JP2004220897A - Positive electrode active substance powder for lithium secondary battery - Google Patents

Positive electrode active substance powder for lithium secondary battery Download PDF

Info

Publication number
JP2004220897A
JP2004220897A JP2003006159A JP2003006159A JP2004220897A JP 2004220897 A JP2004220897 A JP 2004220897A JP 2003006159 A JP2003006159 A JP 2003006159A JP 2003006159 A JP2003006159 A JP 2003006159A JP 2004220897 A JP2004220897 A JP 2004220897A
Authority
JP
Japan
Prior art keywords
lithium
powder
composite oxide
positive electrode
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003006159A
Other languages
Japanese (ja)
Other versions
JP4276442B2 (en
Inventor
Manabu Kazuhara
学 数原
Takashi Saito
尚 斎藤
Kazushige Horichi
和茂 堀地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2003006159A priority Critical patent/JP4276442B2/en
Publication of JP2004220897A publication Critical patent/JP2004220897A/en
Application granted granted Critical
Publication of JP4276442B2 publication Critical patent/JP4276442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide lithium-cobalt composite oxide powder for a positive electrode of a lithium secondary battery having a high volume capacity density, high safety, and excellent charging-discharging cycle durability. <P>SOLUTION: The lithium-cobalt composite oxide powder is expressed by a formula Li<SB>p</SB>Co<SB>x</SB>M<SB>y</SB>O<SB>z</SB>F<SB>a</SB>where M is a transition metal element other than Co or an alkaline-earth element, 0.9≤p≤1.1, 0.980≤x≤1.000, 0≤y≤0.02, 1.9≤z≤2.1, x+y=1, and 0≤a≤0.02. The lithium-cobalt composite oxide powder is flocculated particulate composite oxide powder which is formed by flocculating a number of particulates and has a mean particle size D50 of 5 to 20 μm and a powder compression failure strength of 40 MPa or more. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、体積容量密度が大きく、安全性が高く、かつ充放電サイクル耐久性に優れた、リチウム二次電池正極用リチウムコバルト複合酸化物粉末、該リチウムコバルト複合酸化物粉末を含むリチウム二次電池用正極、及びリチウム二次電池に関する。
【従来技術】
【0002】
近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有するリチウム二次電池などの非水電解液二次電池に対する需要がますます高まっている。かかる非水電解液二次電池用の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMn、LiMnOなどのリチウムと遷移金属の複合酸化物が知られている。
【0003】
なかでも、リチウムコバルト複合酸化物(LiCoO)を正極活物質として用い、リチウム合金、グラファイト、カーボンファイバーなどのカーボンを負極として用いたリチウム二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。
【0004】
しかしながら、LiCoOを正極活物質として用いた非水系二次電池の場合、正極電極層の単位体積当たりの容量密度及び安全性の更なる向上が望まれるとともに、充放電サイクルを繰り返し行うことにより、その電池放電容量が徐々に減少するというサイクル特性の劣化、重量容量密度の問題、あるいは低温での放電容量低下が大きいという問題などがあった。
【0005】
これらの問題の一部を解決するために、特許文献1には、正極活物質であるLiCoOの平均粒径を3〜9μm、及び粒径3〜15μmの粒子群の占める体積を全体積の75%以上とし、かつCuKαを線源とするX線回折によって測定される2θ=約19°と45°回折ピーク強度比を特定値とすることにより、塗布特性、自己放電特性、サイクル性に優れた活物質とすることが提案されている。更に、該公報には、LiCoOの粒径が1μm以下又は25μm以上の粒径分布を実質的に有さないものが好ましい態様として提案されている。しかし、かかる正極活物質では、塗布特性ならびにサイクル特性は向上するものの、安全性、体積容量密度、重量容量密度を充分に満足するものは得られていない。
【0006】
また、正極の重量容量密度と充放電サイクル性を改良するために、特許文献2には、リチウム複合酸化物粒子の平均粒径が0.1〜50μmであり、かつ、粒度分布にピークが2個以上存在する正極活物質が提案されている。また併せて平均粒径の異なる2種の正極活物質を混合して粒度分布にピークが2個以上存在する正極活物質とすることも提案されている。かかる提案においては正極の重量容量密度と充放電サイクル性が改善される場合もあるが、2種類の粒径分布を有する正極原料粉末を製造する煩雑さがあるとともに、正極の体積容量密度、安全性、塗工均一性、重量容量密度、サイクル性のいずれをも満足するものは得られていない。
【0007】
また、電池特性に関する課題を解決するために、特許文献3にCo原子の5〜35%をW、Mn、Ta、Ti又はNbで置換することがサイクル特性改良のために提案されている。また、特許文献4には、格子定数のc軸長が14.051Å以下であり、結晶子の(110)方向の結晶子径が45〜100nmである、六方晶系のLiCoOを正極活物質とすることによりサイクル特性を向上させることが提案されている。
【0008】
更に、特許文献5には、式 LiNi1−y−zCoMe(式中、0<x<1.1、0<y≦0.6、0≦z≦0.6である。)を有し、微粉末が凝集した凝集粒状リチウム複合酸化物であって、一粒当りの圧縮強度が0.1〜1.0gfである粒子状リチウム複合酸化物が提案されている。しかし、該複合酸化物にはニッケルを含むために安全性が乏しくかつ大電流放電特性が劣る問題があるとともに、上記のような小さい範囲の圧縮強度では、体積容量密度、安全性、サイクル特性、大電流放電特性などの点において充分に満足する特性を有するリチウム複合酸化物を得ることはできない。
【0009】
【従来技術】
【特許文献1】特開平6−243897号公報
【特許文献2】特開2000−82466号公報
【特許文献3】特開平3−201368号公報
【特許文献4】特開平10−312805号公報
【特許文献5】特開2001−80920号公報
【0010】
【発明が解決しようとする課題】
上記のように、従来の技術では、リチウム複合酸化物を正極活物質に用いたリチウム二次電池において、体積容量密度、安全性、サイクル特性、大電流放電特性、更には低温特性などの特性を充分に満足するものは未だ得られていない。本発明は、これらの従来技術では達成が困難であったこれらの特性を満足する、リチウム二次電池正極用リチウムコバルト複合酸化物粉末、該リチウムコバルト複合酸化物粉末を含む、リチウム二次電池用正極及びリチウム二次電池の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明者は鋭意研究を進めたところ、リチウム二次電池正極用の特定組成を有するリチウムコバルト複合酸化物の微粒子が多数凝集して形成され、特定の平均粒子径を有する凝集粒状複合酸化物粉末の圧縮破壊強度と該粉末を使用したリチウム二次電池用正極の体積容量密度との関係に注目し、両者が正の相関関係にあることを見出した。即ち、上記粉末の圧縮破壊強度が大きいほど、得られる正極が大きい体積容量密度が得られることを見出した。しかもかかる正極の大きい体積容量密度は、体積容量密度、安全性、サイクル特性、大電流放電特性などの正極が必要とする他の特性を損なうことなく達成されることも確認された。
【0012】
かくして本発明では、上記凝集粒状複合酸化物粉末の圧縮破壊強度を従来にないような大きくすることにより、体積容量密度が大きく、かつ安全性、サイクル特性、大電流放電特性、更には低温特性などの特性を充分に満足するリチウム二次電池正極用リチウムコバルト複合酸化物を得ることができる。
【0013】
本発明で見出された、上記した圧縮破壊強度と正極の体積容量密度との関係はニッケル成分を必須とする点で組成は異なるが、特許文献5に記載されるように、高い重量当りの初期放電容量や容量保持率を得るためにリチウム二次電池正極用のリチウムコバルト複合酸化物粉末の圧縮強度は所定範囲内に制御し、所定以上に大きくしてはならないとする従来の技術とは相反するものであり、新規な技術思想である。
【0014】
かくして、本発明は、下記の特徴を有する。
(1)一般式、 LiCo(但し、MはCo以外の遷移金属元素またはアルカリ土類金属元素である。0.9≦p≦1.1、0.980≦x≦1.000、0≦y≦0.02、1.9≦z≦2.1、x+y=1、0≦a≦0.02)で表されるチウムコバルト複合酸化物の微粒子が多数凝集して形成された、平均粒子径D50が5〜20μmの凝集粒状複合酸化物粉末であり、粉末の圧縮破壊強度が40MPa以上であることを特徴とするリチウム二次電池用リチウムコバルト複合酸化物粉末。
(2)粉末の比表面積が0.3〜0.7m/gであり、CuKαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク半値幅が0.07〜0.14°であり、かつプレス密度が3.5g/cm以上である上記(1)に記載のリチウムコバルト複合酸化物粉末。
(3)含有される残存アルカリ量が0.03質量%以下である上記(1)または(2)に記載のリチウムコバルト複合酸化物粉末。
(4)粉末の圧縮破壊強度が50〜120MPaである上記(1)、(2)または(3)に記載のリチウムコバルト複合酸化物粉末。
(5)平均粒子径D50が10〜15μmである上記(1)〜(4)のいずれかに記載のリチウムコバルト複合酸化物粉末。
(6)上記(1)〜(5)のいずれかに記載のリチウムコバルト複合酸化物を含むリチウム二次電池用正極。
(7)上記(6)に記載された正極を使用したリチウム二次電池。
【0015】
本発明で何故にリチウムコバルト複合酸化物粉末の圧縮破壊強度を大きくすることにより正極の体積容量密度を大きくできるかの理由については必ずしも明らかではないが、ほぼ次のように推察される。リチウムコバルト複合酸化物凝集体粉末を圧密化して正極を形成する際、該粉末の圧縮破壊強度が高いと、圧密化際の圧縮応力エネルギーが粉末の破壊に使用されないため、圧縮応力が個々の粉末にそのまま作用する結果、粉末を構成する粒子同士の滑りによる高充填化が達成できる。一方、粉末の圧縮破壊強度が低いと圧縮応力エネルギーが粉末の破壊に使用される結果、個々の粉末を形成する粒子にかかる圧力が低下し、粒子同士の滑りによる圧密化が起こりにくいため、正極密度の向上が図れないと思われる。
【0016】
【発明の実施の形態】
本発明のリチウム二次電池正極用のリチウムコバルト複合酸化物粉末は、一般式LiCoで表される。かかる一般式における、M、p、x、y、z及びaは上記に定義される。なかでも、p、x、y、z及びaは下記が好ましい。0.97≦p≦1.03、0.990≦x≦1.0、0.0005≦y≦0.01、1.95≦z≦2.05、x+y=1、0.0001≦a≦0.01。ここで、aが0より大きいときには、酸素原子の一部がフッ素原子が置換された複合酸化物になるが、この場合には、得られた正極活物質の安全性が向上する。
【0017】
また、Mは、Coを除く遷移金属元素又はアルカリ土類金属であり、該遷移金属元素は周期表の4族、5族、6族、7族、8族、9族、10族及び11族の遷移金属を表す。なかでも、Mは、Ti、Zr、Hf、V、Nb、Ta、Mn、Mg、Ca、Sr、Ba、及びAlからなる群から選ばれる少なくとも1つの元素が選択される。なかでも、容量発現性、安全性、サイクル耐久性などの見地より、Ti、Zr、Hf、Mg又はAlが好ましい。
【0018】
本発明において、上記Mおよび/またはFを含有せしめる場合は、M及びFのいずれもコバルト酸リチウム粒子の表面に存在していることが好ましい。粒子の内部に存在していると、電池特性の改良効果が小さいのみならず、電池特性が低下する場合があるので好ましくない。表面に存在することにより、少量の添加で電池性能の低下を招来することなく、安全性、充放電サイクル特性等の重要な電池特性を改良できる。M及びFが表面に存在するか否かは正極粒子について、分光分析例えば、XPS分析を行うことにより判断できる。
【0019】
本発明のリチウムコバルト複合酸化物は、上記一般式で表わされる微粒子が多数凝集して形成された粒状粉末であることが必要である。上記微粒子は、特には限定されないが、その平均粒子径D50が0.5〜7μmが好ましい。そして、該微粒子が多数凝集して形成された複合酸化物粉末の平均粒子径D50は5〜20μmが好ましく、さらに10〜15μmが好ましい。複合酸化物粉末の平均粒子径が5μmよりも小さいと緻密な電極層を形成しにくくなり、逆に20μmよりも大きいと大電流放電特性が低下し好ましくない。
【0020】
また、本発明の凝集粒状複合酸化物の粉末は、圧縮破壊強度(以下では、単に圧縮強度ともいう。)として、40MPa以上有することが必要である。かかる圧縮強度(St)は、下記数式1に示す平松らの式(「日本鉱業会誌」81巻、932号1965年12月号、1024〜1030ページ)により求めた値である。
(数式1) St=2.8P/πd(d:粒子径、P:粒子にかかった荷重)
上記の凝集粒状複合酸化物の圧縮強度が40MPaよりも小さい場合には、緻密な電極層を形成しにくく、本発明の上記した目的が達成することはできない。なかでも、該圧縮強度は、50〜120MPaが特に好適である。
【0021】
さらに、本発明のリチウムコバルト複合酸化物は、比表面積が好ましくは0.3〜0.7m/g、特に好ましくは0.4〜0.6m/gであり、CuKαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク半値幅が好ましくは0.07〜0.14°特に好ましくは0.08〜0.12°であり、かつプレス密度が好ましくは3.5g/cm以上であるのが好適である。リチウムコバルト複合酸化物がかかる物性を満たすことにより、特に、高容量、高サイクル耐久性、高安全性などの効果が達成される。なお、本発明におけるプレス密度は、特に断りのない限り、粒子粉末を1.91t/cmの圧力でプレス圧縮したときの見かけの密度をいう。
また、本発明のリチウムコバルト複合酸化物に含有される残存アルカリ量が0.03質量%以下が好ましく、特には0.01質量%以下であるのが好適である。
【0022】
本発明のリチウムコバルト複合酸化物は、コバルト源、リチウム源及び必要に応じて使用されるM元素源及びフッ素源の混合物を酸素含有雰囲気下において700〜1050℃で焼成される。コバルト源としては、好ましくは、オキシ水酸化コバルト、水酸化コバルト、酸化コバルトが用いられ、リチウム源としては、好ましくは、炭酸リチウム、水酸化リチウムが用いられる。焼成温度が、700℃より小さい場合にはリチウム化が不完全となり、逆に1050℃を超える場合には充放電サイクル耐久性や初期容量が低下してしまう。特に、焼成温度は900〜1000℃が好適である。焼成は多段で行うことが好ましい。好ましい例として、700℃で数時間焼成し、900〜1000℃で数時間焼成される。
【0023】
本発明で、上記のコバルト源を使用してリチウムコバルト複合酸化物を製造する場合、リチウム源としては、炭酸リチウムが使用されることが好ましい。リチウム源として炭酸リチウムした場合には、例えば水酸化リチウムを使用した場合に比べて、低コストになり本発明の所望とする安価で高性能のリチウムコバルト複合酸化物が容易に得られるので好ましい。一方、必要に応じて使用される元素Mの原料としては好ましくは、水酸化物、酸化物、炭酸塩、フッ化物が選択される。フッ素源としては、金属フッ化物、LiF、MgF などが選択される。コバルト源、リチウム源、元素Mの原料及びフッ素源の混合粉体を上記のように700〜1050℃で酸素含有雰囲気で5〜20時間焼成処理し、得られた焼成物を冷却後、粉砕、分級することにより、好ましくは0.5〜7μmのリチウムコバルト複合酸化物の微粒子が凝縮した凝集粒状複合酸化物粉末が形成される。この場合、コバルト源の性状、リチウム化の焼成温度、焼成時間などの条件を選択することにより、形成される凝集粒状複合酸化物粉末の平均粒子径や圧縮強度を制御することができる。
【0024】
かかるリチウムコバルト複合酸化物からリチウム二次電池用の正極を製造する場合には、かかる複合酸化物の粉末に、アセチレンブラック、黒鉛、ケッチエンブラックなどのカーボン系導電材と結合材を混合することにより形成される。上記結合材には、好ましくは、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂などが用いられる。
【0025】
本発明のリチウムコバルト複合酸化物の粉末、導電材及び結合材を溶媒又は分散媒を使用し、スラリー又は混練物とし、これをアルミニウム箔、ステンレス箔などの正極集電体に塗布などにより担持せしめてリチウム二次電池用の正極が製造される。
【0026】
本発明のリチウムコバルト複合酸化物を正極活物質に用いるリチウム二次電池において、セパレータとしては、多孔質ポリエチレン、多孔質ポリプロピレンのフィルムなどが使用される。また、電池の電解質溶液の溶媒としては、種々の溶媒が使用できるが、なかでも炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)などが例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、メチルイソプロピルカーボネートなどが例示される。
【0027】
本発明では、上記炭酸エステルを単独で又は2種以上を混合して使用できる。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。
【0028】
また、本発明のリチウムコバルト複合酸化物を正極活物質に用いるリチウム二次電池においては、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えばアトケム社製:商品名カイナー)あるいはフッ化ビニリデン−パーフルオロプロピルビニルエーテル共重合体を含むゲルポリマー電解質としても良い。上記の電解質溶媒又はポリマー電解質に添加される溶質としては、ClO−、CFSO−、BF−、PF−、AsF−、SbF−、CFCO−、(CFSON−などをアニオンとするリチウム塩のいずれか1種以上が好ましく使用される。上記リチウム塩からなる電解質溶媒又はポリマー電解質対して、0.2〜2.0mol/l(リットル)の濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。なかでも、0.5〜1.5mol/lが特に好ましい。
【0029】
本発明のリチウムコバルト複合酸化物を正極活物質に用いるリチウム電池において、負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、または15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物などが挙げられる。炭素材料としては、種々の熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛などを使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔などが用いられる。かかる負極は、上記活物質を有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布、乾燥、プレスして得ることにより好ましくは製造される。
【0030】
本発明のリチウムコバルト複合酸化物を正極活物質に用いるリチウム電池の形状には特に制約はない。シート状、フイルム状、折り畳み状、巻回型有底円筒形、ボタン形などが用途に応じて選択される。
【0031】
【実施例】
以下に実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。なお、下記において、例1、例2、例4〜8は本発明の実施例であり、例3及び例9は比較例である。
【0032】
[例1]
硫酸コバルト水溶液と水酸化アンモニウムの混合液と苛性ソーダ水溶液を連続的に混合して、連続的に水酸化コバルトスラリーを公知の方法により合成し、凝集、ろ過および乾燥工程を経て水酸化コバルト粉体を得た。この水酸化コバルトは、走査型電子顕微鏡観察の結果、不定形の微粒子が凝集して、略球状の二次粒子から形成されていることが判った。走査型電子顕微鏡観察の画像解析から求めた体積基準の粒度分布解析の結果、平均粒径D50が17.3μm、D10が7.4μm、D90が26.8μmであった。
【0033】
この二次粒子を純水中に分散させたところ、容易に二次粒子が崩壊して、一次粒子を主体とする懸濁液を形成したことから、この二次粒子の凝集力は弱いことが判った。またこの二次粒子粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、平均粒径D50が0.76μm、D10が0.33μm、D90が1.5μmであり、測定後のスラリーを乾燥し、走査型電子顕微鏡観察の結果、測定前の二次粒子形状は認められなかった。二次粒子からなる水酸化コバルト粒子の比表面積は17.2m/gであり、1次粒子が弱く凝集してなる略球状の水酸化コバルト粉末であった。
【0034】
この水酸化コバルトと、比表面積が1.2m/gの炭酸リチウム粉末とを混合した。これら2種の粉末を乾式混合した後、空気中、700℃で5時間焼成後、950℃で12時間焼成した。焼成物を解砕することにより粒子径1〜5μmの微粒子が数十ないし百数十個凝集してなる略球状のLiCoO粉末を得た。この粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、平均粒径D50が14.4μm、D10が5.3μm、D90が17.0μmであり、BET法により求めた比表面積が0.53m/gの略球状のLiCoO粉末を得た。得られたLiCoO粉末について、島津製作所の微小圧縮試験機 MCT−W500を用いて圧縮強度を測定した。即ち、試験荷重を100mN、負荷速度3.874mN/secとし、直径50μmの平面タイプの圧子を用いて、粒径既知の任意の粒子10個について測定を行い、圧縮強度を求めた結果70MPaであった。
【0035】
上記LiCoO粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.098°であった。LiCoO粉末のプレス密度は3.71g/cmであった。LiCoO粉末10gを純水100g中に分散し、ろ過後0.1NのHClで電位差測定して残存アルカリ量を求めたところ、0.02重量%であった。
【0036】
上記のLiCoO粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N−メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。乾燥し、ロールプレスで5回圧延することによりリチウム電池用の正極体シートを作製した。
【0037】
そして、上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF/EC+DEC(1:1)溶液(LiPFを溶質とするECとDECとの質量比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で2個組み立てた。
【0038】
上記1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。さらに電極層の密度と重量当たりの容量から体積容量密度を求めた。また、この電池について、引き続き充放電サイクル試験を30回行なった。その結果、25℃、2.5〜4.3Vにおける正極電極層の初期体積容量密度は、453mAh/cm電極層であり、初期重量容量密度は、161mAh/g−LiCoOであり、30回充放電サイクル後の容量維持率は97.2%であった。
【0039】
また、残りの電池については、それぞれ4.3Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シートを洗滌後、径3mmに打ち抜き、ECとともにアルミカプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、4.3V充電品の発熱開始温度は165℃であった。
【0040】
[例2]
例1において合成した水酸化コバルトを大気中600℃で4時間焼成して、四三酸化コバルト粉末を合成し、水酸化コバルトの替わりにこの四三酸化コバルト粉末を用いたほかは例1と同様にして、粒子径2〜5μmの微粒子の一次粒子が数十個凝集してなる略球状のLiCoO粉末を合成した。LiCoOは、平均粒径D50が14.7μm、D10が5.8μm、D90が20.0μmであり、BET法により求めた比表面積が0.51m/gのLiCoO粉末を得た。例1と同様にして粒子の圧縮強度を求めたところ86MPaであった。
【0041】
このLiCoO粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.110°であった。得られたLiCoO粉末のプレス密度は3.84g/cmであった。また、残存アルカリ量は0.02重量%であった。その結果、例1と同様にして求められた、25℃、2.5〜4.3Vにおける正極電極層の初期体積容量密度は、468mAh/cm電極層であり、初期重量容量密度は、163mAh/g−LiCoOであり、30回充放電サイクル後の容量維持率は97.4%であった。また、4.3V充電品の発熱開始温度は164℃であった。
【0042】
[例3]
市販の四三酸化コバルトをコバルト源とした他は例1と同様にして、粒子径が3〜7μmの微粒子の一次粒子が数個〜数十個凝集してなる塊状のLiCoO粉末を合成した。酸化コバルトと炭酸リチウムの混合比は焼成後LiCoOとなるように配合した。レーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、LiCoOの平均粒径D50が10.1μm、D10が3.0μm、D90が15.3μmであり、BET法により求めた比表面積が0.46m/gであるLiCoO粉末を得た。また、残存アルカリ量は0.01重量%であった。例1と同様にして粒子の圧縮強度を求めたところ5.8MPaであった。
【0043】
LiCoO粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.111°であった。得られたLiCoO粉末のプレス密度は3.24g/cmであった。その結果、例1と同様にして求められた、25℃、2.5〜4.3Vにおける正極電極層の初期体積容量密度は、402mAh/cm電極層であり、初期重量容量密度は、158XmAh/g−LiCoOであり、30回充放電サイクル後の容量維持率は96.1%であった。また、4.3V充電品の発熱開始温度は155℃であった。
【0044】
[例4]
例1において、水酸化コバルトと炭酸リチウムを混合するにあたり、更に水酸化アルミニウム粉末とフッ化リチウム粉末を添加した他は例1と同様にして正極活物質を合成した。元素分析の結果、LiCo0.997Al0.0031.9980.002であった。その焼成物を解砕し得られた、一次粒子が凝集してなる略球状の二次粒子からなる粉末の粒度分布をレーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、平均粒径D50が13.1μm、D10が5.3μm、D90が17.3μmであり、BET法により求めた比表面積が0.50m/gの略球状のLiCoO粉末を得た。例1と同様にして求めた該粉末の圧縮強度は69MPaであった。
【0045】
上記粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.100°であった。また、上記粉末のプレス密度は3.70g/cmであった。分光分析により調べた結果、アルミニウムとフッ素は表面に局在していた。この残存アルカリ量は0.02重量%であった。
【0046】
上記のLiCo0.997Al0.0031.9980.002粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N−メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。乾燥し、ロールプレス圧延することによりリチウム電池用の正極体シートを作製した。
【0047】
そして、上記正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF/EC+DEC(1:1)溶液(LiPFを溶質とするECとDECとの質量比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる。)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で2個組み立てた。
【0048】
上記1個の電池については、25℃にて正極活物質1gにつき75mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき75mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。さらに電極層の密度と重量当たりの容量から体積容量密度を求めた。また、この電池について、引き続き充放電サイクル試験を30回行なった。その結果、25℃、2.5〜4.3Vにおける正極電極層の初期体積容量密度は、450mAh/cm電極層であり、初期重量容量密度は、163mAh/g−LiCoOであり、30回充放電サイクル後の容量維持率は99.4%であった。
【0049】
また、他方の電池については、それぞれ4.3Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シートを洗滌後、径3mmに打ち抜き、ECとともにアルミカプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、4.3V充電品の発熱開始温度は178℃であった。
【0050】
[例5]
例4において、水酸化アルミニウムの替わりに酸化チタンを用いたほかは例4と同様に正極活物質を合成した。化学分析の結果、LiCo0.999Ti0.0011.9980.002であり、この微粒子である一次粒子が凝集してなる略球状の二次粒子からなる粉末のプレス密度は3.68g/cmであった。例1と同様にして求めた該粉末の圧縮強度は68MPaであった。またチタンとフッ素は表面に存在していた。残存アルカリ量は0.02質量%であった。初期容量は162mAH/g、30回サイクル後の容量維持率は99.3%、発熱開始温度は173℃であった。
【0051】
[例6]
例4において、水酸化アルミニウムの替わりに水酸化マグネシウムを用いたほかは例5と同様に正極活物質を合成した。化学分析の結果、LiCo0.997Mg0.0031.9980.002であり、この微粒子である一次粒子が凝集してなる略球状の二次粒子からなる粉末のプレス密度は3.71g/cmであった。例1と同様にして求めた該粉末の圧縮強度は70MPaであった。またマグネシウムとフッ素は表面に存在していた。残存アルカリ量は0.02質量%であった。初期容量は160mAH/g、30回サイクル後の容量維持率は99.9%、発熱開始温度は185℃であった。
【0052】
[例7]
例4において、水酸化アルミニウムの替わりに酸化ジルコニウムを用いたほかは例5と同様に正極活物質を合成した。化学分析の結果、LiCo0.997Zr0.0031.9980.002であり、この微粒子である一次粒子が凝集してなる略球状の二次粒子からなる粉末のプレス密度は3.70g/cmであった。例1と同様にして求めた該粉末の圧縮強度は71MPaであった。またジルコニウムとフッ素は表面に存在していた。残存アルカリ量は0.02質量%であった。初期容量は160mAH/g、30回サイクル後の容量維持率は99.3%、発熱開始温度は176℃であった。
【0053】
[例8]
例1において、水酸化コバルトの凝集条件を変えたほかは例1と同様に正極活物質を合成した。粒子径1〜5μmの1次粒子が数十〜百個凝集してなる塊状二次粒子からなるLiCoO粉末を合成した。水酸化コバルトと炭酸リチウムの混合比は焼成後LiCoOとなるように配合した。レーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、LiCoOの平均粒径D50が12.1μm、D10が3.0μm、D90が19.3μmであり、BET法により求めた比表面積が0.45m/gであるLiCoO粉末を得た。また、残存アルカリ量は0.02重量%であった。例1と同様にして粒子の圧縮強度を求めたところ51.0MPaであった。
【0054】
LiCoO粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.111°であった。得られたLiCoO粉末のプレス密度は3.59g/cmであった。その結果、例1と同様にして求められた、25℃、2.5〜4.3Vにおける正極電極層の初期体積容量密度は439mAh/cm電極層であり、初期重量容量密度は、162mAh/g−LiCoOであり、30回充放電サイクル後の容量維持率は97.1%であった。また、4.3V充電品の発熱開始温度は160℃であった。残存アルカリ量は0.02質量%であった。
【0055】
[例9]
例3と異なる市販の四三酸化コバルトをコバルト源とした他は例1と同様にして、粒子径2〜5μmの1次粒子が十個〜三十個凝集してなる塊状二次粒子からなるLiCoO粉末を合成した。酸化コバルトと炭酸リチウムの混合比は焼成後LiCoOとなるように配合した。レーザー散乱式粒度分布測定装置を用いて水を分散媒として測定した結果、LiCoOの平均粒径D50が8.7μm、D10が2.5μm、D90が13.3μmであり、BET法により求めた比表面積が0.49m/gであるLiCoO粉末を得た。また、残存アルカリ量は0.04重量%であった。例1と同様にして粒子の圧縮強度を求めたところ21・0MPaであった。
【0056】
LiCoO粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=66.5±1°の(110)面の回折ピーク半値幅は0.111°であった。得られたLiCoO粉末のプレス密度は3.38g/cmであった。その結果、例1と同様にして求められた、25℃、2.5〜4.3Vにおける正極電極層の初期体積容量密度は、410mAh/cm電極層であり、初期重量容量密度は、160mAh/g−LiCoOであり、30回充放電サイクル後の容量維持率は95.0%であった。また、4.3V充電品の発熱開始温度は157℃であった。
【0057】
【発明の効果】
本発明によれば、体積容量密度が大きく、安全性が高く、充放電サイクル耐久性、低温特性に優れたリチウム二次電池正極用リチウムコバルト複合酸化物粉末、該リチウムコバルト複合酸化物粉末を含む、リチウム二次電池用正極、及びリチウム二次電池が提供される。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a lithium cobalt composite oxide powder for a lithium secondary battery positive electrode having a large volumetric capacity density, high safety, and excellent charge / discharge cycle durability, and a lithium secondary composite powder containing the lithium cobalt composite oxide powder. The present invention relates to a battery positive electrode and a lithium secondary battery.
[Prior art]
[0002]
In recent years, as devices become more portable and cordless, demand for non-aqueous electrolyte secondary batteries such as lithium secondary batteries having a small size, light weight, and high energy density is increasing. The positive electrode active material for such a non-aqueous electrolyte secondary battery includes LiCoO. 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 LiMnO 2 A composite oxide of lithium and a transition metal such as is known.
[0003]
Among these, lithium cobalt composite oxide (LiCoO 2 ) Is used as a positive electrode active material, and lithium secondary batteries using carbon such as lithium alloy, graphite, and carbon fiber as negative electrodes are widely used as batteries having high energy density because a high voltage of 4V is obtained. Yes.
[0004]
However, LiCoO 2 In the case of a non-aqueous secondary battery using as a positive electrode active material, further improvement in the capacity density per unit volume and safety of the positive electrode layer is desired, and the battery discharge capacity can be increased by repeating the charge / discharge cycle. There are problems such as deterioration of cycle characteristics such as gradual decrease, weight capacity density, and large decrease in discharge capacity at low temperature.
[0005]
In order to solve some of these problems, Patent Document 1 discloses LiCoO which is a positive electrode active material. 2 2θ measured by X-ray diffraction using CuKα as a radiation source is set to about 19 °, and an average particle size of 3 to 9 μm, and a volume occupied by a particle group having a particle size of 3 to 15 μm is 75% or more of the total volume. It has been proposed to make the active material excellent in coating characteristics, self-discharge characteristics, and cycleability by setting the 45 ° diffraction peak intensity ratio to a specific value. Further, the publication includes LiCoO 2 A particle having a particle size distribution of substantially 1 μm or less or 25 μm or more has not been proposed as a preferred embodiment. However, such positive electrode active materials have improved coating characteristics and cycle characteristics, but have not been sufficiently satisfactory in safety, volume capacity density, and weight capacity density.
[0006]
In addition, in order to improve the weight capacity density and charge / discharge cycleability of the positive electrode, Patent Document 2 discloses that the average particle diameter of the lithium composite oxide particles is 0.1 to 50 μm, and the peak is 2 in the particle size distribution. More than one positive electrode active material has been proposed. In addition, it has also been proposed to mix two kinds of positive electrode active materials having different average particle diameters to obtain a positive electrode active material having two or more peaks in the particle size distribution. In such a proposal, the weight capacity density of the positive electrode and the charge / discharge cycleability may be improved, but there is a troublesome production of the positive electrode raw material powder having two kinds of particle size distributions, and the positive electrode volume capacity density, safety No material satisfying all of the properties, coating uniformity, weight capacity density, and cycleability has been obtained.
[0007]
In order to solve the problem related to battery characteristics, Patent Document 3 proposes to replace 5 to 35% of Co atoms with W, Mn, Ta, Ti, or Nb for improving the cycle characteristics. Patent Document 4 discloses a hexagonal LiCoO in which the c-axis length of the lattice constant is 14.051 mm or less and the crystallite diameter in the (110) direction of the crystallite is 45 to 100 nm. 2 It has been proposed to improve cycle characteristics by using as a positive electrode active material.
[0008]
Furthermore, Patent Document 5 discloses the formula Li x Ni 1-yz Co y Me z O 2 (Wherein 0 <x <1.1, 0 <y ≦ 0.6, 0 ≦ z ≦ 0.6), and an aggregated granular lithium composite oxide in which fine powders are aggregated, A particulate lithium composite oxide having a compressive strength of 0.1 to 1.0 gf per grain has been proposed. However, since the composite oxide contains nickel, there is a problem that the safety is poor and the large current discharge characteristics are inferior, and the compression capacity in a small range as described above has a volume capacity density, safety, cycle characteristics, It is not possible to obtain a lithium composite oxide having sufficiently satisfactory characteristics in terms of large current discharge characteristics.
[0009]
[Prior art]
[Patent Document 1] Japanese Patent Laid-Open No. 6-243897
[Patent Document 2] Japanese Patent Laid-Open No. 2000-82466
[Patent Document 3] Japanese Patent Laid-Open No. 3-201368
[Patent Document 4] JP-A-10-31805
[Patent Document 5] Japanese Patent Laid-Open No. 2001-80920
[0010]
[Problems to be solved by the invention]
As described above, in the conventional technology, in a lithium secondary battery using a lithium composite oxide as a positive electrode active material, characteristics such as volume capacity density, safety, cycle characteristics, large current discharge characteristics, and low temperature characteristics are provided. We have not yet obtained a satisfactory content. The present invention satisfies these characteristics which are difficult to achieve with these conventional techniques, and includes a lithium cobalt composite oxide powder for a positive electrode of a lithium secondary battery, and a lithium secondary battery including the lithium cobalt composite oxide powder. An object is to provide a positive electrode and a lithium secondary battery.
[0011]
[Means for Solving the Problems]
As a result of extensive research, the present inventor has found that a large number of fine particles of a lithium cobalt composite oxide having a specific composition for a positive electrode of a lithium secondary battery are aggregated to form an aggregated granular composite oxide powder having a specific average particle size Attention was paid to the relationship between the compressive fracture strength and the volume capacity density of the positive electrode for a lithium secondary battery using the powder. That is, it was found that the larger the compressive fracture strength of the powder, the larger the volume capacity density of the positive electrode obtained. In addition, it has been confirmed that such a large volume capacity density of the positive electrode can be achieved without impairing other characteristics required by the positive electrode such as volume capacity density, safety, cycle characteristics, and large current discharge characteristics.
[0012]
Thus, in the present invention, by increasing the compression fracture strength of the agglomerated granular composite oxide powder as never before, the volume capacity density is large, and the safety, cycle characteristics, large current discharge characteristics, and low temperature characteristics, etc. It is possible to obtain a lithium cobalt composite oxide for a lithium secondary battery positive electrode that sufficiently satisfies the above characteristics.
[0013]
The composition of the relationship between the compression fracture strength and the positive electrode volume capacity density found in the present invention is different in that the nickel component is essential, but as described in Patent Document 5, In order to obtain the initial discharge capacity and capacity retention rate, the compression strength of the lithium cobalt composite oxide powder for the positive electrode of the lithium secondary battery is controlled within a predetermined range and is not to be larger than a predetermined value. It is a conflict and a new technical idea.
[0014]
Thus, the present invention has the following features.
(1) General formula, Li p Co x M y O z F a (However, M is a transition metal element or alkaline earth metal element other than Co. 0.9 ≦ p ≦ 1.1, 0.980 ≦ x ≦ 1.000, 0 ≦ y ≦ 0.02, 9 ≦ z ≦ 2.1, x + y = 1, 0 ≦ a ≦ 0.02) formed by agglomeration of a large number of fine particles of a titanium cobalt composite oxide, and an agglomeration with an average particle diameter D50 of 5 to 20 μm A lithium-cobalt composite oxide powder for a lithium secondary battery, which is a granular composite oxide powder and has a compressive fracture strength of 40 MPa or more.
(2) The specific surface area of the powder is 0.3 to 0.7 m 2 / G, the half-width of (110) plane diffraction peak of 2θ = 66.5 ± 1 ° measured by X-ray diffraction using CuKα as a radiation source is 0.07 to 0.14 °, and the press density Is 3.5 g / cm 3 The lithium cobalt composite oxide powder according to (1) above.
(3) The lithium cobalt composite oxide powder according to the above (1) or (2), wherein the residual alkali content is 0.03% by mass or less.
(4) The lithium cobalt composite oxide powder according to (1), (2) or (3), wherein the powder has a compressive fracture strength of 50 to 120 MPa.
(5) The lithium cobalt composite oxide powder according to any one of (1) to (4), wherein the average particle diameter D50 is 10 to 15 μm.
(6) A positive electrode for a lithium secondary battery comprising the lithium cobalt composite oxide according to any one of (1) to (5).
(7) A lithium secondary battery using the positive electrode described in (6) above.
[0015]
The reason why the volume capacity density of the positive electrode can be increased by increasing the compression fracture strength of the lithium cobalt composite oxide powder in the present invention is not necessarily clear, but it is presumed as follows. When forming a positive electrode by compacting lithium cobalt composite oxide aggregate powder, if the compressive fracture strength of the powder is high, the compressive stress energy at the time of compaction is not used for breaking the powder. As a result, it is possible to achieve high filling by sliding between particles constituting the powder. On the other hand, when the compressive fracture strength of the powder is low, the compressive stress energy is used for the fracture of the powder. As a result, the pressure applied to the particles forming the individual powders is reduced, and consolidation due to slippage between the particles is less likely to occur. It seems that the density cannot be improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The lithium cobalt composite oxide powder for a lithium secondary battery positive electrode of the present invention has a general formula Li p Co x M y O z F a It is represented by In this general formula, M, p, x, y, z and a are defined above. Among these, p, x, y, z and a are preferably as follows. 0.97 ≦ p ≦ 1.03, 0.990 ≦ x ≦ 1.0, 0.0005 ≦ y ≦ 0.01, 1.95 ≦ z ≦ 2.05, x + y = 1, 0.0001 ≦ a ≦ 0.01. Here, when a is larger than 0, a part of oxygen atoms becomes a composite oxide in which fluorine atoms are substituted. In this case, the safety of the obtained positive electrode active material is improved.
[0017]
M is a transition metal element or alkaline earth metal excluding Co, and the transition metal element is Group 4, Group 5, Group 7, Group 8, Group 9, Group 10, Group 11 of the periodic table. Represents a transition metal. Among these, M is at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mn, Mg, Ca, Sr, Ba, and Al. Among these, Ti, Zr, Hf, Mg, or Al is preferable from the viewpoint of capacity development, safety, cycle durability, and the like.
[0018]
In the present invention, when M and / or F is contained, it is preferable that both M and F are present on the surface of the lithium cobalt oxide particles. If present inside the particles, the effect of improving battery characteristics is not only small, but battery characteristics may be deteriorated, which is not preferable. By being present on the surface, it is possible to improve important battery characteristics such as safety and charge / discharge cycle characteristics without causing a decrease in battery performance with a small amount of addition. Whether or not M and F are present on the surface can be determined by performing spectroscopic analysis such as XPS analysis on the positive electrode particles.
[0019]
The lithium cobalt composite oxide of the present invention needs to be a granular powder formed by agglomerating many fine particles represented by the above general formula. The fine particles are not particularly limited, but the average particle diameter D50 is preferably 0.5 to 7 μm. The average particle diameter D50 of the composite oxide powder formed by aggregating a large number of the fine particles is preferably 5 to 20 μm, more preferably 10 to 15 μm. If the average particle size of the composite oxide powder is smaller than 5 μm, it becomes difficult to form a dense electrode layer.
[0020]
Moreover, the powder of the aggregated granular composite oxide of the present invention needs to have 40 MPa or more as the compressive fracture strength (hereinafter, also simply referred to as “compressive strength”). The compressive strength (St) is a value obtained by the equation of Hiramatsu et al. Shown in the following Equation 1 (“Nippon Mining Kaikai” Vol. 81, No. 932, December 1965, pages 1024-1030).
(Formula 1) St = 2.8 P / πd 2 (D: particle diameter, P: load applied to particles)
When the compressive strength of the aggregated granular composite oxide is less than 40 MPa, it is difficult to form a dense electrode layer, and the above-described object of the present invention cannot be achieved. Among these, the compressive strength is particularly preferably 50 to 120 MPa.
[0021]
Furthermore, the lithium cobalt composite oxide of the present invention preferably has a specific surface area of 0.3 to 0.7 m. 2 / G, particularly preferably 0.4 to 0.6 m 2 / G and the half width of (110) plane diffraction peak of 2θ = 66.5 ± 1 ° measured by X-ray diffraction using CuKα as a radiation source is preferably 0.07 to 0.14 °, particularly preferably 0. 0.08 to 0.12 ° and the press density is preferably 3.5 g / cm. 3 The above is preferable. When the lithium cobalt composite oxide satisfies such physical properties, effects such as high capacity, high cycle durability, and high safety are achieved. The press density in the present invention is 1.91 t / cm unless otherwise specified. 2 The apparent density when press-compressed at a pressure of.
Moreover, the residual alkali amount contained in the lithium cobalt composite oxide of the present invention is preferably 0.03% by mass or less, and particularly preferably 0.01% by mass or less.
[0022]
The lithium cobalt composite oxide of the present invention is fired at 700 to 1050 ° C. in an oxygen-containing atmosphere with a mixture of a cobalt source, a lithium source, and, if necessary, an M element source and a fluorine source. As the cobalt source, preferably, cobalt oxyhydroxide, cobalt hydroxide, and cobalt oxide are used, and as the lithium source, preferably lithium carbonate and lithium hydroxide are used. When the firing temperature is lower than 700 ° C., lithiation becomes incomplete, and when it exceeds 1050 ° C., charge / discharge cycle durability and initial capacity are lowered. In particular, the firing temperature is preferably 900 to 1000 ° C. The firing is preferably performed in multiple stages. As a preferred example, baking is performed at 700 ° C. for several hours, and baking is performed at 900 to 1000 ° C. for several hours.
[0023]
In the present invention, when a lithium cobalt composite oxide is produced using the above cobalt source, lithium carbonate is preferably used as the lithium source. When lithium carbonate is used as the lithium source, for example, the cost is lower than when lithium hydroxide is used, and the low-cost and high-performance lithium-cobalt composite oxide desired by the present invention is easily obtained. On the other hand, hydroxides, oxides, carbonates, and fluorides are preferably selected as the raw material for the element M used as necessary. Fluorine sources include metal fluoride, LiF, MgF 2 Etc. are selected. The mixed powder of cobalt source, lithium source, element M raw material and fluorine source is fired at 700 to 1050 ° C. in an oxygen-containing atmosphere for 5 to 20 hours as described above, and the obtained fired product is cooled and pulverized. By classification, an aggregated granular composite oxide powder in which fine particles of a lithium cobalt composite oxide of preferably 0.5 to 7 μm are condensed is formed. In this case, the average particle diameter and compressive strength of the aggregated granular composite oxide powder to be formed can be controlled by selecting conditions such as the properties of the cobalt source, the calcination temperature for lithiation, and the calcination time.
[0024]
When producing a positive electrode for a lithium secondary battery from such a lithium cobalt composite oxide, the composite oxide powder is mixed with a carbon-based conductive material such as acetylene black, graphite, and Ketchen black and a binder. It is formed by. Preferably, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used for the binder.
[0025]
The lithium cobalt composite oxide powder, conductive material and binder of the present invention are made into a slurry or kneaded material using a solvent or a dispersion medium, and this is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like. Thus, a positive electrode for a lithium secondary battery is manufactured.
[0026]
In the lithium secondary battery using the lithium cobalt composite oxide of the present invention as the positive electrode active material, a porous polyethylene film, a porous polypropylene film, or the like is used as the separator. Various solvents can be used as the solvent for the electrolyte solution of the battery, and among them, carbonate ester is preferable. The carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate, and the like.
[0027]
In this invention, the said carbonate ester can be used individually or in mixture of 2 or more types. Moreover, you may mix and use with another solvent. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate ester and a cyclic carbonate ester may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.
[0028]
In the lithium secondary battery using the lithium cobalt composite oxide of the present invention as a positive electrode active material, a vinylidene fluoride-hexafluoropropylene copolymer (for example, product name: Kyner manufactured by Atchem Co.) or vinylidene fluoride-perfluoro is used. A gel polymer electrolyte containing a propyl vinyl ether copolymer may be used. Solutes added to the electrolyte solvent or polymer electrolyte include ClO. 4 -, CF 3 SO 3 -, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, CF 3 CO 2 -, (CF 3 SO 2 ) 2 Any one or more of lithium salts having N- or the like as an anion is preferably used. It is preferable to add at a concentration of 0.2 to 2.0 mol / l (liter) with respect to the electrolyte solvent or polymer electrolyte comprising the lithium salt. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. Of these, 0.5 to 1.5 mol / l is particularly preferable.
[0029]
In the lithium battery using the lithium cobalt composite oxide of the present invention as the positive electrode active material, a material capable of inserting and extracting lithium ions is used as the negative electrode active material. The material for forming the negative electrode active material is not particularly limited. For example, an oxide, a carbon compound, a silicon carbide compound, or a silicon oxide compound mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. , Titanium sulfide, boron carbide compounds and the like. As the carbon material, those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil, or the like is used. Such a negative electrode is preferably produced by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, and pressing.
[0030]
There is no restriction | limiting in particular in the shape of the lithium battery which uses the lithium cobalt complex oxide of this invention for a positive electrode active material. A sheet shape, a film shape, a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
[0031]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the following, Examples 1, 2, and 4 to 8 are examples of the present invention, and Examples 3 and 9 are comparative examples.
[0032]
[Example 1]
Cobalt sulfate aqueous solution and ammonium hydroxide mixed solution and caustic soda aqueous solution are continuously mixed to continuously synthesize a cobalt hydroxide slurry by a known method. Obtained. As a result of observation with a scanning electron microscope, this cobalt hydroxide was found to be formed from substantially spherical secondary particles by agglomeration of irregularly shaped fine particles. As a result of volume-based particle size distribution analysis obtained from image analysis under scanning electron microscope observation, the average particle size D50 was 17.3 μm, D10 was 7.4 μm, and D90 was 26.8 μm.
[0033]
When these secondary particles were dispersed in pure water, the secondary particles easily disintegrated to form a suspension mainly composed of primary particles. understood. In addition, as a result of measuring the particle size distribution of the secondary particle powder using a laser scattering type particle size distribution measuring apparatus with water as a dispersion medium, the average particle size D50 is 0.76 μm, D10 is 0.33 μm, and D90 is 1.5 μm. Yes, the slurry after measurement was dried, and as a result of observation with a scanning electron microscope, the secondary particle shape before measurement was not observed. The specific surface area of secondary particles of cobalt hydroxide particles is 17.2m. 2 / G, which is a substantially spherical cobalt hydroxide powder in which primary particles are weakly aggregated.
[0034]
This cobalt hydroxide has a specific surface area of 1.2m 2 / G lithium carbonate powder was mixed. After these two kinds of powders were dry-mixed, they were fired in air at 700 ° C. for 5 hours and then at 950 ° C. for 12 hours. An approximately spherical LiCoO formed by agglomerating tens to hundreds of fine particles having a particle diameter of 1 to 5 μm by crushing the fired product. 2 A powder was obtained. As a result of measuring the particle size distribution of this powder using a laser scattering type particle size distribution measuring apparatus using water as a dispersion medium, the average particle size D50 was 14.4 μm, D10 was 5.3 μm, D90 was 17.0 μm, and BET method The specific surface area determined by 2 / G of substantially spherical LiCoO 2 A powder was obtained. Obtained LiCoO 2 About the powder, the compressive strength was measured using the micro compression tester MCT-W500 of Shimadzu Corporation. That is, a test load was set to 100 mN, a load speed of 3.874 mN / sec, and measurement was performed on 10 arbitrary particles having a known particle diameter using a flat type indenter having a diameter of 50 μm, and the compression strength was determined to be 70 MPa. It was.
[0035]
LiCoO above 2 An X-ray diffraction spectrum was obtained for the powder using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.098 °. LiCoO 2 The press density of the powder is 3.71 g / cm 3 Met. LiCoO 2 10 g of the powder was dispersed in 100 g of pure water, and after filtration, the potential difference was measured with 0.1 N HCl to determine the residual alkali amount, which was 0.02% by weight.
[0036]
LiCoO above 2 Powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, N-methylpyrrolidone is added to prepare a slurry, and a doctor blade is used on a 20 μm thick aluminum foil. One side was coated. The positive electrode sheet for lithium batteries was produced by drying and rolling 5 times with a roll press.
[0037]
Then, the positive electrode sheet is used as a positive electrode, a metal lithium foil having a thickness of 500 μm is used as a negative electrode, a nickel foil is used as a negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used as a separator. In addition, the electrolyte contains LiPF with a concentration of 1M. 6 / EC + DEC (1: 1) solution (LiPF 6 Means a mixed solution of EC and DEC in a mass ratio (1: 1). The solvent described later also conforms to this. ) Were used to assemble two stainless steel simple sealed cell type lithium batteries in an argon glove box.
[0038]
For the one battery, the initial discharge capacity was charged at 25 ° C. with a load current of 75 mA per gram of the positive electrode active material to 4.3 V, and discharged to 2.5 V with a load current of 75 mA per gram of the positive electrode active material. Asked. Further, the volume capacity density was determined from the density of the electrode layer and the capacity per weight. Moreover, about this battery, the charging / discharging cycle test was done 30 times continuously. As a result, the initial volume capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V was 453 mAh / cm. 3 The electrode layer has an initial weight capacity density of 161 mAh / g-LiCoO. 2 The capacity retention rate after 30 charge / discharge cycles was 97.2%.
[0039]
The remaining batteries were each charged at 4.3 V for 10 hours, disassembled in an argon glove box, the charged positive electrode sheet was taken out, washed, and punched to a diameter of 3 mm, together with EC The container was sealed in an aluminum capsule and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature of the 4.3V charged product was 165 ° C.
[0040]
[Example 2]
Cobalt hydroxide synthesized in Example 1 was calcined in the atmosphere at 600 ° C. for 4 hours to synthesize a cobalt tetroxide powder, and this cobalt tetroxide powder was used instead of cobalt hydroxide. And approximately spherical LiCoO formed by agglomerating dozens of primary particles having a particle diameter of 2 to 5 μm. 2 A powder was synthesized. LiCoO 2 The average particle diameter D50 is 14.7 μm, D10 is 5.8 μm, D90 is 20.0 μm, and the specific surface area determined by the BET method is 0.51 m. 2 / G LiCoO 2 A powder was obtained. When the compressive strength of the particles was determined in the same manner as in Example 1, it was 86 MPa.
[0041]
This LiCoO 2 An X-ray diffraction spectrum was obtained for the powder using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.110 °. Obtained LiCoO 2 The press density of the powder is 3.84 g / cm 3 Met. The residual alkali amount was 0.02% by weight. As a result, the initial volume capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V determined in the same manner as in Example 1 was 468 mAh / cm. 3 The electrode layer has an initial weight capacity density of 163 mAh / g-LiCoO. 2 The capacity retention rate after 30 charge / discharge cycles was 97.4%. Moreover, the heat generation start temperature of the 4.3V charged product was 164 ° C.
[0042]
[Example 3]
Lumped LiCoO formed by agglomerating several to several tens of primary particles having a particle diameter of 3 to 7 μm in the same manner as in Example 1 except that commercially available cobalt trioxide was used as the cobalt source. 2 A powder was synthesized. The mixing ratio of cobalt oxide and lithium carbonate is LiCoO after firing. 2 It mix | blended so that it might become. As a result of measuring water as a dispersion medium using a laser scattering type particle size distribution measuring apparatus, LiCoO 2 The average particle diameter D50 is 10.1 μm, D10 is 3.0 μm, D90 is 15.3 μm, and the specific surface area determined by the BET method is 0.46 m. 2 LiCoO / g 2 A powder was obtained. The residual alkali amount was 0.01% by weight. When the compressive strength of the particles was determined in the same manner as in Example 1, it was 5.8 MPa.
[0043]
LiCoO 2 An X-ray diffraction spectrum was obtained for the powder using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.111 °. Obtained LiCoO 2 The press density of the powder is 3.24 g / cm 3 Met. As a result, the initial volume capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V, obtained in the same manner as in Example 1, was 402 mAh / cm. 3 It is an electrode layer, and initial weight capacity density is 158XmAh / g-LiCoO. 2 The capacity retention rate after 30 charge / discharge cycles was 96.1%. Moreover, the heat generation start temperature of the 4.3V charged product was 155 ° C.
[0044]
[Example 4]
In Example 1, a positive electrode active material was synthesized in the same manner as in Example 1 except that aluminum hydroxide powder and lithium fluoride powder were further added when mixing cobalt hydroxide and lithium carbonate. As a result of elemental analysis, LiCo 0.997 Al 0.003 O 1.998 F 0.002 Met. As a result of measuring the particle size distribution of the powder composed of substantially spherical secondary particles obtained by crushing the fired product and agglomerating primary particles using a laser scattering type particle size distribution measuring device as a dispersion medium, The average particle diameter D50 is 13.1 μm, D10 is 5.3 μm, D90 is 17.3 μm, and the specific surface area determined by the BET method is 0.50 m. 2 / G of substantially spherical LiCoO 2 A powder was obtained. The compressive strength of the powder obtained in the same manner as in Example 1 was 69 MPa.
[0045]
About the said powder, the X-ray-diffraction spectrum was obtained using the X-ray-diffraction apparatus (Rigaku Corporation RINT 2100 type | mold). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.100 °. The press density of the powder is 3.70 g / cm. 3 Met. As a result of investigation by spectroscopic analysis, aluminum and fluorine were localized on the surface. The residual alkali amount was 0.02% by weight.
[0046]
LiCo above 0.997 Al 0.003 O 1.998 F 0.002 Powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, N-methylpyrrolidone is added to prepare a slurry, and a doctor blade is used on a 20 μm thick aluminum foil. One side was coated. The positive electrode sheet for lithium batteries was produced by drying and roll press rolling.
[0047]
Then, the positive electrode sheet is used as a positive electrode, a metal lithium foil having a thickness of 500 μm is used as a negative electrode, a nickel foil is used as a negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used as a separator. In addition, the electrolyte contains LiPF with a concentration of 1M. 6 / EC + DEC (1: 1) solution (LiPF 6 Means a mixed solution of EC and DEC in a mass ratio (1: 1). The solvent described later also conforms to this. ) Were used to assemble two stainless steel simple sealed cell type lithium batteries in an argon glove box.
[0048]
For the one battery, the initial discharge capacity was charged at 25 ° C. with a load current of 75 mA per gram of the positive electrode active material to 4.3 V, and discharged to 2.5 V with a load current of 75 mA per gram of the positive electrode active material. Asked. Further, the volume capacity density was determined from the density of the electrode layer and the capacity per weight. Moreover, about this battery, the charging / discharging cycle test was done 30 times continuously. As a result, the initial volume capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V was 450 mAh / cm. 3 The electrode layer has an initial weight capacity density of 163 mAh / g-LiCoO. 2 The capacity retention rate after 30 charge / discharge cycles was 99.4%.
[0049]
The other battery was charged at 4.3 V for 10 hours, disassembled in an argon glove box, taken out from the charged positive electrode sheet, washed out, then punched into a diameter of 3 mm, and with EC The container was sealed in an aluminum capsule and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature of the 4.3V charged product was 178 ° C.
[0050]
[Example 5]
In Example 4, a positive electrode active material was synthesized in the same manner as in Example 4 except that titanium oxide was used instead of aluminum hydroxide. As a result of chemical analysis, LiCo 0.999 Ti 0.001 O 1.998 F 0.002 The press density of the powder composed of substantially spherical secondary particles formed by agglomeration of the primary particles as fine particles is 3.68 g / cm 3. 3 Met. The compressive strength of the powder obtained in the same manner as in Example 1 was 68 MPa. Titanium and fluorine were present on the surface. The residual alkali amount was 0.02% by mass. The initial capacity was 162 mAH / g, the capacity retention after 30 cycles was 99.3%, and the heat generation starting temperature was 173 ° C.
[0051]
[Example 6]
In Example 4, a positive electrode active material was synthesized in the same manner as in Example 5 except that magnesium hydroxide was used instead of aluminum hydroxide. As a result of chemical analysis, LiCo 0.997 Mg 0.003 O 1.998 F 0.002 The press density of the powder composed of substantially spherical secondary particles obtained by agglomerating primary particles as fine particles is 3.71 g / cm 3. 3 Met. The compressive strength of the powder obtained in the same manner as in Example 1 was 70 MPa. Magnesium and fluorine were present on the surface. The residual alkali amount was 0.02% by mass. The initial capacity was 160 mAH / g, the capacity retention after 30 cycles was 99.9%, and the heat generation starting temperature was 185 ° C.
[0052]
[Example 7]
In Example 4, a positive electrode active material was synthesized in the same manner as in Example 5 except that zirconium oxide was used instead of aluminum hydroxide. As a result of chemical analysis, LiCo 0.997 Zr 0.003 O 1.998 F 0.002 The press density of the powder composed of substantially spherical secondary particles formed by agglomeration of the primary particles as fine particles is 3.70 g / cm 3. 3 Met. The compressive strength of the powder obtained in the same manner as in Example 1 was 71 MPa. Zirconium and fluorine were present on the surface. The residual alkali amount was 0.02% by mass. The initial capacity was 160 mAH / g, the capacity retention rate after 30 cycles was 99.3%, and the heat generation starting temperature was 176 ° C.
[0053]
[Example 8]
A positive electrode active material was synthesized in the same manner as in Example 1 except that the coagulation conditions for cobalt hydroxide were changed in Example 1. LiCoO composed of massive secondary particles obtained by agglomerating tens to hundreds of primary particles having a particle diameter of 1 to 5 μm. 2 A powder was synthesized. The mixing ratio of cobalt hydroxide and lithium carbonate is LiCoO after firing. 2 It mix | blended so that it might become. As a result of measuring water as a dispersion medium using a laser scattering type particle size distribution measuring device, LiCoO 2 The average particle diameter D50 was 12.1 μm, D10 was 3.0 μm, D90 was 19.3 μm, and the specific surface area determined by the BET method was 0.45 m. 2 LiCoO / g 2 A powder was obtained. The residual alkali amount was 0.02% by weight. When the compressive strength of the particles was determined in the same manner as in Example 1, it was 51.0 MPa.
[0054]
LiCoO 2 An X-ray diffraction spectrum was obtained for the powder using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.111 °. LiCoO obtained 2 The press density of the powder is 3.59 g / cm 3 Met. As a result, the initial volume capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V, obtained in the same manner as in Example 1, was 439 mAh / cm. 3 The electrode layer has an initial weight capacity density of 162 mAh / g-LiCoO. 2 The capacity retention rate after 30 charge / discharge cycles was 97.1%. The heat generation start temperature of the 4.3V charged product was 160 ° C. The residual alkali amount was 0.02% by mass.
[0055]
[Example 9]
Except for using commercially available cobalt trioxide different from Example 3 as the cobalt source, it consists of massive secondary particles formed by agglomerating 10 to 30 primary particles having a particle diameter of 2 to 5 μm in the same manner as Example 1. LiCoO 2 A powder was synthesized. The mixing ratio of cobalt oxide and lithium carbonate is LiCoO after firing. 2 It mix | blended so that it might become. As a result of measuring water as a dispersion medium using a laser scattering particle size distribution analyzer, LiCoO 2 The average particle diameter D50 is 8.7 μm, D10 is 2.5 μm, D90 is 13.3 μm, and the specific surface area determined by the BET method is 0.49 m. 2 LiCoO / g 2 A powder was obtained. The residual alkali amount was 0.04% by weight. When the compression strength of the particles was determined in the same manner as in Example 1, it was 21.0 MPa.
[0056]
LiCoO 2 An X-ray diffraction spectrum was obtained for the powder using an X-ray diffractometer (RINT 2100 type, manufactured by Rigaku Corporation). In powder X-ray diffraction using CuKα ray, the half value width of the diffraction peak of (110) plane at 2θ = 66.5 ± 1 ° was 0.111 °. LiCoO obtained 2 The press density of the powder is 3.38 g / cm 3 Met. As a result, the initial volume capacity density of the positive electrode layer at 25 ° C. and 2.5 to 4.3 V obtained in the same manner as in Example 1 was 410 mAh / cm. 3 The electrode layer has an initial weight capacity density of 160 mAh / g-LiCoO. 2 The capacity retention rate after 30 charge / discharge cycles was 95.0%. Moreover, the heat generation start temperature of the 4.3V charged product was 157 ° C.
[0057]
【The invention's effect】
According to the present invention, the lithium cobalt composite oxide powder for a lithium secondary battery positive electrode having a large volumetric capacity density, high safety, excellent charge / discharge cycle durability, and low temperature characteristics, and the lithium cobalt composite oxide powder are included. A positive electrode for a lithium secondary battery and a lithium secondary battery are provided.

Claims (7)

一般式 LiCo(但し、MはCo以外の遷移金属元素またはアルカリ土類金属元素である。0.9≦p≦1.1、0.980≦x≦1.000、0≦y≦0.02、1.9≦z≦2.1、x+y=1、0≦a≦0.02)で表されるリチウムコバルト複合酸化物の微粒子が多数凝集して形成された、平均粒子径D50が5〜20μmの凝集粒状複合酸化物粉末であり、かつ粉末の圧縮破壊強度が40MPa以上であることを特徴とするリチウム二次電池用リチウムコバルト複合酸化物粉末。General formula Li p Co x M y O z F a (where M is a transition metal element or alkaline earth metal element other than Co. 0.9 ≦ p ≦ 1.1, 0.980 ≦ x ≦ 1. 000, 0 ≦ y ≦ 0.02, 1.9 ≦ z ≦ 2.1, x + y = 1, 0 ≦ a ≦ 0.02). A lithium cobalt composite oxide powder for a lithium secondary battery, wherein the powder is an aggregated granular composite oxide powder having an average particle diameter D50 of 5 to 20 μm, and the powder has a compressive fracture strength of 40 MPa or more. 粉末の比表面積が0.3〜0.7m/gであり、CuKαを線源とするX線回折によって測定される2θ=66.5±1°の(110)面回折ピーク半値幅が0.07〜0.14°であり、かつプレス密度が3.5g/cm以上である請求項1に記載のリチウムコバルト複合酸化物粉末。The specific surface area of the powder is 0.3 to 0.7 m 2 / g, and the half width of the (110) plane diffraction peak at 2θ = 66.5 ± 1 ° measured by X-ray diffraction using CuKα as the radiation source is 0. The lithium-cobalt composite oxide powder according to claim 1, which has a thickness of 0.07 to 0.14 ° and a press density of 3.5 g / cm 3 or more. 含有される残存アルカリ量が0.03質量%以下である請求項1または2に記載のリチウムコバルト複合酸化物粉末。The lithium cobalt composite oxide powder according to claim 1 or 2, wherein the amount of residual alkali contained is 0.03% by mass or less. 粉末の圧縮破壊強度が50〜120MPaである請求項1、2または3に記載のリチウムコバルト複合酸化物粉末。The lithium cobalt composite oxide powder according to claim 1, wherein the powder has a compressive fracture strength of 50 to 120 MPa. 平均粒子径D50が10〜15μmである請求項1〜4のいずれかに記載のリチウムコバルト複合酸化物粉末。The lithium cobalt composite oxide powder according to any one of claims 1 to 4, wherein the average particle diameter D50 is 10 to 15 µm. 請求項1〜5のいずれかに記載のリチウムコバルト複合酸化物を含むリチウム二次電池用正極。The positive electrode for lithium secondary batteries containing the lithium cobalt complex oxide in any one of Claims 1-5. 請求項6に記載された正極を使用したリチウム二次電池。A lithium secondary battery using the positive electrode according to claim 6.
JP2003006159A 2003-01-14 2003-01-14 Positive electrode active material powder for lithium secondary battery Expired - Lifetime JP4276442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006159A JP4276442B2 (en) 2003-01-14 2003-01-14 Positive electrode active material powder for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006159A JP4276442B2 (en) 2003-01-14 2003-01-14 Positive electrode active material powder for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004220897A true JP2004220897A (en) 2004-08-05
JP4276442B2 JP4276442B2 (en) 2009-06-10

Family

ID=32896627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006159A Expired - Lifetime JP4276442B2 (en) 2003-01-14 2003-01-14 Positive electrode active material powder for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4276442B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339032A (en) * 2003-05-19 2004-12-02 Nippon Chem Ind Co Ltd Lithium cobalt-based multiple oxide, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
WO2005020354A1 (en) * 2003-08-21 2005-03-03 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
WO2005124898A1 (en) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JP2006228733A (en) * 2005-02-15 2006-08-31 Samsung Sdi Co Ltd Cathode active material, its manufacturing method and cathode as well as lithium cell using the material
JP2006294393A (en) * 2005-04-11 2006-10-26 Hitachi Maxell Ltd Lithium ion secondary battery
JP2006298699A (en) * 2005-04-20 2006-11-02 Seimi Chem Co Ltd Method for manufacturing lithium cobalt composite oxide having large particle size
WO2006123710A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
WO2006123711A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode in lithium rechargeable battery
WO2007037234A1 (en) * 2005-09-27 2007-04-05 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary cell
WO2007037235A1 (en) * 2005-09-28 2007-04-05 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide
JP2007119340A (en) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd Method for producing lithium-containing multiple oxide
JP2007145695A (en) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide
JP2007179917A (en) * 2005-12-28 2007-07-12 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery using it
JP2008013405A (en) * 2006-07-06 2008-01-24 Tosoh Corp Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
EP2104163A1 (en) * 2006-12-06 2009-09-23 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP2012018778A (en) * 2010-07-06 2012-01-26 Toshiba Corp Active material for battery, nonaqueous electrolyte battery, battery pack, and automobile
WO2012029729A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
JP2012121805A (en) * 2012-03-13 2012-06-28 Tosoh Corp Lithium-nickel-manganese-cobalt composite oxide, method for producing the same and application of the same
WO2014103166A1 (en) * 2012-12-27 2014-07-03 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2017069185A (en) * 2015-09-30 2017-04-06 パナソニック株式会社 Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9692047B2 (en) 2014-01-31 2017-06-27 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9774032B2 (en) 2013-09-24 2017-09-26 Kabushiki Kaisha Toshiba Active substance
JP6256956B1 (en) * 2016-12-14 2018-01-10 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10147943B2 (en) 2015-02-19 2018-12-04 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10468680B2 (en) 2014-08-28 2019-11-05 Umicore Nickel-lithium metal composite oxide powder and method for producing same
US10573881B2 (en) 2016-02-29 2020-02-25 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
CN110945707A (en) * 2017-07-31 2020-03-31 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
CN112740442A (en) * 2018-09-21 2021-04-30 株式会社田中化学研究所 Positive electrode active material for secondary battery and method for producing same
JP2022512174A (en) * 2018-12-19 2022-02-02 ユミコア Cobalt oxide as a precursor of positive electrode material for rechargeable lithium-ion batteries

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339032A (en) * 2003-05-19 2004-12-02 Nippon Chem Ind Co Ltd Lithium cobalt-based multiple oxide, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
WO2005020354A1 (en) * 2003-08-21 2005-03-03 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JPWO2005020354A1 (en) * 2003-08-21 2006-10-19 セイミケミカル株式会社 Positive electrode active material powder for lithium secondary battery
US7381498B2 (en) * 2003-08-21 2008-06-03 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
WO2005124898A1 (en) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
US7429434B2 (en) 2004-06-16 2008-09-30 Seimi Chemical Co., Ltd. Cathode active material powder for lithium secondary battery
JP2006228733A (en) * 2005-02-15 2006-08-31 Samsung Sdi Co Ltd Cathode active material, its manufacturing method and cathode as well as lithium cell using the material
US8663846B2 (en) 2005-02-15 2014-03-04 Samsung Sdi Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2006294393A (en) * 2005-04-11 2006-10-26 Hitachi Maxell Ltd Lithium ion secondary battery
JP4743752B2 (en) * 2005-04-11 2011-08-10 日立マクセル株式会社 Lithium ion secondary battery
JP2006298699A (en) * 2005-04-20 2006-11-02 Seimi Chem Co Ltd Method for manufacturing lithium cobalt composite oxide having large particle size
WO2006123710A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical., Ltd. Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
JPWO2006123710A1 (en) * 2005-05-17 2008-12-25 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
US8163198B2 (en) 2005-05-17 2012-04-24 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5132307B2 (en) * 2005-05-17 2013-01-30 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5132308B2 (en) * 2005-05-17 2013-01-30 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
WO2006123711A1 (en) * 2005-05-17 2006-11-23 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode in lithium rechargeable battery
JPWO2006123711A1 (en) * 2005-05-17 2008-12-25 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JPWO2007037234A1 (en) * 2005-09-27 2009-04-09 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
US7749482B2 (en) 2005-09-27 2010-07-06 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
WO2007037234A1 (en) * 2005-09-27 2007-04-05 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary cell
JP5253808B2 (en) * 2005-09-27 2013-07-31 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JPWO2007037235A1 (en) * 2005-09-28 2009-04-09 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
US8551658B2 (en) 2005-09-28 2013-10-08 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide
JP5253809B2 (en) * 2005-09-28 2013-07-31 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
WO2007037235A1 (en) * 2005-09-28 2007-04-05 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide
JP2007119340A (en) * 2005-09-29 2007-05-17 Seimi Chem Co Ltd Method for producing lithium-containing multiple oxide
JP2007145695A (en) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide
JP2007179917A (en) * 2005-12-28 2007-07-12 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery using it
JP2008013405A (en) * 2006-07-06 2008-01-24 Tosoh Corp Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
EP2104163A4 (en) * 2006-12-06 2013-05-15 Toda Kogyo Corp Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
EP2104163A1 (en) * 2006-12-06 2009-09-23 Toda Kogyo Corporation Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP2012018778A (en) * 2010-07-06 2012-01-26 Toshiba Corp Active material for battery, nonaqueous electrolyte battery, battery pack, and automobile
KR101401792B1 (en) * 2010-07-06 2014-05-29 가부시끼가이샤 도시바 Negative-electrode active material for battery, nonaqueous electrolyte battery, battery pack and vehicle
JP2012072050A (en) * 2010-09-02 2012-04-12 Nippon Chem Ind Co Ltd Cobalt hydroxide, method for producing the same, cobalt oxide and method for producing the same
CN103201222A (en) * 2010-09-02 2013-07-10 日本化学工业株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
WO2012029729A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
JP2012121805A (en) * 2012-03-13 2012-06-28 Tosoh Corp Lithium-nickel-manganese-cobalt composite oxide, method for producing the same and application of the same
US9947924B2 (en) 2012-12-27 2018-04-17 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10714748B2 (en) 2012-12-27 2020-07-14 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2014103166A1 (en) * 2012-12-27 2014-07-03 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9774032B2 (en) 2013-09-24 2017-09-26 Kabushiki Kaisha Toshiba Active substance
US9692047B2 (en) 2014-01-31 2017-06-27 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9985282B2 (en) 2014-01-31 2018-05-29 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10468680B2 (en) 2014-08-28 2019-11-05 Umicore Nickel-lithium metal composite oxide powder and method for producing same
US10147943B2 (en) 2015-02-19 2018-12-04 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10109854B2 (en) 2015-09-30 2018-10-23 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP2017069185A (en) * 2015-09-30 2017-04-06 パナソニック株式会社 Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10573881B2 (en) 2016-02-29 2020-02-25 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
JP2018095523A (en) * 2016-12-14 2018-06-21 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
KR20190088490A (en) 2016-12-14 2019-07-26 스미또모 가가꾸 가부시끼가이샤 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
WO2018110256A1 (en) 2016-12-14 2018-06-21 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
JP6256956B1 (en) * 2016-12-14 2018-01-10 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR20230070048A (en) 2016-12-14 2023-05-19 스미또모 가가꾸 가부시끼가이샤 Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
CN110945707A (en) * 2017-07-31 2020-03-31 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
CN112740442A (en) * 2018-09-21 2021-04-30 株式会社田中化学研究所 Positive electrode active material for secondary battery and method for producing same
JP2022512174A (en) * 2018-12-19 2022-02-02 ユミコア Cobalt oxide as a precursor of positive electrode material for rechargeable lithium-ion batteries
JP7290727B2 (en) 2018-12-19 2023-06-13 ユミコア Cobalt oxide as a precursor of cathode materials for rechargeable lithium-ion batteries.

Also Published As

Publication number Publication date
JP4276442B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
JP4268392B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4943145B2 (en) Positive electrode active material powder for lithium secondary battery
US7192672B2 (en) Process for producing positive electrode active material for lithium secondary battery
US7981547B2 (en) Process for positive electrode active substance for lithium secondary battery
KR100629129B1 (en) Positive electrode active material powder for lithium secondary battery
JP4280012B2 (en) Lithium transition metal composite oxide
JP4167654B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
JP5132360B2 (en) Method for producing lithium cobalt composite oxide for positive electrode active material of lithium ion secondary battery
JP4268613B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2005056602A (en) Positive electrode active material powder for lithium secondary battery, and its evaluation method
JP2003002661A (en) Method for producing lithium cobalt composite oxide
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4209646B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of secondary battery
JP4359092B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of secondary battery
JP4472430B2 (en) Method for producing lithium composite oxide for positive electrode of lithium secondary battery
JP2005056601A (en) Positive electrode active material for lithium secondary battery and its evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Ref document number: 4276442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term