 0.5 m 2 / g.

2t/cmの圧力で加圧した場合のプレス密度が3.43g/cmであり高い充填性を示した。 The press density when pressurized at a pressure of 2 t / cm 2 was 3.43 g / cm 3 , indicating a high filling property.

実施例3
実施例2において、未粉砕の該乾燥共沈物と該粉砕共沈物を重量比で未粉砕共沈物:粉砕共沈物=1:1で混合した以外は全て同じ条件で製造した。
Example 3
In Example 2, it was manufactured under the same conditions except that the unground dry coprecipitate and the ground coprecipitate were mixed at a weight ratio of unground coprecipitate: ground coprecipitate = 1: 1.

得られた混合共沈化合物は、体積基準の粒度分布において、10μm以下の粒子の割合が41体積%であった。   In the obtained mixed coprecipitated compound, the ratio of particles of 10 μm or less was 41% by volume in the volume-based particle size distribution.

また、得られた複合酸化物は、XRDパターンが単相で、体積基準の粒度分布において、10μm以下の粒子の割合が35体積%であった。BET比表面積は0.6m/gであった。 The obtained composite oxide had an XRD pattern of a single phase, and the proportion of particles of 10 μm or less was 35% by volume in the volume-based particle size distribution. The BET specific surface area was 0.6 m 2 / g.

2t/cmの圧力で加圧した場合のプレス密度が3.52g/cmであり高い充填性を示した。 When pressed at a pressure of 2 t / cm 2 , the press density was 3.52 g / cm 3 , indicating high fillability.

実施例4
実施例2において、未粉砕の該乾燥共沈物と該粉砕共沈物を重量比で未粉砕共沈物:粉砕共沈物=1:3で混合した以外は全て同じ条件で製造した。
Example 4
In Example 2, it was manufactured under the same conditions except that the unground dry coprecipitate and the ground coprecipitate were mixed at a weight ratio of unground coprecipitate: ground coprecipitate = 1: 3.

得られた混合共沈化合物は、体積基準の粒度分布において、10μm以下の粒子の割合が60体積%であった。   In the obtained mixed coprecipitated compound, the proportion of particles of 10 μm or less was 60% by volume in the volume-based particle size distribution.

また、得られた複合酸化物は、XRDパターンが単相で、体積基準の粒度分布において、10μm以下の粒子の割合が58体積%であった。BET比表面積は0.8m/gであった。 Further, the obtained composite oxide had a single phase XRD pattern, and the proportion of particles of 10 μm or less was 58% by volume in the volume-based particle size distribution. The BET specific surface area was 0.8 m 2 / g.

2t/cmの圧力で加圧した場合のプレス密度が3.47g/cmであり高い充填性を示した。 The press density when pressurized with a pressure of 2 t / cm 2 was 3.47 g / cm 3 , indicating a high filling property.

比較例1
実施例2において、該粉砕共沈物のみを使用した以外は全て同じ条件で製造した。
Comparative Example 1
In Example 2, all were manufactured on the same conditions except having used only this pulverization coprecipitate.

得られた混合共沈化合物は、体積基準の粒度分布において、10μm以下の粒子の割合が79体積%であった。   In the obtained mixed coprecipitated compound, the proportion of particles of 10 μm or less was 79% by volume in the volume-based particle size distribution.

また、得られた複合酸化物は、XRDパターンが単相で、体積基準の粒度分布において、10μm以下の粒子の割合が69体積%であった。BET比表面積は1.0m/gであった。 The obtained composite oxide had a single phase XRD pattern, and the proportion of particles of 10 μm or less in the volume-based particle size distribution was 69% by volume. The BET specific surface area was 1.0 m 2 / g.

2t/cmの圧力で加圧した場合のプレス密度が3.31g/cmであった。 The press density when pressed with a pressure of 2 t / cm 2 was 3.31 g / cm 3 .

比較例2
実施例1において、得られた乾燥共沈化合物を粉砕せず、そのまま使用した以外は、全て同じ条件で試料を調製した。
Comparative Example 2
In Example 1, samples were prepared under the same conditions except that the obtained dry coprecipitated compound was used without being pulverized.

乾燥した共沈化合物は、BET比表面積が5m/gであり、SEM観察像より幅1.0〜2.0μm,厚さ0.2〜0.3μmの板状結晶が凝集した、平均粒子径が10〜30μmの粒子であり、体積基準の粒度分布において、10μm以下の粒子の割合が3体積%であった。 The dried coprecipitated compound has a BET specific surface area of 5 m 2 / g, and average particles in which plate crystals having a width of 1.0 to 2.0 μm and a thickness of 0.2 to 0.3 μm are aggregated from the SEM observation image. The particle size was 10 to 30 μm, and the proportion of particles of 10 μm or less was 3% by volume in the volume-based particle size distribution.

得られた複合酸化物のXRDパターンは単相で、組成はLi1.04[Ni0.32Mn0.32Co0.32]Oであり、S元素は検出されず、2t/cmの圧力で加圧した場合のプレス密度は3.28g/cmであり、充填性は低かった。BET比表面積は0.3m/g、タップ嵩密度が2.4g/cmであった。 The XRD pattern of the obtained composite oxide is a single phase, the composition is Li 1.04 [Ni 0.32 Mn 0.32 Co 0.32 ] O 2 , S element is not detected, and 2 t / cm 2 The press density when pressed at a pressure of 3.28 g / cm 3 was low, and the fillability was low. The BET specific surface area was 0.3 m 2 / g, and the tap bulk density was 2.4 g / cm 3 .

純水を添加して10wt%スラリーを構成した際の元素の溶出元素量は70ppmであった。   The amount of element eluted when pure water was added to form a 10 wt% slurry was 70 ppm.

また、平均粒子径は17μmであり、体積基準の粒度分布において、10μm以下の粒子の割合が5体積%であった。   The average particle size was 17 μm, and the proportion of particles of 10 μm or less was 5% by volume in the volume-based particle size distribution.

比較例3
比較例2において、焼成条件を1000℃、12時間とした以外は全て同じ条件で試料を調製した。
Comparative Example 3
In Comparative Example 2, samples were prepared under the same conditions except that the firing conditions were 1000 ° C. and 12 hours.

得られた複合酸化物、2t/cmの圧力で加圧した場合のプレス密度は3.48g/cmであり、充填性は高かった。BET比表面積は0.3m/g、タップ嵩密度が2.5g/cmであった。 When the obtained composite oxide was pressed at a pressure of 2 t / cm 2 , the press density was 3.48 g / cm 3 and the filling property was high. The BET specific surface area was 0.3 m 2 / g, and the tap bulk density was 2.5 g / cm 3 .

また、平均粒子径は19μmであり、体積基準の粒度分布において、10μm以下の粒子の割合が1体積%であった。   Further, the average particle diameter was 19 μm, and in the volume-based particle size distribution, the proportion of particles of 10 μm or less was 1% by volume.

[電池評価試験]
初期放電容量および強放電特性
実施例及び比較例で得られた正極材料を、導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB−2)と重量比で2:1の割合で混合し、1ton/cmの圧力でメッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し電池用正極を作製した。得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、およびエチレンカーボネートとジエチルカーボネートとの混合溶媒に六フッ化リン酸リチウムを1mol/dmの濃度で溶解した電解液を用いてCR2032型コインセルを構成した。
[Battery evaluation test]
Initial discharge capacity and strong discharge characteristics The positive electrode materials obtained in the examples and comparative examples were mixed at a ratio of 2: 1 by weight with a mixture of polytetrafluoroethylene and acetylene black (trade name: TAB-2) as a conductive agent. And formed into a pellet on a mesh (manufactured by SUS316) at a pressure of 1 ton / cm 2 , and then dried under reduced pressure at 150 ° C. to prepare a battery positive electrode. Electrolysis in which lithium hexafluorophosphate was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / dm 3 in the obtained positive electrode for a battery, a negative electrode comprising a metal lithium foil (thickness 0.2 mm), and A CR2032-type coin cell was constructed using the liquid.

この電池を用いて定電流で電池電圧が4.5Vから2.5Vの間で30回充放電させサイクル特性評価を行い、1回目の平均放電電圧に対する30回目の平均放電電圧の比率を放電電圧維持率とし、1回目の放電容量に対する30回目の放電容量の比率を放電容量維持率とした。電流密度は0.75mA/cm、温度は23℃とした。初期放電容量、放電電圧維持率及び放電容量維持率を以下の表1に示す。 Using this battery, the battery voltage was charged and discharged 30 times with a constant current between 4.5 V and 2.5 V, and cycle characteristics were evaluated. The ratio of the 30th average discharge voltage to the first average discharge voltage was determined as the discharge voltage. The ratio of the 30th discharge capacity to the first discharge capacity was defined as the discharge capacity maintenance ratio. The current density was 0.75 mA / cm 2 and the temperature was 23 ° C. The initial discharge capacity, discharge voltage maintenance rate, and discharge capacity maintenance rate are shown in Table 1 below.

Figure 2012121805
Figure 2012121805

この表から本願発明の実施例においては、高いプレス密度、高い放電容量、且つ、高い放電容量維持率が得られた。   From this table, in the examples of the present invention, a high press density, a high discharge capacity, and a high discharge capacity retention rate were obtained.

又、図1に実施例1〜4および比較例1〜2のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布における10μm以下の粒子の割合と2t/cmの圧力で加圧した場合のプレス密度の関係を示す。 1 is pressed at a ratio of particles of 10 μm or less and a pressure of 2 t / cm 2 in the volume-based particle size distribution of the lithium-nickel-manganese-cobalt composite oxides of Examples 1-4 and Comparative Examples 1-2. The relationship of the press density in the case of doing.

この図から、10μm以下の粒子の割合が10〜70体積%の範囲でプレス密度が上昇し、26〜60体積%の範囲で特に高いことが明らかである。   From this figure, it is clear that the press density increases when the proportion of particles of 10 μm or less is in the range of 10 to 70% by volume, and is particularly high in the range of 26 to 60% by volume.

実施例1〜4および比較例1〜2のリチウム−ニッケル−マンガン−コバルト複合酸化物の体積基準の粒度分布を表わすグラフを図2〜図7に示す。   2 to 7 show graphs representing the volume-based particle size distributions of the lithium-nickel-manganese-cobalt composite oxides of Examples 1-4 and Comparative Examples 1-2.

Claims (4)

プレス密度が3.47〜4.5g/cmであり、体積基準の粒度分布において、10μm以下の粒子の割合が26〜60体積%であるリチウム−ニッケル−マンガン−コバルト複合酸化物。 A lithium-nickel-manganese-cobalt composite oxide having a press density of 3.47 to 4.5 g / cm 3 and a ratio of particles of 10 μm or less in a volume-based particle size distribution of 26 to 60% by volume. 下記化学式で示される組成
Li1+aNiMnCo(但し、MはNi,Mn,Co及びLi以外の金属)
a+b+c+d=1
0<a≦0.2
0.2≦b/(b+c+d)≦0.4
0.2≦c/(b+c+d)≦0.4
0<d/(b+c+d)≦0.4
なおかつBET比表面積が0.05〜1.0m/gである請求項1に記載のリチウム−ニッケル−マンガン−コバルト複合酸化物。
Composition represented by the following chemical formula: Li 1 + a Ni b Mn c Co d O 2 (where M is a metal other than Ni, Mn, Co and Li)
a + b + c + d = 1
0 <a ≦ 0.2
0.2 ≦ b / (b + c + d) ≦ 0.4
0.2 ≦ c / (b + c + d) ≦ 0.4
0 <d / (b + c + d) ≦ 0.4
The lithium-nickel-manganese-cobalt composite oxide according to claim 1, wherein the BET specific surface area is 0.05 to 1.0 m 2 / g.
請求項1又は2記載のリチウム−ニッケル−マンガン−コバルト複合酸化物からなるLi二次電池用正極活物質。   A positive electrode active material for a Li secondary battery comprising the lithium-nickel-manganese-cobalt composite oxide according to claim 1. 正極活物質が請求項1又は2記載のリチウム−ニッケル−マンガン−コバルト複合酸化物からなるLi二次電池。   A Li secondary battery comprising the lithium-nickel-manganese-cobalt composite oxide according to claim 1 or 2, wherein the positive electrode active material.
JP2012055806A 2012-03-13 2012-03-13 Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof Active JP5626245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055806A JP5626245B2 (en) 2012-03-13 2012-03-13 Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055806A JP5626245B2 (en) 2012-03-13 2012-03-13 Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006186658A Division JP5228292B2 (en) 2006-07-06 2006-07-06 A method for producing a lithium-nickel-manganese-cobalt composite oxide.

Publications (2)

Publication Number Publication Date
JP2012121805A true JP2012121805A (en) 2012-06-28
JP5626245B2 JP5626245B2 (en) 2014-11-19

Family

ID=46503663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055806A Active JP5626245B2 (en) 2012-03-13 2012-03-13 Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP5626245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245284A1 (en) * 2018-06-20 2019-12-26 주식회사 엘지화학 Cathode active material for lithium secondary battery and lithium secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182564A (en) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd Lithium cobaltate, manufacturing method of the same and non-aqueous electrolyte secondary battery
JP2004220897A (en) * 2003-01-14 2004-08-05 Seimi Chem Co Ltd Positive electrode active substance powder for lithium secondary battery
WO2005020354A1 (en) * 2003-08-21 2005-03-03 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JP2005089225A (en) * 2003-09-16 2005-04-07 Seimi Chem Co Ltd Production method of lithium-nickel-cobalt-manganese-aluminum-containing complex oxide
JP2006302542A (en) * 2005-04-15 2006-11-02 Seimi Chem Co Ltd Manufacturing method of lithium-containing composite oxide for lithium secondary battery positive electrode
JP2007095571A (en) * 2005-09-29 2007-04-12 Seimi Chem Co Ltd Manufacturing method of lithium-contained complex oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182564A (en) * 2002-12-05 2004-07-02 Nippon Chem Ind Co Ltd Lithium cobaltate, manufacturing method of the same and non-aqueous electrolyte secondary battery
JP2004220897A (en) * 2003-01-14 2004-08-05 Seimi Chem Co Ltd Positive electrode active substance powder for lithium secondary battery
WO2005020354A1 (en) * 2003-08-21 2005-03-03 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JP2005089225A (en) * 2003-09-16 2005-04-07 Seimi Chem Co Ltd Production method of lithium-nickel-cobalt-manganese-aluminum-containing complex oxide
JP2006302542A (en) * 2005-04-15 2006-11-02 Seimi Chem Co Ltd Manufacturing method of lithium-containing composite oxide for lithium secondary battery positive electrode
JP2007095571A (en) * 2005-09-29 2007-04-12 Seimi Chem Co Ltd Manufacturing method of lithium-contained complex oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245284A1 (en) * 2018-06-20 2019-12-26 주식회사 엘지화학 Cathode active material for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP5626245B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP5172835B2 (en) Lithium-containing composite oxide powder and method for producing the same
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US8066915B2 (en) Composite carbonate and method for producing the same
JP4788579B2 (en) Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2003059490A (en) Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP2013193888A (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2016103477A (en) Positive electrode material for sodium secondary battery
JP2021501980A (en) Manufacturing method of positive electrode active material
JP2015122269A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
CN111403729A (en) Sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
JP2013131437A (en) Positive electrode composition for nonaqueous electrolyte secondary battery and method for producing positive electrode slurry for nonaqueous electrolyte secondary battery
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6910697B2 (en) Manufacturing method of positive electrode active material
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP6988370B2 (en) Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
JP5626245B2 (en) Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R151 Written notification of patent or utility model registration

Ref document number: 5626245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151