JP2012119195A - Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar battery - Google Patents

Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar battery Download PDF

Info

Publication number
JP2012119195A
JP2012119195A JP2010268761A JP2010268761A JP2012119195A JP 2012119195 A JP2012119195 A JP 2012119195A JP 2010268761 A JP2010268761 A JP 2010268761A JP 2010268761 A JP2010268761 A JP 2010268761A JP 2012119195 A JP2012119195 A JP 2012119195A
Authority
JP
Japan
Prior art keywords
group
dye
oxide semiconductor
sensitized
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010268761A
Other languages
Japanese (ja)
Other versions
JP5713285B2 (en
Inventor
Ashraful Islam
アシュラフル イスラム
Reigen Kan
礼元 韓
Zheliu Chen
ヅリュウ チン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010268761A priority Critical patent/JP5713285B2/en
Publication of JP2012119195A publication Critical patent/JP2012119195A/en
Application granted granted Critical
Publication of JP5713285B2 publication Critical patent/JP5713285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element using new dye, having sensitivity to light in a long-wavelength region, being stable, and having the conversion efficiency higher than that of the Black dye.SOLUTION: As the dye, a metal complex uses an organic metal dye represented by the following general formula (1): MLZX (1). In the formula, M represents a group VIII to X metal element, Z represents a 2,2'-6',2"-terpyridine dielectric having one to three carboxyl groups, X represents a halogen atom and a cyano group and the like, and L represents a 1,3-butanedione dielectric.

Description

本発明は有機金属色素で増感された半導体微粒子的薄膜を有する光電変換素子並びにそれを用いた色素増感酸化物半導体電極及び色素増感太陽電池に関する。更に詳しくは、本発明は高い変換効率を有する1,3−ブタンジオン系色素を利用した金属錯体、色素増感酸化物半導体電極及び色素増感太陽電池に関する。   The present invention relates to a photoelectric conversion element having a semiconductor fine particle thin film sensitized with an organometallic dye, a dye-sensitized oxide semiconductor electrode and a dye-sensitized solar cell using the photoelectric conversion element. More specifically, the present invention relates to a metal complex, a dye-sensitized oxide semiconductor electrode, and a dye-sensitized solar cell using a 1,3-butanedione dye having high conversion efficiency.

エネルギー資源として太陽光を利用する太陽電池が注目されている。従来、光エネルギーを電気エネルギーに直接変換する装置として、シリコン結晶太陽電池を用いたシリコン太陽電池が公知である。しかしそれらは製造に要するエネルギー及びコストが高いため、汎用的に使用するのが困難であるという問題点がある。たとえば、シリコン結晶太陽電池は、シリコン単結晶やアモルファスシリコンから主に構成されるが、シリコン単結晶はもちろんのこと、アモルファスシリコンを製造するにあたっては、真空装置やプラズマ発生装置を使用するために、多大なエネルギーを必要とする。そのため、電池を作るのに費やしたエネルギーを回収するには、長期間にわたって発電を続ける必要がある。こうした状況下、増感色素を用いた色素増感太陽電池が広く注目されるようになった(特許文献1〜3)。この色素増感太陽電池は、作製方法の簡便さ、材料コストの低さ等から次世代の太陽電池として期待されている。しかしながら、太陽電池として実用化するためには、更なる変換効率の向上が望まれており、このためには発生電流(短絡電流)の増加とともに開放電圧の増大、更には耐久性の向上が望まれている。   Solar cells that use sunlight as an energy resource have attracted attention. Conventionally, a silicon solar cell using a silicon crystal solar cell is known as a device that directly converts light energy into electric energy. However, there is a problem that they are difficult to use for general purposes because of the high energy and cost required for production. For example, a silicon crystal solar cell is mainly composed of a silicon single crystal or amorphous silicon, but not only a silicon single crystal but also an amorphous silicon is manufactured by using a vacuum device or a plasma generator. A lot of energy is required. Therefore, it is necessary to continue power generation for a long period of time in order to recover the energy spent for making the battery. Under such circumstances, a dye-sensitized solar cell using a sensitizing dye has been widely noted (Patent Documents 1 to 3). This dye-sensitized solar cell is expected as a next-generation solar cell because of its simplicity of manufacturing method and low material cost. However, in order to put it into practical use as a solar cell, further improvement in conversion efficiency is desired. For this purpose, an increase in the open circuit voltage as well as an increase in the generated current (short circuit current) and further improvement in durability are desired. It is rare.

本発明の課題は、長波長領域の光に感度を有し、かつ効率よく電流を取出することができるルテニウム金属錯体、及びそのような錯体を利用した色素増感酸化物半導体電極及び色素増感太陽電池を与えることである。   An object of the present invention is to provide a ruthenium metal complex that has sensitivity to light in the long wavelength region and can efficiently extract current, and a dye-sensitized oxide semiconductor electrode and dye-sensitized dye that use such a complex. Is to give solar cells.

本発明の一側面によれば、一般式(1)で表される金属錯体が与えられる。
MLZX (1)
上式中:
Mは8〜10族金属元素であり、
X はハロゲン原子、シアノ基、チオシアノ基とチオラート基とからなる群から選択された配位子であり、
Zは下記式(2)で表され、ここにおいてA1、A2及びA3の少なくとも1つはカルボキシル基であるとともに残余のものは水素である配位子であり、

Lは下記式(3)で表される1,3−ブタンジオン誘導体であり、

ここで、Rは、アルキル基、アルコキシアルキル基、アミノアルキル基、ハロゲン置換アルキル基、アリール基または水素原子であり、
は置換または無置換3,4−エチレンジオキシチオフェン基、もしくはチオフェンが1〜3個直鎖状に繋がるチオフェン骨格であって、その一側に置換または無置換アルキル基とアルキルフェニル基とハロゲン基とフェノキシアルキルとからなる群から選択された基を有する前記チオフェン骨格である。
ここにおいて、前記式(3)におけるRは炭素数1〜3であるパーフルオロアルキル基であってよい。
また、前記式(3)におけるRがチオフェンが1〜3個直鎖状に繋がるチオフェン骨格を有し、前記チオフェン骨格の一側に炭素数1〜12のアルキル基とアルキルフェニル基(アルキル部分の炭素数1〜12)と末端がハロゲン基を有する炭素数1〜12のアルキル基とからなる群から選択された基を有してよい。
本発明の他の側面によれば、前記金属錯体が導電性表面に形成された酸化物半導体膜に吸着した、色素増感酸化物半導体電極が与えられる。
本発明の更に他の側面によれば、前記色素増感酸化物半導体電極と、対極と、前記色素増感酸化物半導体電極及び前記対極に接触するレドックス電解質とを設けた色素増感太陽電池が与えられる。
According to one aspect of the present invention, a metal complex represented by the general formula (1) is provided.
MLZX (1)
In the above formula:
M is a group 8-10 metal element,
X is a ligand selected from the group consisting of a halogen atom, a cyano group, a thiocyano group and a thiolate group,
Z is represented by the following formula (2), wherein at least one of A1, A2 and A3 is a carboxyl group and the remainder is a ligand which is hydrogen,

L is a 1,3-butanedione derivative represented by the following formula (3),

Here, R 1 is an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a halogen-substituted alkyl group, an aryl group or a hydrogen atom,
R 2 is a substituted or unsubstituted 3,4-ethylenedioxythiophene group, or a thiophene skeleton in which 1 to 3 thiophenes are connected in a straight chain, and a substituted or unsubstituted alkyl group and an alkylphenyl group on one side thereof The thiophene skeleton having a group selected from the group consisting of a halogen group and phenoxyalkyl.
Here, R 1 in the formula (3) may be a perfluoroalkyl group having 1 to 3 carbon atoms.
In addition, R 2 in the formula (3) has a thiophene skeleton in which 1 to 3 thiophenes are connected in a straight chain, and an alkyl group having 1 to 12 carbon atoms and an alkylphenyl group (alkyl moiety) on one side of the thiophene skeleton. And a group selected from the group consisting of an alkyl group having 1 to 12 carbon atoms having a halogen group at the end.
According to another aspect of the present invention, there is provided a dye-sensitized oxide semiconductor electrode in which the metal complex is adsorbed on an oxide semiconductor film formed on a conductive surface.
According to still another aspect of the present invention, there is provided a dye-sensitized solar cell provided with the dye-sensitized oxide semiconductor electrode, a counter electrode, and a redox electrolyte in contact with the dye-sensitized oxide semiconductor electrode and the counter electrode. Given.

発明の金属錯体は、太陽光エネルギーを高い効率で吸収する色素となり、またこれを利用して高効率の色素増感太陽電池を提供することができる。   The metal complex of the invention becomes a dye that absorbs solar energy with high efficiency, and a high-efficiency dye-sensitized solar cell can be provided using this.

本発明の色素増感太陽電池の実施例の断面図。Sectional drawing of the Example of the dye-sensitized solar cell of this invention.

本発明は、色素増感型太陽電池の金属酸化物半導体を修飾する増感剤について鋭意研究を重ねた結果、ルテニウム等の8〜10族金属元素を中心金属とし、カルボキシル基などの結合基をもつテルピリジン誘導体と1,3−ブタンジオンに化合物を配位子としてもつ錯体は、公知のルテニウム錯体誘導体より広い吸収領域を有し、増感剤として有効であることを見いだし、この知見に基づいて本発明をなすに至った。   As a result of extensive research on sensitizers for modifying metal oxide semiconductors of dye-sensitized solar cells, the present invention has a group metal element such as ruthenium as a central metal, and a bonding group such as a carboxyl group. It has been found that a complex having a compound of terpyridine derivative and 1,3-butanedione as a ligand has a wider absorption region than a known ruthenium complex derivative and is effective as a sensitizer. Invented the invention.

また、ルテニウム等の錯体の配位子ジケトナートにフェニル基、または種々の置換基を有するフェニル基を導入することにより、最高電子被占軌道エネルギー準位を調整できるため、電解質の酸化還元電位とのエネルギー準位マッチングが取りやすくなることによっても、光電変換効率が向上できる。   In addition, by introducing a phenyl group or a phenyl group having various substituents into a ligand diketonate of a complex such as ruthenium, the highest electron occupied orbital energy level can be adjusted. Photoelectric conversion efficiency can also be improved by facilitating energy level matching.

また、本発明の色素増感型太陽電池は、透明電極と対電極との間に、増感色素が吸着された多孔性半導体層と、電解液を含有するキャリア輸送層とを少なくとも備えている。透明電極及び対電極は、それぞれ通常支持基板上に形成されている。透明電極側の支持基板としては、透明基板が使用される。   The dye-sensitized solar cell of the present invention includes at least a porous semiconductor layer on which a sensitizing dye is adsorbed and a carrier transport layer containing an electrolytic solution between a transparent electrode and a counter electrode. . Each of the transparent electrode and the counter electrode is usually formed on a support substrate. A transparent substrate is used as the support substrate on the transparent electrode side.

本発明の色素増感剤は、発明の概要の項に既に示した下記の一般式(1)で表される。
MLZX (1)
The dye sensitizer of the present invention is represented by the following general formula (1) already shown in the summary of the invention.
MLZX (1)

式中、Mは8〜10族金属元素から選ばれた遷移金属元素であり、Zは発明の概要に既に示した下記の一般式(2)で表される、少なくとも1個のカルボキシル基を有する2,2′−6′,2″−テルピリジン誘導体である。すなわち、A1,A2,A3のうちの少なくとも1つはカルボキシル基であり、残りは水素である。   In the formula, M is a transition metal element selected from Group 8 to 10 metal elements, and Z has at least one carboxyl group represented by the following general formula (2) already shown in the summary of the invention. 2,2'-6 ', 2 "-terpyridine derivatives. That is, at least one of A1, A2 and A3 is a carboxyl group and the rest is hydrogen.

また、配位子Lはやはり発明の概要の項に既に示した下記式(3)で表される。   The ligand L is also represented by the following formula (3) already shown in the summary of the invention.

ここで、配位子Lは特定の置換基R及び置換基Rを有する1,3−ブタンジオン誘導体である。具体的には置換基Rはアルキル基、アルコキシアルキル基、アミノアルキル基、ハロゲン置換アルキル基、アリール基または水素原子である。具体的には例えばパーフルオロアルキル基とすることができる。また、置換基Rは置換または無置換3,4−エチレンジオキシチオフェン基、もしくはチオフェンが1〜3個直鎖状に繋がるチオフェン骨格であって、その一側に置換または無置換アルキル基とアルキルフェニル基とハロゲン基とフェノキシアルキルとからなる群から選択された基を有する前記チオフェン骨格である。具体的には例えば、上述のチオフェン骨格の一側の置換基として炭素数1〜12のアルキル基、アルキルフェニル基(アルキル部分の炭素数1〜12)、末端がハロゲン基を有する炭素数1〜12のアルキル基などを使用することができる。 Here, the ligand L is a 1,3-butanedione derivative having a specific substituent R 1 and a substituent R 2 . Specifically, the substituent R 1 is an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a halogen-substituted alkyl group, an aryl group, or a hydrogen atom. Specifically, for example, a perfluoroalkyl group can be used. The substituent R 2 is a substituted or unsubstituted 3,4-ethylenedioxythiophene group, or a thiophene skeleton in which 1 to 3 thiophenes are connected in a straight chain, and a substituted or unsubstituted alkyl group on one side thereof The thiophene skeleton having a group selected from the group consisting of an alkylphenyl group, a halogen group, and a phenoxyalkyl. Specifically, for example, as a substituent on one side of the thiophene skeleton, an alkyl group having 1 to 12 carbon atoms, an alkylphenyl group (1 to 12 carbon atoms in the alkyl portion), and a terminal having 1 to 1 carbon atoms having a halogen group. Twelve alkyl groups and the like can be used.

なお、以下ではMがRuの場合を例に挙げて説明するが、Ruは単なる例示であり、本発明はMがRu以外の金属も当然包含することに注意されたい。
上記Lの代表的例の具体的な構造を以下に列挙する。なお、当然ながら、Lの構造を以下に列挙したものに限定するものでは全くない。
In the following description, the case where M is Ru will be described as an example. However, it should be noted that Ru is merely an example, and the present invention naturally includes metals other than Ru.
Specific structures of typical examples of L are listed below. Of course, the structure of L is not limited to those listed below.

以下にRとして使用できる置換基の例を列挙するが、もちろんRをこれらに限定する意図は一切ない。なお、各置換基の上に付した「I−1」などの記号は直ぐ下に記載した錯体中のRを当該置換基で置換した具体的な錯体、つまり色素を識別するための色素番号であり、例えばこれらの色素を使用した色素増感太陽電池の性能評価をまとめた表1中で使用される。 Examples of substituents that can be used as R 2 are listed below, but of course there is no intention to limit R 2 to these. The symbols such as “I-1” attached above each substituent are specific complex numbers in which R 2 in the complex described immediately below is substituted with the substituent, that is, a dye number for identifying the dye. For example, it is used in Table 1 summarizing the performance evaluation of dye-sensitized solar cells using these dyes.

I−1
I-1

I−2
I-2

I−3
I-3

I−4
I-4

I−5
I-5

I−6
I-6

I−7
I-7

I−8
I-8

I−9
I-9

I−10
I-10

I−11
I-11

I−12
I-12

I−13
I-13

I−14
I-14

I−15
I-15

I−16
I-16

I−17
I-17

I−18
I-18

I−19
I-19

I−20
I-20

I−21
I-21

I−22
I-22

I−23
I-23

I−24
I-24

I−25
I-25

I−26
I-26

I−27
I-27

I−28
I-28

I−29
I-29

I−30
I-30

I−31
I-31

既に述べたように、導電性表面に形成した酸化物半導体膜に上述の金属錯体を吸着させた色素増感酸化物半導体電極が与えられる。更に、この電極を使用した色素増感太陽電池も与えられる。
以下では、本発明の色素増感太陽電池の各構成要素について説明する。
本発明の色素増感太陽電池は、導電性支持体上に、前記色素増感酸化物半導体電極と、キャリア輸送層と、対電極とが順次積層されて構成され、色素増感酸化物半導体電極には、色素増感剤として上述の錯体が担持されている。
As already described, a dye-sensitized oxide semiconductor electrode in which the above-described metal complex is adsorbed on an oxide semiconductor film formed on a conductive surface is provided. Furthermore, a dye-sensitized solar cell using this electrode is also provided.
Below, each component of the dye-sensitized solar cell of this invention is demonstrated.
The dye-sensitized solar cell of the present invention is formed by sequentially laminating the dye-sensitized oxide semiconductor electrode, the carrier transport layer, and the counter electrode on a conductive support, and the dye-sensitized oxide semiconductor electrode The above-mentioned complex is supported as a dye sensitizer.

(導電性支持体について)
本発明で用いられる導電性支持体としては、金属のように支持体自体が導電性を有するもの、またその表面に導電層を有するガラス、プラスチック等の支持体を利用することができる。後者の場合、導電層の好ましい導電材料としては、金、白金、銀、銅、アルミニウム、インジウム等の金属、導電性カーボン、もしくはインジウム錫複合酸化物、酸化錫にフッ素をドープしたもの等があり、これらの導電材料を用いて導電層を支持体上に通常の方法で形成することができる。これらの導電層の膜厚は0、02〜5μm程度が好ましい。導電性支持体としては表面抵抗が低い程良く、表面抵抗は40Ω/□以下であることが好ましい。導電性支持体を受光面とする場合、透明であることが好ましい。また、導電性支持体の膜厚は、光電変換効層(光電極)に適当な強度を付与することができるものであれば特に限定されない。これらの点及び機械的な強度を考慮にいれると、酸化錫にフッ素をドープしたものからなる導電層をソーダ石灰フロートガラスからなる透明性基板上に積層したものを代表的な支持体として使用できる。
またコストや柔軟性等を考慮する場合には、透明ポリマーシート上に上記導電層を設けたものを用いたものでもよい。透明ポリマーシートとしては、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC),ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂等がある。
また、透明導電性基板の抵抗を下げるために金属リード線を加えてもよい。金属リード線の材質としては、白金、銀、銅、アルミニウム、インジウム、ニッケル等がこのましい。金属リード線は透明基板にスパッタ、蒸着等で設置し、その上に酸化錫、ITO等の透明導電膜を設けてもよい。なお、この場合、金属リード線を設けることにより、入射光量の若干の低下を招くので注意が必要である。
(About conductive support)
As the conductive support used in the present invention, a support having a conductive property such as metal, or a support such as glass or plastic having a conductive layer on its surface can be used. In the latter case, preferred conductive materials for the conductive layer include metals such as gold, platinum, silver, copper, aluminum, and indium, conductive carbon, indium tin composite oxide, tin oxide doped with fluorine, etc. Using these conductive materials, a conductive layer can be formed on a support by a usual method. The thickness of these conductive layers is preferably about 0, 02 to 5 μm. The conductive support preferably has a lower surface resistance, and the surface resistance is preferably 40Ω / □ or less. When the conductive support is a light receiving surface, it is preferably transparent. Moreover, the film thickness of an electroconductive support body will not be specifically limited if an appropriate intensity | strength can be provided to a photoelectric converting effect layer (photoelectrode). Taking these points and mechanical strength into consideration, a typical support can be obtained by laminating a conductive layer made of tin oxide doped with fluorine on a transparent substrate made of soda-lime float glass. .
Moreover, when considering cost, flexibility, etc., the one provided with the conductive layer on the transparent polymer sheet may be used. Examples of the transparent polymer sheet include tetraacetylcellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyetherimide (PEI), and phenoxy resin.
In addition, a metal lead wire may be added to reduce the resistance of the transparent conductive substrate. As the material of the metal lead wire, platinum, silver, copper, aluminum, indium, nickel and the like are preferable. The metal lead wire may be installed on a transparent substrate by sputtering, vapor deposition, or the like, and a transparent conductive film such as tin oxide or ITO may be provided thereon. In this case, care should be taken because the provision of the metal lead wire causes a slight decrease in the amount of incident light.

(色素増感酸化物半導体電極について)
本発明における色素増感酸化物半導体電極は、通常、導電性支持体上に酸化物半導体層を形成し、これに上述した本発明のRu等の金属錯体である有機色素を吸着させることにより得られる。
酸化物半導体層を形成する方法としては、特に限定されず、公知の方法を使用してよい。具体的には、これらに限定するものではないが、次のいずれかの方法を用いることができる。
(1)酸化物半導体の微粒子を含有する懸濁液を導電性支持体上に塗布し、乾燥および焼成して酸化物半導体層を形成する方法。
(2)ゾルゲル法、電気化学的な酸化還元反応を利用した方法などにより、導電性支持体上に酸化物半導体層を形成する方法。
(Dye-sensitized oxide semiconductor electrode)
The dye-sensitized oxide semiconductor electrode in the present invention is usually obtained by forming an oxide semiconductor layer on a conductive support and adsorbing the organic dye, which is a metal complex such as Ru of the present invention described above, to the oxide semiconductor layer. It is done.
A method for forming the oxide semiconductor layer is not particularly limited, and a known method may be used. Specifically, although not limited to these, any of the following methods can be used.
(1) A method in which a suspension containing fine particles of an oxide semiconductor is applied on a conductive support, dried and fired to form an oxide semiconductor layer.
(2) A method of forming an oxide semiconductor layer on a conductive support by a sol-gel method, a method using an electrochemical redox reaction, or the like.

酸化物半導体としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化鉄(Fe)、酸化ニオブ(Nb)、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム(CdS)、硫化鉛(PbS)、硫化亜鉛(CdS)、リン化インジウム(InP)、銅−インジウムの硫化物(CuInS)などが使用できる。
その中でも、酸化チタン、酸化亜鉛、酸化錫、酸化ニオブが好ましく、酸化チタンがより好ましい。
また、本発明における酸化物半導体としては、上記のものから1種または2種以上を選択することができる。
また、これらの酸化物半導体は、単結晶、多結晶のいずれでも良いが、安定性、結晶成長の困難さ、製造コスト等の観点から、多結晶の方が好ましい。特に微粉末(ナノからマイクロスケール)の多結晶半導体がより好ましい。また、2種類以上の粒子サイズの異なる粒子を混合して用いてもよい。この場合、各粒子の材料は同一でも異なっていてもよい。異なる粒子サイズの平均粒径の比率は10倍以上の差がある方が良く、粒径の大きいもの(例えば100〜500nm)は、入射光の光捕捉率を上げる目的で、粒径の小さいもの(例えば5〜50nm)は、吸着点をより多くし色素吸着を良くする目的で混合して用いてもよい。特に半導体化合物が異なる場合、吸着作用の強い半導体の方を小粒径にした方が効果的である。
Examples of the oxide semiconductor include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), iron oxide (Fe 2 O 3 ), niobium oxide (Nb 2 O 5 ), tungsten oxide, and barium titanate. Strontium titanate, cadmium sulfide (CdS), lead sulfide (PbS), zinc sulfide (CdS), indium phosphide (InP), copper-indium sulfide (CuInS 2 ), and the like can be used.
Among these, titanium oxide, zinc oxide, tin oxide, and niobium oxide are preferable, and titanium oxide is more preferable.
Moreover, as an oxide semiconductor in this invention, 1 type (s) or 2 or more types can be selected from the above.
These oxide semiconductors may be either single crystal or polycrystal, but polycrystal is preferable from the viewpoint of stability, difficulty of crystal growth, manufacturing cost, and the like. In particular, a fine powder (nano to microscale) polycrystalline semiconductor is more preferable. Further, two or more kinds of particles having different particle sizes may be mixed and used. In this case, the material of each particle may be the same or different. The ratio of the average particle sizes of different particle sizes should have a difference of 10 times or more. Those having a large particle size (for example, 100 to 500 nm) have a small particle size for the purpose of increasing the light capture rate of incident light. (For example, 5 to 50 nm) may be mixed and used for the purpose of increasing the adsorption point and improving the dye adsorption. In particular, when the semiconductor compounds are different, it is more effective to make the semiconductor having a stronger adsorption action a smaller particle diameter.

最も好ましい半導体微粒子の形態である酸化チタンの作製については、各種文献等に記載されている方法に準じて行うことができる。例えばDegussa社が開発した塩化物を高温加水分解により得る方法が適している。本発明に使用される酸化チタンは、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の狭義の酸化チタン、ならびに、水酸化チタン、含水酸化チタン等を包含する。
アナターゼ型とルチル型の2種類の結晶は、その製法や熱履歴により何れの形も取り得るが、これらの混合体が一般的である。特に、本発明の有機色素の増感に関しては、アナターゼ型の含有率の高いものが好ましく、その割合は80%以上が好ましい。なお、アナターゼ型はルチル型より光吸収の長波端波長が短く、紫外光による光電変換の低下を起こす度合いが小さい。
The production of titanium oxide, which is the most preferable form of semiconductor fine particles, can be performed according to methods described in various documents. For example, a method developed by Degussa to obtain chloride by high-temperature hydrolysis is suitable. Titanium oxide used in the present invention includes various narrowly defined titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, hydrous titanium oxide, etc. Is included.
The two types of crystals of anatase type and rutile type can take any form depending on the production method and thermal history, but a mixture of these is common. In particular, regarding the sensitization of the organic dye of the present invention, those having a high content of anatase type are preferable, and the ratio is preferably 80% or more. The anatase type has a shorter light absorption wavelength than the rutile type, and the degree of photoelectric conversion degradation due to ultraviolet light is small.

本発明において、酸化物半導体に色素を吸着させる方法としては、特に限定するものではなく、公知の方法を適宜使用することができる。例えば、本発明の錯体を有機溶剤に溶解して色素増感剤溶液を調整し、得られた色素増感剤溶液に透明導電膜上の酸化物半導体層を浸漬する方法、得られた色素増感剤溶液を酸化物半導体層表面に塗布する方法などがある。前者においてはデイプ法、ローラ法、エヤーナイフ法などが適用でき、後者においてはワイヤーバー法、アプリケーション法、スピン法、スプレー法、オフセット印刷法、スクリーン印刷法などが適用できる。なお、色素増感剤の吸着に先立って、加熱処理などの酸化物半導体層の表面を活性化するための処理を必要に応じて行なってもよい。   In the present invention, the method for adsorbing the dye to the oxide semiconductor is not particularly limited, and a known method can be appropriately used. For example, a method of preparing a dye sensitizer solution by dissolving the complex of the present invention in an organic solvent, and immersing the oxide semiconductor layer on the transparent conductive film in the obtained dye sensitizer solution, and the obtained dye sensitizer There is a method of applying a sensitizer solution to the surface of an oxide semiconductor layer. In the former, a deep method, a roller method, an air knife method or the like can be applied, and in the latter, a wire bar method, an application method, a spin method, a spray method, an offset printing method, a screen printing method, or the like can be applied. In addition, you may perform the process for activating the surface of an oxide semiconductor layer, such as heat processing, as needed prior to adsorption | suction of a dye sensitizer.

色素増感剤の溶媒は、色素を溶解するものであればよく、従来から公知の溶媒を用いることができる。また、溶媒は、通常使用される方法に従って精製された溶媒、また溶媒の使用に先立って、必要に応じて蒸留および/または乾燥を行ない、より純度の高い溶媒であることが好ましく、例えば、メタノール、エタノール、ブタノール、1種または2種それ以上の疎水性溶媒、非プロトン性溶媒、疎水性かつ非プロトン性の溶媒またはそれらの混合物などがある。色素増感剤溶液中の色素増感剤の濃度は、使用する色素増感剤、溶媒の種類、色素吸着工程により適宜調整することができ、例えば、1×10−5モル/リットル以上、好ましくは5×10−5〜1×10−2モル/リットル程度としてよい。ここで、疎水性溶媒としては、例えば、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化脂肪族炭化水素、ヘキサン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素、酢酸エチル、酢酸ブチル、安息香酸エチル等のエステル類等、ならびにそれらの組合せた混合溶媒等がある。非プロトン性溶媒としては、例えば、アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン等のエーテル類、アセトニトリル、ジメチルアセトアミド、ヘキサメチルリン酸トリアミド等の窒素化合物類、二硫化炭素、ジメチルスルホキシド等の硫黄化合物類、ヘキサメチルホスホルアミド等のリン化合物類、ならびにそれらの組み合せがある。 The solvent for the dye sensitizer is not particularly limited as long as it dissolves the dye, and conventionally known solvents can be used. In addition, the solvent is preferably a solvent purified according to a commonly used method, or a solvent having a higher purity by performing distillation and / or drying as necessary prior to the use of the solvent, for example, methanol. , Ethanol, butanol, one or more hydrophobic solvents, aprotic solvents, hydrophobic and aprotic solvents or mixtures thereof. The concentration of the dye sensitizer in the dye sensitizer solution can be appropriately adjusted according to the dye sensitizer to be used, the type of the solvent, and the dye adsorption step. For example, 1 × 10 −5 mol / liter or more, preferably May be about 5 × 10 −5 to 1 × 10 −2 mol / liter. Here, examples of the hydrophobic solvent include halogenated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, hydrocarbons such as hexane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, chlorobenzene, Examples thereof include halogenated aromatic hydrocarbons such as dichlorobenzene, esters such as ethyl acetate, butyl acetate, and ethyl benzoate, and mixed solvents thereof. Examples of the aprotic solvent include ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, diisopropyl ether and dimethoxyethane, nitrogen compounds such as acetonitrile, dimethylacetamide and hexamethylphosphoric triamide, carbon disulfide, There are sulfur compounds such as dimethyl sulfoxide, phosphorus compounds such as hexamethylphosphoramide, and combinations thereof.

色素増感剤の酸化物半導体層への吸着方法において、酸化物半導体層を色素溶液へ浸漬する方法では、酸化物半導体層を収容することができる適当な容器に色素溶液を充填し、その溶液に酸化物半導体層の全体を浸漬するか、または酸化物半導体層の所望の部分のみを浸漬して、所定の時間保持するのが好ましい。この際の条件は、使用する色素増感剤、溶媒の種類、溶液の濃度等に応じて適宜調節することができる。例えば、雰囲気および溶液の温度は室温、圧力は大気圧下であるのが好ましいが、これらは適宜変更してもよい。浸漬時間は、例えば5分〜96時間程度としてもよい。浸漬は、1回でもよいし、複数回行なってもよい。
さらに、酸化物半導体層を色素溶液へ浸漬する方法または酸化物半導体層に色素溶液を塗布する方法では、浸漬または塗布の工程の後、適宜乾燥を行なってもよい。このような方法により酸化物半導体に吸着された色素増感剤は、光エネルギーにより電子を酸化物半導体に注入する光増感剤として機能する。
In the method of adsorbing the dye sensitizer to the oxide semiconductor layer, in the method of immersing the oxide semiconductor layer in the dye solution, the dye solution is filled in a suitable container capable of containing the oxide semiconductor layer, and the solution It is preferable to immerse the entire oxide semiconductor layer or immerse only a desired portion of the oxide semiconductor layer and hold it for a predetermined time. The conditions at this time can be appropriately adjusted according to the dye sensitizer used, the type of solvent, the concentration of the solution, and the like. For example, the temperature of the atmosphere and the solution is preferably room temperature, and the pressure is preferably atmospheric pressure, but these may be appropriately changed. The immersion time may be, for example, about 5 minutes to 96 hours. Immersion may be performed once or a plurality of times.
Furthermore, in the method of immersing the oxide semiconductor layer in the dye solution or the method of applying the dye solution to the oxide semiconductor layer, drying may be appropriately performed after the dipping or coating step. The dye sensitizer adsorbed on the oxide semiconductor by such a method functions as a photosensitizer that injects electrons into the oxide semiconductor by light energy.

なお、色素増感剤の吸着量が少ないと増感効果が不十分になり、逆に吸着量が多いと酸化物半導体に吸着していない色素が浮遊して、これが増感効果を減じ、光電変換効率の低下(素子機能の乱れ)をもたらす原因となるので好ましくない。
上記のことから、未吸着の有機色素を洗浄により速やかに除去するのが好ましい。洗浄溶剤としては、有機色素の溶解性が比較的低く、かつ比較的乾燥しやすい、アセトンなどの溶剤が好ましい。また、洗浄は加熱状態で行うのが好ましい。
また、洗浄により余分な色素を除去した後、色素の吸着状態をより安定にするために、酸化物半導体微粒子の表面を有機塩基性化合物で処理して、未反応色素の除去を促進してもよい。有機塩基性化合物としては、ピリジン、キノリンなどの誘導体が挙げられる。これらの化合物が液体の場合にはそのまま用いてもよいが、固体の場合には溶剤、好ましくは色素増感剤溶液と同一の溶剤に溶解して用いてもよい。
Note that if the adsorption amount of the dye sensitizer is small, the sensitization effect becomes insufficient. Conversely, if the adsorption amount is large, the dye not adsorbed on the oxide semiconductor floats, which reduces the sensitization effect, This is not preferable because it causes a decrease in conversion efficiency (disturbance of element function).
From the above, it is preferable to quickly remove the unadsorbed organic dye by washing. As the cleaning solvent, a solvent such as acetone, which has a relatively low solubility of the organic dye and is relatively easy to dry, is preferable. Moreover, it is preferable to perform washing in a heated state.
In addition, after removing excess dye by washing, in order to make the adsorption state of the dye more stable, the surface of the oxide semiconductor fine particles may be treated with an organic basic compound to promote removal of unreacted dye. Good. Examples of the organic basic compound include derivatives such as pyridine and quinoline. When these compounds are liquid, they may be used as they are, but when they are solid, they may be dissolved in a solvent, preferably the same solvent as the dye sensitizer solution.

(キャリア輸送層について)
キャリア輸送層は、電子、ホール、イオンを輸送できる導電性材料を有する。このような導電性材料としては、例えば、ポリビニルカルバゾール、トリフェニルアミンなどのホール輸送材料、テトラニトロフロレノンなどの電子輸送材料、ポリチオフェン、ポリピロールなどの導電性ポリマー、液体電解質、高分子電解質などのイオン導電体、ヨウ化銅、チオシアン酸銅などの無機P型半導体が挙げられる。
上記の導電性材料の中でも、イオン導電体が好ましく、さらには酸化還元性電解質を含む液体電解質が特に好ましい。このような酸化還元性電解質としては、一般に、電池や太陽電池などにおいて使用することができるものであれば特に限定されない。具体的には、I/I3−系、Br2−/Br3−系、Fe2+/Fe3+系、キノン/ハイドロキノン系等の酸化還元種を含有させたものなどがある。例えば、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI)などの金属ヨウ化物とヨウ素(I2)の組み合わせ、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、テトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩とヨウ素の組み合わせ、並びに臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr)などの金属臭化物と臭素の組み合わせが好ましく、これらの中でもLiIとIの組み合わせが特に好ましい。
(About carrier transport layer)
The carrier transport layer has a conductive material that can transport electrons, holes, and ions. Examples of such conductive materials include hole transport materials such as polyvinyl carbazole and triphenylamine, electron transport materials such as tetranitrophlorenone, conductive polymers such as polythiophene and polypyrrole, liquid electrolytes, polymer electrolytes, and the like. Examples thereof include inorganic P-type semiconductors such as ionic conductors, copper iodide, and copper thiocyanate.
Among the conductive materials described above, an ionic conductor is preferable, and a liquid electrolyte containing a redox electrolyte is particularly preferable. Such a redox electrolyte is not particularly limited as long as it can be used in a battery or a solar battery. Specific examples include those containing redox species such as I / I 3− series, Br 2− / Br 3− series, Fe 2+ / Fe 3+ series, and quinone / hydroquinone series. For example, a combination of metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI 2 ) and iodine (I2), tetraethylammonium iodide (TEAI) Tetraalkylammonium iodide (TPAI), Tetrabutylammonium iodide (TBAI), Tetrahexylammonium iodide (THAI) and other tetraalkylammonium salts and iodine combinations, as well as lithium bromide (LiBr), sodium bromide ( A combination of a metal bromide such as NaBr), potassium bromide (KBr), and calcium bromide (CaBr 2 ) and bromine is preferable, and among these, a combination of LiI and I 2 is particularly preferable.

キャリア輸送層の導電性材料として液体電解質を使用する場合、その溶剤としては、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、その他、水や非プロトン極性物質などを使用することができるが、これらの中でも、カーボネート化合物やニトリル化合物が特に好ましい。また、これらの溶剤は2種類以上を混合して用いることもできる。   When a liquid electrolyte is used as the conductive material for the carrier transport layer, the solvent used is a carbonate compound such as propylene carbonate, a nitrile compound such as acetonitrile, an alcohol such as ethanol, water, or an aprotic polar substance. Among these, carbonate compounds and nitrile compounds are particularly preferable. These solvents can also be used as a mixture of two or more.

液体電解質へ添加剤を添加してもよいが、そのようなものとしては例えば、従来から用いられているt−ブチルピリジン(TBP)などの含窒素芳香族化合物、あるいはジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、ヘキシルメチルイミダゾールアイオダイド(HMII)などのイミダゾール塩を使用できる。
また、液体電解質中の電解質濃度は、0.1〜1.5モル/リットルの範囲が好ましく、特に0.1〜0.7モル/リットルの範囲が好ましい。
An additive may be added to the liquid electrolyte. Examples of such an additive include conventionally used nitrogen-containing aromatic compounds such as t-butylpyridine (TBP) or dimethylpropylimidazole iodide (DMPII). ), Methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazole iodide (EII), hexylmethylimidazole iodide (HMII) and the like.
The electrolyte concentration in the liquid electrolyte is preferably in the range of 0.1 to 1.5 mol / liter, and particularly preferably in the range of 0.1 to 0.7 mol / liter.

あるいはキャリア輸送層の導電性材料を高分子電解質とする場合、そのような高分子電解質は酸化還元種を溶解あるいは酸化還元種を構成する少なくとも1つの物質と結合することができる固体状の物質である。例を挙げれば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリ−β−プロピオラクトン、ポリエチレンイミン、ポリアルキレンスルフィドなどの高分子化合物またはそれらの架橋体、ポリフォスファゼン、ポリシロキサン、ポリビニルアルコール、ポリアクリル酸、ポリアルキレンオキサイドなどの高分子官能基に、ポリエーテルセグメントまたはオリゴアルキレンオキサイド構造を側鎖として付加したものまたはそれらの共重合体などを使用できる。その中でも特にオリゴアルキレンオキサイド構造を側鎖として有するものやポリエーテルセグメントを側鎖として有するものが好ましい。
前記固体中に酸化還元種を含有させるには、例えば、高分子化合物となるモノマーと酸化還元種とを共存させて重合する方法、高分子化合物などの固体を必要に応じて溶媒に溶解し、次いで、前記の酸化還元種を加える方法等を用いることができる。酸化還元種の含有量は、必要とするイオン伝導性能に応じて、適宜選定することができる。
また色素増感酸化物半導体電極との接触を防止するためには、スペーサーを用いるのがよい。これらスペーサーとしてはポリエチレン等の高分子フイルムが用いられる。このフイルムの膜厚は10〜50μm程度が適当である。
Alternatively, when the conductive material of the carrier transport layer is a polymer electrolyte, such a polymer electrolyte is a solid substance capable of dissolving the redox species or binding to at least one substance constituting the redox species. is there. Examples include polyethylene oxide, polypropylene oxide, polyethylene succinate, poly-β-propiolactone, polyethyleneimine, polyalkylene sulfide and other cross-linked compounds thereof, polyphosphazene, polysiloxane, polyvinyl alcohol, A polymer functional group such as polyacrylic acid or polyalkylene oxide, a polyether segment or oligoalkylene oxide structure added as a side chain, or a copolymer thereof can be used. Of these, those having an oligoalkylene oxide structure as a side chain and those having a polyether segment as a side chain are particularly preferred.
In order to contain the redox species in the solid, for example, a method of polymerizing a monomer that becomes a polymer compound and a redox species, a solid such as a polymer compound is dissolved in a solvent as necessary, Next, a method of adding the above-mentioned redox species can be used. The content of the redox species can be appropriately selected according to the required ion conduction performance.
In order to prevent contact with the dye-sensitized oxide semiconductor electrode, a spacer is preferably used. As these spacers, polymer films such as polyethylene are used. The film thickness is suitably about 10 to 50 μm.

(対電極について)
対電極は、色素増感酸化物半導体電極とともに一対の電極を構成し得るものであり、導電膜に形成することができる。この導電膜は透明でもよいし、不透明であってもよい。この導電膜としては、例えば、N型またはP型の元素半導体(例えば、シリコン、ゲルマニウム等)、または化合物半導体(例えば、GaAs、InP、ZnSe、CsS等)、金、白金、銀、銅、アルミニウム等の金属、チタン、タンタル、タングステン等の高融点金属、ITO、SnO、CuI、ZnO等の透明導電材料からなる膜を使用できる。これらの導電膜は通常の方法で形成でき、その膜厚は0.1〜5μm程度が適当である。なお、対電極は、色素増感太陽電池を支持し得る支持基板または保護層上に形成されていることが好ましい。支持基板や保護層としては、色素増感太陽電池の基板として使用することができる透明または不透明の基板等を使用することができる。具体的には、スパッタ、塩化白金酸の熱分解、電着などの方法によって導電膜が被覆された支持基板上に白金膜を形成させたもの等が使用できる。この場合の白金膜の膜厚はたとえば1〜1000nm程度としてよい。
(About counter electrode)
The counter electrode can form a pair of electrodes together with the dye-sensitized oxide semiconductor electrode, and can be formed on the conductive film. This conductive film may be transparent or opaque. As the conductive film, for example, an N-type or P-type elemental semiconductor (eg, silicon, germanium, etc.), or a compound semiconductor (eg, GaAs, InP, ZnSe, CsS, etc.), gold, platinum, silver, copper, aluminum A film made of a metal such as refractory metal such as titanium, tantalum, or tungsten, or a transparent conductive material such as ITO, SnO 2 , CuI, or ZnO can be used. These conductive films can be formed by a usual method, and the film thickness is suitably about 0.1 to 5 μm. The counter electrode is preferably formed on a support substrate or a protective layer that can support the dye-sensitized solar cell. As the support substrate and the protective layer, a transparent or opaque substrate that can be used as a substrate of a dye-sensitized solar cell can be used. Specifically, a substrate in which a platinum film is formed on a support substrate coated with a conductive film by a method such as sputtering, pyrolysis of chloroplatinic acid, or electrodeposition can be used. In this case, the thickness of the platinum film may be about 1 to 1000 nm, for example.

下記スキームにより、中間体の化合物を得た(非特許文献1)。
[合成例1]
An intermediate compound was obtained according to the following scheme (Non-patent Document 1).
[Synthesis Example 1]

化合物1(5mmol)を無水酢酸(25ml)に溶解後、リン酸5〜10滴を加え、50〜60℃で約20時間撹拌した。反応終了後、ジクロロメタンならびに水を加えた。有機層を水洗した後、溶媒を減圧留去して得られた殘渣をカラムクロマトグラフィーにより精製して化合物2を得た(n=1,2,3の場合、夫々2a,2b,2cのように、化合物を表す数字の後ろにa,b,cを付加する。以下同様)。   Compound 1 (5 mmol) was dissolved in acetic anhydride (25 ml), 5 to 10 drops of phosphoric acid were added, and the mixture was stirred at 50 to 60 ° C. for about 20 hours. After completion of the reaction, dichloromethane and water were added. After washing the organic layer with water, the residue obtained by distilling off the solvent under reduced pressure was purified by column chromatography to obtain compound 2 (in the case of n = 1, 2, 3 respectively, as in 2a, 2b, 2c, respectively). And a, b and c are added after the number representing the compound, and so on.

化合物2a:(収率(以下Yと称する):85%)H−NMR(CDCl,TMS/ppm):2.50(3H),6.91(1H),7.15(1H),7.30(1H)
化合物2b:(Y:80%)H−NMR(CDCl,TMS/ppm):2.55(3H),7.06(1H),7.17(1H),7.32−7.33(2H),7.58(1H).
化合物2c:(Y:56.5%)H−NMR(CDCl,TMS/ppm):2.60(3H),7.08(1H),7.18(1H),7.33−7.35(2H),7.45−7.48(2H),7.68(1H).
Compound 2a: (Yield (hereinafter referred to as Y): 85%) 1 H-NMR (CDCl 3 , TMS / ppm): 2.50 (3H), 6.91 (1H), 7.15 (1H), 7.30 (1H)
Compound 2b: (Y: 80%) 1 H-NMR (CDCl 3 , TMS / ppm): 2.55 (3H), 7.06 (1H), 7.17 (1H), 7.32-7.33 (2H), 7.58 (1H).
Compound 2c: (Y: 56.5%) 1 H-NMR (CDCl 3 , TMS / ppm): 2.60 (3H), 7.08 (1H), 7.18 (1H), 7.33-7 .35 (2H), 7.45-7.48 (2H), 7.68 (1H).

化合物2(20mmol)を脱水THF(25ml)に溶解後、30分間撹拌及び氷水浴冷却を行い、NaH(30mmol(油中に濃度60%))を加え、室温で約8〜10時間撹拌した。反応終了後、1N塩酸を加えて(PH<1)ジクロロメタンで抽出し、有機層を水洗した後、溶媒を減圧留去して得られた残渣を、減圧蒸留により精製して化合物3を得た。 Compound 2 (20 mmol) was dissolved in dehydrated THF (25 ml), stirred for 30 minutes and cooled in an ice-water bath, NaH (30 mmol (concentration in oil 60%)) was added, and the mixture was stirred at room temperature for about 8 to 10 hours. After completion of the reaction, 1N hydrochloric acid was added (PH <1) and the mixture was extracted with dichloromethane. The organic layer was washed with water, and then the solvent was distilled off under reduced pressure, and the resulting residue was purified by distillation under reduced pressure to obtain Compound 3. .

化合物3a:(Y:72.3%)H−NMR(CDCl,TMS/ppm):6.48(1H),7.21(1H),7.76(1H),7.84(1H)
化合物3b:(Y:64.8%)H−NMR(CDCl,TMS/ppm):6.50(1H),7.23(1H),7.78(1H),7.88(1H),
8.58(1H),8.62(1H)
化合物3c:(Y:45.9%)H−NMR(CDCl,TMS/ppm):6.52(1H),7.23(1H),7.80(1H),7.90(1H),
8.60(1H),8.65(1H),8.90(1H),9.02(1H)
Compound 3a: (Y: 72.3%) 1 H-NMR (CDCl 3 , TMS / ppm): 6.48 (1H), 7.21 (1H), 7.76 (1H), 7.84 (1H )
Compound 3b: (Y: 64.8%) 1 H-NMR (CDCl 3 , TMS / ppm): 6.50 (1H), 7.23 (1H), 7.78 (1H), 7.88 (1H) ),
8.58 (1H), 8.62 (1H)
Compound 3c: (Y: 45.9%) 1 H-NMR (CDCl 3 , TMS / ppm): 6.52 (1H), 7.23 (1H), 7.80 (1H), 7.90 (1H) ),
8.60 (1H), 8.65 (1H), 8.90 (1H), 9.02 (1H)

[合成例2] [Synthesis Example 2]

化合物1(50mmol)を無水THF(15ml)に溶解後、−78℃に冷却し,n−ブチルリチウム(ヘキサン溶液、約1.6mol/L)20分間かけて滴下した。滴下終了後、−30℃にて約30分間攪拌し、その後室温まで反応温度を上昇させ、再度1時間撹拌し、1−ブロモオクタン(40mmol)を0℃にて約10分間滴下した。滴下終了後、ジクロロメタンで抽出し、有機層を水洗した後、溶媒を減圧留去して得られた茶褐色の油を力ラムクロマトグラフィーにより精製して、化合物4を得た。   Compound 1 (50 mmol) was dissolved in anhydrous THF (15 ml), cooled to −78 ° C., and added dropwise over 20 minutes with n-butyllithium (hexane solution, about 1.6 mol / L). After completion of dropping, the mixture was stirred at −30 ° C. for about 30 minutes, then the reaction temperature was raised to room temperature, stirred again for 1 hour, and 1-bromooctane (40 mmol) was added dropwise at 0 ° C. for about 10 minutes. After completion of the dropwise addition, the mixture was extracted with dichloromethane, and the organic layer was washed with water. Then, the solvent was distilled off under reduced pressure, and the brown oil obtained was purified by power ram chromatography to obtain compound 4.

化合物4a:(Y:80.6%)H−NMR(CDCl,TMS/ppm):0.88(t,3H),1.28(m,10H),1.67(m,2H),2.81,(m,2H),6.77(H),6.91(H),7.09(H)
化合物4b:(Y:75.03%)H−NMR(CDCl,TMS/ppm):0.90(t,3H),1.30(m,10H),1.68(2H),2.98,(m,2H),6.75(1H),6.98(1H),7.05(1H),7.10(1H),7.23(1H)
化合物4c:(Y:65.11%)H−NMR(CDCl,TMS/ppm):0.91(t,3H),1.35(m,10H),1.69(2H),2.90,(m,2H),6.71(H),7.01(1H),7.09(H),7.13(H)7.20(H),7.22(H),7.30(H)
Compound 4a: (Y: 80.6%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.88 (t, 3H), 1.28 (m, 10H), 1.67 (m, 2H) , 2.81, (m, 2H), 6.77 (H), 6.91 (H), 7.09 (H)
Compound 4b: (Y: 75.03%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.90 (t, 3H), 1.30 (m, 10H), 1.68 (2H), 2 .98, (m, 2H), 6.75 (1H), 6.98 (1H), 7.05 (1H), 7.10 (1H), 7.23 (1H)
Compound 4c: (Y: 65.11%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.91 (t, 3H), 1.35 (m, 10H), 1.69 (2H), 2 .90, (m, 2H), 6.71 (H), 7.01 (1H), 7.09 (H), 7.13 (H) 7.20 (H), 7.22 (H), 7.30 (H)

化合物5を化合物2と同じ合成方法を用いて合成した。   Compound 5 was synthesized using the same synthesis method as compound 2.

化合物5a:(Y:68.9%)H−NMR(CDCl,TMS/ppm):0.91(t,3H),1.2−1.45(m,10H),1.68(m,2H),2.53(s,3H),2.85(2H),7.21(H),7.62(H)
化合物5b:(Y:62.8%)H−NMR(CDCl,TMS/ppm):0.92(t,3H),1.2−1.45(m,10H),1.68(m,2H),2.55(s,3H),2.87(2H),7.25(H),7.66(H)
化合物5c:(Y:57.3%)H−NMR(CDCl,TMS/ppm):0.92(t,3H),1.3−1.48(m,10H),1.69(m,2H),2.56(s,3H),2.88(2H),7.28(H),7.66(H)
Compound 5a: (Y: 68.9%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.91 (t, 3H), 1.2-1.45 (m, 10H), 1.68 ( m, 2H), 2.53 (s, 3H), 2.85 (2H), 7.21 (H), 7.62 (H)
Compound 5b: (Y: 62.8%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.92 (t, 3H), 1.2-1.45 (m, 10H), 1.68 ( m, 2H), 2.55 (s, 3H), 2.87 (2H), 7.25 (H), 7.66 (H)
Compound 5c: (Y: 57.3%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.92 (t, 3H), 1.3-1.48 (m, 10H), 1.69 ( m, 2H), 2.56 (s, 3H), 2.88 (2H), 7.28 (H), 7.66 (H)

化合物6を化合物3と同じ合成方法を用いて合成した。
Compound 6 was synthesized using the same synthesis method as compound 3.

化合物6a:(Y:54.6%)H−NMR(CDClTMS/ppm):0.95(t,3H),1.25−1.47(m,10H),1.71(m,2H),6.53(1H),7.23(H),7.66(H)
化合物6b:(Y:42.5%)H−NMR(CDCl,TMS/ppm):0.96(t,3H),1.30−1.52(m,10H),1.72(m,2H),6.58(1H),7.27(H),7.69(H)
化合物6c:(Y:18.3%)H−NMR(CDCl,TMS/ppm):0.96(t,3H),1.30−1.55(m,10H),1.73(m,2H),6.58(1H),7.29(H),7.70(H)
Compound 6a: (Y: 54.6%) 1 H-NMR (CDCl 3 TMS / ppm): 0.95 (t, 3H), 1.25-1.47 (m, 10H), 1.71 (m , 2H), 6.53 (1H), 7.23 (H), 7.66 (H)
Compound 6b: (Y: 42.5%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.96 (t, 3H), 1.30-1.52 (m, 10H), 1.72 ( m, 2H), 6.58 (1H), 7.27 (H), 7.69 (H)
Compound 6c: (Y: 18.3%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.96 (t, 3H), 1.30-1.55 (m, 10H), 1.73 ( m, 2H), 6.58 (1H), 7.29 (H), 7.70 (H)

[合成例3]
下記スキームにより、色素(つまり、本発明の錯体の実施例)の化合物10を得た。
[Synthesis Example 3]
According to the following scheme, compound 10 of a dye (that is, an example of the complex of the present invention) was obtained.



[化合物10a(X=H)の合成](非特許文献2,3)
トリクロロ(4,4′,4″−トリメトキシカルボニル−2,2′;2″、6−テルピリジン)ルテニウム(II)化合物7のメタノールの溶液に4,4,4−トリフルオロ−1−(2−チオフェン)−1,3−ブタンジオン6a(X=H)2当量とトリブチルアミンを加え加熱環流させることにより、2−テノイルトリフルオロ−1,3−ブタンジオンクロロ(4,4′,4″−トリメトキシカルボニル−2,2′;2″、6−テルピリジン)ルテニウム(II)を得た。メタノール溶媒をエバポレータで留去した後、ジメチルホルムアミドを加え、トリブチルアミンと3当量のチオシアン化カリウムの水溶液を加えて加熱した。さらに、トリブチルアミンを少々添加して、16時間加熱環流した。反応混合溶媒をエバポレータで留去し、残留固形物を希塩酸で酸性化した後、約1時間撹拌し、生成した固体を濾別し、水洗、乾燥することにより、目的とする錯体を得た。粗製品をシリカゲル力ラムクロマトグラフィーにより精製して化合物10a(X=H)を得た。
[Synthesis of Compound 10a (X = H)] (Non-Patent Documents 2 and 3)
Trichloro (4,4 ′, 4 ″ -trimethoxycarbonyl-2,2 ′; 2 ″, 6-terpyridine) ruthenium (II) compound 7 in methanol in solution of 4,4,4-trifluoro-1- (2 -Thiophen) -1,3-butanedione 6a (X = H) 2 equivalents and tributylamine were added and heated to reflux to give 2-thenoyltrifluoro-1,3-butanedionechloro (4,4 ', 4 "- Trimethoxycarbonyl-2,2 ′; 2 ″, 6-terpyridine) ruthenium (II) was obtained. After the methanol solvent was distilled off with an evaporator, dimethylformamide was added, and an aqueous solution of tributylamine and 3 equivalents of potassium thiocyanide was added and heated. Further, a little tributylamine was added and heated to reflux for 16 hours. The reaction mixed solvent was distilled off with an evaporator, and the residual solid was acidified with dilute hydrochloric acid, followed by stirring for about 1 hour, and the resulting solid was filtered off, washed with water and dried to obtain the desired complex. The crude product was purified by silica gel force ram chromatography to give compound 10a (X = H).

化合物10a(X=H):(Y:42.5%)H−NMR(CDCl,TMS/ppm):0.78(24H),1.15(16H),1.41(16H),2.93(16H),7.80(1H),8.11(1H),8.12(2H),8.64(2H),8.79(1H),8.81(2H),9.48(1H),9.52(2H) Compound 10a (X = H): (Y: 42.5%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.78 (24H), 1.15 (16H), 1.41 (16H), 2.93 (16H), 7.80 (1H), 8.11 (1H), 8.12 (2H), 8.64 (2H), 8.79 (1H), 8.81 (2H), 9 .48 (1H), 9.52 (2H)

[化合物10a(X=C17)の合成]
化合物10a(X=H)と同様の操作を行い、化合物10a(X=C17)を得た。
[Synthesis of Compound 10a (X═C 8 H 17 )]
The same operation as for compound 10a (X = H) was performed to obtain compound 10a (X = C 8 H 17 ).

化合物10a(X=C17):(Y:36.8%)H−NMR(CDCl,TMS/ppm):0.78(24H),0.88(3H),1.15(16H),1.28(m,10H),1.41(16H),1.67(2H),2.81(2H),2.93(16H),7.80(1H),8.11(1H),8.12(2H),8.64(2H),8.79(1H),8.81(2H),9.48(1H),9.52(2H) Compound 10a (X═C 8 H 17 ): (Y: 36.8%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.78 (24H), 0.88 (3H), 1.15 ( 16H), 1.28 (m, 10H), 1.41 (16H), 1.67 (2H), 2.81 (2H), 2.93 (16H), 7.80 (1H), 8.11 (1H), 8.12 (2H), 8.64 (2H), 8.79 (1H), 8.81 (2H), 9.48 (1H), 9.52 (2H)

[化合物10b(X=H)の合成]
化合物10a(X=H)と同様の操作を行い、化合物10b(X=H)を得た。
[Synthesis of Compound 10b (X = H)]
The same operation as for compound 10a (X = H) was performed to obtain compound 10b (X = H).

化合物10b(X=H):(Y:37,3%)H−NMR(CDCl,TMS/ppm):0.79(24H),1.15(16H),1.42(16H),
2.94(16H),7.86(1H),8.09(1H),8.12(2H),8.65(1H),8.70(1H),8.72(1H),8.78(1H),8.81(2H),9.48(1H),9.52(2H)
Compound 10b (X = H): (Y: 37, 3%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.79 (24H), 1.15 (16H), 1.42 (16H),
2.94 (16H), 7.86 (1H), 8.09 (1H), 8.12 (2H), 8.65 (1H), 8.70 (1H), 8.72 (1H), 8 .78 (1H), 8.81 (2H), 9.48 (1H), 9.52 (2H)

[化合物10b(X=C17)の合成]
化合物10a(X=H)と同様の操作を行い、化合物10b(X=C17)を得た。
[Synthesis of Compound 10b (X═C 8 H 17 )]
The same operation as for compound 10a (X = H) was performed to obtain compound 10b (X = C 8 H 17 ).

化合物10b(X=C17):(Y:33.4%)H−NMR(CDCl,TMS/ppm):0.79(24H),0.89(3H),1.15(16H),1.29(m,10H)1.42(16H),1.68(2H),2.83(2H),2.94(16H),7.86(1H),8.09(1H),8.12(2H),8.65(1H),8.70(1H),8.72(1H),8.78(1H),8.81(2H),9.48(1H),9.52(2H) Compound 10b (X═C 8 H 17 ): (Y: 33.4%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.79 (24H), 0.89 (3H), 1.15 ( 16H), 1.29 (m, 10H) 1.42 (16H), 1.68 (2H), 2.83 (2H), 2.94 (16H), 7.86 (1H), 8.09 ( 1H), 8.12 (2H), 8.65 (1H), 8.70 (1H), 8.72 (1H), 8.78 (1H), 8.81 (2H), 9.48 (1H) ), 9.52 (2H)

[化合物10c(X=H)の合成]
化合物10a(X=H)と同様の操作を行い、化合物10c(X=H)を得た。
[Synthesis of Compound 10c (X = H)]
The same operation as for compound 10a (X = H) was performed to obtain compound 10c (X = H).

化合物10c(X=H):(Y:32.2%)H−NMR(CDCl,TMS/ppm):0.80(24H),1.15(16H),1.42(16H),2.94(16H),7.88(1H),8.10(1H),8.13(2H),8.661H),8.72(1H),8.75(1H),8.77(2H),8.78(1H),8.84(2H),9.49(1H),9.53(2H) Compound 10c (X = H): (Y: 32.2%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.80 (24H), 1.15 (16H), 1.42 (16H), 2.94 (16H), 7.88 (1H), 8.10 (1H), 8.13 (2H), 8.661H), 8.72 (1H), 8.75 (1H), 8.77 (2H), 8.78 (1H), 8.84 (2H), 9.49 (1H), 9.53 (2H)

[化合物10c(X=C17)の合成]
化合物10a(X=H)と同様の操作を行い、化合物10c(X=C17)を得た。
[Synthesis of Compound 10c (X═C 8 H 17 )]
The same operation as for compound 10a (X = H) was performed to obtain compound 10c (X = C 8 H 17 ).

化合物10c(X=C17):(Y:30.1%)H−NMR(CDCl,TMS/ppm):0.80(24H),0.89(3H),1.15(16H),1.23(m,10H),1.42(16H),1.68(2H),2.84(2H),2.94(16H),7.88(1H),8.10(1H),8.13(2H),8.661H),8.72(1H),8.75(1H),8.77(2H),8.78(1H),8.84(2H),9.49(1H),9.53(2H) Compound 10c (X═C 8 H 17 ): (Y: 30.1%) 1 H-NMR (CDCl 3 , TMS / ppm): 0.80 (24H), 0.89 (3H), 1.15 ( 16H), 1.23 (m, 10H), 1.42 (16H), 1.68 (2H), 2.84 (2H), 2.94 (16H), 7.88 (1H), 8.10 (1H), 8.13 (2H), 8.661H), 8.72 (1H), 8.75 (1H), 8.77 (2H), 8.78 (1H), 8.84 (2H) , 9.49 (1H), 9.53 (2H)

[太陽電池の作製]
色素増感太陽電池の作製に当たっては、上で説明した増感色素を導電性ガラス表面に塗布した二酸化チタン多孔質膜に吸着させることにより、可視光応答の電極を構成する。導電性ガラス表面に白金を蒸着した対電極の間に電解質溶液をはさみ光電変換素子、すなわち太陽電池を作製する。
[Production of solar cells]
In producing the dye-sensitized solar cell, the sensitizing dye described above is adsorbed on a porous titanium dioxide film coated on the surface of a conductive glass to constitute a visible light responsive electrode. A photoelectric conversion element, that is, a solar cell is manufactured by sandwiching an electrolyte solution between counter electrodes obtained by depositing platinum on the surface of conductive glass.

上述したところの本発明の色素増感太陽電池を、図1に基づき以下により具体的に説明する。
図1に示した色素増感太陽電池は、電気伝導性基板8、電気伝導性基板8上に形成され、光増感色素が吸着した多孔質光起電力層3、対向電極9、多孔質光起電力層3と対向電極9との間に充填されたホール輸送層4、太陽電池の横側をシールする漏洩防止剤7を設けた構造を有している。電気伝導基板8は支持基板1と透明導電性膜2とを有している。基板1に使用される材料は特に限定するものではないが、多種多様の透明材料を用いることができ、好ましくはガラスが使用できる。透明導電性膜2として使用される材料もまた特に限定するものではないが、フッ素をドープした酸化錫(SnO:F)、アンチモンをドープした酸化亜鉛(ZnO:Sb)、錫をドープした酸化インジウム(In:Sn)、アルミニウムをドープした酸化亜鉛(ZnO:Al)、ガリウムをドープした酸化亜鉛(ZnO:Ga)等、透明で電気導電性を有する酸化物を電極として使用することが好ましい。基板1上に透明導電性膜2を形成する方法としては、構成材料を用いる真空蒸着法、スパッタ法、CVD(化学気相堆積)法、PVD(物理気相堆積)法、ゾル−ゲル材料を用いる塗布法等を使用することができる。
The above-described dye-sensitized solar cell of the present invention will be described more specifically with reference to FIG.
The dye-sensitized solar cell shown in FIG. 1 is formed on an electrically conductive substrate 8, an electrically conductive substrate 8, a porous photovoltaic layer 3 on which a photosensitizing dye is adsorbed, a counter electrode 9, porous light. It has a structure in which a hole transport layer 4 filled between the electromotive force layer 3 and the counter electrode 9 and a leakage preventing agent 7 for sealing the lateral side of the solar cell are provided. The electrically conductive substrate 8 has a support substrate 1 and a transparent conductive film 2. Although the material used for the board | substrate 1 is not specifically limited, A wide variety of transparent materials can be used, Preferably glass can be used. The material used for the transparent conductive film 2 is not particularly limited, but fluorine-doped tin oxide (SnO 2 : F), antimony-doped zinc oxide (ZnO: Sb), tin-doped oxide Use transparent and electrically conductive oxides such as indium (In 2 O 3 : Sn), zinc oxide doped with aluminum (ZnO: Al), zinc oxide doped with gallium (ZnO: Ga) as electrodes. Is preferred. As a method for forming the transparent conductive film 2 on the substrate 1, a vacuum vapor deposition method using a constituent material, a sputtering method, a CVD (chemical vapor deposition) method, a PVD (physical vapor deposition) method, or a sol-gel material is used. The coating method to be used can be used.

多孔質光起電力層3として用いられる多孔質半導体層の材料は、n型半導体であれば特に限定するものではない。好ましくは、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム(In)、酸化ニオブ(Nb)のような酸化物半導体が好ましい。酸化物半導体は高性能太陽電池が得られる大面積が可能な点で好ましい。好ましくは、その酸化物半導体の粒子径が1から200nm、より好ましくは1以上50nm以下である。また、その酸化物半導体は比面積が5から100m/gであることが好ましい。その酸化物半導体は導電性表面に固定でき、少なくとも200nmの膜厚、好ましくは1000から20000nmの膜厚を有する多孔質性膜を形成する。 The material of the porous semiconductor layer used as the porous photovoltaic layer 3 is not particularly limited as long as it is an n-type semiconductor. An oxide semiconductor such as titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), or niobium oxide (Nb 2 O 3 ) is preferable. An oxide semiconductor is preferable in that a large area can be obtained from which a high-performance solar cell can be obtained. Preferably, the particle diameter of the oxide semiconductor is 1 to 200 nm, more preferably 1 to 50 nm. The oxide semiconductor preferably has a specific area of 5 to 100 m 2 / g. The oxide semiconductor can be fixed to the conductive surface and forms a porous film having a thickness of at least 200 nm, preferably 1000 to 20000 nm.

本発明に基づく色素増感半導体電極は、適当な通常の手法により基板の導電性表面に本発明である先に記載した金属錯体を固定して得られる酸化物半導体の層または膜として形成される。導電性表面上への酸化物半導体の固定は、酸化物半導体を含む分散媒体またはスラリー状液体に浸漬、またはそれらを用いて塗布し、乾燥後焼成することにより行われる。表面活性剤、ポリエチレングリコールのような膨潤剤および適当な添加物を含む水溶性媒体は、通常、前出の分散媒体やスラリー状液体として用いることができる。焼成は通常300から900℃、好ましくは400から600℃で行う。   The dye-sensitized semiconductor electrode according to the present invention is formed as an oxide semiconductor layer or film obtained by fixing the above-described metal complex according to the present invention on a conductive surface of a substrate by an appropriate ordinary technique. . The oxide semiconductor is fixed onto the conductive surface by immersing in a dispersion medium or a slurry-like liquid containing the oxide semiconductor, or applying them, drying, and baking. A water-soluble medium containing a surfactant, a swelling agent such as polyethylene glycol, and appropriate additives can be usually used as the above-mentioned dispersion medium or slurry liquid. Firing is usually performed at 300 to 900 ° C, preferably 400 to 600 ° C.

金属錯体を以下のように半導体層に固定する。金属錯体をメタノール、エタノール、アセトニトリル、ノルマル−ブタノール、ターシャル−ブタノールまたはジメチルホルムアミド等の適当な溶媒に溶解する。上記に記載の半導体電極に、浸漬や塗布等の適当な方法にて溶液を浸みこませる。好ましくは、金属錯体を含む溶液を酸化物半導体の多孔質層の奥深くに浸みこませる。半導体電極にトラップされたガスを除去するため、真空中高温で処理することが好ましい。金属錯体は好ましくは酸化物半導体表面で単分子層を形成させる。   The metal complex is fixed to the semiconductor layer as follows. The metal complex is dissolved in a suitable solvent such as methanol, ethanol, acetonitrile, normal-butanol, tertiary-butanol or dimethylformamide. The solution is immersed in the semiconductor electrode described above by an appropriate method such as dipping or coating. Preferably, the solution containing the metal complex is immersed deep in the porous layer of the oxide semiconductor. In order to remove the gas trapped in the semiconductor electrode, it is preferable to perform the treatment at a high temperature in a vacuum. The metal complex preferably forms a monomolecular layer on the surface of the oxide semiconductor.

対向電極9は基板5と対向電極層6から構成される。基板5に用いる材料は、基板1と同様に特に限定されるものではないし、多種多様の透明材料を用いることができ、好ましくはガラスを使用する。対向電極層6の材料もまた特に限定するものではないが、白金膜、炭素薄膜、フッ素をドープした酸化錫(SnO:F)、アンチモンをドープした酸化錫(Sn:Sb)、錫をドープした酸化インジウム(In:Sn)、アルミニウムをドープした酸化亜鉛(ZnO:Al)、及びガリウムをドープした酸化亜鉛(ZnO:Ga)からなる群から選ばれた一つまたは複数の積層膜であり、好ましくはこれらの複合膜である。対向電極層6は対向電極から電解質に電子伝達することを容易にすることが役割である。対向電極膜6の形成法としては、電極材料を成分として真空蒸着法、スパッタ法、CVD(化学気相堆積)法、PVD(物理気相堆積)法等を用いて基板5の上に対向電極膜6を形成してもよいし、ゾル−ゲル法による塗布によっても形成される。透明電極や電解質を透過した光を反射するように対向電極を追加加工してもよい。更に、TiO層、色素、電解質を保護して長期安定性を確保するため、基板の外側をポリスチレン、ポリメチルメタクリレート、また好ましくはポリカーボネート等のプラスチックで覆ってもよい。 The counter electrode 9 includes a substrate 5 and a counter electrode layer 6. The material used for the substrate 5 is not particularly limited like the substrate 1, and a wide variety of transparent materials can be used, and preferably glass is used. The material of the counter electrode layer 6 is not particularly limited, but is doped with platinum film, carbon thin film, fluorine-doped tin oxide (SnO 2 : F), antimony-doped tin oxide (Sn: Sb), tin. One or a plurality of laminated films selected from the group consisting of indium oxide (In 2 O 3 : Sn), zinc oxide doped with aluminum (ZnO: Al), and zinc oxide doped with gallium (ZnO: Ga) Preferably, these composite membranes are used. The counter electrode layer 6 has a role of facilitating electron transfer from the counter electrode to the electrolyte. As a method of forming the counter electrode film 6, the counter electrode is formed on the substrate 5 by using a vacuum vapor deposition method, a sputtering method, a CVD (chemical vapor deposition) method, a PVD (physical vapor deposition) method, or the like using an electrode material as a component. The film 6 may be formed or formed by application by a sol-gel method. The counter electrode may be additionally processed so as to reflect the light transmitted through the transparent electrode or the electrolyte. Further, in order to protect the TiO 2 layer, the dye, and the electrolyte to ensure long-term stability, the outside of the substrate may be covered with a plastic such as polystyrene, polymethyl methacrylate, or preferably polycarbonate.

本発明ではホール輸送層4としてホールまたはイオンを用いる。ここで、ホール輸送層は電気導電性基板8の上に形成され、光増感色素を吸着させた多孔質半導体電極と対向電極9上の電子を輸送する材料である基板との間に充填されている。たとえば、ホール輸送材料としてはポリビニルカルバゾールを、電子輸送材料としてはテトラニトロフルオレノンを、電気伝導性高分子としてはポリピロールを、電解質の電気伝導材料としては高分子電解質を使用できる。   In the present invention, holes or ions are used as the hole transport layer 4. Here, the hole transport layer is formed on the electrically conductive substrate 8 and is filled between the porous semiconductor electrode on which the photosensitizing dye is adsorbed and the substrate which is a material for transporting electrons on the counter electrode 9. ing. For example, polyvinyl carbazole can be used as the hole transport material, tetranitrofluorenone can be used as the electron transport material, polypyrrole can be used as the electrically conductive polymer, and a polymer electrolyte can be used as the electrically conductive material of the electrolyte.

液体電解質(レドックス電解質)の酸化還元対の例としては、I/I 、Br/Br やキノン/ハイドロキノン対がある。たとえば、ヨウ化リチウムとヨウ素を使ってもよい。電解質の溶媒としては、アセトニトリルまたはプロピレンカーボネートの様に大量の電解質を溶解できる電気化学的に不活性な溶媒を使用できる。 Examples of redox pairs of liquid electrolytes (redox electrolytes) include I / I 3 , Br / Br 3 and quinone / hydroquinone pairs. For example, lithium iodide and iodine may be used. As an electrolyte solvent, an electrochemically inert solvent that can dissolve a large amount of electrolyte, such as acetonitrile or propylene carbonate, can be used.

セルサイズ0.25cmの太陽電池を上記の電極と対極を用いて作製した。ここで、対極は白金電極であり、導電性ガラス基板上に白金を真空蒸着して形成した。白金層は20nmの膜厚とした。上記の2つの電極間を満たす電解液として、I/I の酸化還元対を適用し、電解液は0.5Mの4−t−ブチルピリジン、0.1Mのヨウ化リチウム、0.6Mの1,2−ジメチル−3−プロピルイミダゾリウム及び0.1Mのヨウ素を溶質としてアセトニトリルに溶解させた。 A solar cell having a cell size of 0.25 cm 2 was produced using the above electrode and counter electrode. Here, the counter electrode was a platinum electrode, which was formed by vacuum deposition of platinum on a conductive glass substrate. The platinum layer had a thickness of 20 nm. As an electrolytic solution that fills between the two electrodes, an I / I 3 redox pair is applied, and the electrolytic solution is 0.5 M 4-t-butylpyridine, 0.1 M lithium iodide, 0. 6M 1,2-dimethyl-3-propylimidazolium and 0.1M iodine were dissolved in acetonitrile as solutes.

このようにして作製した光電変換素子性能はソーラーシュミレーター(AM1.5,100mWcm−2)を用いて評価した。室温に電流−電圧特性測定し,得られた短絡電流(Jsc)、開放電圧(Voc)、及び形状因子(F.F.)を求め、これらから光電変換効率(η)を求めた。
本発明による代表的な色素及びBlack色素(Black dye)を用いたセル特性を表1に示す。
The photoelectric conversion element performance thus produced was evaluated using a solar simulator (AM1.5, 100 mWcm −2 ). Current-voltage characteristics were measured at room temperature, and the obtained short circuit current (Jsc), open circuit voltage (Voc), and form factor (FF) were obtained, and the photoelectric conversion efficiency (η) was obtained therefrom.
Table 1 shows the cell characteristics using typical dyes and black dyes according to the present invention.

上の表から判るように、本発明の実施例の錯体を使用すると、何れの場合にもBlack色素よりも大きな短絡電流が得られた。これは、これらの錯体の吸収する光の波長域がBlack色素よりも長波長側まで伸びており、これによる光吸収量の増大が短絡電流の増大に寄与していることを示している。これにより、最終的には光電変換効率がBlack色素よりも高くなるという効果が得られた。   As can be seen from the above table, when the complexes of the examples of the present invention were used, a short-circuit current larger than that of the Black dye was obtained in any case. This indicates that the wavelength range of light absorbed by these complexes extends to a longer wavelength side than the Black dye, and the increase in the amount of light absorption due to this contributes to the increase in the short-circuit current. Thereby, the effect that the photoelectric conversion efficiency finally becomes higher than that of the Black dye was obtained.

本発明の金属錯体は太陽光エネルギーを高い效率で吸収する色素となり、またこれを利用して高効率の色素増感太陽電池を提供できる。   The metal complex of the present invention becomes a dye that absorbs solar energy with high efficiency, and by using this, a highly efficient dye-sensitized solar cell can be provided.

1 支持基板
2 透明導電性膜
3 多孔質光起電力層
4 ホール輸送層
5 基板
6 対向電極層
7 漏洩防止剤
8 電気導電性基板
9 対向電極
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Transparent conductive film 3 Porous photovoltaic layer 4 Hole transport layer 5 Substrate 6 Counter electrode layer 7 Leakage preventive agent 8 Electrically conductive substrate 9 Counter electrode

特開2003-212851JP2003-212851 US 6,664,462 B2US 6,664,462 B2 特開2005-120042JP2005-120042

European Journal of Organic Chemistry 2004, 4003-4013European Journal of Organic Chemistry 2004, 4003-4013 Chemistry of Materials 2006, 18, 5178-5185Chemistry of Materials 2006, 18, 5178-5185 Applied Physics Express 3 (2010) 06230-1Applied Physics Express 3 (2010) 06230-1

Claims (5)

一般式(1)で表される金属錯体。
MLZX (1)
上式中:
Mは8〜10族金属元素であり、
Xはハロゲン原子、シアノ基、チオシアノ基とチオラート基とからなる群から選択された配位子であり、
Zは下記式(2)で表され、ここにおいてA1、A2及びA3の少なくとも1つはカルボキシル基であるとともに残余のものは水素である配位子であり、

Lは下記式(3)で表される1,3−ブタンジオン誘導体であり、

ここで、Rは、アルキル基、アルコキシアルキル基、アミノアルキル基、ハロゲン置換アルキル基、アリール基または水素原子であり、
は置換または無置換3,4−エチレンジオキシチオフェン基、もしくはチオフェンが1〜3個直鎖状に繋がるチオフェン骨格であって、その一側に置換または無置換アルキル基とアルキルフェニル基とハロゲン基とフェノキシアルキルとからなる群から選択された基を有する前記チオフェン骨格である。
A metal complex represented by the general formula (1).
MLZX (1)
In the above formula:
M is a group 8-10 metal element,
X is a ligand selected from the group consisting of a halogen atom, a cyano group, a thiocyano group and a thiolate group,
Z is represented by the following formula (2), wherein at least one of A1, A2 and A3 is a carboxyl group and the remainder is a ligand which is hydrogen,

L is a 1,3-butanedione derivative represented by the following formula (3),

Here, R 1 is an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a halogen-substituted alkyl group, an aryl group or a hydrogen atom,
R 2 is a substituted or unsubstituted 3,4-ethylenedioxythiophene group, or a thiophene skeleton in which 1 to 3 thiophenes are connected in a straight chain, and a substituted or unsubstituted alkyl group and an alkylphenyl group on one side thereof The thiophene skeleton having a group selected from the group consisting of a halogen group and phenoxyalkyl.
前記式(3)におけるRが炭素数1〜3であるパーフルオロアルキル基であることを特徴とする、請求項1に記載の金属錯体。 The metal complex according to claim 1, wherein R 1 in the formula (3) is a perfluoroalkyl group having 1 to 3 carbon atoms. 前記式(3)におけるRがチオフェンが1〜3個直鎖状に繋がるチオフェン骨格を有し、前記チオフェン骨格の一側に炭素数1〜12のアルキル基とアルキルフェニル基(アルキル部分の炭素数1〜12)と末端がハロゲン基を有する炭素数1〜12のアルキル基とからなる群から選択された基を有する、請求項1または請求項2に記載の金属錯体。 In Formula (3), R 2 has a thiophene skeleton in which 1 to 3 thiophenes are connected in a straight chain, and an alkyl group having 1 to 12 carbon atoms and an alkylphenyl group (carbon in the alkyl moiety) on one side of the thiophene skeleton. The metal complex of Claim 1 or Claim 2 which has group selected from the group which consists of C1-C12 alkyl group which number 1-12) and the terminal have a halogen group. 請求項1から3の何れかに記載の金属錯体が導電性表面に形成された酸化物半導体膜に吸着した、色素増感酸化物半導体電極。   A dye-sensitized oxide semiconductor electrode, wherein the metal complex according to claim 1 is adsorbed on an oxide semiconductor film formed on a conductive surface. 請求項4に記載の色素増感酸化物半導体電極と、対極と、前記色素増感酸化物半導体電極及び前記対極に接触するレドックス電解質とを設けた色素増感太陽電池。   A dye-sensitized solar cell comprising the dye-sensitized oxide semiconductor electrode according to claim 4, a counter electrode, and a redox electrolyte in contact with the dye-sensitized oxide semiconductor electrode and the counter electrode.
JP2010268761A 2010-12-01 2010-12-01 Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar cell Expired - Fee Related JP5713285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010268761A JP5713285B2 (en) 2010-12-01 2010-12-01 Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268761A JP5713285B2 (en) 2010-12-01 2010-12-01 Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2012119195A true JP2012119195A (en) 2012-06-21
JP5713285B2 JP5713285B2 (en) 2015-05-07

Family

ID=46501799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268761A Expired - Fee Related JP5713285B2 (en) 2010-12-01 2010-12-01 Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5713285B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168119A1 (en) * 2013-04-12 2014-10-16 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
JP2014220229A (en) * 2013-04-12 2014-11-20 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in the same
CN106892895A (en) * 2017-03-06 2017-06-27 山西恒强化工有限公司 A kind of preparation method of 2 acetyl thiophene
EP3945090A1 (en) * 2020-07-27 2022-02-02 Novaled GmbH Metal complexes of 3-(2,3,5-trifluoro-6-(trifluoromethyl)pyridin-4-yl)pentane-2,4-dione and similar ligands as semiconductor materials for use in electronic devices
WO2022023260A1 (en) * 2020-07-27 2022-02-03 Novaled Gmbh Metal complexes of 3-(2,3,5-trifluoro-6-(trifluoromethyl)pyridin-4-yl)pentane-2,4-dione and similar ligands as semiconductor materials for use in electronic devices
EP4105201A1 (en) * 2021-06-18 2022-12-21 Novaled GmbH An organic electroluminescent device comprising a substrate, an anode layer and a cathode layer, at least one light emitting layer, and at least one semiconductor layer that comprises at least one metal compound of a metal and at least one ligand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203005A (en) * 2000-01-21 2001-07-27 Fuji Photo Film Co Ltd Photoelectric transducer element, photo cells and metal complex dyes
JP2003051343A (en) * 2001-08-03 2003-02-21 Fuji Photo Film Co Ltd Photoelectric conversion element, photocell and complex dye
JP2003212851A (en) * 2002-01-22 2003-07-30 National Institute Of Advanced Industrial & Technology Ruthenium complex useful as sensitizer, oxide semiconductor electrode and solar cell using the same
JP2004226607A (en) * 2003-01-22 2004-08-12 Sharp Corp Photorefractive element array substrate and image display device
JP2005120042A (en) * 2003-10-17 2005-05-12 Sharp Corp Ruthenium complex, dye sensitizing oxide semiconductor and dye sensitizing solar cell using the same complex

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203005A (en) * 2000-01-21 2001-07-27 Fuji Photo Film Co Ltd Photoelectric transducer element, photo cells and metal complex dyes
JP2003051343A (en) * 2001-08-03 2003-02-21 Fuji Photo Film Co Ltd Photoelectric conversion element, photocell and complex dye
JP2003212851A (en) * 2002-01-22 2003-07-30 National Institute Of Advanced Industrial & Technology Ruthenium complex useful as sensitizer, oxide semiconductor electrode and solar cell using the same
JP2004226607A (en) * 2003-01-22 2004-08-12 Sharp Corp Photorefractive element array substrate and image display device
JP2005120042A (en) * 2003-10-17 2005-05-12 Sharp Corp Ruthenium complex, dye sensitizing oxide semiconductor and dye sensitizing solar cell using the same complex

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690902B1 (en) 2013-04-12 2016-12-28 후지필름 가부시키가이샤 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
WO2014168119A1 (en) * 2013-04-12 2014-10-16 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
JP2014220228A (en) * 2013-04-12 2014-11-20 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in the same
KR20150129778A (en) * 2013-04-12 2015-11-20 후지필름 가부시키가이샤 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
CN105122404A (en) * 2013-04-12 2015-12-02 富士胶片株式会社 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
GB2530180A (en) * 2013-04-12 2016-03-16 Fujifilm Corp Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
JP2014220229A (en) * 2013-04-12 2014-11-20 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in the same
US9947482B2 (en) 2013-04-12 2018-04-17 Fujifilm Corporation Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
GB2530180B (en) * 2013-04-12 2020-06-03 Fujifilm Corp Photoelectric conversion element, dye-sensitized solar cell, and metal complex dye used in same
CN106892895A (en) * 2017-03-06 2017-06-27 山西恒强化工有限公司 A kind of preparation method of 2 acetyl thiophene
EP3945090A1 (en) * 2020-07-27 2022-02-02 Novaled GmbH Metal complexes of 3-(2,3,5-trifluoro-6-(trifluoromethyl)pyridin-4-yl)pentane-2,4-dione and similar ligands as semiconductor materials for use in electronic devices
WO2022023260A1 (en) * 2020-07-27 2022-02-03 Novaled Gmbh Metal complexes of 3-(2,3,5-trifluoro-6-(trifluoromethyl)pyridin-4-yl)pentane-2,4-dione and similar ligands as semiconductor materials for use in electronic devices
EP4105201A1 (en) * 2021-06-18 2022-12-21 Novaled GmbH An organic electroluminescent device comprising a substrate, an anode layer and a cathode layer, at least one light emitting layer, and at least one semiconductor layer that comprises at least one metal compound of a metal and at least one ligand
WO2022263497A1 (en) * 2021-06-18 2022-12-22 Novaled Gmbh Organic electronic devices comprising bis(((z)-3-(4-cyano-3,5-bis(trifluoromethyl)phenyl)-4-oxopent-2-en-2-yl)oxy)copper(ii) or the corresponding aluminium(iii) or iron(iii) complexes or similar complexes

Also Published As

Publication number Publication date
JP5713285B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5118805B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5285062B2 (en) Photosensitizer and solar cell using the same
WO2009131183A1 (en) Pyridine-type metal complex, photoelectrode comprising the metal complex, and dye-sensitized solar cell comprising the photoelectrode
JP5713285B2 (en) Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar cell
JP2008251537A (en) Electrolyte for photoelectric conversion element
JP4280020B2 (en) Oxide semiconductor electrode for photoelectric conversion and dye-sensitized solar cell
JP2005135656A (en) Photoelectric conversion element
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP4627427B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2012156096A (en) Photoelectric conversion element, and dye-sensitized solar cell comprising the same
JP4721755B2 (en) Complex, photoelectric conversion element and dye-sensitized solar cell
JP4509066B2 (en) Photosensitizer, semiconductor electrode and photoelectric conversion element
WO2013027838A1 (en) Dye-sensitized solar cell and sensitizing dye
JP5004575B2 (en) Photosensitizer, semiconductor electrode and photoelectric conversion element using the same
JP2002334729A (en) Dye-sensitized photoelectric conversion element
KR101351303B1 (en) Hole transporting materials having high conductivity and dye-sensitized solar cells using the same
JP2014186995A (en) Transparent dye-sensitized solar cell and dye-sensitized solar cell module
JP5162904B2 (en) Photoelectric conversion element and dye-sensitized solar cell
JP4430371B2 (en) Ruthenium complex, dye-sensitized oxide semiconductor electrode and dye-sensitized solar cell using the same
JP6218046B2 (en) Dye-sensitized solar cell
JP5547990B2 (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP4947919B2 (en) Ruthenium complex, dye-sensitized oxide semiconductor electrode and dye-sensitized solar cell using the same
JP2012111737A (en) Metal complex and dye-sensitized solar battery using metal complex
TW201422595A (en) Redox pair, and photoelectric conversion element produced using same
JP2006073375A (en) Semiconductor electrode, photoelectric conversion element using organic dye as photosensitizer, and solar cell using these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5713285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees