JP2012121778A - Graphene and method for producing the same - Google Patents

Graphene and method for producing the same Download PDF

Info

Publication number
JP2012121778A
JP2012121778A JP2010275728A JP2010275728A JP2012121778A JP 2012121778 A JP2012121778 A JP 2012121778A JP 2010275728 A JP2010275728 A JP 2010275728A JP 2010275728 A JP2010275728 A JP 2010275728A JP 2012121778 A JP2012121778 A JP 2012121778A
Authority
JP
Japan
Prior art keywords
mgo
graphene
single crystal
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010275728A
Other languages
Japanese (ja)
Inventor
Kenji Fujii
健志 藤井
Mariko Sato
まり子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010275728A priority Critical patent/JP2012121778A/en
Publication of JP2012121778A publication Critical patent/JP2012121778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To directly deposit graphene on a transparent insulator substrate not requiring a transfer process, while keeping the quality of high quality graphene.SOLUTION: An MgO (111) single crystal thin film is deposited on a YSZ (111) single crystal substrate with an NiO (111) epitaxial thin film as a buffer layer, and single-layer graphene is deposited on this MgO (111) single crystal thin film.

Description

本発明は、グラフェンとその製造方法に関し、特にグラフェンを、MgO(111)上に形成する、グラフェンとその製造方法に関する。   The present invention relates to graphene and a method for manufacturing the graphene, and more particularly, to graphene and a method for manufacturing the graphene in which graphene is formed on MgO (111).

グラフェンは、炭素原子がsp2結合で結合して同一平面内に並んだ炭素原子のシートである。近年、非特許文献1及び非特許文献2に記載のように、単層のグラフェンが発見され、半整数ホール効果などの2次元性に由来する特異な量子伝導が報告され、物性物理の分野で非常に高い注目を集めている。   Graphene is a sheet of carbon atoms in which carbon atoms are bonded by sp2 bonds and arranged in the same plane. In recent years, as described in Non-Patent Document 1 and Non-Patent Document 2, single-layer graphene has been discovered, and specific quantum conduction derived from two-dimensionality such as the half-integer Hall effect has been reported. Has attracted very high attention.

また、グラフェンの移動度は15000cm/Vsとシリコンに比べ一桁以上高い値を示すことから、産業応用としてさまざまなものが提案されており、Siを超えるトランジスタへの応用、スピン注入デバイス、単分子を検出するガスセンサーなど多岐にわたる。中でも導電性薄膜や透明導電膜への適用は注目されており活発に開発が行われている。 In addition, the mobility of graphene is 15000 cm 2 / Vs, which is an order of magnitude higher than that of silicon. Therefore, a variety of industrial applications have been proposed. Applications to transistors exceeding Si, spin injection devices, A wide range of gas sensors that detect molecules. Among them, application to conductive thin films and transparent conductive films is attracting attention and is being actively developed.

導電性薄膜としての重要な特性は低シート抵抗である。シート抵抗は導電率と膜厚に反比例するため膜厚が厚くなるほど低い値を得ることが出来る。また、導電率は移動度に比例するため、膜質の高いグラフェンを成膜させることによりその向上が見込める。例えば非特許文献3ではCVDによってCuフォイル上に膜質の良いグラフェン薄膜を均一に成膜することに成功している。
また、特許文献1では、金属の酸化物の上にグラフェンを成膜している。
An important characteristic as a conductive thin film is low sheet resistance. Since the sheet resistance is inversely proportional to the electrical conductivity and the film thickness, a lower value can be obtained as the film thickness increases. Further, since the conductivity is proportional to the mobility, the improvement can be expected by forming graphene with high film quality. For example, Non-Patent Document 3 succeeds in uniformly depositing a graphene thin film with good film quality on a Cu foil by CVD.
In Patent Document 1, a graphene film is formed on a metal oxide.

特開2010−153793号公報JP 2010-153793 A

K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,A.A.Firsov,Science 306(2004)666.K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva, A.A.Firsov, Science 306 (2004) 666. K.S.Novoselov,D.Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V.Morozov and A.K.Geim,Proc.Natl.Acad.Sci.U.S.A.102(2005)10451.K.S.Novoselov, D.Jiang, F.Schedin, T.J.Booth, V.V.Khotkevich, S.V.Morozov and A.K.Geim, Proc.Natl.Acad.Sci.U.S.A.102 (2005) 10451. Xuesong et al.,NanoLett.9(2009)4359-4362.Xuesong et al., NanoLett. 9 (2009) 4359-4362.

CVD(化学的気相堆積)によってCuフォイル上に成膜したグラフェンを透明導電膜に適用する場合、以下の転写プロセスが必要となる。
・ 成膜したグラフェン上にPMMA(ポリメタクリル酸メチル樹脂)樹脂を形成する。
・ Cuフォイルを酸でエッチングすることで取り除く。
・ PMMA上に残ったグラフェンを所望の基板に配置し、PMMAをアセトンで取り除く。
When applying graphene formed on a Cu foil by CVD (chemical vapor deposition) to a transparent conductive film, the following transfer process is required.
A PMMA (polymethyl methacrylate resin) resin is formed on the formed graphene.
Remove Cu foil by etching with acid.
Place the graphene remaining on the PMMA on the desired substrate and remove the PMMA with acetone.

しかし、上記の方法では、グラフェンが酸に触れることにより膜質の低下、転写での膜の剥離、工程の複雑化によるコストの増加などの問題がある。また、特許文献1の方法では、下地の面方位を特定していないので、高い移動度を有するグラフェンが得られない。そこで、透明な絶縁体基板上に、移動度の大きいグラフェンを直接成膜することが産業応用上期待されている。   However, the above-described method has problems such as deterioration of film quality due to graphene coming into contact with acid, film peeling during transfer, and cost increase due to complicated processes. Further, in the method of Patent Document 1, since the plane orientation of the base is not specified, graphene having high mobility cannot be obtained. Therefore, it is expected from industrial application that a graphene with high mobility is directly formed on a transparent insulator substrate.

本発明の目的は、高品質なグラフェンの品質を保ちながら、転写プロセスを必要としない透明の絶縁体基板上に、移動度の大きいグラフェンを直接成膜することにある。 An object of the present invention is to directly form a high-mobility graphene film on a transparent insulator substrate that does not require a transfer process while maintaining the quality of high-quality graphene.

上記目的を達成するため、本発明のグラフェンとその製造方法では、グラフェンをMgO(111)上に成膜することを特徴とする。このことでグラフェンの結晶構造と同じ対称性(3回対称)を持つ基板上にグラフェンがエピタキシャル成長される。   In order to achieve the above object, the graphene and the manufacturing method thereof according to the present invention are characterized in that a graphene film is formed on MgO (111). Thus, graphene is epitaxially grown on a substrate having the same symmetry (three-fold symmetry) as the graphene crystal structure.

また、通常のグラフェンの成膜では金属の触媒効果により結晶化が促進されるが、MgO(111)は表面が電荷の不整合により帯電しており、絶縁体にも関わらず表面では触媒効果があるので、グラフェンの結晶化を促進する。 Also, in normal graphene film formation, crystallization is promoted by the catalytic effect of metal, but the surface of MgO (111) is charged due to charge mismatch, and the catalytic effect is exerted on the surface regardless of the insulator. As such, it promotes crystallization of graphene.

このとき、MgO(111)の形態は単結晶薄膜が好ましい。MgO(111)単結晶薄膜は、MgO(111)バルク単結晶基板上に形成されることも好ましい。また、MgO(111)の単結晶薄膜は表面が原子平坦(原子レベルで表面が平坦)であることが好ましい。
さらにMgO(111)単結晶薄膜はNiO(111)エピタキシャル薄膜をバッファー層としてYSZ(111)単結晶基板上に成膜すること、Al(0001)単結晶基板上に成膜すること、が好ましい。
At this time, the form of MgO (111) is preferably a single crystal thin film. The MgO (111) single crystal thin film is also preferably formed on an MgO (111) bulk single crystal substrate. In addition, the MgO (111) single crystal thin film preferably has an atomic flat surface (at the atomic level, the flat surface).
Furthermore, the MgO (111) single crystal thin film is formed on the YSZ (111) single crystal substrate using the NiO (111) epitaxial thin film as a buffer layer, and is formed on the Al 2 O 3 (0001) single crystal substrate. Is preferred.

本発明によれば、単層グラフェンの高い膜質を維持しながら、これまで不可能であった絶縁体基板上に直接、移動度の大きいグラフェンを得ることが出来る。
また、金属フォイル上でCVD成膜された物とは異なり転写を行う必要がないため、高品質を維持し、低コストでグラフェンを絶縁体基板上に成膜することができる。
なお、この方法では、真空中で一貫してグラフェンを成膜するため、不純物の混入を防ぐことが可能であり、より高品質のグラフェンを成膜することが出来る。
According to the present invention, it is possible to obtain graphene having high mobility directly on an insulating substrate, which has been impossible until now, while maintaining the high film quality of single-layer graphene.
Further, unlike the case where a CVD film is formed on a metal foil, there is no need to perform transfer, so that high quality can be maintained and graphene can be formed on an insulator substrate at low cost.
Note that in this method, since graphene is formed in a consistent manner in a vacuum, it is possible to prevent impurities from being mixed, and it is possible to form higher quality graphene.

グラフェン/MgO(111)薄膜/NiO(111)バッファ層/YSZ(111)基板の積層構造の概念図である。It is a conceptual diagram of a laminated structure of graphene / MgO (111) thin film / NiO (111) buffer layer / YSZ (111) substrate. グラフェン/MgO(111)薄膜/MgO(111)基板の積層構造の概念図である。It is a conceptual diagram of the laminated structure of a graphene / MgO (111) thin film / MgO (111) substrate. 本発明により作製した単層グラフェン薄膜の移動度の図である。It is a figure of the mobility of the single layer graphene thin film produced by this invention.

本発明のグラフェン、ならびにその製造方法は、3回対称を有するMgO(111)上に、グラフェンをエピタキシャル成長させることで得られる。
グラフェンのエピタキシャル成長方法としてはCVDまたはPVD(物理的気相堆積)により成膜出来る。
The graphene of the present invention and the production method thereof can be obtained by epitaxially growing graphene on MgO (111) having a three-fold symmetry.
As an epitaxial growth method of graphene, a film can be formed by CVD or PVD (physical vapor deposition).

例えばCVDでは超高真空中(10−7Pa程度)でメタンなどの炭化水素ガスをMgO(111)に吹き付けることで、メタンガスがクラッキング(接触分解)されてラジカルとなり、MgO(111)表面にて炭素原子になり供給される。炭素原子はMgO(111)表面の電荷により触媒効果を受け、長い距離をマイグレーションすることで、原子ステップ端に到達し、レイヤーバイレイヤーでグラフェンが成長する。単層のグラフェンを製造するためには、レイヤーバイレイヤーで成長させる必要がある。 For example, in CVD, a hydrocarbon gas such as methane is blown onto MgO (111) in an ultra-high vacuum (about 10 −7 Pa), so that the methane gas is cracked (catalytically decomposed) to become radicals, and on the MgO (111) surface. Supplied as carbon atoms. Carbon atoms are catalyzed by the charge on the surface of MgO (111) and migrate long distances to reach the atomic step edge, and graphene grows layer by layer. In order to produce single layer graphene, it is necessary to grow it layer by layer.

また、PVD成長としてはMBE(分子線エピタキシー)やPLD(パルスレーザー堆積)などによりグラフェンを成長させることが可能である。
MBEでは超高真空中(10−8Pa程度)でグラファイトを2000℃に加熱することで原子状の炭素を発生させ、分子線となった原子状炭素を加熱したMgO(111)上に供給することで、MgO(111)表面に到達した原子状炭素がレイヤーバイレイヤー成長を行い、高品質なグラフェンを成膜することが可能である。
PLDでは超高真空中(10−7Pa程度)でグラファイトをKrFのエキシマレーザーにてアブレーションすることで瞬時に蒸発した炭素が分子線の状態で加熱された格子整合基板に供給され、レイヤーバイレイヤー成長を行うことで、高品質な単層グラフェンを成膜することが可能である。
As PVD growth, graphene can be grown by MBE (molecular beam epitaxy), PLD (pulse laser deposition), or the like.
In MBE, atomic carbon is generated by heating graphite to 2000 ° C. in an ultra-high vacuum (about 10 −8 Pa), and the atomic carbon that has become a molecular beam is supplied onto the heated MgO (111). Thus, the atomic carbon that has reached the surface of MgO (111) can perform layer-by-layer growth to form a high-quality graphene film.
In PLD, graphite is ablated with KrF excimer laser in ultra-high vacuum (about 10-7 Pa), and the instantaneously evaporated carbon is supplied to the lattice-matched substrate heated in the state of molecular beam. By growing, high-quality single-layer graphene can be formed.

MgO(111)の形態としては、バルク単結晶または単結晶薄膜が好ましく、表面は原子平坦でなければならない。
バルク単結晶の場合は、大気中では(111)面が不安定であることから表面が再構成されているため、真空中で1000℃、1時間のアニール処理をし、PLD法によりMgO(111)をホモエピタキシャル成長することによって、原子平坦な触媒活性の表面を形成する。
The form of MgO (111) is preferably a bulk single crystal or a single crystal thin film, and the surface must be atomically flat.
In the case of a bulk single crystal, since the (111) plane is unstable in the atmosphere, the surface is reconstructed. Therefore, annealing is performed in a vacuum at 1000 ° C. for 1 hour, and MgO (111 ) To form an atomic flat catalytically active surface.

また、単結晶薄膜の場合は、Al(0001)基板を1300℃、30minの条件で大気でアニールすることで原子平坦とし、その基板を加熱した状態でPLDによりMgO(111)単結晶薄膜を成膜することでMgO(111)単結晶薄膜がエピタキシャルに成長する。しかし、Al(0001)基板ではMgO(111)単結晶薄膜と格子不整合が数%と大きいため、より高品質な薄膜を成膜する際には、YSZ(111)基板を1000℃、大気でアニールすることで原子平坦とし、その基板上にPLD法でNiO(111)を室温で成膜した後、1300℃、大気でアニールすることでNiO(111)のバッファー層を形成する。Ni(111)バッファー層上にMgOをPLDにて成膜することで、 Ni(111)とMgO(111)は格子不整合が0.8%と非常に小さいため、高品質で原子平坦なMgO(111)を得ることが出来る。すなわち、格子不整合が小さいと、原子層レベルで平坦な薄膜を形成することが可能となる。
[実施例]
In the case of a single crystal thin film, an Al 2 O 3 (0001) substrate is annealed in the atmosphere at 1300 ° C. for 30 min to make the atom flat, and the substrate is heated and the MgO (111) single crystal is formed by PLD. By forming the thin film, the MgO (111) single crystal thin film grows epitaxially. However, since the Al 2 O 3 (0001) substrate has a large lattice mismatch with the MgO (111) single crystal thin film of several percent, when forming a higher quality thin film, the YSZ (111) substrate is heated to 1000 ° C. Then, the substrate is flattened by annealing in the atmosphere, and NiO (111) is deposited on the substrate by the PLD method at room temperature, followed by annealing in the atmosphere at 1300 ° C. to form a NiO (111) buffer layer. By depositing MgO on the Ni (111) buffer layer by PLD, Ni (111) and MgO (111) have a very low lattice mismatch of 0.8%. (111) can be obtained. That is, if the lattice mismatch is small, a flat thin film can be formed at the atomic layer level.
[Example]

10cm角の単結晶のYSZ(111)基板13を1000℃、大気中にて30分アニールすることで原子平坦な表面を形成する。このYSZ(111)基板13を10−7Paの超高真空にしたチャンバー中に導入して、室温状態で対向するNiO多結晶ターゲットをKrFのエキシマーレーザーでアブレーションし、NiOのアモルファス膜を100nm成膜する。この膜を一度大気に取り出し、管状炉にて1300℃、大気の条件で30分アニールを行った。アニールされたNiOはYSZ(111)基板13にエピタキシャルに結晶化し、NiO(111)薄膜12となる。このNiO(111)薄膜12の表面は原子平坦となっており、MgO(111)単結晶薄膜11を成膜するバッファー層となる。 A 10 cm square single crystal YSZ (111) substrate 13 is annealed at 1000 ° C. in the air for 30 minutes to form an atomic flat surface. This YSZ (111) substrate 13 was introduced into a chamber set to an ultrahigh vacuum of 10 −7 Pa, and the NiO polycrystalline target facing at room temperature was ablated with a KrF excimer laser to form a NiO amorphous film with a thickness of 100 nm. Film. This film was once taken out into the atmosphere, and annealed in a tubular furnace at 1300 ° C. under atmospheric conditions for 30 minutes. The annealed NiO is crystallized epitaxially on the YSZ (111) substrate 13 to become the NiO (111) thin film 12. The surface of the NiO (111) thin film 12 is atomically flat, and serves as a buffer layer for forming the MgO (111) single crystal thin film 11.

次に、このNiO(111)薄膜12/YSZ(111)基板13を再度、超高真空チャンバーに導入し、基板温度600℃、酸素分圧を10−3Paにした状態で、MgO多結晶ターゲットをKrFのエキシマーレーザーでアブレーションし、MgO(111)単結晶薄膜11を成膜する。この際にRHEED(高速反射電子線回折)により基板表面を観測し、RHEEDのスポット強度をモニターしながら、MgOをアブレーションする。すると、RHEEDのスポット強度がMgO(111)単結晶薄膜11の被覆率に応じて振動し、0.5ML(モノレイヤー)で最小となり1MLで最大となる。このRHEEDの強度振動を観測しながら、振動の数が10回のところでMgOの供給を停止し、MgO(111)単結晶薄膜11を10分子層成膜した。
MgO(111)単結晶薄膜11の成膜後、その後はグラフェン10を形成するために、基板温度を700℃に保持した状態でMgO(111)単結晶薄膜11の表面にメタンガス分圧を10−4Paになるまで導入し、30分間成膜させ図1の積層構造を形成した。
Next, this NiO (111) thin film 12 / YSZ (111) substrate 13 is again introduced into the ultra-high vacuum chamber, the substrate temperature is 600 ° C., and the oxygen partial pressure is 10 −3 Pa. Is ablated with a KrF excimer laser to form a MgO (111) single crystal thin film 11. At this time, the substrate surface is observed by RHEED (high-speed reflection electron diffraction), and MgO is ablated while monitoring the spot intensity of RHEED. Then, the RHEED spot intensity vibrates according to the coverage of the MgO (111) single crystal thin film 11, and becomes minimum at 0.5 ML (monolayer) and maximum at 1 ML. While observing the intensity vibration of this RHEED, the supply of MgO was stopped when the number of vibrations was 10, and the MgO (111) single crystal thin film 11 was formed into a 10 molecular layer.
After the formation of the MgO (111) single crystal thin film 11, a methane gas partial pressure of 10 is applied to the surface of the MgO (111) single crystal thin film 11 with the substrate temperature maintained at 700 ° C. in order to form the graphene 10 thereafter. It introduced until it became 4 Pa, was formed into a film for 30 minutes, and the laminated structure of FIG. 1 was formed.

また、Al(0001)基板を1300℃、30minの条件で大気アニールすることで原子平坦とした後、その基板を超高真空チャンバー(10−7Pa程度)に導入し、酸素分圧10−4Pa、基板温度を600℃とした状態で、上記手法と同様の方法によってMgO単結晶薄膜11をエピタキシャルに10分子層成膜しグラフェン10を成膜した場合においても、原子平坦なMgO(111)単結晶薄膜11が得られ、NiO(111)バッファー層12を用いた場合と,ほぼ同等のグラフェン10の移動度が得られている。 Further, after the Al 2 O 3 (0001) substrate was flattened by atmospheric annealing at 1300 ° C. for 30 min, the substrate was introduced into an ultrahigh vacuum chamber (about 10 −7 Pa), and the oxygen partial pressure was reduced. Even when 10 molecular layers of the MgO single crystal thin film 11 are epitaxially deposited and the graphene 10 is deposited by a method similar to the above method with the substrate temperature of 10 −4 Pa and the substrate temperature of 600 ° C., the atomic flat MgO The (111) single crystal thin film 11 is obtained, and the mobility of the graphene 10 is almost the same as when the NiO (111) buffer layer 12 is used.

次に、バルク単結晶14を用いた場合では、10mm角のMgO(111)単結晶基板14を超高真空チャンバーに導入し、10−7Pa以下の真空状態で1000℃、1時間のアニール処理することで表面を再構成させた。その後、酸素分圧10−4Pa、基板温度を600℃とし、上記手法と同様にMgO多結晶ターゲットをKrFのエキシマーレーザーでアブレーションし、RHEED振動を慎重に測定しながらMgO(111)単結晶薄膜11を10分子層ホモエピタキシャル成長させることで原子平坦で触媒活性を有する表面を形成した。この表面上に上記と同様の方法にてグラフェン10を1原子層成膜し、図2の積層構造を形成した。 Next, when the bulk single crystal 14 is used, a 10 mm square MgO (111) single crystal substrate 14 is introduced into an ultrahigh vacuum chamber, and an annealing treatment is performed at 1000 ° C. for 1 hour in a vacuum state of 10 −7 Pa or less. By doing so, the surface was reconstructed. Thereafter, the oxygen partial pressure is 10 −4 Pa, the substrate temperature is 600 ° C., the MgO polycrystal target is ablated with a KrF excimer laser in the same manner as described above, and the MgO (111) single crystal thin film is carefully measured while measuring the RHEED vibration. 11 was grown by homoepitaxial growth of 10 molecular layers to form an atomic flat surface having catalytic activity. One atomic layer of graphene 10 was formed on this surface in the same manner as described above to form the stacked structure shown in FIG.

図3に、本方法により作製した単層グラフェン10の移動度を示す。比較のためCuフォイルとAl(0001)単結晶基板上に直接、上記と同じ方法でグラフェンを成膜したものの移動度を示している。 FIG. 3 shows the mobility of the single-layer graphene 10 produced by this method. For comparison, the mobility of a graphene film formed directly on a Cu foil and an Al 2 O 3 (0001) single crystal substrate by the same method as described above is shown.

図3に示すように、同じ絶縁体であるAl(0001)上では形成されたグラフェンの膜質が悪く移動度が非常に低くなっているのに対し、MgO(111)単結晶薄膜11上およびMgO(111)バルク単結晶14上にMgO(111)単結晶薄膜を形成したグラフェン10の移動度は10000cmVs程度と、Cuフォイル上に形成した場合の5000cmVs程度よりも約2倍高い移動度を示している。 As shown in FIG. 3, the film quality of graphene formed on Al 2 O 3 (0001), which is the same insulator, is poor and the mobility is very low, whereas the MgO (111) single crystal thin film 11 mobility of upper and MgO (111) bulk single crystal 14 graphene 10 formed of MgO (111) single-crystal thin film on the on the order of 10000 cm 2 Vs, than 5000cm approximately 2 Vs in the case of forming on the Cu foil of about 2 The mobility is twice as high.

これはMgO(111)単結晶薄膜11の表面での触媒効果によりエピタキシャルにグラフェン10が成長したためであり、多結晶であるCuフォイルよりも均一な膜が出来ていることを意味している。
以上の結果より本発明の効果が実証された。
This is because the graphene 10 has grown epitaxially due to the catalytic effect on the surface of the MgO (111) single crystal thin film 11, which means that a film more uniform than the polycrystalline Cu foil is formed.
From the above results, the effect of the present invention was demonstrated.

10 グラフェン(単層グラフェン)
11 MgO(111)単結晶薄膜
12 NiO(111)バッファー層
13 YSZ(111)基板
14 MgO(111)基板(バルク単結晶)
10 Graphene (single layer graphene)
11 MgO (111) single crystal thin film 12 NiO (111) buffer layer 13 YSZ (111) substrate 14 MgO (111) substrate (bulk single crystal)

Claims (12)

グラフェンがMgO(111)上に成膜されることを特徴とするグラフェンの製造方法。 A method for producing graphene, comprising forming graphene on MgO (111). 前記MgO(111)は、単結晶薄膜であることを特徴とする請求項1に記載のグラフェンの製造方法。 The method for producing graphene according to claim 1, wherein the MgO (111) is a single crystal thin film. 前記MgO(111)は、バルク単結晶基板の上に単結晶薄膜を形成したものであることを特徴とする請求項1に記載のグラフェンの製造方法。 The method for producing graphene according to claim 1, wherein the MgO (111) is obtained by forming a single crystal thin film on a bulk single crystal substrate. 前記MgO(111)の単結晶薄膜は表面が原子平坦であることを特徴とする請求項2または請求項3に記載のグラフェンの製造方法。 4. The method for producing graphene according to claim 2, wherein the MgO (111) single crystal thin film has an atomic flat surface. 前記MgO(111)単結晶薄膜はNiO(111)エピタキシャル薄膜をバッファー層としてYSZ(111)単結晶基板上に成膜されることを特徴とする請求項2に記載のグラフェンの製造方法。 3. The method for producing graphene according to claim 2, wherein the MgO (111) single crystal thin film is formed on a YSZ (111) single crystal substrate using a NiO (111) epitaxial thin film as a buffer layer. 前記MgO(111)単結晶薄膜はAl(0001)単結晶基板上に成膜されることを特徴とする請求項2に記載のグラフェンの製造方法。 3. The method for producing graphene according to claim 2, wherein the MgO (111) single crystal thin film is formed on an Al 2 O 3 (0001) single crystal substrate. MgO(111)上に成膜されたことを特徴とするグラフェン。 Graphene formed on MgO (111). 前記MgO(111)は、単結晶薄膜であることを特徴とする請求項7に記載のグラフェン。 The graphene according to claim 7, wherein the MgO (111) is a single crystal thin film. 前記MgO(111)は、バルク単結晶基板の上に単結晶薄膜を形成したものであることを特徴とする請求項7に記載のグラフェン。 The graphene according to claim 7, wherein the MgO (111) is obtained by forming a single crystal thin film on a bulk single crystal substrate. 前記MgO(111)の単結晶薄膜は表面が原子平坦であることを特徴とする請求項8または請求項9に記載のグラフェン。 10. The graphene according to claim 8, wherein a surface of the MgO (111) single crystal thin film is atomically flat. 11. 前記MgO(111)単結晶薄膜はNiO(111)エピタキシャル薄膜をバッファー層としてYSZ(111)単結晶基板上に成膜されたことを特徴とする請求項8に記載のグラフェン。 The graphene according to claim 8, wherein the MgO (111) single crystal thin film is formed on a YSZ (111) single crystal substrate using a NiO (111) epitaxial thin film as a buffer layer. 前記MgO(111)単結晶薄膜はAl(0001)単結晶基板上に成膜されたことを特徴とする請求項8に記載のグラフェン。 The graphene according to claim 8, wherein the MgO (111) single crystal thin film is formed on an Al 2 O 3 (0001) single crystal substrate.
JP2010275728A 2010-12-10 2010-12-10 Graphene and method for producing the same Pending JP2012121778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010275728A JP2012121778A (en) 2010-12-10 2010-12-10 Graphene and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010275728A JP2012121778A (en) 2010-12-10 2010-12-10 Graphene and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012121778A true JP2012121778A (en) 2012-06-28

Family

ID=46503651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010275728A Pending JP2012121778A (en) 2010-12-10 2010-12-10 Graphene and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012121778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236550A (en) * 2013-04-22 2013-08-07 陕西煤业化工技术研究院有限责任公司 Graphene-modified nickel-base composite anode material of solid oxide fuel cell and preparation method thereof
JP2014055087A (en) * 2012-09-13 2014-03-27 Panasonic Corp Method for producing graphene and transistor using the graphene
CN109930133A (en) * 2019-03-21 2019-06-25 西南大学 A kind of preparation method of the graphene zirconium oxide composite material for gas sensing
CN112853619A (en) * 2020-12-31 2021-05-28 广东春夏新材料科技股份有限公司 Environment-friendly air filtration non-woven fabric and production process and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055087A (en) * 2012-09-13 2014-03-27 Panasonic Corp Method for producing graphene and transistor using the graphene
CN103236550A (en) * 2013-04-22 2013-08-07 陕西煤业化工技术研究院有限责任公司 Graphene-modified nickel-base composite anode material of solid oxide fuel cell and preparation method thereof
CN109930133A (en) * 2019-03-21 2019-06-25 西南大学 A kind of preparation method of the graphene zirconium oxide composite material for gas sensing
CN112853619A (en) * 2020-12-31 2021-05-28 广东春夏新材料科技股份有限公司 Environment-friendly air filtration non-woven fabric and production process and application thereof
CN112853619B (en) * 2020-12-31 2021-09-28 广东春夏新材料科技股份有限公司 Environment-friendly air filtration non-woven fabric and production process and application thereof

Similar Documents

Publication Publication Date Title
JP6177295B2 (en) Method for producing graphene nanoribbons on h-BN
KR101643758B1 (en) Method of fabricating carbon insulating layer using molecular beam epitaxy and fabricationg field effect trasistor using the same
TW200941559A (en) Semiconductor substrate and method of making same
WO2012070385A1 (en) Conductive thin film containing graphene, and transparent conductive film
CN113235047B (en) Preparation method of AlN thin film
US20110084285A1 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
JP2009177168A (en) Semiconductor substrate and method of manufacturing the same, and electronic device
KR101851578B1 (en) Preparing method single-crystal two-dimensional materlial having large-area
JP2008091656A (en) Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
CN108193276B (en) Method for preparing large-area single-orientation hexagonal boron nitride two-dimensional atomic crystal
Shan et al. Chemical vapor deposition synthesis of graphene over sapphire substrates
US20190139762A1 (en) Epitaxial growth of defect-free, wafer-scale single-layer graphene on thin films of cobalt
CN109841497A (en) A kind of method, gallium nitride material and the application of isoepitaxial growth gallium nitride
US20140162021A1 (en) Method for producing graphene, and graphene produced by the method
JP2012121778A (en) Graphene and method for producing the same
CN111809154B (en) Method for preparing high-quality silicon-based aluminum nitride template
JP2012232860A (en) Method for producing graphene
JP5962332B2 (en) Graphene growth method
Tian et al. Synthesis of AAB‐stacked single‐crystal graphene/hBN/graphene trilayer van der Waals heterostructures by in situ CVD
KR20150089840A (en) Method of forming multilayer graphene structure
Ji et al. Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review
JP6041346B2 (en) Method for producing graphene / SiC composite material and graphene / SiC composite material obtained thereby
US20210226014A1 (en) Maskless patterning and control of graphene layers
CN102910614A (en) Method for heterogeneous epitaxial growth of graphene
US20160118465A1 (en) Solid phase epitaxy of 3C-SiC on Si(001)